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Abstract. In this paper we investigate the limit cycles of planar piecewise

linear differential systems with two zones separated by a straight line. It is

well known that when these systems are continuous they can exhibit at most
one limit cycle, while when they are discontinuous the maximum number of

limit cycles that they can exhibit is still open. For these last systems there are
examples exhibiting three limit cycles.

The aim of this paper is to study the number of limit cycles for a special kind

of planar discontinuous piecewise linear differential systems with two zones
separated by a straight line which are known as refracting systems. First we

obtain the existence and uniqueness of limit cycles for refracting systems of

focus-node type. Second we prove that refracting systems of focus-focus type
have at most one limit cycle, thus we give a positive answer to a conjecture

on the uniqueness of limit cycle stated by Freire, Ponce and Torres in [10].

These two results complete the proof that any refracting system has at most
one limit cycle.

1. Introduction

In the qualitative theory of the differential systems in the plane one of the most
important problems is the determination and distribution of limit cycles, which is
known as the famous Hilbert’s 16-th problem [18, 28] and its weak form [4, 5, 12, 29].

Since many real world differential systems involve a discontinuity or a sudden
change [2], in recent years there is a growing interest in the following planar piece-
wise smooth vector fields

(1) X (q) =

{
X−(q) if h(q) < 0,

X+(q) if h(q) > 0,

where the discontinuity boundary Σ = {q ∈ R2 : h(q) = 0} divides the plane R2

into two regions Σ± = {q ∈ R2 : ±h(q) > 0}. The singularities p± of X± are called
visible or invisible if p± ∈ Σ± or p± ∈ Σ∓, respectively.

Clearly the orbits are well defined in both zones Σ±. While if an orbit arrives
to the discontinuous boundary Σ, different things can occur.

Definition 1. Let X±h(q) = 〈∇h(q), X±(q)〉. Then we can classify Σ into the
following three open regions:

(i) crossing region Σc = {q ∈ Σ : X+h(q)X−h(q) > 0}, see Fig.1.1.
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Figure 1. Definition of the vector field on Σ.

(ii) attracting region Σa = {q ∈ Σ : X+h(q) > 0, X−h(q) < 0}, see Fig.1.2;
(iii) escaping region Σe = {q ∈ Σ : X+h(q) < 0, X−h(q) > 0}, see Fig.1.3.

The boundaries Σt of the above three regions are called Σ−tangential point,
that is Σt = {q ∈ Σ : X+h(q)X−h(q) = 0}. If an isolated periodic orbit of systems
(1) has sliding points, then it is called a sliding limit cycle, otherwise we call it a
crossing limit cycle.

The most simplest piecewise smooth differential systems are the piecewise linear
differential systems with a straight line of separation. Without loss of generality
we can assume that the separating straight line is x = 0, then we have

(2)

(
ẋ
ẏ

)
=





(
a−1,1 a−1,2
a−2,1 a−2,2

)(
x
y

)
+

(
b−1
b−2

)
if x < 0,

(
a+

1,1 a+
1,2

a+
2,1 a+

2,2

)(
x
y

)
+

(
b+1
b+2

)
if x > 0,

where the dot denotes the derivative with respected to the tiem t. We call systems
(2) with x < 0 (resp. x > 0) the left (resp. right) subsystems for convenience.

In 2012 Freire, Ponce and Torres [9] reduced the study of the planar piecewise
linear differential systems (2) to the following Liénard canonical forms

(3)

(
ẋ
ẏ

)
=





(
T− −1
D− 0

)(
x
y

)
−
(

0
a−

)
if x < 0,

(
T+ −1
D+ 0

)(
x
y

)
−
(
−b
a+

)
if x > 0,

where T± and D± denote the traces and determinants of the left and right subsys-
tems, respectively.

If b = 0, a− = a+, then systems (3) become continuous differential systems. In
1990 Lum and Chua [25] did the following conjecture:

Conjecture 1. Planar continuous piecewise linear differential systems (3) have at
most one limit cycle.

In 1998 Freire et al. [8] proved the conjecture 1 by qualitative analysis. Recently,
Li and Llibre [19] provided the global phase portraits in the Poincaré disc of the
planar continuous piecewise linear differential systems (3).
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Table 1. The known results on the lower bounds for the maximum
number of limit cycles of the discontinuous systems (3), where
F, S,N denote focus/center, saddle and node respectively.

F S N
F 3 3 3
S 2 2
N 2

For the discontinuous systems (3) most of the known results [11, 14, 15, 16,
22, 23, 30, 31] are concerned with the lower bounds of the number of limit cycles.
According to the singularities of left and right subsystems (3), we can classify
systems (3) into six types, see Table 1.

From Table 1 appeared the following conjecture:

Conjecture 2. Planar discontinuous piecewise linear differential systems (3) have
at most three crossing limit cycles.

As far as we known conjecture 2 is still open and there were only several par-
tial results for this conjecture. Llibre, Novaes and Teixeira [20, 21] proved that
discontinuous systems (3) have at most two crossing limit cycles when a+a− = 0.
Giannakopoulos and Pliete [13] showed that discontinuous systems (3) with a Z2

symmetry have at most two crossing limit cycles. In [24] it is proved that if one of
the subsystems (3) has a center then the maximum number of crossing limit cycles
is two, and that this upper bound is sharped.

Definition 2. If X+h(q) = X−h(q) for all q ∈ Σ, then systems (1) are known as
refracting systems.

It is obvious that the whole discontinous line Σ of a refracting system is a crossing
region. There are several papers classifying the generic singularities of the refracting
systems, for dimension two see [7]; for dimension three see [3]; for dimension four
see [17] and for arbitrary dimension see [1].

If b = 0 then systems (3) become planar discontinuous piecewise linear refracting
systems and have been studied in several papers [15, 16, 27, 30, 31]. All the previous
results shown that the planar discontinuous piecewise linear refracting systems (3)
of types SS,NN,FS, SN have at most one limit cycle, see Table 2. More precisely
we have

• SS see Theorems 3.4 and 3.5 of [15].
• NN see Theorem 3.1 of [16].
• FS see Theorem 1 of [27], or Theorem 3.1 of [31].
• SN see Theorem 3.1 of [30].

The dynamics of the planar discontinuous piecewise linear differential systems
(3) are determined by

∆± = (T±)2 − 4D±.
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Table 2. The known results on the upper bounds for the max-
imum number of limit cycles of the refracting systems (3) before
this paper.

F S N
F ? 1 ?
S 1 1
N 1

We define the modal parameters

m{R,L} =





i if ∆± < 0,

0 if ∆± = 0,

1 if ∆± > 0,

where i2 = −1. Then the planar discontinuous piecewise linear refracting systems
(3)|b=0 into the following normal forms

(4)

(
ẋ
ẏ

)
=





(
2γL −1

γ2
L −m2

L 0

)(
x
y

)
−
(

0
αL

)
if x < 0,

(
2γR −1

γ2
R −m2

R 0

)(
x
y

)
−
(

0
αR

)
if x > 0,

where

α{R,L} =





2a±√
|∆±|

if ∆± 6= 0,

2a± if ∆± = 0,

and

γ{R,L} =





T±√
|∆±|

if ∆± 6= 0,

T± if ∆± = 0.

For a proof of these normal forms see [11].

Remark 1. Systems (4) for m = i have a focus; for m = 1 and |γ| > 1 have a
node; for m = 1 and |γ| < 1 have a saddle; and For m = 0 have an improper node.

2. Statements of the main results

It follows from Table 2 that the upper bounds for the maximum number of limit
cycles of the planar discontinuous piecewise linear refracting systems (3) of type
focus-node or focus-focus are still unknown. In the present paper we investigated
the number of limit cycles for the above two remain unsolved types. We shall use the
normal forms (4) instead of (3) because the former one have only four parameters.
Without loss of generality we can assume that the left subsystem of (4) has a focus.

First we consider the planar discontinuous piecewise linear refracting systems (4)
of type focus-node. Therefore, according wiht Remark 1, we have mL = i, mR = 1
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and |γR| > 1, then systems (4) become

(5)

(
ẋ
ẏ

)
=





(
2γL −1
γ2
L + 1 0

)(
x
y

)
−
(

0
αL

)
if x < 0,

(
2γR −1
γ2
R − 1 0

)(
x
y

)
−
(

0
αR

)
if x > 0.

Theorem 1. Planar discontinuous piecewise linear refracting systems of type focus-
node (5) with |γR| > 1 have at most one limit cycle. Furthermore these systems
have a unique limit cycle if and only if γRγL < 0 and αR < 0, which is stable if
γL > 1, and unstable if γL < −1.

Second we investigate planar discontinuous piecewise linear refracting systems
(4) of type focus-improper node, i.e. we assume that mL = i and mR = 0, then
systems (4) become

(6)

(
ẋ
ẏ

)
=





(
2γL −1
γ2
L + 1 0

)(
x
y

)
−
(

0
αL

)
if x < 0,

(
2γR −1
γ2
R 0

)(
x
y

)
−
(

0
αR

)
if x > 0.

Theorem 2. Planar discontinuous piecewise linear refracting systems of type focus-
improper node (6) have at most one limit cycle. Furthermore these systems have a
unique limit cycle if and only if γRγL < 0 and αR < 0, which is stable if γL > 0,
and unstable if γL < 0.

Finally we study the limit cycles of the planar discontinuous piecewise linear
refracting systems (4) of type focus-focus. Suppose that mR = i and mL = i, then
systems (4) become

(7)

(
ẋ
ẏ

)
=





(
2γL −1
γ2
L + 1 0

)(
x
y

)
−
(

0
αL

)
if x < 0,

(
2γR −1
γ2
R + 1 0

)(
x
y

)
−
(

0
αR

)
if x > 0.

We note that systems (7) have been studied in [9, 10]. The authors showed that
systems (7) have at most one limit cycle when αR 6 0 6 αL or αLαR > 0. While
for the remain case αL < 0 < αR they stated the following two conjectures based
on extensive numerical simulations.

Conjecture 3. Assuming αL < 0 < αR and γLγR < 0 in systems (7), then the
following statements hold.

(a) If γL < 0 and (γL + γR)(ŷ − z∗) < 0, then systems (7) have no crossing
limit cycles, where ŷ and z∗ are defined in (17).

(b) If γL > 0 and (γL + γR)(ŷ − z∗) > 0, then systems (7) have no crossing
limit cycles.

Conjecture 4. Assuming αL < 0 < αR and γLγR < 0 in systems (7), then these
systems have at most one crossing limit cycle.

The third main result of this paper provides a positive answer to conjectures 3
and 4.
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Table 3. The known results on the upper bounds for the max-
imum number of limit cycles of refracting systems (3) from this
paper.

F S N
F 1 1 1
S 1 1
N 1

Theorem 3. Planar discontinuous piecewise linear refracting systems of type focus-
focus (7) have at most one limit cycle. Furthermore these systems have a unique
limit cycle if and only if γRγL < 0 and one of the following three conditions hold.

(I) αR 6 0 6 αL and (γL+γR)(αLγR−αRγL) < 0, which is stable if γL+γR <
0, and unstable if γL + γR > 0.

(II) αL < 0, αR < 0 and γL(γL + γR) < 0, which is stable if γL > 0, and
unstable if γL < 0.

(III) αL < 0 < αR and γL(γR + γL)(ŷ − z∗) < 0, which is stable if γL > 0, and
unstable if γL < 0.

In summary from Table 1 and Theorems 1, 2 and 3 we have proved the following.

Corollary 4. Planar discontinuous piecewise linear refracting systems (3) have at
most one limit cycle, see Table 3.

The rest of the paper is organized as follows. In section 3 we construct the
Poincaré map of the refracting systems (4) which is crucial for analyzing the num-
ber of limit cycles. After we prove Theorems 1, 2 and 3 in sections 4, 5 and 6,
respectively.

3. Preliminary results

Note that if a refracting system (4) has a limit cycle, then it must intersect
the discontinuity straight line x = 0, because both subsystems of (4) are linear
differential systems. According with Proposition 3.7 of [9], and recalling that b = 0
and γL 6= 0, we obtain the following necessary conditions for the existence of limit
cycles:

γLγR < 0.

Without loss of generality we can assume that γL > 0, γR < 0, otherwise doing the
change of variables X = x, Y = −y, T = −t, we change γL < 0, γR > 0 into the
former one.

In order to study the crossing limit cycles of the planar discontinuous piecewise
linear refracting systems (4), we need to analyze their Poincaré maps as follows.

First we define the left Poincaré map of systems (4). From the left subsystems
of (4) we have ẋ|x=0 = −y, then the orbit of systems (4) starting at the point (0, y)
with y > 0 will go into the left zone under the flow of the left subsystem, and after
this orbit reaches x = 0 again at some point (0, PL(y)) with PL(y) < 0, see Fig. 2.
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O x

PR(z)

z

PL(y)

y

Figure 2. The left and right Poincaré map of a refracting system (4).

Now we define the right Poincaré map of systems (4). From the right subsystems
of (4) we know that ẋ|x=0 = −y. The orbit of systems (4) starting from points
(0, z) with z < 0 goes into the right zone under the action of the flow of the right
linear subsystems of (4), and after this orbit reaches x = 0 again at some point
(0, PR(z)) with PR(z) > 0, see again Fig. 2.

Clearly the crossing limit cycles of planar discontinuous piecewise linear refract-
ing systems (4) are in correspondence with the zeros of the Poincaré map

(8) PL(y)− P−1
R (y) with y ∈ (0,+∞),

or equivalently

(9) P−1
L (z)− PR(z) with z ∈ (−∞, 0).

We recall the following results on the existence and uniqueness of limit cycles for
planar discontinuous piecewise linear differential systems without sliding regions
proved in [26].

Consider the following piecewise linear differential systems

(10)

(
Ẋ

Ẏ

)
=





(
µ−1 µ−2
1 0

)(
X
Y

)
+

(
µ−0
0

)
if Y < 0,

(
µ+

1 µ+
2

1 0

)(
X
Y

)
+

(
µ+

0

0

)
if Y > 0.

Definition 3. We say that a point p ∈ Σ = {Y = 0} is a Σ−monodromic singu-
larity of systems (10) if either p is a tangential point, or a singularity of one of
the subsystems of (10), and there exists a neighborhood of p such that the orbits of
systems (10) turn around p either in forward or in backward time.
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Theorem 5. [26] Assume that systems (10) have a Σ−monodromic singularity.
Then systems (10) have no limit cycles when µ+

1 µ
−
1 > 0, and have at most one

limit cycle when µ+
1 µ
−
1 < 0. Moreover there is a choice of the parameters for which

the limit cycle exists.

For studying planar discontinuous piecewise linear refracting systems having a
focus we shall consider the auxiliary function

ϕγ(t) = 1− eγt(cos t− γ sin t),

introduced in [9].

Proposition 6. The function ϕγ(t) has the following properties.

(I) ϕ
′
γ(t) < 0 if t ∈ (π, 2π).

(II) If γ < 0, then ϕγ(t) > 0.

(III) If γ > 0, then there is a unique t̂ ∈ (π, 2π) such that ϕγ(t̂) = 0, ϕγ(t) > 0

for t ∈ (π, t̂) and ϕγ(t) < 0 for t ∈ (t̂, 2π).

Proof. Since ϕ′γ(t) = (1+γ2)eγt sin t, the function ϕγ(t) is decreasing for t ∈ (π, 2π).

Notice that ϕγ(π) = 1 + eγπ and ϕγ(2π) = 1 − e2γπ. Then, if γ < 0 we have

ϕγ(t) > 0 on (π, 2π), and if γ > 0 there exists a t̂ ∈ (π, 2π) so that ϕγ(t) > 0 on

(π, t̂), and ϕγ(t) < 0 on (t̂, 2π). �

4. Proof of Theorem 1

It is obvious that if the right subsystems of (5) have a visible node, then refracting
systems (5) cannot have limit cycles. Thus a necessary condition for the existence
of limit cycles of systems (5) is that αR < 0.

We divide the proof of Theorem 1 into two cases.

Case1: αL > 0. Then the left subsystems of (5) have an invisible focus when
αL > 0, and an equilibrium on Σ when αL = 0. Doing the change of variables

X = 2γLx− y, Y = x, if x < 0, or

X = 2γRx− y, Y = x, if x > 0,

then the refracting systems (5) become

(11)

(
Ẋ

Ẏ

)
=





(
2γL −(γ2

L + 1)
1 0

)(
X
Y

)
+

(
αL
0

)
if Y < 0,

(
2γR −(γ2

R − 1)
1 0

)(
X
Y

)
+

(
αR
0

)
if Y > 0.

It is easy to check that (0, 0) is the unique Σ−monodromic singularity of systems
(11). According with Theorem 5, systems (11) have no limit cycles when γRγL > 0,
and systems (11) have a unique limit cycle when γRγL < 0. The stability of the limit
cycle follows using the Poincaré-Bendixson Theorem, see for instance Corollary 1.20
of [6].
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y

AL(y)

PL(y) z

z1

PR(z)

3.1 left Poincaré map 3.2 right Poincaré map

Figure 3. Graphics of the left and right Poincaré map of a re-
fracting system (5).

Case 2: αL < 0. Now we cannot use Theorem 5 to prove the uniqueness of limit
cycles, because (0, 0) is not a Σ−monodromic singularity of systems (5).

The left Poincaré maps of a system (5) can be stated as follows, for a proof see
Proposition 6 of [11].

Lemma 7. The parameter representation of the left Poincaré map PL(y) of a
refracting system (5) is

y =
αL

(1 + γ2
L)

ϕγL(t)

eγLt sin t
,

PL(y) = − αL
(1 + γ2

L)

ϕ−γL(t)

e−γLt sin t
,

where π < t < t̂, see Fig. 3.1. Moreover we have

(i) lim
y→0+

P
′
L(y) = 0; lim

y→+∞
P
′
L(y) = −eπγL .

(ii) P
′
L(y) < 0; P

′′
L (y) < 0.

(iii) PL(y) has AL(y) = −eπγLy +
2αLγL
1 + γ2

L

(1 + eπγL) as an asymptote.

The right Poincaré maps of a system (5) can be stated as follows, for a proof see
Proposition 7 of [11].

Lemma 8. The parameter representation of the right Poincaré map PR(z) of a
refracting system (5) is

z = αR
e−γRt − cosh t+ γR sinh t

(γ2
R − 1) sinh t

,

PR(z) = −αR
eγRt − cosh t− γR sinh t

(γ2
R − 1) sinh t

,

where t > 0, see Fig. 3.2. Moreover we have:

(i) lim
z→−∞

PR(z) = z1 =
αR

γR − 1
; lim
z→0−

P
′
R(z) = −1; lim

z→−∞
P
′
R(z) = 0.
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y

z

z1

AL(y)

PL(y)P−1
R (y)

y∗

Figure 4. The intersection points of the graphs PL(y) and P−1
R (y).

(ii) P
′
R(z) < 0, P

′′
R(z) < 0.

(iii) PR(z) has z = z1 as an asymptote.

From (8) we know that the number of limit cycles of a refracting system (5) is
in correspondence with the number of positive zeros of PL(y)− P−1

R (y).

Let (y∗,−eπγLy∗) be the intersection point of the graphs of −eπγLy and P−1
R (y),

see Figure 4. It is obvious that at such a point we have

(12) (P−1
R )′(y∗) < −eπγL .

We assume that the graphs of PL(y) and P−1
R (y) have two intersection points,

which are y = y1 and y = y2, where

y∗ < y1 < y2 < z1.

Then the following conditions hold:

PL(y1) = P−1
R (y1), PL(y2) = P−1

R (y2).

By the Rolle’s theorem there exists an intermediate point ȳ, such that

P ′L(ȳ) = (P−1
R )′(ȳ).

We claim that the above equality is impossible. On one hand, from Lemma 7 we
have

−eπγL < P
′
L(y) < 0, y > 0.

On the other hand, from Lemma 8 and (12) we know

(P−1
R )

′
(y) < (P−1

R )
′
(y∗) < −eπγL , y > y∗.

Thus we get the required contradiction, and Theorem 1 is proved.
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5. Proof of Theorem 2

For a refracting system (6) the left Poincaré map is also given by Lemma 7, and
the right Poincaré map can be stated as follows, see Proposition 7 of [11].

Lemma 9. The parameter representation of the right Poincaré map PR(z) of a
refracting system (6) is

(13)

z = αR
e−γRt − 1 + γRt

γ2
Rt

,

PR(z) = −αR
eγRt − 1− γRt

γ2
Rt

,

where t > 0. Moreover,

(i) lim
z→−∞

PR(z) = z2 =
αR
γR

; lim
z→0−

P
′
R(z) = −1; lim

z→−∞
P
′
R(z) = 0.

(ii) P
′
R(z) < 0; P

′′
R(z) < 0.

(iii) PR(z) has z = z2 as an asymptote.

Proof. (i) From (13) we have

lim
z→−∞

PR(z) = lim
t→+∞

−αR
eγRt − 1− γRt

γ2
Rt

=
αR
γR

.

A direct computation shows that

(14) P
′
R(z) = −e2γRt

e−γRt − 1 + γRt

eγRt − 1− γRt
.

Thus

lim
z→0−

P
′
R(z) = lim

t→0+
−e2γRt

e−γRt − 1 + γRt

eγRt − 1− γRt
= −1,

lim
z→−∞

P
′
R(z) = lim

t→+∞
−e2γRt

e−γRt − 1 + γRt

eγRt − 1− γRt
= 0.

(ii) Substituting (13) into (14) we obtain

P
′
R(z) = e2γRt

z

PR(z)
,

P
′′
R(z) = −e3γRtγ2

Rt
2 γRt− sinh(γRt)

PR(z)
.

Recall that z 6 0, PR(z) > 0, γR < 0 and t > 0, so we get (ii). �

The proof of Theorem 2 is similar to the proof of Theorem 1 and we omit it here.

6. Proof of Theorem 3

From (9) we know that the number of crossing limit cycles of refracting systems
(7) are in correspondence with the negative zeros of the function P−1

L (z)− PR(z).

We define the function

(15) f(γ, t) = e−γtϕγ(t) = e−γt − cos t+ γ sin t.
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O x

y

PR(z)

P−1
L (z)

ŷ
z∗

z

O x

y

PR(z)

P−1
L (z)

ŷ
z∗

z

Fig.5.1 ŷ > z∗ Fig.5.2 ŷ < z∗

Figure 5. Poincaré maps of refracting systems (7) with αL < 0 < αR.

According with Proposition 6, If γ > 0 there exists a unique t̂ ∈ (π, 2π) such that
f(γ, t̂) = 0. It is easy to check that for t ∈ (π, t̂),

f(γ, t) > 0, f(−γ, t) > 0,

or equivalently

(16) e−γt > cos t− γ sin t, eγt > cos t+ γ sin t.

Lemma 10. [11] The parametric representation of the inverse of left Poincaré map
P−1
L (z) of systems (7) is

z = − αL
1 + γ2

L

f(−γL, tL)

sin tL
,

P−1
L (z) =

αL
1 + γ2

L

f(γL, tL)

sin tL
,

where tL ∈ (π, t̂L) such that z(t̂L) = 0.

Lemma 11. [11] The parametric representation of the right Poincaré map PR(z)
of systems (7) is

z =
αR

1 + γ2
R

f(−γR, tR)

sin tR
,

PR(z) = − αR
1 + γ2

R

f(γR, tR)

sin tR
,

where tR ∈ (π, t̂R) such that z(t̂R) = 0.

From Fig. 5 we have

(17)
ŷ = P−1

L (0) = αLe−γL t̂L sin t̂L,

z∗ = PR(0) = −αReγR t̂R sin t̂R.

Lemma 12. For γ > 0 we consider the function

F (γ, t) =
f(γ, t)

f(−γ, t) ,
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where f(γ, t) is given in (15). Then F
′
γ(γ, t) < 0 and F

′
t (γ, t) > 0 on (π, t̂).

Proof. Since t ∈ (π, 2π) we have that

f
′
γ(γ, t) = −te−γt + sin t < 0, f

′
γ(−γ, t) = teγt − sin t > 0.

Consequently we get

F
′
γ(γ, t) =

f
′
γ(γ, t)f(−γ, t)− f(γ, t)f

′
γ(−γ, t)

f2(−γ, t) < 0,

because f(γ, t) > 0 and f(−γ, t) > 0.

From (16) we can deduce that

F
′
t (γ, t) =

eγt
(
−(γ2 − 1) sin t+ 2γ(cos t− e−γt)

)

f2(−γ, t)

+
e−γt

(
(γ2 − 1) sin t+ 2γ(cos t− eγt)

)

f2(−γ, t)

>
eγt
(
−(γ2 − 1) sin t− 2γ2 sin t

)
+ e−γt

(
(γ2 − 1) sin t− 2γ2 sin t

)

f2(−γ, t)

=
(1 + γ2)(eγt − e−γt)

f2(−γ, t) > 0.

�

From the Implicit Function Theorem we have the following corollary.

Corollary 13. Assume that c > 0 is an arbitrary constant. Then from F (γ, t) = c
we obtain the function t = g(γ, c), which is increasing with respect to the variable
γ.

Lemma 14. Assume that γ < 0 and t ∈ (π, t̂).Tthen

(γ + t) sin t− γt cos t < 0,

where f(−γ, t̂) = 0.

Proof. Note that
(
γ + t

t
− γ cos t

sin t

)′
=
−γ(sin2 t− t2)

t2 sin2 t
6 0,

we only need to show that (γ + t̂) sin t̂− γt̂ cos t̂ < 0.

Since f(−γ, t̂) = 0 and f
′
t (−γ, t̂) 6 0, we have

eγt̂ − cos t̂+ γ sin t̂ = 0,

γeγt̂ + sin t̂− γ cos t̂ 6 0.

Thus we obtain

−2γ cos t̂+ (1− γ2) sin t̂ 6 0,

and then

(γ + t̂) sin t̂− γt̂ cos t̂ 6
(

(γ + t̂) +
t̂(γ2 − 1)

2

)
sin t̂ < 0,
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which finishes the proof. �

Corollary 15. For γ > 0 we define the function

(18)
C(t) = e−γt ((γ + t) sin t− γt cos t) + eγt ((γ − t) sin t− γt cos t)

+2γ(t− cos t sin t),

then C(t) < 0 if t ∈ (π, t̂).

Proof. If (γ− t) sin t− γt cos t 6 0, then from Lemma 14 we have C(t) < 0 because
γ < 0 and t− cos t sin t > 0.

If (γ − t) sin t− γt cos t > 0, since eγt < 1 < e−γt, then

C(t) 6 (γ + t) sin t− γt cos t+ (γ − t) sin t− γt cos t+ 2γ(t− cos t sin t)

= 2γ(sin t− t cos t+ t− cos t sin t)

= 2γ(t+ sin t)(1− cos t) < 0.

�

Proposition 16. Suppose that ci > 0 for i = 1, 2. Then the graphs of F (γ, t) = c1
and γt = −c2 have at most one intersection point.

Proof. We give a proof by contradiction. Assume that the graphs of F (γ, t) = c1
and γt = −c2 have two intersection points. The difference of two slopes

−F
′
γ(γ, t)

F
′
t (γ, t)

+
t

γ
=

C(t)

γF
′
t (γ, t)

,

where C(t) is given in (18).

Since the difference of the two slopes in two intersection points have different
signs, we get the required contradiction because C(t) < 0 and F

′
t (γ, t) > 0. �

Proposition 17. Assume that −γR < γL < 0, f(±γi, ti) > 0 for i = R,L, and

F (−γL, tL) = F (γR, tR),

if ti ∈ (π, 2π). Then γLtL + γRtR > 0.

Proof. We have that γLtL + γRtR 6= 0, because if γLtL + γRtR = 0 then the curves
F (γ, t) = c1 and γt = −c2 have two intersection points (−γL, tL) and (γR, tR), in
contradiction with Proposition 16.

We claim that γLtL + γRtR > 0. If γR big enough, obviously the statement
holds. If there exist γi, ti, i = L,R such that γLtL + γRtR < 0, then increasing
γR tending it to +∞, we get for some value of γR that γLtL + γRtR > 0. So by
the continuity with respect to the variable γR, we obtain that γLtL + γRtR = 0 for
some suitable γR, in contradiction with the fact that γLtL + γRtR 6= 0. Hence the
claim is proved. �
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6.1. Proof of Conjecture 3. (a) Since −γR < γL < 0 and ŷ < z∗, it follows
that P−1

L (0) − PR(0) = ŷ − z∗ < 0 and lim
z→−∞

(P−1
L (z) − PR(z)) < 0. Note that if

z̄ ∈ (−∞, 0) is the biggest zero of P−1
L (z)−PR(z), then (P−1

L (z)−PR(z))
′ |z=z̄ < 0.

From direct computations and by Proposition 17 we have

(P−1
L (z)− PR(z))

′ |z=z̄ =
z̄

PR(z̄)
(e−γLtL − eγRtR) > 0.

Thus we have a contradiction.

(b) The proof of statement (b) is similar and we omit it.

6.2. Proof of Conjecture 4. From Conjecture 3 we just need to prove that the
refracting systems (7) have at most one limit cycle when −γR < γL < 0 and ŷ > z∗.

As in the proof of Conjecture 3 we can deduce that P−1
L (z)−PR(z) has no zeros

in (−∞, 0) when ŷ = z∗. In the following we consider the case ŷ > z∗. Then
we have P−1

L (0) − PR(0) = ŷ − z∗ > 0 and lim
z→−∞

(P−1
L (z) − PR(z)) < 0. Clearly

P−1
L (z)−PR(z) has at least one zero in (−∞, 0). Again as in the proof of Conjecture

3 we can obtain that P−1
L (z)− PR(z) has at most one zero in (−∞, 0).

6.3. Proof of Theorem 3. We divide the proof of Theorem 3 into the following
three cases.

Case (I): αR 6 0 6 αL. From Theorem 1 of [10] we know that the refracting systems
(5) have at most one crossing limit cycle. If γRγL < 0 and (γR+γL)(αLγR−αRγL) <
0 there is a unique limit cycle, which is stable for γL + γR < 0 and unstable for
γL + γR > 0.

Case (II): αL < 0 and αR < 0. The uniqueness of the limit cycles of the refracting
systems (5) can be obtained from Theorem 2 of [10]. If γLγR < 0 and γL(γL+γR) <
0 there is a unique limit cycle, which is stable for γL > 0 and unstable for γL < 0.

Case (III): αL < 0 < αL. Refracting systems (5) have at most one limit cycle
due to Conjecture 4. From the proof of Conjecture 4 we know that the refracting
systems (5) have a unique limit cycle when −γR < γL < 0 and ŷ > z∗, which is
stable when γL > 0.
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