This is a preprint of: “The planar discontinuous piecewise linear refracting systems have at most
one limit cycle”, Shimin Li, Changjian Liu, Jaume Llibre, Nonlinear Anal. Hybrid Syst., vol. 41,
101045:1-14, 2021.

DOI: [10.1016/7.nahs.2021.101045]

THE PLANAR DISCONTINUOUS PIECEWISE LINEAR
REFRACTING SYSTEMS HAVE AT MOST ONE LIMIT CYCLE

SHIMIN LI', CHANGJIAN LIU2 AND JAUME LLIBRE3

ABSTRACT. In this paper we investigate the limit cycles of planar piecewise
linear differential systems with two zones separated by a straight line. It is
well known that when these systems are continuous they can exhibit at most
one limit cycle, while when they are discontinuous the maximum number of
limit cycles that they can exhibit is still open. For these last systems there are
examples exhibiting three limit cycles.

The aim of this paper is to study the number of limit cycles for a special kind
of planar discontinuous piecewise linear differential systems with two zones
separated by a straight line which are known as refracting systems. First we
obtain the existence and uniqueness of limit cycles for refracting systems of
focus-node type. Second we prove that refracting systems of focus-focus type
have at most one limit cycle, thus we give a positive answer to a conjecture
on the uniqueness of limit cycle stated by Freire, Ponce and Torres in [10].
These two results complete the proof that any refracting system has at most
one limit cycle.

1. INTRODUCTION

In the qualitative theory of the differential systems in the plane one of the most
important problems is the determination and distribution of limit cycles, which is
known as the famous Hilbert’s 16-th problem [18, 28] and its weak form [4, 5, 12, 29].

Since many real world differential systems involve a discontinuity or a sudden
change [2], in recent years there is a growing interest in the following planar piece-
wise smooth vector fields

X7(qg) ifh(g) <O,
(1) X(q) =

X*(q)  ifh(q) >0,
where the discontinuity boundary ¥ = {q € R? : h(q) = 0} divides the plane R?
into two regions ©* = {q € R? : +h(q) > 0}. The singularities p* of X* are called
visible or invisible if p* € £F or p* € LF, respectively.

Clearly the orbits are well defined in both zones ©*. While if an orbit arrives
to the discontinuous boundary 3, different things can occur.

Definition 1. Let X*h(q) = (Vh(q), X*(q)). Then we can classify ¥ into the
following three open regions:

(i) crossing region ¢ = {q € ¥ : XTh(q) X h(q) > 0}, see Fig.1.1.
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FIGURE 1. Definition of the vector field on .

(ii) attracting region X% = {g € ¥ : XTh(q) > 0, X h(q) < 0}, see Fig.1.2;
(iil) escaping region 3¢ = {q € ¥ : XTh(q) < 0,X " h(q) > 0}, see Fig.1.5.

The boundaries X of the above three regions are called ¥ —tangential point,
that is Xt = {g € ¥ : XTh(q) X~ h(g) = 0}. If an isolated periodic orbit of systems
(1) has sliding points, then it is called a sliding limit cycle, otherwise we call it a
crossing limit cycle.

The most simplest piecewise smooth differential systems are the piecewise linear
differential systems with a straight line of separation. Without loss of generality
we can assume that the separating straight line is x = 0, then we have

oG e () () re<o
T Ag1 Qg9 ) by
@ - ajy ajs) (= by
; ’ + if z >0,
(e 2) G)+ ()
where the dot denotes the derivative with respected to the tiem ¢. We call systems

(2) with z < 0 (resp. = > 0) the left (resp. right) subsystems for convenience.

In 2012 Freire, Ponce and Torres [9] reduced the study of the planar piecewise
linear differential systems (2) to the following Liénard canonical forms

N A R
<y> (gi ol> G)‘(af) if 2 >0,

where T* and D denote the traces and determinants of the left and right subsys-
tems, respectively.

If b=0,a~ = a™, then systems (3) become continuous differential systems. In
1990 Lum and Chua [25] did the following conjecture:

Conjecture 1. Planar continuous piecewise linear differential systems (3) have at
most one limit cycle.

In 1998 Freire et al. [8] proved the conjecture 1 by qualitative analysis. Recently,
Li and Llibre [19] provided the global phase portraits in the Poincaré disc of the
planar continuous piecewise linear differential systems (3).
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TABLE 1. The known results on the lower bounds for the maximum
number of limit cycles of the discontinuous systems (3), where
F, S, N denote focus/center, saddle and node respectively.

F S N
F 3 3 3
S 2 2
N 2

For the discontinuous systems (3) most of the known results [11, 14, 15, 16,
22, 23, 30, 31] are concerned with the lower bounds of the number of limit cycles.
According to the singularities of left and right subsystems (3), we can classify
systems (3) into six types, see Table 1.

From Table 1 appeared the following conjecture:

Conjecture 2. Planar discontinuous piecewise linear differential systems (8) have
at most three crossing limit cycles.

As far as we known conjecture 2 is still open and there were only several par-
tial results for this conjecture. Llibre, Novaes and Teixeira [20, 21] proved that
discontinuous systems (3) have at most two crossing limit cycles when ata™ = 0.
Giannakopoulos and Pliete [13] showed that discontinuous systems (3) with a Zs
symmetry have at most two crossing limit cycles. In [24] it is proved that if one of
the subsystems (3) has a center then the maximum number of crossing limit cycles
is two, and that this upper bound is sharped.

Definition 2. If XTh(q) = X~ h(q) for all ¢ € 3, then systems (1) are known as
refracting systems.

It is obvious that the whole discontinous line ¥ of a refracting system is a crossing
region. There are several papers classifying the generic singularities of the refracting
systems, for dimension two see [7]; for dimension three see [3]; for dimension four
see [17] and for arbitrary dimension see [1].

If b = 0 then systems (3) become planar discontinuous piecewise linear refracting
systems and have been studied in several papers [15, 16, 27, 30, 31]. All the previous
results shown that the planar discontinuous piecewise linear refracting systems (3)
of types SS, NN, F'S, SN have at most one limit cycle, see Table 2. More precisely
we have

e 5SS see Theorems 3.4 and 3.5 of [15].

e NN see Theorem 3.1 of [16].

e F'S see Theorem 1 of [27], or Theorem 3.1 of [31].
e SN see Theorem 3.1 of [30].

The dynamics of the planar discontinuous piecewise linear differential systems
(3) are determined by

A* = (T*)? — 4D,
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TABLE 2. The known results on the upper bounds for the max-
imum number of limit cycles of the refracting systems (3) before

this paper.
F N
F ? 1 ?
S 1 1
N 1

We define the modal parameters

i if AT <0,
mpry =4 0 if AT =0,
1 if AT >0,
where 2 = —1. Then the planar discontinuous piecewise linear refracting systems

(3)|p=0 into the following normal forms

a6 9)0) () e
) <x) _ yvo—my O Y ar
Y 29R —1\ [z 0 .
(7123—“1% 0) <y> - (cm) itz >0,
where
2a*F
if A*#£0,
qrLy =\ VA%
20+ if A* =0,
and
T:I:
if A* £ 0,
YrLy =\ VIA%
T+ if AT =0.

For a proof of these normal forms see [11].

Remark 1. Systems (4) for m = i have a focus; for m = 1 and |y| > 1 have a
node; form =1 and |y| < 1 have a saddle; and For m = 0 have an improper node.

2. STATEMENTS OF THE MAIN RESULTS

It follows from Table 2 that the upper bounds for the maximum number of limit
cycles of the planar discontinuous piecewise linear refracting systems (3) of type
focus-node or focus-focus are still unknown. In the present paper we investigated
the number of limit cycles for the above two remain unsolved types. We shall use the
normal forms (4) instead of (3) because the former one have only four parameters.
Without loss of generality we can assume that the left subsystem of (4) has a focus.

First we consider the planar discontinuous piecewise linear refracting systems (4)
of type focus-node. Therefore, according wiht Remark 1, we have my =i, mg =1



LIMIT CYCLES OF DISCONTINUOUS PIECEWISE LINEAR REFRACTING SYSTEMS 5

and |yg| > 1, then systems (4) become
o[ G ) ()= (0) e
(5) (x) _ v+l 0 Y ar
Y 2vr -1 x 0 .
() ()= () e

Theorem 1. Planar discontinuous piecewise linear refracting systems of type focus-
node (5) with |yg| > 1 have at most one limit cycle. Furthermore these systems
have a unique limit cycle if and only if yryr < 0 and ar < 0, which is stable if
~vr > 1, and unstable if v, < —1.

Second we investigate planar discontinuous piecewise linear refracting systems
(4) of type focus-improper node, i.e. we assume that my = i and mg = 0, then
systems (4) become

(6) <x) _ <’Y%2fy-l€1 _01> (;) B <OlOL> if z <0,
P D) () e

Theorem 2. Planar discontinuous piecewise linear refracting systems of type focus-
improper node (6) have at most one limit cycle. Furthermore these systems have a
unique limit cycle if and only if yryr < 0 and ar < 0, which is stable if v, > 0,
and unstable if vp < 0.

Finally we study the limit cycles of the planar discontinuous piecewise linear
refracting systems (4) of type focus-focus. Suppose that mpg =i and my, = 4, then
systems (4) become

(7) <x> _ (wizvfl 01> (;) B (oi) if o <0,
DIV D)) (8) s

We note that systems (7) have been studied in [9, 10]. The authors showed that
systems (7) have at most one limit cycle when agr < 0 < af or apar > 0. While
for the remain case aj < 0 < ap they stated the following two conjectures based
on extensive numerical simulations.

Conjecture 3. Assuming ap < 0 < ag and ypyr < 0 in systems (7), then the
following statements hold.

(a) If yvp, < 0 and (v +vr)(§ — 2*) < 0, then systems (7) have no crossing
limit cycles, where 3§ and z* are defined in (17).

(b) If v, > 0 and (v + vr)(¥ — 2*) > 0, then systems (7) have no crossing
limit cycles.

Conjecture 4. Assuming ay, < 0 < ar and vyr < 0 in systems (7), then these

systems have at most one crossing limit cycle.

The third main result of this paper provides a positive answer to conjectures 3
and 4.
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TABLE 3. The known results on the upper bounds for the max-
imum number of limit cycles of refracting systems (3) from this

paper.
F N

F 1 1 1

S 1 1

N 1

Theorem 3. Planar discontinuous piecewise linear refracting systems of type focus-
focus (7) have at most one limit cycle. Furthermore these systems have a unique
limit cycle if and only if yryL < 0 and one of the following three conditions hold.

(1) ar <0< ap and (o +vr)(aLyr—aryL) < 0, which is stable if v, +vr <
0, and unstable if vr, + v > 0.
(II) ar, < 0,ar < 0 and yr(vz + vr) < 0, which is stable if vy, > 0, and
unstable if v < 0.
(III) af <0< agr and vo.(vr +vL)(§ — 2*) < 0, which is stable if v, > 0, and
unstable if v < 0.

In summary from Table 1 and Theorems 1, 2 and 3 we have proved the following.

Corollary 4. Planar discontinuous piecewise linear refracting systems (3) have at
most one limit cycle, see Table 3.

The rest of the paper is organized as follows. In section 3 we construct the
Poincaré map of the refracting systems (4) which is crucial for analyzing the num-
ber of limit cycles. After we prove Theorems 1, 2 and 3 in sections 4, 5 and 6,
respectively.

3. PRELIMINARY RESULTS

Note that if a refracting system (4) has a limit cycle, then it must intersect
the discontinuity straight line z = 0, because both subsystems of (4) are linear
differential systems. According with Proposition 3.7 of [9], and recalling that b = 0
and vy, # 0, we obtain the following necessary conditions for the existence of limit
cycles:

v£Yr < 0.
Without loss of generality we can assume that vz > 0,vr < 0, otherwise doing the
change of variables X = z,Y = —y,T = —t, we change 1 < 0,7z > 0 into the
former one.

In order to study the crossing limit cycles of the planar discontinuous piecewise
linear refracting systems (4), we need to analyze their Poincaré maps as follows.

First we define the left Poincaré map of systems (4). From the left subsystems
of (4) we have #|;—0 = —y, then the orbit of systems (4) starting at the point (0, y)
with y > 0 will go into the left zone under the flow of the left subsystem, and after
this orbit reaches x = 0 again at some point (0, Pr(y)) with Pr(y) < 0, see Fig. 2.
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FIGURE 2. The left and right Poincaré map of a refracting system (4).

Now we define the right Poincaré map of systems (4). From the right subsystems
of (4) we know that &|,—o0 = —y. The orbit of systems (4) starting from points
(0,2) with z < 0 goes into the right zone under the action of the flow of the right
linear subsystems of (4), and after this orbit reaches = 0 again at some point
(0, Pr(z)) with Pr(z) > 0, see again Fig. 2.

Clearly the crossing limit cycles of planar discontinuous piecewise linear refract-
ing systems (4) are in correspondence with the zeros of the Poincaré map

(8) Pr(y) — PR'(y) with y € (0,+o00),
or equivalently
9) P;(2) — Pr(z) with 2 € (—o0,0).

We recall the following results on the existence and uniqueness of limit cycles for
planar discontinuous piecewise linear differential systems without sliding regions
proved in [26].

Consider the following piecewise linear differential systems
pyo opg ) (X Ho '\
w | D)) e
Y) ) (uf o (XN, ()
< 1 0 vt ifY >0.

Definition 3. We say that a point p € ¥ = {Y = 0} is a ¥—monodromic singu-
larity of systems (10) if either p is a tangential point, or a singularity of one of
the subsystems of (10), and there exists a neighborhood of p such that the orbits of
systems (10) turn around p either in forward or in backward time.

—_
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Theorem 5. [26] Assume that systems (10) have a ¥—monodromic singularity.
Then systems (10) have no limit cycles when uf,ul_ > 0, and have at most one
limit cycle when ,uf,uf < 0. Moreover there is a choice of the parameters for which
the limit cycle exists.

For studying planar discontinuous piecewise linear refracting systems having a
focus we shall consider the auxiliary function
0 (t) =1 —e"(cost — ysint),
introduced in [9].

Proposition 6. The function ¢~ (t) has the following properties.

(I) ¢,(t) <0 ift € (m,2m).
(II) If v < 0, then @, (t) > 0.
(ILT) If v > 0, then there is a unique t € (m,27) such that ¢~ () = 0, @, (t) >0
fort € (m,t) and ¢, (t) <0 fort € (t,2n).

Proof. Since ¢/, (t) = (1+7?)e"* sint, the function ¢, (t) is decreasing for ¢ € (7, 2).

Notice that ¢, (7) = 1+ €™ and ¢, (27) = 1 — e??™. Then, if v < 0 we have
©,(t) > 0 on (m,2n), and if v > 0 there exists a £ € (m,27) so that ¢, (t) > 0 on
(m,1), and ¢, (t) < 0 on (,27). O

4. PROOF OF THEOREM 1

It is obvious that if the right subsystems of (5) have a visible node, then refracting
systems (5) cannot have limit cycles. Thus a necessary condition for the existence
of limit cycles of systems (5) is that ag < 0.

We divide the proof of Theorem 1 into two cases.

Casel: ar > 0. Then the left subsystems of (5) have an invisible focus when
ay > 0, and an equilibrium on ¥ when a;, = 0. Doing the change of variables

X=2ypx—y, Y=z, Iifx<0 or
X=2ygzx—vy, Y=z ifz>0,

then the refracting systems (5) become

W (1) (7 L) () () wv<n

Y (2?% f(v%f 1)> (if) n (%R) if Y > 0.

It is easy to check that (0, 0) is the unique ¥ —monodromic singularity of systems
(11). According with Theorem 5, systems (11) have no limit cycles when yrvyr = 0,
and systems (11) have a unique limit cycle when vz < 0. The stability of the limit
cycle follows using the Poincaré-Bendixson Theorem, see for instance Corollary 1.20
of [6].
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3.1 left Poincaré map 3.2 right Poincaré map

F1GURE 3. Graphics of the left and right Poincaré map of a re-
fracting system (5).

Case 2: ap < 0. Now we cannot use Theorem 5 to prove the uniqueness of limit
cycles, because (0,0) is not a ¥—monodromic singularity of systems (5).

The left Poincaré maps of a system (5) can be stated as follows, for a proof see
Proposition 6 of [11].

Lemma 7. The parameter representation of the left Poincaré map Pr(y) of a
refracting system (5) is

y = ar SDWL(t)
(14~%)ertsint’
« _ (2
PL(y) - _ L 14 ’YL( )

(14+~%) e rtsint’
where T < t < t, see Fig. 3.1. Moreover we have
. . ’ _ . . ’ — _aTL
(i) Jm, Pply)=0; lim Ppy)=—em.
(i) Pp(y) <0; P, (y) <O.

2
(i) Pr(y) has Ar(y) = —e™Ly + L

1++2

(14 €™%) as an asymptote.

The right Poincaré maps of a system (5) can be stated as follows, for a proof see
Proposition 7 of [11].

Lemma 8. The parameter representation of the right Poincaré map Pr(z) of a
refracting system (5) is
e~ 7"R! _ cosht + yrsinht
(7% — 1) sinht ’
e'’! — cosht — yp sinht
(7% — 1) sinht ’

where t > 0, see Fig. 3.2. Moreover we have:

Z = QR

PR(Z) = —QR

(i) lim Pp(z) =2 = —F: lim Pl(z) = —1; lim Pp(z) =0.

2——00 Yr— 1 z2—0- 2——00
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A

AL, N\

FIGURE 4. The intersection points of the graphs Py, (y) and Py (y).

(ii) Pg(2) <0, Py(2) <0.
(iil) Pr(z) has z = z1 as an asymptote.

From (8) we know that the number of limit cycles of a refracting system (5) is
in correspondence with the number of positive zeros of Pr(y) — Pg Ly).

Let (y*, —e™Zy*) be the intersection point of the graphs of —e™~y and Pgl(y),
see Figure 4. It is obvious that at such a point we have
(12) (PR (y") < =™

We assume that the graphs of Py (y) and P '(y) have two intersection points,
which are y = y; and y = y», where

Yt <y <y2 < 2.
Then the following conditions hold:
Pr(y1) = Pg'(n1), Prlyz) = Pr'(v2)-

By the Rolle’s theorem there exists an intermediate point 4, such that
Pr(y) = (Pr")'(®)-
We claim that the above equality is impossible. On one hand, from Lemma 7 we
have
—e™t < Pr(y) <0, y>0.
On the other hand, from Lemma 8 and (12) we know
(Pr') (y) < (Pr) (") < =™,y >y

Thus we get the required contradiction, and Theorem 1 is proved.
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5. PROOF OF THEOREM 2

For a refracting system (6) the left Poincaré map is also given by Lemma 7, and
the right Poincaré map can be stated as follows, see Proposition 7 of [11].

Lemma 9. The parameter representation of the right Poincaré map Pr(z) of a
refracting system (6) is
e VRt — 1 4 Yrt
2 )
'YRt
13
(13) et — 1 — ypt
Vit

)

where t > 0. Moreover,

(i) lim Pgr(z) =29 = a—R; lim Pp(z) = —1; lim Pp(z)=0.

Z——00 YR 20— Z——00
(i) Pgr(z) <0; Pr(z) <0.
(iil) Pr(z) has z = z2 as an asymptote.

Proof. (i) From (13) we have
i Prz) = lim —ap=————— =~

A direct computation shows that

14 P = —e?rt
(14) (2) = = IR
Thus .

lim P, (z) = lim _QQVRtw =1,

o B t—0+ VRt — 1 — ~ypt

—vrt
lim P, (2) = lim —eQ’YRL " _71 + VRt —
-0 I t—+o0 eYrRt — 1 — ypt

(ii) Substituting (13) into (14) we obtain

Pl(z) = exvrt_~ ,
n(2) Pr(2)
" t — sinh(ygt)
Pl(2) = —edntn2 2 JRY 7 STRY)
R( ) TR PR(Z)
Recall that z < 0, Pg(z) > 0,v7g < 0 and ¢t > 0, so we get (ii). O

The proof of Theorem 2 is similar to the proof of Theorem 1 and we omit it here.

6. PROOF OF THEOREM 3
From (9) we know that the number of crossing limit cycles of refracting systems
(7) are in correspondence with the negative zeros of the function PEl(z) — Pr(2).
We define the function
(15) fly,t) =e Mo, (t) = e — cost + ysint.
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Y Y

Fig.5.1 § > 2* Fig.5.2 § < z*

FIGURE 5. Poincaré maps of refracting systems (7) with oy < 0 < ag.

According with Proposition 6, If v > 0 there exists a unique # € (7, 2) such that
f(v,t) = 0. Tt is easy to check that for ¢ € (1),

f(r, 1) >0, f(=,t) >0,
or equivalently
(16) e " > cost —ysint, €' > cost+ ysint.
Lemma 10. [11] The parametric representation of the inverse of left Poincaré map
P;Y(2) of systems (7) is
_ o f(=L,tr)
14+~  sintg

P_l(z) _ ar f(’YL,tL)
L 14+~% sintg

where t, € (m,t1) such that z(tr) = 0.
Lemma 11. [11] The parametric representation of the right Poincaré map Pr(z)
of systems (7) is
_ R f(_’YRa tR)
1+ *y?{ sintp
ar  fOUr:tr
PRy

+7% sintg

where tg € (T,tR) such that z(tg) = 0.

From Fig. 5 we have
(17) j=P;(0) = age i sindy,
1
2* = Pp(0) = —age’® R sintp.

Lemma 12. For y > 0 we consider the function

f(nt)

POt = f=71)



LIMIT CYCLES OF DISCONTINUOUS PIECEWISE LINEAR REFRACTING SYSTEMS 13
where f(~,t) is given in (15). Then F;(W,t) <0 and F(v,t) > 0 on (m,1).

Proof. Since t € (m,2m) we have that
f,ly(’y,t) = —te " +sint <0, f;(—’y,t) =te’* —sint > 0.
Consequently we get

f,;(’y,t)f(—’)/,t) B f(77t)ff;(_77t)

F v,t) = <0,
’Y( ) f2(_’)/7 t)
because f(v,t) >0 and f(—v,t) > 0.
From (16) we can deduce that
Fl 1) e (= (7% = 1)sint + 2y(cost — e 7))
o =
! fz(_’\/a t)
+e*7t ((v* = 1)sint + 2vy(cost — "))
f2(_f77 t)
e (—(y* — 1)sint — 29%sint) +e 7 ((v* — 1) sint — 29 sint)

~ f2(_77t)
(L) =)

f2(_f)/7t) =0

From the Implicit Function Theorem we have the following corollary.

Corollary 13. Assume that ¢ > 0 is an arbitrary constant. Then from F(v,t) = ¢
we obtain the function t = g(v,c), which is increasing with respect to the variable

.
Lemma 14. Assume that v < 0 and t € (n,t). Tthen

(v +t)sint —ytcost < 0,
where f(—~,t) = 0.

Proof. Note that
t £\ —A(sin2t — ¢2
v+ —’YC.OS _ 'y(sm. i ) <o,
t sin ¢ t2sin“ t

we only need to show that (v + ) sin — it cost < 0.
Since f(—v,%) = 0 and f;(—~,%) <0, we have
et — cost + ysint =0,
fye“*{ +sint — ycost < 0.
Thus we obtain
—2ycost + (1 —4?)sint <0,
and then

TP N G A
(y+1t)sint —ytcost < ((’y+t)+(72)) sint < 0,



14 SHIMIN LI, CHANGJIAN LIU AND JAUME LLIBRE
which finishes the proof. (|

Corollary 15. For v > 0 we define the function
C(t)= e " ((y+t)sint —ytcost) + e ((y —t)sint — vyt cost)

(18)
+2y(t — costsint),

then C(t) < 0 if t € (m,1).

Proof. If (v —t)sint — vt cost < 0, then from Lemma 14 we have C(t) < 0 because
v < 0andt—costsint > 0.

If (y —t)sint — ytcost > 0, since e’ < 1 < e~ then
C(t) < (y+t)sint—~tcost+ (y—t)sint —ytcost + 2y(t — costsint)
= 2y(sint — tcost + ¢t — costsint)
= 2v(t +sint)(1 — cost) < 0.
(]

Proposition 16. Suppose that ¢; > 0 for i =1,2. Then the graphs of F(v,t) = ¢1
and vt = —co have at most one intersection point.

Proof. We give a proof by contradiction. Assume that the graphs of F(v,t) = ¢;
and vt = —co have two intersection points. The difference of two slopes

Eont) ¢ o
E/(v,t) v AF (vt

where C(t) is given in (18).

Since the difference of the two slopes in two intersection points have different
signs, we get the required contradiction because C(t) < 0 and Fj (v,t) > 0. O

Proposition 17. Assume that —yr < vr <0, f(£7:,t;) >0 fori= R, L, and
F(—’YL7tL) = F(7R7tR)7

if t; € (m,2mw). Then yptr + yrtr > 0.

Proof. We have that yptr +vyrtr # 0, because if ypt1, + vrtr = 0 then the curves
F(v,t) = ¢1 and vt = —co have two intersection points (—vr,tr) and (yg,tr), in
contradiction with Proposition 16.

We claim that vty + vrtg > 0. If yg big enough, obviously the statement
holds. If there exist v;,t;,4 = L, R such that yptr + yrtr < 0, then increasing
vr tending it to 400, we get for some value of vg that vptr + yrtr > 0. So by
the continuity with respect to the variable g, we obtain that vy ty + yrtr = 0 for
some suitable g, in contradiction with the fact that ypt;, + vrtr # 0. Hence the
claim is proved. (I
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6.1. Proof of Conjecture 3. (a) Since —ygr < 77 < 0 and § < z*, it follows
that P;'(0) — Pr(0) =g — 2* < 0 and lim (P;'(2) — Pr(z)) < 0. Note that if
zZ——00

Z € (—00,0) is the biggest zero of P} '(2) — Pgr(z), then (P;'(z) — Pr(2)) |.=z < 0.
From direct computations and by Proposition 17 we have
/ z
P_l zZ)— P, 4 pmz = ———r 677LtL — e'YRtR > 0
(P (2) = Pr(2)) | PR(Z)( )
Thus we have a contradiction.

(b) The proof of statement (b) is similar and we omit it.

6.2. Proof of Conjecture 4. From Conjecture 3 we just need to prove that the
refracting systems (7) have at most one limit cycle when —yr < vz < 0 and § > z*.

As in the proof of Conjecture 3 we can deduce that P, '(z) — Pr(2) has no zeros
in (—o00,0) when § = z*. In the following we consider the case § > z*. Then
we have P; '(0) — Pr(0) = § — 2* > 0 and lim (P} '(2) — Pr(z)) < 0. Clearly

Z——00

P, '(2)— Pr(2) has at least one zero in (—o0,0). Again as in the proof of Conjecture
3 we can obtain that P; '(z) — Pg(z) has at most one zero in (—o0,0).

6.3. Proof of Theorem 3. We divide the proof of Theorem 3 into the following
three cases.

Case (I): ag < 0 < ay,. From Theorem 1 of [10] we know that the refracting systems
(5) have at most one crossing limit cycle. If ygyr, < 0 and (yr+71)(aryr—aryL) <
0 there is a unique limit cycle, which is stable for v; + vg < 0 and unstable for
YL +7vr > 0.

Case (I1): ar, < 0 and ag < 0. The uniqueness of the limit cycles of the refracting
systems (5) can be obtained from Theorem 2 of [10]. If y,vr < 0 and v (v +7vr) <
0 there is a unique limit cycle, which is stable for vz > 0 and unstable for vz < 0.

Case (III): a, < 0 < ar. Refracting systems (5) have at most one limit cycle
due to Conjecture 4. From the proof of Conjecture 4 we know that the refracting
systems (5) have a unique limit cycle when —yr < v < 0 and § > z*, which is
stable when vz, > 0.
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