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Abstract. We show the existence of central configurations in the planar
five-body problem where four bodies are located at the vertices of a
rhombus, called rhombus plus one central configurations. Concretely we
prove analytically their existence when one diagonal is nearly equal to
the sides of the rhombus and when the two diagonals are either equal
or nearly equal. In addition, we prove that given a rhombus plus one
configuration, the corresponding vector of positive masses that makes
the configuration central, if exists, is unique.
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1. Introduction

In the n-body problem a configuration is central if the acceleration vector of
every body is proportional, same common scalar, to its position vector with
respect to the center of mass. There are many reasons why such configurations
are of special importance, and regardless of everything many fundamental
questions about them are still open. For instance, they allow to obtain explicit
solutions of the n-body problem, concretely, solutions where the shape of the
configuration is preserved along the orbit up to rescaling and rotations. In [15,
16, 18] and references therein, the reader can found a detailed introduction
about central configurations, together with new ideas and techniques which
have been developed recently in their study.

The problem of the finiteness of central configurations for every choice
of the positive masses, also known as the Chazy-Wintner conjecture, was in-
cluded in Smale’s list as a challenge question for the 21st century [20]. It is
known that for n = 3 there are exactly five classes of central configurations
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for each choice of positive masses, counting up rotations and translations in
the plane. Namely, three collinear, when the three bodies lie on the same
line, and two equilateral, when the three bodies are located at the vertices of
an equilateral triangle. When n = 4, Hampton and Moeckel [10] proved by
computer-assisted that for each choice of masses there is a finite number of
central configurations. Recently, for the planar five-body problem the conjec-
ture has been solved by Albouy and Kaloshin [1], except for masses in some
codimension two variety of the mass space. Hampton and Jensen [12] showed
that in the five-body problem the number of spatial central configurations
is finite, except for some special cases. So, the finiteness conjecture is wide
open for n ≥ 6.

The determination of possible shapes for central configurations, at least,
the ones possessing some type of symmetry or defining a geometric property,
is a relevant issue analogous to the finiteness conjecture. In spite of the fact
that the finiteness conjecture is now settled for n = 5, in the planar case,
there are still many unsolved problems regarding shapes of five-body central
configurations. Williams ([23]) and Chen and Hsiao ([2]) studied the existence
of convex central configurations in the five-body problem and gave some geo-
metric properties. Apart from these fundamental results, little more is known,
in contrast with the planar four-body problem, where recently, Corbera, Cors
and Roberts [3] have classified the full set of convex central configurations.

In this paper we will investigate symmetric central configurations in
the five-body problem where three bodies lie on the axis of symmetry of the
configuration. Similar symmetric configurations were previously studied in
[4, 5, 7, 13]. Works when only one of the five bodies lie on the axis of sym-
metry are in [9, 14]. Notice that in all the previous cited works the central
configurations studied are staked, that is, a proper subset of the configuration
is also a central configuration. See [9], where the concept of stacked central
configurations was introduced. Since in the present work we consider config-
urations that, in addition to the axial symmetry, four of the five bodies lies
at the vertices of a rhombus, such a central configurations will not be stacked
anymore due to a result of Fernandes and Mello [6]. They proved that the
only stacked central configuration of the five-body problem when one body
is removed is the square with equal positive masses at its vertices and the
removed body, with any positive mass, located at its center.

Among previous cited works on the five-body problem considering three
bodies on the axis of symmetry, we distinguish the article of Shoaib et al.
[21] for its similitude with the present paper. The authors, as in our set up,
in addition to the axial symmetry, they impose that four of the five bodies
have to be located at the vertices of a rhomboid, although a careful reading
suggest that the use of term kite instead a rhomboid should be more accurate,
see Fig. 1 in [21].
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Besides of we consider four bodies at the vertices of a rhombus is worthy
to mention that in our work any constraint on the masses is considered. We
present in Figure 2 a complete classification of all central configurations of
the five-body problem where in addition to place three bodies on the axis
of symmetry of the configuration, four of the five bodies are at the vertices
of a rhombus, that we call rhombus plus one configuration. Concretely, in
Section 2, we introduce the equations for central configurations and state the
two main theorems that insure analytically the existence of rhombus plus
one central configurations in the five-body, when one diagonal is nearly equal
to the sides of the rhombus and when the two diagonal are equal. Section 3
is devoted to the unicity question of what is called the inverse problem. We
prove that, for a given rhombus plus one configuration, the corresponding
vector of positive masses that makes the configuration central, if exists, is
unique. Finally, the two existence theorems are proved in sections 4 and 5.

2. Statement of the problem and main results

Let qi ∈ R2 and mi > 0 denote the position and mass, respectively, of the
i-th body. Let rij = ‖qi − qj‖ be the Euclidean distance between the i-th

and j-th bodies. If M =
∑5

i=1mi denotes the sum of the masses, then the

center of mass is given by c = 1
M

∑5
i=1miqi. The planar five-body problem

is governed by the equations

miq̈i =
∂U

∂qi
, i = 1, . . . , 5 (2.1)

where U denotes the Newtonian potential given by

U(q) =
∑

1≤i<j≤5

mimj

rij
.

The system (2.1) is smooth except on the collision set given by

4 = {q ∈ R10 : qi = qj for some i 6= j}.
A non-collision configuration q = (q1, . . . ,q5) ∈ R10 \ 4 of five bodies form
a central configuration for the positive masses m1,m2, . . . ,m5 if there exists
a constant λ 6= 0 such that

∑

i 6=j

mj

r3
ij

(qi − qj) = −λ(qi − c). i = 1, 2, . . . , 5 (2.2)

An equivalent set of equations for central configurations (2.2), in terms
of the mutual distances rij , is given by the Dziobek/Laura/Andoyer equations
(see page 241 in [8])

fij =
5∑

k=1

k 6=i,j

mk(Rik −Rjk)∆ijk = 0, (2.3)
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for 1 ≤ i < j ≤ 5. Here, Rij = 1/r3
ij and ∆ijk = (qi − qj) ∧ (qi − qk). Thus,

∆ijk gives twice the signed area of the triangle with vertices qi, qj and qk.

Consider now a five-body configuration where four bodies are located
at the vertices of a rhombus. It follows easily from the perpendicular bisector
theorem [15], that the remaining body only can be placed along one of the
two diagonals of the rhombus. Then, without loss of generality, we consider
a configuration where fives bodies m1, m2, m3 are collinear and m4, m5 are
placed symmetrically with respect to the line that contains the first three
bodies. Finally we impose that m2, m3, m4 and m5 are at the vertices of a
rhombus. We distinguish two cases depending on where is located the body
m1, outside or inside the rhombus. See Figure 1 (a) and (b), respectively.

(a)

m2
m1 m3

m4

m5

(b)

m2 m1 m3

m4

m5

Figure 1. Configuration of five-body problem with four
masses at the vertices of a rhombus and the fifth mass lying
on the axis of symmetry outside (a) or inside (b) the rhom-
bus.

Due to the symmetries of the configuration several of the mutual dis-
tances are equal. Concretely, r14 = r15, r24 = r25, r34 = r35. Also happen
with some of the signed areas, namely ∆125 = −∆124, ∆135 = −∆134 and
∆235 = −∆234. Moreover, since m1, m2, m3 are collinear ∆123 = 0. At last,
the fact that m2, m3,m4 and m5 form a rhombus implies that r24 = r34 and
∆345 = −∆245.

Using previous equalities, equation f12 in (2.3) becomes

(R14 −R24)(m4 −m5)∆124 = 0. (2.4)

Clearly ∆124 6= 0 and R14 6= R24, otherwise collision occurs between
m1 and m2. Then m4 = m5. Same result can be reached using equations f13

or f23 in (2.3). Since the masses can be scaled by any positive factor we fix
m4 = m5 = 1 without any loss of generality.
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Moreover, equation f45 in (2.3) holds trivially and fi4 + fi5 = 0, for
i = 1, 2, 3. Then system (2.3) can be reduced to the following three equations

f14 = (R24 −R12)∆124m2 + (R24 −R13)∆134m3 + (R14 −R45)∆145 = 0,

f24 = (R12 −R14)∆124m1 + (R24 − 1)∆234m3 + (R24 −R45)∆245 = 0,

f34 = (R13 −R14)∆134m1 + (1−R24)∆234m2 − (R24 −R45)∆245 = 0.
(2.5)

Notice that in equations (2.5) the value of the diagonal of the rhombus
r23 has fixed to one, that is, r23 = 1, which specifies a particular choice of
scaling of the configuration.

In the Section 3, we will be illustrating that the masses are easily ob-
tained solving equations (2.5) and can be expressed as follows

m1 = ∆234(R24−1)N1

∆124∆134∆234(R24−1)(R14−R24)(R12−R13) = N1

∆124∆134(R14−R24)(R12−R13) ,

m2 = ∆134N2

∆124∆134∆234(R24−1)(R14−R24)(R12−R13) = N2

∆124∆234(R24−1)(R14−R24)(R12−R13) ,

m3 = ∆124N3

∆124∆134∆234(R24−1)(R14−R24)(R12−R13) = N3

∆134∆234(R24−1)(R14−R24)(R12−R13) ,

(2.6)
where N1, N2 and N3 can be written as a function of the mutual distances
rij .

Our main goal is to prove the existence of rhombus plus one central
configurations in the five-body problem. Concretely, we prove the following
two theorems.

Theorem 2.1. Consider a five-body configuration where four bodies form a
rhombus. Then, there exist central configurations of the five-body problem
when the diagonal containing the fifth body is nearly equal but bigger to the
sides of the rhombus, either inside or outside.

Theorem 2.2. Consider a five-body configuration where four bodies form a
square. Then, there exist central configurations of the five-body problem when
the fifth body lies in one diagonal, either inside or outside the square.

It would be natural to think that there exists a large set of rhombus plus
one central configurations apart from those stated by the two theorems. In
Figure 2, we show numerical evidence of, indeed, the set of rhombus plus one
central configurations is much larger. In fact, fixing to one the length of the
diagonal of the rhombus that contains the fifth body, the other diagonal of
the rhombus can reach any value from

√
3/3 to

√
3. Moreover, for any value

between
√

3/3 and
√

3 of the diagonal of the rhombus, that not contains
the fifth mass is not equal to 1, there exist two segments along the axis
of symmetry where the fifth body can be placed, one outside the rhombus
and the other inside. Clearly, from the symmetry of the configuration, when
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Figure 2. The open shaded region M in the (a, b)-plane.
Any point belonging to M corresponds to a rhombus plus
one central configuration of the five-body problem. Straight
line b = 1/2 represents the case where the rhombus becomes
a square.

the fifth body, is inside the rhombus, is enough to study when it is located
between the closer vertex of the rhombus and the intersection of the two
diagonals.

Let a be the signed distance between bodies with masses m1 and m2,
that is, a > 0 when m1 lies outside the rhombus and a < 0 when m1 lies inside
the rhombus, |a| = r12, and let b be the half of the distance of the diagonal of
the rhombus joining bodies with masses m4 and m5, that is 2b = r45. Then
any point (a, b)-plane belonging to the open shaded region M in Figure 2
represents a rhombus plus one central configuration.

Boundary of M is given by curves where the values of the masses are
zero, m1 = 0 (black), m2 = 0 (blue) and m3 = 0 (red), and curves where the

denominators in (2.6) are zero, the straight lines b =
√

3/2 (R24 = 1) and
a = −1/2 (R12 = R13), both in brown.

The particular case where the rhombus becomes a square is represented
in Figure 2 by the green straight line b = 1/2 (R45 = 1) and has nonempty
intersection withM. In Figure 3, we show the values of the massesm1 (black),
m2 (blue) and m3 (red) along the set of square plus one central configurations.
When the fifth mass is outside the square the admissible values of a go from
0.4402277051 . . . to 0.59267461067 . . . . Specifically, at a = 0.4402277051 . . .
the value of the masses are m1 = 0 and m2 = m3 = 1, and at the other
end of the range a = 0.5926746107 . . . we have m1 = 0.7298273415 . . . , m2 =
0.7909651413 . . . andm3 = 0. On the other hand, when the fifth mass is inside
the rhombus the admissible values of a go from −1/2 to −0.2495724426 . . . .
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Figure 3. The value of the masses m1 (black), m2 (blue)
and m3 (red) when b = 1/2, that is, a square plus one config-
uration. The admissible values of a go from 0.4402277051 . . .
to 0.5926746107 . . . when the fifth mass is outside the square,
and from −1/2 to −0.2495724426 . . . when the fifth mass is
inside the square.

At a = −0.2495724426 . . . the masses are m1 = 0.7268534679 . . . , m2 = 0
and m3 = 6.814939450 . . . . Recall that when the fifth mass is located at the
intersection of the two diagonals of the square (a = −1/2) the configuration
is central for any value of m1 and m2 = m3 = 1. See [7].

From Figure 3 the question about the number of central configurations
for a given positive masses is also answered numerically when the rhombus
becomes a square. Clearly, given a normalized mass vector (m1,m2,m3, 1, 1)
of the five-body problem, if a square plus one central configuration exists, such
a configuration is unique. In the next section we settle the inverse question
in the rhombus plus one central configurations.

3. The uniqueness of rhombus plus one central configurations

In this section we prove that given a rhombus plus one configuration the nor-
malized mass vector (m1,m2,m3, 1, 1) of the five-body problem that makes
the configuration central is unique.

Theorem 3.1. Given a configuration of the planar five-body problem, where
four bodies m2, m3, m4 and m5 are located at the vertices of a rhombus and
the fifth body m1 is placed on the diagonal containing m2 and m3, then the
positive normalized mass vector (m1,m2,m3, 1, 1) that makes the configura-
tion central is unique, as long as the particular case where the fifth body is at
the intersection of the two diagonals of the rhombus is excluded.
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Proof. Equations (2.5) can be written as a non homogeneous system Bm = b
where

B =




0 (R24 −R12)∆124 (R24 −R13)∆134

(R12 −R14)∆124 0 (R24 − 1)∆243

(R13 −R14)∆134 (1−R24)∆234 0


 ,

b =




(−R14 +R45)∆145

(−R24 +R45)∆245

(R24 −R45)∆245


 , m =




m1

m2

m3


 .

The existence and uniqueness of m1, m2 and m3 (positive or not) depends
on whether the determinant of B, det(B) is zero or not, where

det(B) = ∆124∆134∆234(R24 − 1)(R14 −R24)(R12 −R13). (3.1)

Clearly ∆234 6= 0, as well as the other two areas ∆124 and ∆134 in (3.1),
otherwise there would be collision between m1 and m2, which is excluded.
Again R14 = R24 implies collision between m1 and m2, along with R12 = R13

implies that m1 is located at the intersection of the two diagonals of the
rhombus. Last case is excluded and was studied by Gidea and Llibre in [7].
It corresponds to case (i) of the proof of their Theorem 1 (a).

Then the normalized mass vector that solve equations (2.5) will be
unique, as long as R24 6= 1, that is, the sides of the rhombus are equal
to the diagonal containing the fifth body, that is, when the rhombus becomes
a diamond.

Claim: if r24 = 1 the equations (2.5) has no solution.

When r24 = 1, we have r45 =
√

3. Indeed, by adding equations f24 and
f34, from (2.5), the resulting equation is

(R12 −R14)∆124 + (R13 −R14)∆134 = 0, (3.2)

that can be written as a function of a.

At this point we distinguish two cases. The case where m1 is outside
the rhombus (a > 0), and where is inside (a < 0).

Equation (3.2) when a > 0 becomes

(1/2 + a)(1 + a)2a2 − (a2 + a+ 1/2)(a2 + a+ 1)
3
2

2a2(1 + a)2(a2 + a+ 1)
3
2

= 0. (3.3)

Trivially the denominator in this last expression do not vanish when a > 0.
So we have to prove that the numerator have the same sign for all positive
values of a. In order to eliminate the square root of the numerator in (3.3),
we equals the numerator to zero and then we square it conveniently to obtain
a polynomial equation of degree 8,

15a8 + 60a7 + 115a6 + 135a5 + 109a4 + 63a3 + 26a2 + 7a+ 1 = 0.
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Since all coefficients are positive, from Descartes’ rule of signs, see [22], there
are no positive roots, and consequently equation (3.3) is not satisfied for any
positive value of a.

We now compute (3.2) for the case where m1 is inside the rhombus
(a < 0), and is found to be

(1/2 + a)
(
(a2 + a+ 1)

3
2 + a2(1 + a)2

)

2a2(1 + a)2(a2 + a+ 1)
3
2

= 0. (3.4)

To obtain the zeros of this equation, if any, we proceed as in the previous
case, arriving at the polynomial of degree 8 given by

−a8 − 4a7 − 5a6 − a5 + 5a4 + 7a3 + 6a2 + 3a+ 1.

Now using the Sturm’s theorem in the interval (−1/2, 0) we check that has
no root on it. Remember that from the symmetry of the configuration is
enough to study when the fifth body, m5, is located between the body m2

and the intersection of the two diagonals of the rhombus. Also notice that
the denominator of equation (3.2) when a < 0 is equal to one obtained in the
case a > 0, and as before is different from zero in the interval (−1/2, 0). �

4. Proof of Theorem 2.1

The sides of the rhombus are nearly equal to the diagonal of the rhombus,
r23 = 1, containing the fifth mass, m1, when r24 ≈ 1. From the proof of
Theorem 3.1 we know that the determinant (3.1), that appears at the de-
nominator of the expressions of the masses (2.6), is different from zero unless
r24 = 1. Also is easy to check that such a determinant is negative when r24

is sufficiently close to one and r24 − 1 < 0.

We are going to prove that when r24 = 1 there exists an open interval
of values of r12 such that the numerators N1, N2 and N3 of m1, m2 and m3,
respectively, in (2.6) have constant sign. Therefore there will exist values of
r12 such that m1 > 0 and the other two masses, m2 and m3, are unbounded
with positive sign. Finally, using the continuity of the values of the masses
with respect to the mutual distances, for values of r24 sufficiently close to
one and less than one, there will exist an open set of dimension two in a
neighborhood of the r24 = 1 where the three masses are positive.

Setting r24 = 1 and r12 = |a|, all other mutual distances and signed
areas that appear in N1, N2 and N3 in equations (2.6) can be only written
as a function of real variable a. From now on, we will distinguish when the
fifth mass is outside (a > 0) or inside (−1/2 < a < 0) the rhombus, as usual.

• Case a > 0
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Numerator, N1, of m1 in equations (2.6) is equal to

N1 = − (9−
√

3)(2a5 + 5a4 + 4a3 − a2 − 2a− 1)

48a2(1 + a)2
. (4.1)

Let P (a) be the above polynomial of degree 5. Applying the Descartes’s
rule of signs, P (a) has only one positive root. Moreover, P5(6/10) < 0
and P5(7/10) > 0. Therefore P5(a) > 0, and consequently N1 < 0, for
all a > 7/10.

Numerators N2 and N3 in equations (2.6) are equal to

N2 =
(9−

√
3)(a2 + 3a+ 3)F (a)

24a(1 + a)5(a2 + a+ 1)
3
2

,

N3 =
(9−

√
3)(1− a)F (a)

24a5(1 + a)2(a2 + a+ 1)
1
2

,

where F (a) = (1/2 + a)(1 + a)2a2 − (a2 + a + 1
2 )(a2 + a + 1)

3
2 , which

is equal to the numerator of the left hand side equation (3.3), and we
know that has no positive roots. Since F (0) < −1/2, then F (a) < 0 and
N2 < 0 for all a > 0 and N3 < 0 only for all 0 < a < 1, due to the factor
(1− a) present in the expression of N3.

• Case −1/2 < a < 0
Numerator, N1, of m1 in equations (2.6) is equal to

N1 = − (9−
√

3)(2a+ 1)(a4 + 2a3 + a2 + 1)

48a2(1 + a)2
< 0. (4.2)

On the other hand N2 and N3 have similar expressions

N2 = − (
√

3− 9)(1/2 + a)(a2 + 3a+ 3)G(a)

24a(1 + a)5(a2 + a+ 1)
3
2

,

N3 =
(
√

3− 9)(a2 − a+ 1)G(a)

24a5(1 + a)(a2 + a+ 1)
3
2

,

where G(a) = a2(1 + a)2 + (a2 + a + 1)
3
2 , and again coincides with

the numerator of the left hand side equation (3.2) when a < 0, and we
know that has no roots in the interval (−1/2, 0). SinceG(0) = 1 > 0 then
G(a) > 0 and N2 < 0 in the interval (−1/2, 0). Notice that N3 > 0 when
−1/2 < a < 0 and apparently the mass m3 is unbounded, but negative.
However, m3 really has positive sign, since ∆124, that has negative sign
when the fifth mass is inside the rhombus and is the only negative factor
in the determinant (3.1), do not appear in the denominator of m3.

�

In summary we have proved that m1, m2 and m3 are positives for all
values of r12 between 7/10 and 1, when the fifth body, m1, is outside the
rhombus, and for all values of r12 between 0 and 1/2, when the fifth body,
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m1, is inside the rhombus, if r24 is sufficiently close to one but smaller. See
Figure 2.

5. Proof of Theorem 2.2

Following the ideas in the previous section we are going to prove that when
r45 = 1, that is, when the diagonals of the rhombus are equal, the masses
m1, m2 and m3 in (2.6) are positive for some values of r12. In what follows
we will show that in (2.6) when r45 = 1 the numerators and denominators
have the same sign, respectively. Once again, we will distinguish when the
fifth mass is outside (a > 0) or inside (−1/2 < a < 0) the square.

• Case a > 0
Numerator, N1, of m1 in equations (2.6) is equal to

N1 = − P1(a)

16a2(1 + a)2(a2 + a+ 1
2 )
√

4a2 + 4a+ 2
,

where

P1(a) = (14a5 + 35a4 + 28a3 + 9a2 + 2a+ 1− (4a2 + 4a+ 2)
√

2 )

(a2 + a+ 1/2)(4a2 + 4a+ 2)
1
2 − 8(1 + a)2(1/2 + a)(

√
2− 1/2)a2.

In order to study the zeros of N1 we use the same techniques as in
Section 3. P1(a) can be written as a polynomial of degree 32, P32(a),
with two number of sign changes. So from Descartes’ rule of signs the
number of zeros of P32(a) is zero or two. Since P32(3/10) < 0, P32(2/5) >

0, P32(1/2) < 0 and N1(1/2) = 5
√

2
9 + 2

√
2
√

5
25 − 83

72 −
√

5
25 < 0, follows

that N1(a) < 0, and consequently m1 > 0, for all a > 1/2.
Numerator, N2, of m2 in equations (2.6) is equal to

N2 = − P2(a)

16a2(1 + a)5(2a2 + 2a+ 1)3
√

4a2 + 4a+ 2
,

where

P2(a) = ((−48a10 − 288a9 − 808a8 − 1352a7 − 1516a6 − 1248a5 − 818a4

− 430a3 − 164a2 − 38a− 4)
√

2 + 112a11 + 808a10 + 2720a9

+ 5668a8 + 8124a7 + 8430a6 + 6504a5 + 3769a4 + 1622a3

+ 495a2 + 96a+ 9)(4a2 + 4a+ 2)
1
2

− 224a2(1 + a)5(1/2 + a)(a2 + a+ 1/2)2.

Again, P2(a) can be written as a polynomial of degree 42 with no zeros

in the interval ∈ (0, 1). Since N2(1/2) = 15737
√

2
30375 + 7

√
5

25 − 66931
30375 < 0, then

N2(a) < 0, so that m2 > 0 for all 0 < a < 1.
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Numerator, N3, of m3 in equations (2.6) is equal to

N3 = − P3(a)

48a5(1 + a)2(2a2 + 2a+ 1)3
√

4a2 + 4a+ 2
,

where

P3(a) = ((−144a10 − 576a9 − 1128a8 − 1224a7 − 540a6 + 288a5 + 582a4

+ 426a3 + 186a2 + 48a+ 6)
√

2− 336a11 − 1272a10 − 2400a9

− 2796a8 − 2244a7 − 1410a6 − 816a5 − 459a4 − 234a3

− 93a2 − 24a− 3)(4a2 + 4a+ 2)
1
2

+ 672a5(1 + a)2(1/2 + a)(a2 + a+ 1/2)2.

By using the same method as before, we proceed to find the zeros
of P3(a). Thus we transform its expression to a polynomial of degree 42.
Applying Sturm’s theorem in the interval (0, 1), we obtain two zeros,
one between 1/2 and 51/100 and another between 59/100 and 3/5. On

the other hand, N3(55/100) = 59238755508940350
24506348699914631 − 1247292558547000

√
2

790527377416601 −
7350

√
541

292681 < 0. Then N3(a) < 0 and m3 > 0 for all 51
100 < a < 59

100 .
In summary we have proved that masses m1, m2 and m3 are posi-

tives as long as the values of a (the distance between m1 and m2) belong
to the interval ( 51

100 ,
59
100 ). So there exist square plus one central configu-

rations in the five-body problem when the fifth mass is located outside
the square and r12 ∈ ( 51

100 ,
59
100 ).

• Case −1/2 < a < 0
Using similar arguments to the previous case, (a > 0), it can be

proved that m1 and m3 are always positive while m2 is only positive for
values less than −1/4. So there exist square plus one central configura-
tions in the five-body problem when the fifth mass is located inside the
square and r12 ∈ (1/4, 1/2).

�

We would like to remark, first, that the bounds obtained along the proof
of the theorem for the admissible values of r12 are not sharp. And secondly,
that from the continuity of the values of the masses with respect to the mutual
distances, the theorem also ensures the existence of rhombus plus one central
configurations when the two diagonals are nearly equal.
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86690 Cunduacán, Tabasco, México. ORCID: 0000-0001-7571-3716

e-mail: kornelio 85@hotmail.com

Martha Alvarez-Ramı́rez
Departamento de Matemáticas
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