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Abstract
We discuss criteria for the nonexistence, existence and computation of invariant algebraic
surfaces for three-dimensional complex polynomial vector fields, thus transferring a classical
problem of Poincaré from dimension two to dimension three. Such surfaces are zero sets of
certain polynomials which we call semi-invariants of the vector fields. The main part of the
work deals with finding degree bounds for irreducible semi-invariants of a given polynomial
vector field that satisfies certain properties for its stationary points at infinity. As a related
topic, we investigate existence criteria and properties for algebraic Jacobi multipliers. Some
results are stated and proved for polynomial vector fields in arbitrary dimension and their
invariant hypersurfaces. In dimension three we obtain detailed results on possible degree
bounds. Moreover by an explicit construction we show for quadratic vector fields that the
conditions involving the stationary points at infinity are generic but they do not a priori
preclude the existence of invariant algebraic surfaces. In an appendix we prove a result on
invariant lines of homogeneous polynomial vector fields.
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1 Introduction

Consider a polynomial ordinary differential equation in Cn

ẋ = f (x) = f (0)(x) + f (1)(x) + · · · + f (m)(x), (1)

with each f (i) a homogeneous polynomial of degree i , 0 ≤ i ≤ m, and f (m) �= 0. By X f

we denote the vector field associated to f (also called the Lie derivative with respect to f ).
A polynomial ψ : Cn → C

n is called a semi–invariant of f if ψ is nonconstant and

X f (ψ) = λ · ψ, (2)

for some polynomial λ, called the cofactor of ψ . As it is well-known, a polynomial is a
semi-invariant of the vector field f if and only if its vanishing set is invariant for the flow of
system (1). Given a degree bound, the problem of finding semi-invariants essentially reduces
to solving a linear system of equations with parameters, thus a problem of linear algebra.

The existence problem for semi-invariants is relevant for several questions, notably Dar-
boux integrability and existence of Jacobi multipliers. From the work of Żoła̧dek [33] it is
known that generically no algebraic invariant sets exist for polynomial vector fields of a
fixed degree; see also Coutinho and Pereira [14]. Even for dimension n = 2 the existence
problem is hard when the vector field has dicritical stationary points. When there are no
dicritical stationary points then work of Cerveau and Lins Neto [7] and Carnicer [4] provides
degree bounds for irreducible semi-invariants; see Pereira [23] for a refinement and also note
the work by Ferragut et al. [17]. For certain classes of planar polynomial vector fields it
was shown in [32] by elementary arguments that an effective degree bound for irreducible
semi-invariants exists, and strong restrictions were found for possible integrating factors. For
higher dimensions Jouanolou [18] showed the existence of the general degree bound m + 1
for those semi-invariants of system (1) that define smooth hypersurfaces in projective space.
Following Jouanolou’s work, the Poincaré problem is now generally being viewed in the
framework of algebraic solutions for Pfaffian systems on projective varieties. It is known
that no general degree bounds can exist for algebraic solutions, and that certain properties
of singular points are relevant for establishing degree bounds in some classes. Considering
dimension n ≥ 3, much work has been done in the last two decades to classify and character-
ize invariant surfaces; see for instance the survey [6] by Cerveau, and the work [8] by Cerveau
et al. on local properties. Further notable contributions concerning invariant algebraic vari-
eties are due to Brunella and Gustavo Mendes [3], Cavalier and Lehmann [5], Corrêa and
da Silva Machado [11,12], Corrêa and Jardim [10], Corrêa and Soares [13], Esteves [16],
and Soares [29–31]. The recent survey by Corrêa [9] collects these and more results, and
provides an overview.

The purpose of the present paper, which is based in part on the doctoral thesis [19] by
one of the authors, is to generalize the results of [32] to higher dimensions, with a focus on
dimension three. The emphasis is on establishing verifiable conditions that provide uniform
degree bounds for irreducible semi-invariants. In contrast to the deep theoretical results
used in most of the above mentioned references, our approach is different, employing rather
elementarymethods.Moreoverwe consider the affine rather than the projective case. Thuswe
start with asking about the existence of irreducible, pairwise relatively prime semi-invariants

φi = φ
(1)
i + · · · + φ

(ri )
i , 1 ≤ i ≤ s, (3)

with φ
(k)
i homogeneous polynomials of degree k, and φ

(ri )
i �= 0. Our principal approach will

be to consider stationary points at infinity of system (1).

123



Journal of Dynamics and Differential Equations

The plan of the paper is as follows. In a preparatory Sect. 2 we collect mostly known
facts about semi-invariants of polynomial and formal vector fields, and Poincaré transforms
in order to discuss the behavior at infinity. Some of the statements are proven for the reader’s
convenience. In Sect. 3 we consider a class of polynomial vector fields in C

n which is
characterized by certain properties of its stationary points at infinity.We derive degree bounds
for collections of irreducible semi-invariants given that either at least n−1 pairwise relatively
prime semi-invariants exist or that a degree bound for (and a bound for the number of) the
irreducible homogeneous semi-invariants of the highest degree term f (m) is known. We then
proceed to discuss posssible exponents and degree bounds for Jacobi multipliers that are
algebraic over the rational function fieldC(x1, . . . , xn). We close the section by stating some
facts about reduction of dimension for homogeneous vector fields. In Sect. 4 we apply and
specialize the results from the previous section to vector fields in C3, obtaining rather strong
results on degree bounds by combining our approach with earlier results by Jouanolou [18]
and Carnicer [4].Moreover we explicitly construct a class of quadratic vector fields for which
the conditions on the stationary points at infinity are directly verifiable. This class, seen as a
subset of the coefficient space (∼= C

18) contains a Zariski open subset, and the vector fields
not satisfying the conditions on stationary points at infinity form a measure zero subset. The
Appendix contains some additional material on the construction and some proofs. It also
contains the statement and proof of a result by Röhrl [26] (the original source contains an
erroneous statement and proof) which is needed by us as a basis for the construction of the
quadratic vector fields in Sect. 4. Röhrl’s result, which generalizes the common knowledge
fact that generically a linear map admits a basis of eigenvectors to homogeneous polynomial
maps of arbitrary positive degree, seems to be of independent interest.

2 Preparations

In this sectionwe review some known facts and introduce notions and tools to be used later on.
For the reader’s convenience, some proofs of known facts will be included in the Appendix.

2.1 Semi-invariants and Some of Their Properties

In addition to polynomial semi-invariants of polynomial vector fields we will consider local
analytic (or formal) semi-invariants of local analytic (or formal) vector fields. Thus, a formal
vector field is given by a power series

g(x) = Bx +
∑

i≥1

g(i)(x) in C
n, (4)

with B linear and each g(i) a homogeneous polynomial of degree i . A semi-invariant of g is
defined as a non-invertible power series

ρ = ρ(1) + ρ(2) + · · · (thus ρ(0) = 0) (5)

satisfying Xg(ρ) = μρ for some power series μ. Similar to the polynomial case, an analytic
function at 0 is a semi-invariant of the analytic vector field (4) if and only if its vanishing set
is invariant for ẋ = g(x). We collect some general properties of semi-invariants.

Lemma 1 (a) Let the polynomial vector field f as in (1) be given. Then the following hold.
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• From X f (ψ j ) = λ j · ψ j , j = 1, 2, the relations

X f (ψ1 · ψ2) = (λ1 + λ2) · ψ1 · ψ2 and X f (ψ1/ψ2) = (λ1 − λ2) · ψ1/ψ2

follow.
• If ψ1, . . . , ψ� are irreducible and pairwise relatively prime polynomials, m1, . . . , m�

are nonzero integers and there is a polynomial μ such that

X f (ψ
m1
1 · · · ψm�

� ) = μ · ψ
m1
1 · · · ψm�

�

then every ψ j is a semi-invariant of f .
• If σ is nonconstant and algebraic over the field C(x1, . . . , xn) and satisfies X f (σ ) =

μ·σ for some polynomial μ then every nonzero coefficient β of its minimal polynomial
satisfies X f (β) = k · μ · β with some positive integer k, hence also X f (β

1/k) =
μ · β1/k .

(b) Mutatis mutandis, the same statements hold for formal semi-invariants of formal vector
fields.

For a proof of Lemma 1 see the Appendix, Sect. 1.
Given a semi-invariant ψ of the polynomial vector field f , and a stationary point z of f ,

one has either ψ(z) �= 0 or ψ is a local analytic (hence also a formal) semi-invariant of f at
z. Thus one can use local information in the search for polynomial semi-invariants, based on
the following result.

Lemma 2 The following statements hold.

(a) Let ψ be an irreducible polynomial semi-invariant of (1), and ψ(0) = 0. Then every
irreducible series in the factorization of ψ in the formal power series ringC[[x1, . . . , xn]]
has multiplicity one.

(b) Let ψ1 and ψ2 be relatively prime polynomial semi-invariants of (1), and ψ1(0) =
ψ2(0) = 0. Then the prime factorizations of ψ1 and ψ2 in the formal power series ring
C[[x1, . . . , xn]] have no common irreducible factor.

These properties hold more generally for polynomials. An algebraic proof of this fact
(which is known) is given in [19], Lemma 8.4, and we give an elementary ad-hoc proof in
Sect. 1 of the Appendix.

We next discuss cases when the local information is rather precise. Again, the proof of
Lemma 2 is given in Sect. 1.

Lemma 3 Let g be a formal vector field as in (4), with λ1, . . . , λn the eigenvalues of B.
Consider the following conditions:

1. λ1, . . . , λn are linearly independent over the rational number field Q.
2. dimQ (Qλ1 + · · · +Qλn) = n − 1 and there exist positive integers m1, . . . , mn (w.l.o.g.

relatively prime) with

n∑

i=1

miλi = 0.

If one of the two conditions above is satisfied then the following hold.

(a) If B = diag(λ1, . . . , λn) and g is in Poincaré–Dulac normal form (PDNF) then
x1, . . . , xn are (up to multiplication by invertible series) the only irreducible formal
semi-invariants of g.
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(b) For general g there exist (up to multiplication by invertible series) precisely n irreducible
and pairwise relatively prime formal semi-invariants of system (4).

Thus, one only has to consider finitely many local semi-invariants if condition 1 or 2 from
Lemma 3 holds. Moreover, their vanishing sets (in the analytic case) meet transversally in
the stationary point 0. This property is characteristic for conditions 1 and 2 above, as the next
observation shows.

Remark 1 When the dimension is n ≥ 3 and dimQ(Qλ1 + · · · + Qλn) ≤ n − 2, then there
always exist infinitely many irreducible, pairwise relatively prime formal semi-invariants for
the semisimple part Bs of B: By the dimension assumption, there is a relation

∑
�iλi = 0

with integers �i that do not all have the same sign; thus we may assume that there are
nonnegative, relatively prime integers ki and some 1 < p < n such that

p∑

i=1

kiλi =
n∑

i=p+1

kiλi ,

whence xk1
1 · · · x

kp
p and x

kp+1
p+1 · · · xkn

n are semi-invariants with the same cofactor, and

xk1
1 · · · x

kp
p + α · x

kp+1
p+1 · · · xkn

n

is a semi-invariant for every constantα. Since the ki are relatively prime, irreducibility follows
whenever α �= 0.

2.2 Poincaré Transforms and Stationary Points at Infinity

The following is geometrically motivated by the well known procedure of passing to the
Poincaré hypersphere (or to projective space) in the analysis of polynomial vector fields.
We choose a rather straightforward adaptation (see [32] in the case of dimension two), to
facilitate our computations.

Definition 1 Let ψ ∈ C[x] be a polynomial of degree r with decomposition

ψ(x) =
r∑

j=0

ψ( j)(x),

where each ψ( j) is a homogeneous polynomial of degree j and ψ(r) �= 0.

(a) The homogenization of ψ with respect to xn+1 is defined as

ψ̃(x1, . . . , xn, xn+1) :=
r∑

j=0

ψ( j)(x1, . . . , xn)xr− j
n+1 ∈ C[x1, . . . , xn, xn+1].

(b) The special Poincaré transform of ψ with respect to

e1 = (1, 0, . . . , 0)T ∈ C
n

is the polynomial

ψ∗ := ψ∗
e1(x2, . . . , xn+1) :=ψ̃(1, x2, . . . , xn+1)

=
r∑

j=0

ψ( j)(1, x2, . . . , xn)xr− j
n+1 ∈ C[x2, . . . , xn, xn+1].

123



Journal of Dynamics and Differential Equations

(c) A Poincaré transform of ψ w.r.t. v ∈ C
n\{0} is defined as

ψ∗
v (x2, . . . , xn+1) := (

ψ ◦ T −1)∗
e1

(x2, . . . , xn+1)

with a regular matrix T ∈ C
n×n such that T v = e1.

The following properties are easy to prove, see [32] or [19] for more details.

Lemma 4 Let ψ and v be as in Definition 1. Then the following hold.

(a) One has ψ(r)(v) = 0 if and only if ψ∗
v (0) = 0.

(b) The map

C[x1, · · · , xn]\ 〈x1〉 → C[x2, · · · , xn+1], ψ �→ ψ∗
e1

is injective.
(c) If ψ is irreducible with ψ(r)(v) = 0 then ψ∗

v is irreducible.
(d) If ψ1 and ψ2 are relatively prime and ψ∗

1 (v) = ψ∗
2 (v) = 0, then ψ∗

1 and ψ∗
2 are relatively

prime.

Moreover, we define Poincaré transforms of vector fields.

Definition 2 Let f be given as in (1).

(a) The homogenization of f with respect to xn+1 is defined as

f̃ (x1, . . . , xn+1) :=
⎛

⎝
m∑

j=0
f ( j)(x1, . . . , xn)xm− j

n+1

0

⎞

⎠

=:

⎛

⎜⎜⎜⎝

g1
...

gn

0

⎞

⎟⎟⎟⎠ ∈ C[x]n+1, where x =
⎛

⎜⎝
x1
...

xn+1

⎞

⎟⎠ .

(b) The projection of f̃ with respect to x1 is

P f̃ (x1, . . . , xn+1) := − g1(x1, . . . , xn+1) · x + x1 · f̃ (x1, . . . , xn+1)

=

⎛

⎜⎜⎜⎜⎜⎝

0
−g1x2 + x1g2

...

−g1xn + x1gn

−g1xn+1

⎞

⎟⎟⎟⎟⎟⎠
.

(c) The special Poincaré transform with respect to the vector e1 is defined as

f ∗ := f ∗
e1(x2, . . . , xn, xn+1) :=

⎛

⎜⎜⎜⎝

−g1(1, x2, . . . , xn+1)x2 + g2(1, x2, . . . , xn+1)
...

−g1(1, x2, . . . , xn+1)xn + gn(1, x2, . . . , xn+1)

−g1(1, x2, . . . , xn+1)xn+1

⎞

⎟⎟⎟⎠ ,

where f ∗ ∈ C[x2, . . . , xn, xn+1]n .
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(d) A Poincaré transform of f w.r.t. v ∈ C
n\{0} is defined as

f ∗
v (x2, . . . , xn+1) := (

T ◦ f ◦ T −1)∗
e1

(x2, . . . , xn+1)

with a regular matrix T ∈ C
n×n such that T v = e1.

Remark 2 The definitions of Poincaré transforms depend on the choice of the matrix T , but
a different choice of T will just amount to a linear automorphism of the polynomial algebra
resp. a conjugation of vector fields by a linear transformation; see [32], Lemma 3.1. This will
be irrelevant for our purpose.

We now turn to stationary points at infinity, i.e. to stationary points of Poincaré transforms
which lie in the hyperplane {x : xn+1 = 0}.
Lemma 5 Let f be as in (1) and v ∈ C

n\{0}. Then:

(a) The point 0 is stationary for f ∗
v if and only if f (m)(v) = γ v for some γ ∈ C.

(b) The Jacobian D f (m)(v) admits the eigenvector v, with eigenvalue mγ . Let β2, . . . , βn

be the further eigenvalues of D f (m)(v) (counted according to multiplicity). Then the
eigenvalues of D f ∗

v (0) are given by

−γ, β2 − γ, . . . , βn − γ.

(c) If the number of lines Cv with f (m)(v) ∈ Cv is finite then it is equal to

mn − 1

m − 1
=

n−1∑

i=0

mi ,

counting multiplicities.

Proof Statement (a) can be verified directly. For statement (b) see [27], Proposition 1.8 and
Corollary. 1.9. For statement (c), a proof is given by Röhrl [25], using Bezout’s theorem in
projective space (see e.g. Shafarevich [28], Chapter 4 for this). �
Remark 3 Note that the stationary point 0 of f ∗

v has multiplicity one if and only if all the
eigenvalues of its Jacobian are nonzero. Moreover, the stationary point 0 is then isolated. In
particular, given condition 1 or 2 of Lemma 3 for the eigenvalues at the stationary point 0
of f ∗

v , this stationary point has multiplicity one. In the particular (non-generic) case when
f (m)(x) = ρ(x) · x one sees that every point at infinity is stationary. If one considers
differential forms and foliations of projective space rather than vector fields in affine space,
one usually divides out a common factor in the coefficients, obtaining a formwhich generally
does not admit the hyperplane at infinity as an invariant set. The vector fields we will discuss
are not in this particular class.

3 Invariant Hypersurfaces of a Class of Vector Fields

In the present section we will discuss a particular class of vector fields and degree bounds
for irreducible semi–invariants of this class. We first give some definitions.

Definition 3 Let f be given as in (1).

(a) We say that f has property E if condition 1 or condition 2 in Lemma 3 holds for the
linearization of f ∗

v at every stationary point at infinity.
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(b) We say that f has property S if every proper homogeneous invariant variety Y of f (m)

with dim Y ≥ 1 contains an invariant subspace Cv with v �= 0.

Note that both conditions apply only to the highest degree term f (m). In dimension two,
property S is trivially satisfied, and it was shown in [32], Proposition 3.7 that property E is
generic. In higher dimensions it is not a priori obvious that vector fields admitting properties
E and S exist. In Sect. 4 we will construct a class of examples in dimension three.

One consequence of property E is that the number of stationary points at infinity is finite
(otherwise some Jacobian at a stationary point would have to be non-invertible), and every
stationary point at infinity has multiplicity one. A further consequence is not directly relevant
for the main topic of this paper, but it is worth recording.

Proposition 1 Let f satisfy property E. Then the number of irreducible invariant algebraic
curves for system (1) is bounded by (mn − 1)/(m − 1).

Proof Let C be an invariant algebraic curve of the system. Then its intersection with the
hyperplane at infinity is invariant, hence every intersection point is stationary. Let Cv corre-
spond to one of these points. Then, by Theorems 3.1 and 3.2 of [20], the local ideal defining
the image of the curve under the Poincaré transform is generated by certain semi-invariants
of D f ∗

v (0), and there must be n − 1 of these, since the dimension of the curve equals one.
Using property E and Lemma 3, and the fact that the transformed curve is not contained in
the hyperplane {x : xn+1 = 0}, one sees that the only possible ideal is the one not containing
the semi–invariant xn+1. This argument shows that every stationary point at infinity can be
an intersection point with at most one irreducible invariant curve. Now use Lemma 5(c). �

3.1 Degree Bounds for Semi-invariants

We first state a preliminary result.

Lemma 6 Let φ1, . . . , φd be irreducible and pairwise relatively prime semi–invariants of
the polynomial vector field f , and let v be such that φ∗

i,v(0) = 0, 1 ≤ i ≤ d, and that
the Jacobian D f ∗

v (0) satisfies condition 1 or 2 from Lemma 3. Denote the irreducible local
semi–invariants of D f ∗

v (0) by σ1, . . . , σn−1, σn := xn+1. Then σn is not a factor of any φ∗
i,v ,

and for the prime decompositions

φ∗
i,v = σ

�i,1
1 · · · σ�i,n−1

n−1 · νi , 1 ≤ i ≤ d

with nonnegative integers �i, j and invertible series νi one has
∑

i

�i, j ≤ 1.

Proof This is a direct consequence of Lemma 2. �
Our first result yields degree bounds when n − 1 irreducible semi–invariants exist.

Theorem 1 Let the vector field f in (1) satisfy properties E and S, and let φ1, . . . , φn−1

be irreducible and pairwise relatively prime semi–invariants of f as in (2), of degrees
r1, . . . , rn−1 respectively. Then

n−1∏

i=1

ri ≤ mn − 1

m − 1
.
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Proof Wefirst recall that invariance of the commonzero set of theφ j for (1) implies invariance

ofV(φ
(r1)
1 , . . . , φ

(rn−1)

n−1 ) for ẋ = f (m)(x). Now letCv be a common zero ofφ(r1)
1 , . . . , φ

(rn−1)

n−1 .

By property S we may assume that f (m)(v) ∈ Cv. Consider the prime factorization of the
φ∗

i,v in the power series ring. By property E and Lemma 6, after possibly renumbering the
factors, we have

φ∗
i,v = σi · νi , 1 ≤ i ≤ d,

whence the intersection multiplicity of the common zero of the φ∗
i,v and xn+1 is equal to

one. In particular the irreducible component Y of V(φ
(r1)
1 , . . . , φ

(rn−1)

n−1 ) that contains Cv is

equal to Cv. Bezout’s Theorem in projective space now shows that V(φ
(r1)
1 , . . . , φ

(rn−1)

n−1 ) is

the union of precisely
∏n−1

i=1 ri distinct lines in Cn . Each of these lines is an invariant set for
ẋ = f (m)(x), hence by Lemma 5(c) one has the assertion. �
Corollary 1 Let f be as in (1), satisfying properties E and S. Moreover, let k ≥ n and
φ1, . . . , φk be irreducible and pairwise relatively prime semi–invariants of f , with deg φi =
ri . Then,

∏

1≤i≤k

ri ·
∑

M ⊆ {1, . . . , k}
|M | = k + 1 − n

1∏
j∈M r j

≤ mn − 1

m − 1
.

Proof Let 1 ≤ i1 < · · · < in−1 ≤ k, thus {i1, . . . , in−1} is the complement of a set M ⊆
{1, . . . , k} with k + 1 − n elements. Then, by the argument in the proof of Theorem 1, the
vanishing set

V
(
φ

(ri1 )

i1
, . . . , φ

(rin−1 )

in−1

)

is a union of precisely ri1 · · · rin−1 invariant lines, each with multiplicity one. By property
E and Lemma 3(b), each invariant line Cv of f (m) appears in at most one of the common
vanishing sets

V
(
φ

(ri1 )

i1
, . . . , φ

(rin−1 )

in−1

)
,

since otherwise more than n local invariant hypersurfaces would meet at the stationary
point 0 of f ∗

v . Now Bezout’s theorem, and adding up the contributions of all stationary points
at infinity, shows the assertion. �

The second result may be used to obtain degree bounds for semi–invariants of f , if degree
bounds for semi–invariants of the highest degree term f (m) are known.

Theorem 2 Let the vector field f in (1) satisfy properties E and S, and let φ1, . . . , φs be
irreducible and pairwise relatively prime semi–invariants of f .

(a) Let {ψ1, . . . , ψ�} be the set of pairwise relatively prime irreducible factors of the φ
(ri )
i

with 1 ≤ i ≤ s. (Note that these are homogeneous and semi–invariants of f (m).) Then,
given the representations

φ
(ri )
i =

�∏

j=1

ψ
ki j
j , ki j ≥ 0,
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one has
∑s

i=1 ki j ≤ 1 for all j . Thus every ψ j appears in at most one of the φ
(ri )
i , and if

it appears then with exponent 1.
(b) If f (m) admits only finitely many irreducible semi–invariants ψ1, . . . , ψ� (up to multi-

plication by constants), then

deg φi =
�∑

j=1

ki j deg ψ j , 1 ≤ i ≤ s

and

s∑

i=1

deg φi ≤
�∑

j=1

deg ψ j .

In particular the number of irreducible and pairwise relatively prime semi–invariants of
f is finite.

Proof Statement (b) is a simple consequence of (a). As for the proof of statement (a), by
property S we may again consider the φ

(ri )
i at a common zero Cv which is also invariant for

ẋ = f (m)(x). We consider a Poincaré transform at v, and there is no loss of generality in
assuming that v = e1. Moreover let the σi be as in Lemma 6, and by property E and Lemma
3 we may assume that

σi (x2, . . . , xn, xn+1) = xi+1 + h.o.t, 1 ≤ i ≤ n − 1,

with “h.o.t” denoting higher order terms. From Definition 1 we have

φ
(ri )
i (1, x2, . . . , xn) + xn+1 · (· · · ) = φ∗

i,e1 = σ
�i,1
1 · · · σ�i,n−1

n−1 · νi

with all �i, j ∈ {0, 1} and therefore also
φ

(ri )
i (1, x2, . . . , xn) = σ1(x2, . . . , xn, 0)�i,1 · · · σn−1(x2, . . . , xn, 0)�i,n−1 · νi (x2, . . . , xn, 0).

From σi = xi+1 +· · · one sees that the σi (x2, . . . , xn, 0) are still irreducible and pairwise
relatively prime in the formal power series ring. Comparing this decomposition with

φ
(ri )
i =

�∏

j=1

ψ
ki j
j ,

the corresponding local decompositions of the ψ
ki j
j (1, x2, . . . , xn) can have only simple

prime factors, hence ki j ≤ 1 whenever ψ j (v) = 0. �

3.2 Degree Bounds for Jacobi Multipliers

We recall that a Jacobi multiplier (or Jacobi last multiplier) σ �= 0 of a vector field h is
characterized by the condition

Xh(σ ) + div h · σ = 0, equivalently Xh(σ−1) = div h · σ−1.

In particular, a Jacobi multiplier satisfies the defining identity for semi–invariants but
might be invertible. For a comprehensive account of Jacobi multipliers and their properties
see Berrone and Giacomini [1].
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Wefocus on Jacobimultipliers that are algebraic overC(x1, . . . , xn) resp.C((x1, . . . , xn)).
This is a natural requirement in dimension n = 2 in view of Prelle and Singer’s paper [24]
on elementary integrability, and seems to be a sensible (initial) restriction also for local
integrating actors of Darboux type, as the following results will imply. We note that by
Lemma 1 one may restrict interest to products of powers of semi–invariants, with rational
exponents. We first discuss the local analytic, respectively the formal case, given the setting
of Lemma 3.

Lemma 7 Let g(x) = Bx + · · · as in (4) in Poincaré-Dulac normal form, B =
diag (λ1, . . . , λn).

(a) If condition 1 from Lemma 3 holds, then (x1 · · · xn)−1 is, up to multiplication by constants,
the only Jacobi multiplier of g which is algebraic over C((x1, . . . , xn)).

(b) If condition 2 from Lemma 3 holds, and γ = xm1
1 · · · xmn

n , then there exist linearly
independent diagonal matrices C1, . . . , Cn−1 such that the Lie bracket [g, Ci x] = 0 and
XCi x (γ ) = 0, 1 ≤ i ≤ n − 1; moreover B is a linear combination of the Ci .

• If τ(x) := det(g(x), C1x, . . . , Cn−1x) �= 0, then there exists � > 0 such that
τ(x) = γ (x)� · (x1 · · · xn) · τ̂ (x), with an invertible series τ̂ , and τ−1 is (up to
multiplication by constants) the unique Jacobi multiplier for g which is algebraic
over C((x1, . . . , xn)).

• If τ(x) = 0 then (x1 · · · xn)−1 is a Jacobi multiplier, and γ a first integral of g. In
that case every Jacobi multiplier that is algebraic over C((x1, . . . , xn)) has the form

(x1 · · · xn)−1 · ν

with d ∈ Q and ν an algebraic first integral of g.

Proof (a) In this case one has g(x) = Bx , and one directly verifies that σ := (x1 · · · xn)−1

is a Jacobi multiplier. Assume that there exists a Jacobi multiplier σ̃ that is algebraic over
C((x1, . . . , xn)), then one also has a Jacobi multiplier x−d1

1 · · · x−dn
n with rational exponents

by Lemma 1, and
∑

diλi =
∑

λi .

Condition 1 implies that all di = 1, hence x−1
1 · · · x−1

n is the unique algebraic integrating
factor. Using the (notation and) argument in the proof of Lemma 1 the coefficient of T m−i in
the minimal polynomial of σ̃−1 is a constant multiple of x1 · · · xn . But then the same holds
for σ̃−1 itself.

(b) It is known that

g(x) = Bx +
∑

j≥1

γ (x) j D j x

with diagonal matrices D j , see e.g. Bibikov [2], Definition 2.3 and Theorem 2.2. The
equation

∑
miμi = 0 has n −1 linearly independent solutions inQn . Take these as the diag-

onal elements of C1, · · · , Cn−1 respectively. Then XCi (γ ) = 0 and [Ci , B] = [Ci , D j ] = 0
for all i, j , whence [Ci , g] = 0 for all i . Nowwrite D j x = ∑

ν jhCh x +β j ·x with constants
ν jh and β j . Thus,

τ(x) =
∑

j≥1

γ (x) jβ j det(x, C1x, . . . , Cn−1x) = κx1 · · · xn

∑

j≥1

β jγ (x) j ,
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with a nonzero constant κ . If τ �= 0 then τ−1 is a Jacobi multiplier according to Berrone
and Giacomini [1], and if � is the smallest index with β� �= 0 then we get

τ(x) = γ �(x) · (x1 · · · xn) · (β�κ + h.o.t).

As for uniqueness, we first recall: Every first integral in C((x1, . . . , xn)) of ẋ = Bx is a
quotient of power series in γ . Indeed, numerator and denominator are semi-invariants of B,
with the same cofactor (which is a first integral of B and lies in C[[x1, . . . , xn]]), and the
argument in the proof of Lemma 3 shows the assertion. From this we find that g admits no
nonconstant first integral that is algebraic over C((x1, . . . , xn)) whenever some β� �= 0, by
showing that there exists no such first integral in C((x1, . . . , xn)). But such a first integral
would also be a first integral of ẋ = Bx (see e.g. [22], Theorem 1), hence a quotient of power
series in γ . But then γ is a first integral. Finally, the identity

Xg(γ ) = κ ·
∑

mi ·
∑

j≥1

β jγ (x) j+1

yields a contradiction unless all β j = 0. In the case τ = 0 one verifies by direct computa-
tion that (x1 · · · xn)−1 is a Jacobi multiplier, and γ is obviously a first integral of g. The last
statement is again clear from known properties of Jacobi multipliers; see [1]. �

Obviously, Lemma 7 is also applicable to local analytic or formal systems which are
not in PDNF, given that condition 1 or condition 2 of Lemma 3 holds. We shall now apply
this to Jacobi multipliers of system (1) that are algebraic over the rational function field
C(x1, . . . , xn).

Theorem 3 Let the polynomial vector field f given by (1) satisfiy properties E and S and let
(
φ

d1
1 · · · φds

s

)−1

be a Jacobi multiplier of f , with the φi as in (3), and nonzero rational exponents
d1, · · · , ds .

Moreover, assume that there exists a line Cw such that linearization of f ∗
w at 0 has

eigenvalues that are linearly independent over Q. Then

d1 = · · · = ds = 1 and
s∑

i=1

ri = m + n − 1.

Proof (i) We need some technical preparations, the proofs of which are straightforward
generalizations of the ones for Proposition 3.3 in [32].

• Ifψ is a semi–invariant of f , with degree r and X f (ψ) = λψ , then the Poincaré transform
ψ∗

e1 is a semi–invariant of f ∗
e1 with cofactor −rg1(1, x2, . . . , xn+1) + λ∗

e1 .• f ∗
e1 admits the Jacobi multiplier

(
x

(m+n−∑
di ri )

n+1 · (φ∗
1,e1)

d1 · · · (φ∗
s,e1)

ds
)−1

.

• More generally, for any v ∈ C
n\{0}, the Poincaré transform f ∗

v admits the Jacobi mul-
tiplier

(
x

(m+n−∑
di ri )

n+1 · (φ∗
1,v)

d1 · · · (φ∗
s,v)

ds
)−1

.
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(ii) LetCw correspond to a stationary point at infinity such that the eigenvalues of D f ∗
w(0)

are linearly independent over Q. Then Lemma 7 (a) shows that di = 1 for all i such that
φ∗

i,w(0) = 0, and moreover m + n − ∑
diri = 1.

(iii) IfCv corresponds to a stationary point at infinity such that the eigenvalues of D f ∗
v (0)

satisfy the second condition of Lemma 3, then one exponent in the local factorization of the
multiplier, viz. the one belonging to the factor xn+1, is equal to −1. By Lemma 7(b), all the
other exponents equal −1, hence di = 1 whenever φ∗

i,v(0) = 0. Due to property S, we thus
find that all exponents are equal to −1, and the assertion follows. �

3.3 Reduction of Dimension

The verification of property S in dimension three, as well as the search for degree bounds
via Theorem 2 leads to semi–invariants of the homogeneous vector field f (m), and in turn to
semi–invariants of a reduced vector field inCn−1. This reduction is due to scaling symmetry,
and we will recall it now.

Proposition 2 Let p : Cn → C
n, x �→ (p1(x), . . . , pn(x))T be homogeneous of degree m,

and let H = {x : xn = 0} .

(a) Then

� : Cn\H → C
n−1, x �→

⎛

⎜⎝
x1/xn

...

xn−1/xn

⎞

⎟⎠

maps solutions orbits of ẋ = p(x) to solution orbits of ẏ = q(y), with

q =
⎛

⎜⎝
q1
...

qn−1

⎞

⎟⎠ ; qi (y) = pi (y1, · · · , yn−1, 1) − yi pn(y1, · · · , yn−1, 1).

(b) Every homogeneous invariant set Y of ẋ = p(x) which is not contained in H is mapped
to an invariant set of ẏ = q(y) with dimension decreasing by one. Conversely, the inverse
image of every invariant set Z of ẏ = q(y) is a homogeneous invariant set of ẋ = p(x),

with dimension increasing by one.
(c) Let v ∈ C

n such that vn �= 0 and p(v) = γ v. Then v is an eigenvector of
Dp(v) with eigenvalue mγ . Let β2, . . . , βn be the other eigenvalues of Dp(v), each
counted according to its multiplicity. Then the linearization of q at the stationary point
(v1/vn, . . . , vn−1/vn) has eigenvalues

vn(β2 − γ ), . . . , vn(βn − γ ).

Sketch of proof From ẋi = pi (x) one gets

d

dt

(
xi

xn

)
= 1

x2n
(xn pi (x) − xi pn(x)), 1 ≤ i ≤ n − 1

and rescaling time yields
(

xi

xn

)′
= xn pi (x) − xi pn(x), 1 ≤ i ≤ n − 1.

Dehomogenize to obtain statement (a).
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Statement (b) is a direct consequence of (a) since any invariant set is a union of solution
orbits.

The proof of statement (c) is a variant of the proof of [27], Proposition 1.8: Define

Q(x) := xn · p(x) − pn(x) · x, with DQ(x)y

= yn · p(x) + xn · Dp(x)y − (Dp(x)y)n · x − pn(x)y

and note that the first n − 1 entries of Q(x), upon setting xn = 1, are just the entries
of q(x). Now let y be an eigenvector of Dp(v) that is linearly independent from v, with
eigenvalue β. Then, using p(v) = γ v, one gets

DQ(v)y = (· · · ) · v + vn · Dp(v)y − γ vn · y = (· · · ) · v + vn · (β − γ ) · y.

This proves the part of the assertion for eigenvectors. The remaining part (if nontrivial
Jordan blocks exist) is proven similarly. �
Remark 4 (a) The entries of q in part (a) of Proposition 2 are just the first n −1 entries of the

Poincaré transform of p with respect to the vector en . Note that the qi may have common
factors. Dividing out such common factors, if necessary, one obtains what we call the
full reduction of p.

(b) A coordinate-free version of the reduction starts from a nonzero linear form

α(x) =
∑

αi xi , Hα := {x : α(x) = 0} and �α : Cn\Hα → C
n, x �→ 1

α(x)
x .

Then �α maps solution orbits of ẋ = p(x) to solution orbits of the equation

ẋ = Qα(x) := α(x)p(x) − α(p(x))x

which admits the linear first integral α.
In this case, whenever p(v) = γ v, α(v) �= 0 and the eigenvalues of Dp(v) are as
in Proposition 2 , the eigenvalues for the reduced system on the hyperplane given by
α(x) = 1 are

α(v) · (β2 − γ ), . . . , α(v) · (βn − γ ).

4 Dimension Three

In this section we will specialize our general results to dimension n = 3. In particular we
will verify that property S from Definition 3 is always satisfied, and show that property E
holds for almost all quadratic vector fields (in a sense to be specified).

4.1 Property S and Reduction

The first pertinent property is always satisfied in dimension three, as follows directly from
the work of Jouanolou [18].

Proposition 3 Let f be a polynomial vector field in C
3. Then f satisfies property S.

Proof In dimension three one has to prove that the zero set of a homogeneus semi–invariant
of a homogeneous polynomial vector field p contains an invariant line for p. There is no loss
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of generality in assuming that the entries of p are relatively prime. One may rephrase this
for the projective plane P2(C), by introducing the one form

ω = (p2x3 − p3x2) dx1 + (p3x1 − p1x3) dx2 + (p1x2 − p2x1) dx3

and considering a homogeneous polynomial solution φ of the Pfaffian equation ω = 0.
First consider the case when the projective curve defined by the zeros of φ is smooth (hence
normal). Then by Jouanolou, Chapter 2, Proposition 4.1(ii), the curve defined by φ in P

2

contains a singular point of ω, which corresponds to an invariant line for the homogeneous
vector field p. If the normality requirement for the solution is not satisfied then the projective
curve defined by φ contains a singular point, which translates to a singular line in homoge-
neous coordinates. But singular sets of invariant varieties of polynomial vector fields are also
invariant. �

We note that from Jouanolou [18], Chapter 2, Proposition 4.1(iii) one also obtains the
degree boundm+1 for irreducible homogeneous semi-invariantswhose associated projective
curve is smooth. Next we discuss the reduction of the highest degree term of f , with a view
on applying Theorem 2.

Lemma 8 Let the polynomial vector field f be given as in (1), and consider the reduction of
its homogeneous highest degree term p = f (m), according to Proposition 2 and Remark 4.
Then the following hold.

(a) Upon identifying homogeneous polynomial vector fields with their coefficients in some
C

N , the full reduction q of p admits no stationary points at infinity for a Zariski-open
subset of CN .

(b) Assume p(v) = v and let the linear form α be such that α(v) �= 0. Moreover let the
eigenvalues of Dp(v) be m, β2 and β3. Then the eigenvalues of the linearization of q at
the corresponding stationary point are α(v)(β2 − 1) and α(v)(β3 − 1).

(c) Assume that p(v) = v and the linearization of f ∗
v at the stationary point at infinity of

system (1) satisfies condition 1 or condition 2 from Lemma 3. Then the βi −1 are nonzero
and their ratio is not a positive rational number.

Proof We may assume that α(x) = x3. For statement (a), abbreviate hi (y1, y2) :=
pi (y1, y2, 1), noting that the hi generically have degree m. We now compute the Poincaré
transform of q with respect to e1, following the procedure in Definition 2. The first two entries
of the homogenization have the form

−h(m)
3 (y1, y2) ·

(
y1
y2

)
+ y3 ·

((
h(m)
1 (y1, y2)

h(m)
2 (y1, y2)

)
− h(m−1)

3 (y1, y2) ·
(

y1
y2

))
+ y23 · · · ,

from which the Poincaré transform is computed as

q∗
e1(y2, y3) = y3 ·

(
−h(m)

1 (1, y2) · y2 + h(m)
2 (1, y2)

−h(m)
3 (1, y2)

)
+ y23 · · ·

Passing to the full reduction by dividing out the factor y3 one obtains a vector field that
generically (i.e. corresponding to a Zariski open set in the space of coefficients of the hi ,
hence also of the coefficients of p) has no stationary points on y3 = 0, since −h(m)

1 (1, y2) ·
y2 +h(m)

2 (1, y2) and h(m)
3 (1, y2) generically have no common zeros. Statement (b) is a direct

consequence of Proposition 2. To prove statement (c), note first that conditions 1 and 2 both
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imply that all eigenvalues for the Poincaré transform are nonzero and observe Lemma 5.
Now assume that (β3 − 1)/(β2 − 1) = r/s with positive integers r and s. Then one obtains

(r − s) · (−1) + r · β2 + (−s) · β3 = 0.

Therefore the eigenvalues of D f ∗
v (0) are linearly dependent over Q, hence condition 1

cannot hold. Moreover, condition 2 also cannot hold because the integer coefficients in the
linear combination have different signs. �

Now we are ready to determine degree bounds, applying a result of Carnicer.

Theorem 4 Let the polynomial vector field f of degree m be given on C
3, and assume that

(i) the reduction of the homogeneous highest degree term f (m) admits no stationary points
at infinity;

(ii) the vector field has property E.

Then the following hold.

(a) Every irreducible homogeneous semi–invariant of f (m) has degree ≤ m + 1.
(b) There exist (up to scalar multiples) only finitely many irreducible homogeneous semi–

invariants ψ1 . . . , ψ� of f (m), and in case � ≥ 2 one has
∑

1≤i< j≤�

degψi · degψ j ≤ (mn − 1)/(m − 1);

in particular �(� − 1)/2 ≤ (mn − 1)/(m − 1).
(c) The vector field f admits only finitely many irreducible and pairwise relatively prime

semi–invariants.

Proof Wefirst prove statement (a). The condition in Carnicer’s theorem [4] is that no singular
point of the corresponding one-form in the projective plane is dicritical. Given a non-nilpotent
Jacobian, dicritical singular points are characterized by positive rational eigenvalue ratio. But
all the singular points of the one-form correspond to stationary points of the reduction of
f (m) in the affine plane, thanks to condition (i), and at every stationary point the linearization
is invertible and the eigenvalue ratio is not a positive rational number, by property E and
Lemma 8. Thus Carnicer’s theorem yields the degree bound. (Note that the degree of the
foliation is less than or equal to one plus the degree of q .)

For statement (b), let ψ1 and ψ2 be irreducible and relatively prime semi-invariants. Then
by Bezout’s theorem they intersect in degψ1 · degψ2 points. Property E ensures that every
intersection point is of multiplicity one, and none of these intersection points is contained
in the vanishing set of another irreducible semi-invariant (observe Lemma 2 and note that
locally there are just two invariant curves passing through each singular point; see e.g. [32],
Theorem 2.3). Now add up the contributions of pairs of semi–invariants and use Lemma 5.

The assertion of statement (c) follows readily with Proposition 3 and Theorem 2. �

4.2 Quadratic Vector Fields in Dimension Three

We still have to show that vector fields with property E actually exist in dimension 3.
Since only the homogeneous highest degree terms are involved in these conditions one
may restrict attention to homogeneous polynomial vector fields (and add arbitrary terms of
smaller degree). A direct verification for a given homogeneous vector field is problematic,
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because determining the invariant lines explicitly (which would seem a natural first step
in a straightforward approach) is generally not possible. Therefore we take a roundabout
approach, explicitly constructing vector fields by prescribing invariant lines.

In this subsection we will show that property E is generically satisfied for degree two
vector fields in C3. It suffices to consider homogeneous quadratic maps

p : C
3 → C

3; p(x) =
⎛

⎝
∑

i, j :i< j

βi, j,k xi x j

⎞

⎠

1≤k≤3

, (6)

and wewill identify such amapwith the collection of its structure coefficients (βi, j,k) ∈ C
18.

Following Röhrl [25] we introduce some terminology here which is adapted from the theory
of nonassociative algebras; see also Sect. 2 below. An idempotent of p is a v ∈ C

n such that
p(v) = v �= 0; and w �= 0 with p(w) = 0 is called a nilpotent. It is known that generically
(corresponding to a Zariski–open and dense subset of coefficient space) a homogeneous
quadratic vector field posseses no nilpotent (see e.g. Röhrl [25], Theorem 1), and that vector
fields without a nilpotent have only finitelymany idempotents (otherwise the variety inP3(C)

defined by p(x)−ξ ·x = 0would have positive dimension andwould intersect the hyperplane
given by ξ = 0). By Lemma 5, at most seven idempotents exist. According to Theorem 5
below, generically there exists a basis of idempotents, and one may infer from its proof that
generically there are exactly seven idempotents. We use this observation to discuss a special
class of homogeneous quadratic vector fields.

Definition 4 We call the homogeneous quadratic vector field p in C
3 distinguished if

(i) p admits the standard basis elements e1, e2, e3 as idempotents;
(ii) there are three further idempotents v1, v2, v3 determined by

vi = γi,1e1 + γi,2e2 + γi,3e3; 1 ≤ i ≤ 3; (7)

with complex coefficients γi, j ;
(iii) the matrix

A :=
⎛

⎝
γ11γ12 γ12γ13 γ13γ11
γ21γ22 γ22γ23 γ23γ21
γ31γ32 γ32γ33 γ33γ31

⎞

⎠

is invertible.

From these data p can be reconstructed, since p corresponds to a symmetric bilinear map

p̂ : C3 × C
3 → C

3, (u, v) �→ p̂(u, v) := 1

2
(p(u + v) − p(u) − p(v))

with p̂(u, u) = p(u) for all u. Thus p is uniquely determined by the p̂(ei , e j ), and these
may be obtained from the relations

p̂(γi,1e1 + γi,2e2 + γi,3e3, γi,1e1 + γi,2e2 + γi,3e3) = γi,1e1 + γi,2e2 + γi,3e3

and bilinearity. The neccesary calculations for this and for further steps require a com-
puter algebra system (we use Maple in the present paper). As it turns out, stipulating the
idempotents in (7) defines a unique homogeneous quadratic map whenever det A does not
vanish; see Sect. 3 below. In coordinates one finds an expression

p(x) =
⎛

⎝
x21 + θ1x1x2 + θ2x2x3 + θ3x3x1
x22 + θ4x1x2 + θ5x2x3 + θ6x3x1
x23 + θ7x1x2 + θ8x2x3 + θ9x3x1

⎞

⎠ , (8)
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which corresponds to a nine-dimensional affine subspace Y of coefficient space C18, and
the θk are rational functions in the γi j ; see Sect. 3 below for the explicit form.

Lemma 9 The image of the map

� : C9 → Y ,
(
γi j

) �→ (
θ1

(
(γi j )

)
, . . . , θ9

(
(γi j )

))

contains a Zariski–open subset of Y .

Proof It is sufficient to show that the Jacobian of this map is invertible at some
(
γ̂i j

)
, and

this can be verified by direct calculation usingMaple; see Sect. 3. �
From vector fields with the standard basis elements as idempotents, thus with coefficients

in Y , one obviously obtains all vector fields admitting a basis of idempotents by linear
coordinate transformations T ∈ GL3(C), sending p to T −1 ◦ p ◦ T . To summarize, we have
the first statement of the following proposition; the proof of the second statement (which is
computationally involved) will be outlined in Sect. 3.

Proposition 4 (a) The set of coordinate transformations of the distinguished homogeneous
quadratic vector fields (seen as a subset of coefficient space) contains a Zariski–open
set.

(b) All distinguished vector fields have precisely seven idempotents, with the coordinates of
the seventh idempotent being rational in the γi j .

If v is any idempotent of p then 2 is an eigenvalue of the Jacobian Dp(v), with eigenvector
v. Denote the remaining ones by λ1 and λ2, noting that these lie in a degree two extension of
the rational function field C

(
(γi j )i, j

)
, and explicit expressions for them can be determined

using computer algebra. The eigenvalues for the linearization of the Poincaré transform are
then −1, λ1 − 1 and λ2 − 1, according to Lemma 5. With this in hand, one can show that
quadratic vector fields with property E are indeed generic.

Proposition 5 (a) Whenever the γi j are algebraically independent over the rational numbers
Q then the distinguished homogeneous quadratic vector field constructed with these
parameters satisfies property E.

(b) The homogeneous quadratic vector fields (6) which satisfy property E correspond to the
complement of a Lebesgue measure zero subset of parameter space.

Proof For statement (a) one uses computer algebra, by inspecting the eigenvalues and ver-
ifying that they are linearly independent over the rationals. It is sufficient to do so for a
specialization, assigning rational values to some of the parameters and leaving only three
algebraically independent ones. (Moreover one may work directly with the eigenvalues of
the Jacobians at idempotents due to Lemma 5(b); computing the Poincaré transform is not
necessary.) See Sect. 3 below.

To prove statement (b), recall that the set of parameters which are algebraically dependent
over Q is of Lebesgue measure zero in C

9, and this property transfers to the corresponding
subset of Y given by the image of the map �, which is generically locally invertible. Using
coordinate transformations as the last step, the claim is proven. �

This statement is not yet quite satisfactory, since one knows that there is an open and
dense subset of coefficient space so that (6) admits no semi-invariant at all; see Żoła̧dek [33].
Therefore we next ascertain the existence of vector fields which have property E and admit
nontrivial semi–invariants. This is taken care of by the next result.
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Proposition 6 In Definition 4, let γ13 = γ21 = γ32 = 0, with the remaining γi j algebraically
independent over the rational numbers Q. Then xi , 1 ≤ i ≤ 3, is a semi–invariant of the
distinguished vector field, and this vector field satisfies property E.

Proof All claims are again proven by inspection of computer algebra calculations; see Sect. 3.
�

Finally,we exhibit an examplewhich shows the existence of distinguished quadratic vector
fields with algebraic coefficients γi j .

Example 1 With the algebraic coefficients

γ11 = √
2, γ12 = √

3, γ13 = 0, γ21 = 0, γ22 = √
3, γ23 = √

5, γ31

= √
2, γ32 = 0, γ33 = √

5,

the distinguished system has components

p1(x) = x12 −
(
10

√
2
√
3 − 10

√
3
)

30
x1 x2 −

(
6

√
2
√
5 − 6

√
5
)

30
x1 x3,

p2(x) = x22 −
(
15

√
2
√
3 − 15

√
2
)

30
x1 x2 −

(
6

√
3
√
5 − 6

√
5
)

30
x2 x3,

p3(x) = x32 −
(√

5 − 1
) √

2

2
x3 x1 −

(√
5 − 1

)√
3

3
x3 x2.

(9)

Note that this system admits the invariant surfaces given by x1 = 0, x2 = 0, resp. x3 = 0.
We will show in Sect. 3 that property E is satisfied by exhibiting the eigenvalues of the
Jacobians for all idempotents. To verify linear independence of these eigenvalues over Q by
inspection, recall that

√
2,

√
3 and

√
5 generate a field extension of degree 8 over Q.
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Appendix

Proofs for Sect. 2

Here we collect ad hoc proofs of some facts given in Sect. 2. These facts are known, but
readers may appreciate a concise presentation.

Proof of Lemma 1 The proofs for statement (b) are parallel to those for statement (a); so
we only consider these. The first statement is straightforward, while the second is a direct
consequence of the derivation property of X f and unique factorization in the polynomial
ring. For the third statement, let

T m + β1T m−1 + · · · + βm ∈ C(x1, · · · , xn)[T ]
be the minimal polynomial of σ . Applying X f to σm + β1σ

m−1 + · · · + βm = 0 and using
X f (σ ) = μ · σ , one gets

0 = μ · (mσm + β1(m − 1)σm−1 + · · · + βm−1σ) + X f (β1)σ
m−1

+ · · · + X f (βm−1)σ + X f (βm).

Subtract this relation from m · μ · (σ m + β1σ
m−1 + · · · + βm) = 0 to obtain

0 = (μ · β1 − X f (β1))σ
m−1 + · · · + (m · μ · βm − X f (βm)).

Since the minimal polynomial of σ has degree m, all coefficients must vanish. Hence, for
nonzero βk one finds X f (βk) = k · μ · βk . �
Proof of Lemma 2 We give an elementary proof, using only basic properties of polynomial
and power series rings.

1. Let m > 0 and

φ(x1, . . . , xn) = xm
n + α1(x1, . . . , xn−1)xm−1

n + · · ·
+αm(x1, . . . , xn−1) ∈ C[x1, . . . , xn]

be a polynomial with φ(0, . . . , 0) = 0. Then no prime factor of φ in the formal power
series ring C[[x1, . . . , xn]] lies in C[[x1, . . . , xn−1]].
Indeed, a factorization φ(x1, . . . , xn) = σ(x1, . . . , xn) · τ(x1, . . . , xn−1) with non-
invertible τ , hence τ(0, . . . , 0) = 0, would yield the contradiction φ(0, . . . , 0, xn) = 0.

2. We now show: If φ and γ are relatively prime polynomials in n variables, with φ(0) =
γ (0) = 0, then φ and γ remain relatively prime in the power series ringC[[x1, . . . , xn]].
(This implies statement (b).)
To show this we may assume that φ is as above and likewise

γ = xk
n + β1(x1, . . . , xn−1)xk−1

n + · · · + βk(x1, . . . , xn−1)

with some k > 0. (One may achieve such a form by applying a linear transformation
and multiplication by nonzero constants, which does not affect the statement.) Since
φ and γ are relatively prime polynomials, their resultant ρ with respect to xn lies in
C[x1, . . . , xn−1], and there exist polynomials μ and ν such that

μ · φ + ν · γ = ρ

see Cox et al. [15], Chapter 3, §6, Proposition 1. Assuming that a common prime factor
of φ and γ exists in C[[x1, . . . , xn]], this factor also divides ρ and therefore lies in
C[[x1, . . . , xn−1]] and this is a contradiction.

123



Journal of Dynamics and Differential Equations

3. To prove statement (a), assume that φ has the form above and is irreducible, then apply
the previous argument to φ and ∂φ/∂xn to see that φ cannot admit multiple prime factors
in C[[x1, . . . , xn]]. �

Proof of Lemma 3 It suffices to prove statement (a), since a formal transformation to PDNF
always exists. Thus let g be in PDNF and let ρ be an irreducible semi–invariant. According
to Lemma 2.2 of [32], up to multiplication with an invertible series one may assume that
X B(ρ) = αρ for some constant α, and Xg(ρ) = μρ with X B(μ) = 0.
If condition 1 holds then one has g(x) = Bx (see e.g. Bibikov [2], Theorem 2.1), and for the
series expansion

ρ =
∑

cd1,...,dn xd1
1 · · · xdn

n

one obtains

αρ = X B(ρ) =
∑

(
∑

i

diλi

)
cd1,...,dn xd1

1 · · · xdn
n ,

thus
α =

∑
diλi whenever cd1,...,dn �= 0. (10)

Since the λi are linearly independent over Q, one sees that only one coefficient cu1,...,un

is nonzero, and therefore ρ = xu1
1 · · · xun

n . The assertion about irreducible factors follows.
If condition 2 holds then one also arrives at (10), but now, given distinct (d1, · · · , dn) and
(e1, · · · , en) with nonnegative integer entries such that

α =
∑

diλi =
∑

eiλi ,

one has that di −ei = �·mi with some rational number �, due to the dimension assumption.
Since the mi are relatively prime one sees that � is an integer. Define γ (x) := xm1

1 · · · xmn
n ,

noting X B(γ ) = 0. Let (u1, · · · , un) be a nonzero vector with nonnegative integer entries
such that

∑
mi · ui = 0, and

∑
ui minimal with respect to these properties. Then, repeated

use of the argument above shows the existence of a nonnegative integer j such that

xd1
1 · · · xdn

n = γ (x) j · xu1
1 · · · xun

n whenever cd1,...,dn �= 0.

This shows

ρ = xu1
1 · · · xun

n ·
∑

ĉ jγ (x) j

and the only irreducible factors of ρ are the xi . �

A result of H. Röhrl

In [26], Röhrl stated a theorem on criteria for (in his terminology) m-ary algebras to admit
a basis of idempotents. While the theorem as stated is incorrect, the weaker statement that
generically an m-ary algebra admits a basis of idempotents is correct, and Röhrl’s arguments
can be modified to prove it. Here we give a proof that in part takes a different approach.

Consider a homogeneous polynomial map

p : C
n → C

n; p(x) =
⎛

⎝
∑

i1,...,in

ηi1,...,in ,k xi1
1 · · · xin

n

⎞

⎠

1≤k≤n

(11)
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of degree m > 1. As noted above, an idempotent of p is a v ∈ C
n such that p(v) = v �= 0.

Note that any w �= 0 that satisfies p(w) = β · w for some β �= 0 is a scalar multiple of an
idempotent. (If w �= 0 and p(w) = 0 then w is a nilpotent.)

In order to state the result properly, we need further terminology. Denoting the collection
of structure coefficients ηi1,...,in ,k by y ∈ C

N , we write

p(x) = Q(y, x). (12)

Theorem 5 The set of all y such that Cn admits a basis of idempotents of p = Q(y, ·)
contains a Zariski–open (and dense) subset of parameter space C

N .

Proof We set F(y, x) := Q(y, x) − x . Then, for a fixed parameter y0, an idempotent of
Q(y0, ·) is a nonzero solution of the equation

Q(y0, x) − x = 0, equivalently F(y0, x) = 0.

A. We first show the existence of a norm–open set in parameter space that satisfies the
desired property.

1. We use the Implicit Function Theorem: Assume that x0 is a nonzero solution of
F(y0, x) = 0, and that the partial derivative

Dx F(y0, x0) = Dx Q(y0, x0) − I

is invertible. Then there exists an analytic function h from some neighborhood U of
y0 to C

n such that

h(y0) = x0 and Q(y, h(y)) − h(y) = 0, for all y ∈ U .

Thus, for any small change of the structure coefficients there is a nearby idempotent.
(The condition on the derivative, incidentally, means that the idempotent x0 is of
multiplicity one.)

2. The same argument can be applied to a basis of idempotents: Assume there is a
parameter y0 such that the equation F(y0, x) = 0 admits n linearly independent
solutions x (1)

0 , . . . , x (n)
0 , and that the partial derivative with respect to x at (y, x (i)

0 )

is invertible. Then consider the map

G : CN × (
C

n)n → (
C

n)n
, (y, x (1), . . . , x (n)) �→ (F(y, x (1)), . . . , F(y, x (n))).

Here we have a solution (y0, x (1)
0 , . . . , x (n)

0 ) of G = 0 and the matrix representing
the partial derivative with respect to (x (1), . . . , x (n)) is block diagonal with invertible
blocks, hence invertible. Therefore there exist a neighborhood U of y0 and analytic
maps

h(i) : U → C
n with h(i)(y0) = x (i)

0 and Q(y, h(i)(y)) − h(i)(y) = 0

for y ∈ U , 1 ≤ i ≤ n. Moreover

det
(

h(1)(y), . . . , h(n)(y)
)

does not vanish at y0, hence in some open neighborhood Ũ ⊆ U of y0. In other
words, for all y ∈ Ũ the corresponding p = Q(y, ·) admits a basis of idempotents.
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3. To finish the argument, one needs to exhibit one p (thus some y0) for which a basis
of idempotents exists and the respective partial derivatives are invertible: Take

p∗(x) =
⎛

⎜⎝
xm
1
...

xm
n

⎞

⎟⎠ =: Q(y∗, x),

and the standard basis e1, . . . , en .

B. Now we show the existence of a Zariski–open set in parameter space which has the
desired properties. For 1 ≤ k < � ≤ n define

�k,�(u, v) := ukv� − u�vk; u, v ∈ C
n .

Consider the morphism

H : CN × (Cn)n → (
C

n(n−1)/2
)n × C,

(
y, x (1), . . . , x (n)

) �→
(

�k,�(Q(y, x (i)), x (i))i,k,�

det(x (1), . . . , x (n)) − 1

)
.

Then H = 0 defines an algebraic subvariety Z of CN × (Cn)n , which is nonempty by
the first part of the proof. Any zero of H corresponds to some homogeneous p which
admits a basis v1, . . . , vn of Cn with p(vi ) ∈ Cvi .
The image Z̃ of Z under the projection

π : CN × (
C

n)n → C
N

onto the first component contains a Zariski-open subset of its closure, by a standard theo-
rem on morphisms of algebraic varieties (see e.g. Shafarevich [28], Chapter 1, Theorem
1.14). But due to the first part of the proof, Z̃ also contains a norm-open set U , whose
Zariski closure is all of CN . Therefore Z̃ contains a nonempty Zariski–open subset of
C

N .
Finally, those p possessing a nilpotent correspond to a proper Zariski-closed subset of
parameter space, thanks to a resultant argument; see e.g. Röhrl [25], Theorem 1. Taking
the complement of this closed subset, we find that all p(vi ) ∈ Cvi\{0}, whence some
multiple of vi is an idempotent, and the proof is finished.

�

Construction of Quadratic Vector Fields in Dimension Three: Some Details

Herewe describe some details of the construction of distinguished quadratic vector fields, and
outline some arguments. We also supply, in the additional material, someMapleworksheets
containing the calculations.
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The Explicit Expression for System (8)

The quadratic homogeneous vector field (8) having the prescribed six idempotents
e1, e2, e3, v1, v2, v3 with vi = γi1e1 + γi2e2 + γi3e3 and i = 1, 2, 3 is given by

p1 = x12 +
[

x1 x2
(

− γ11
2γ21 γ23 γ32 γ33 + γ11

2γ22 γ23 γ31 γ33 + γ11 γ13 γ21
2γ32 γ33

−γ11 γ13 γ22 γ23 γ31
2

−γ12 γ13 γ21
2γ31 γ33 + γ12 γ13 γ21 γ23 γ31

2 − γ11 γ13 γ21 γ32 γ33 + γ11 γ13 γ22 γ23 γ31

+γ11 γ21 γ23 γ32 γ33 − γ11 γ22 γ23 γ31 γ33 − γ12 γ13 γ21 γ23 γ31 + γ12 γ13 γ21 γ31 γ33

)

− x2 x3 γ11 γ21 γ31

(
γ11 γ22 γ33 − γ11 γ23 γ32 − γ12 γ21 γ33 + γ12 γ23 γ31

+γ13 γ21 γ32 − γ13 γ22 γ31

−γ12 γ23 + γ12 γ33 + γ13 γ22 − γ13 γ32 − γ22 γ33 + γ23 γ32

)

+ x1 x3
(
γ11

2γ21 γ22 γ32 γ33 − γ11
2γ22 γ23 γ31 γ32 − γ11 γ12 γ21

2γ32 γ33

+γ11 γ12 γ22 γ23 γ31
2

+γ12 γ13 γ21
2γ31 γ32 − γ12 γ13 γ21 γ22 γ31

2 + γ11 γ12 γ21 γ32 γ33 − γ11 γ12 γ22 γ23 γ31
−γ11 γ21 γ22 γ32 γ33 + γ11 γ22 γ23 γ31 γ32

+γ12 γ13 γ21 γ22 γ31 − γ12 γ13 γ21 γ31 γ32

)]
/d

p2 = x22 +
[

x1 x2
(
γ11 γ13 γ22

2γ32 γ33 − γ11 γ13 γ22 γ23 γ32
2 − γ12

2γ21 γ23 γ32 γ33

+γ12
2γ22 γ23 γ31 γ33 + γ12 γ13 γ21 γ23 γ32

2 − γ12 γ13 γ22
2γ31 γ33 + γ11 γ13 γ22 γ23 γ32

−γ11 γ13 γ22 γ32 γ33 − γ12 γ13 γ21 γ23 γ32 + γ12 γ13 γ22 γ31 γ33 + γ12 γ21 γ23 γ32 γ33

−γ12 γ22 γ23 γ31 γ33

)

+ x2 x3
(

− γ11 γ12 γ21 γ23 γ32
2 + γ11 γ12 γ22

2γ31 γ33 + γ11 γ13 γ21 γ22 γ32
2

−γ11 γ13 γ22
2γ31 γ32

−γ12
2γ21 γ22 γ31 γ33 + γ12

2γ21 γ23 γ31 γ32 + γ11 γ12 γ21 γ23 γ32 − γ11 γ12 γ22 γ31 γ33

−γ11 γ13 γ21 γ22 γ32 + γ11 γ13 γ22 γ31 γ32 + γ12 γ21 γ22 γ31 γ33 − γ12 γ21 γ23 γ31 γ32

)

− x1 x3 γ12 γ22 γ32

(
γ11 γ22 γ33 − γ11 γ23 γ32 − γ12 γ21 γ33 + γ12 γ23 γ31

+γ13 γ21 γ32 − γ13 γ22 γ31 + γ11 γ23 − γ11 γ33 − γ13 γ21 + γ13 γ31

+γ33 γ21 − γ23 γ31

)]
/d

p3 = x32 −
[
x1 x2γ13 γ23 γ33

(
γ11 γ22 γ33 − γ11 γ23 γ32 − γ12 γ21 γ33 + γ12 γ23 γ31

+γ13 γ21 γ32−
γ13 γ22 γ31 − γ11 γ22 + γ32 γ11 + γ12 γ21 − γ31 γ12 − γ21 γ32 + γ31 γ22

)

+x1 x3
(
γ11 γ12 γ22 γ23 γ33

2 − γ11 γ12 γ23
2γ32 γ33 − γ12 γ13 γ21 γ22 γ33

2

+γ12 γ13 γ23
2γ31 γ32

+γ13
2γ21 γ22 γ32 γ33 − γ13

2γ22 γ23 γ31 γ32 − γ11 γ12 γ22 γ23 γ33 + γ11 γ12 γ23 γ32 γ33

+γ12 γ13 γ21 γ22 γ33 − γ12 γ13 γ23 γ31 γ32 − γ13 γ21 γ22 γ32 γ33 + γ13 γ22 γ23 γ31 γ32

)

−x2 x3
(
γ11 γ12 γ21 γ23 γ33

2 − γ11 γ12 γ23
2γ31 γ33 − γ11 γ13 γ21 γ22 γ33

2

+γ11 γ13 γ23
2γ31 γ32

+γ13
2γ21 γ22 γ31 γ33 − γ13

2γ21 γ23 γ31 γ32 − γ11 γ12 γ21 γ23 γ33 + γ11 γ12 γ23 γ31 γ33
+γ11 γ13 γ21 γ22 γ33 − γ11 γ13 γ23 γ31 γ32 − γ13 γ21 γ22 γ31 γ33

+γ13 γ21 γ23 γ31 γ32

)]
/d
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with

d = det(A) = γ11 γ12 γ21 γ23 γ32 γ33 − γ11 γ12 γ22 γ23 γ31 γ33 − γ11 γ13 γ21 γ22 γ32 γ33
+γ11 γ13 γ22 γ23 γ31 γ32 + γ12 γ13 γ21 γ22 γ31 γ33 − γ12 γ13 γ21 γ23 γ31 γ32.

See the Maple worksheet ExplicitSystem (Supplementary Material 3).

Concerning the Proof of Proposition 4

For the values

γ11 = −1, γ12 = 3, γ13 = 2, γ21 = 1, γ22 = 1, γ23 = −2, γ31 = 0, γ32 = 1, γ33 = −3

the Jacobian of � is invertible; see Maple worksheet JacobianInvertible
(Supplementary Material 4).

Computing the Seventh Idempotent

To calculate the coefficients of the seventh idempotent v = s1e1 + s2e2 + s3e3 in terms of
the nine parameters γi j , first rewrite the components of the vector field into the form

p1 = x21 + A1(x2, x3)x1 + A2(x2, x3),
p2 = B1(x2, x3)x1 + B2(x2, x3),
p3 = C1(x2, x3)x1 + C2(x2, x3),

with

A1 = a11x2 + a12x3 − 1, A2 = a13x2x3,
B1 = b11x2 + b12x3, B2 = x22 − x2 + b13x2x3,
C1 = c11x2 + c12x3, C2 = x23 − x3 + c13x2x3.

(This is a preliminary step to avoid huge expressions involving the γi j in Maple work-
sheets.) The idempotents are the nonzero solutions of the equation p(x) − x = 0 where
x = (x1, x2, x3). So we obtain

x21 + A1x1 + A2 = 0, B1x1 + B2 = 0, C1x1 + C2 = 0.

Here we may substitute x1 = −B2/B1 (or x1 = −C2/C1.) From the former one obtains
two equations

B1C2 − C1B2 = 0, B2
2 − A1B1B2 + A2B2

1 = 0 in variables x2, x3.

Compute the resultant of this system with respect to the variable x2. This is a polynomial
of degree 12 in the variable x3, of the form

R(x3) = x53 (x3 − 1)b212(b11b13x3 − b12x3 − b11)
2T̃4(x3)

with T̃4 a polynomial of degree 4 in the variable x3. By construction, the third entries of
the idempotents are among the zeros of R(x3). Here e1, e2 and e3 correspond to a simple zero
1 and a double zero 0, and one verifies that the linear factor b11b13x3 − b12x3 − b11 does not
correspond to the third entry of any vi . So, the third entries of v1, v2 and v3 are roots of T̃ .
One may compute the fourth root of this degree four polynomial as follows: First normalize
(divide by the leading coefficient) to obtain the monic polynomial T4. For T4, the sum of the
four roots is the negative coefficient of x33 . Since we know the three roots γ13, γ23, γ33 of T4
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we are able to calculate the fourth one, which is rational in the γi j , after re-substitution. We
take this as a candidate for s3.

Similarly we may consider the resultant with respect to the variable x3, which is a poly-
nomial of degree 12 in the variable x2 and takes the form

R(x2) = x52 (x2 − 1)b12(b11b13x2 − b12x2 + b12)
2 S̃4(x2),

and proceed as above, finding a candidate for s2. Finally use x1 = −B2/B1 to obtain a
candidate for s1, and verify that this indeed yields an idempotent by direct calculation; see
Maple worksheet 7thidempotent (Supplementary Material 1). It should be noted that
the output is generally quite voluminous.

On the Proofs of Propositions 5 and 6

It is sufficient to prove the latter, which is done by inspection of the eigenvalues of the
Jacobians of all idempotents; see Maple worksheet TestPropertyE (Supplementary
Material 5).

Details for Example 1

Here we provide some details for the homogeneous quadratic vector field given in (9), with
parameters

γ11 = √
2, γ12 = √

3, γ13 = 0, γ21 = 0, γ22 = √
3, γ23 = √

5,

γ31 = √
2, γ32 = 0, γ33 = √

5.

In this case the output of the computations is of moderate size, so we can reproduce it here;
see Maple worksheet Algebraicallydependent (Supplementary Material 2) for the
calculations.

The system has the seven idempotents e1, e2, e3, v1 = (
√
2,

√
3, 0), v2 = (0,

√
3,

√
5),

v3 = (
√
2, 0,

√
5) and v = (s1, s2, s3), with

s1 = − A1A2

A3A4
,

s2 =
((

−243
√
5 + 480

)√
3 + 369

√
5 − 900

)√
2 +

(
282

√
5 − 720

)√
3 − 504

√
5 + 1020

((
440

√
5 − 1000

)√
3 − 801

√
5 + 1785

)√
2 +

(
−673

√
5 + 1495

)√
3 + 1191

√
5 − 2685

,

s3 =
((

−345
√
5 + 695

)√
3 + 495

√
5 − 1245

)√
2 +

(
380

√
5 − 950

)√
3 − 780

√
5 + 1530

((
440

√
5 − 1000

)√
3 − 801

√
5 + 1785

)√
2 +

(
−673

√
5 + 1495

)√
3 + 1191

√
5 − 2685

,

and the abbreviations

A1 =
(
362

√
2
√
3
√
5 − 573

√
2
√
5 − 545

√
3
√
5 − 780

√
2
√
3 + 969

√
5 + 1335

√
2 + 1265

√
3 − 2085

)
,

A2 =
(
69

√
2
√
3
√
5 − 99

√
2
√
5 − 76

√
3
√
5 − 139

√
2
√
3 + 156

√
5 + 249

√
2 + 190

√
3 − 306

)
,

A3 =
(
133

√
2
√
3
√
5 − 231

√
2
√
5 − 208

√
3
√
5 − 285

√
2
√
3 + 348

√
5 + 543

√
2 + 484

√
3 − 744

)
,

A4 =
(
440

√
2
√
3
√
5 − 801

√
2
√
5 − 673

√
3
√
5 − 1000

√
2
√
3 + 1191

√
5 + 1785

√
2 + 1495

√
3 − 2685

)
.

123



Journal of Dynamics and Differential Equations

The eigenvalues of the Jacobian matrix at the idempotents e1, e2 and e3 are respectively
(

−
(√

5 − 1
)√

2/2, −√
2

(√
3 − 1

)
/2, 2

)
,(

−
(√

5 − 1
)√

3/3, −√
3

(√
2 − 1

)
/3, 2

)
,(

−√
5

(√
3 − 1

)
/5, −√

5
(√

2 − 1
)

/5, 2
)

.

The eigenvalues of the Jacobian matrix at the idempotents v1, v2 and v3 are respectively
(
2,

√
2 + √

3, −2
√
5 + 2

)
,
(
2, −2

√
2 + 2,

√
5+√

3
)
,
(
2, −2

√
3 + 2,

√
5 + √

2
)
.

The Jacobian matrix at the last idempotent v = (s1, s2, s3) has 2 as an eigenvalue and the
other two are

λ± =
((

794929
√
2 + 762999

)√
3 + 880620

√
2 + 1744545

)√
5

4061514

+
(
1796931

√
2 + 3382333

)√
3

4061514

±
√

A

4061514
+ 776393

√
2

676919
+ 3211015

1353838
,

with

A =
((

−6061791842292
√
5 + 20403579754296

)√
3

−10627847112816
√
5 + 45521293739166

)√
2

+
(
−8804787537402

√
5 + 29950278886104

)√
3

−15500011528278
√
5 + 66711726928548.

In each case, inspection shows that the eigenvalues are linearly independent over the
rational number field Q.
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