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THE ZERO-HOPF BIFURCATIONS OF A FOUR-DIMENSIONAL
HYPERCHAOTIC SYSTEM

JAUME LLIBRE! AND YUZHOU TIANZ:*

ABSTRACT. We consider the four-dimensional hyperchaotic system & = a(y —
z),y=br+u—y—2xz z2=2ay—cz, u =—du— jr+ erz, where qa, b, c,
d, j, e are real parameters. This system extend the famous Lorenz system
to dimension four and was introduced in the paper of the Internat. J. Bifur.
Chaos Appl. Sci. Engrg., 27 (2017), 1750021. We characterize the values of
the parameters for which its equilibrium points are zero-Hopf points. Using the
averaging theory we obtain sufficient conditions for the existence of periodic
orbits bifurcating from these zero-Hopf equilibria, and give some examples to
illustrate the conclusions. Moreover the stability conditions of these periodic
orbits are given using the Routh-Hurwitz criterion.

1. INTRODUCTION

Chaos phenomenon is a complex dynamic behavior in nonlinear dynamical sys-
tem, which appears in nature widely. In 1963, the meteorologist Edward Lorenz
[24] was the first to introduce the mathematical and physical chaotic model in R3,
which is known as the Lorenz system. The Lorenz system planted the seed in the
chaos science. This system plays an important effect in other areas as in the mod-
eling of lasers [11] and dynamos [12]. As one of the simplest models presenting
chaos, the Lorenz system exhibits a rich range of dynamical properties, and it has
been researched from different points of view, such as positively invariant [17], in-
tegrability [22, 16, 14], global dynamics [34, 4, 26] and bifurcation [3, 32]. After
that Lorenz system, mathematicians and physicists from physical or purely abstract
mathematical point of view proposed various polynomial differential systems in R3,
whose trajectories exhibit chaotic dynamics of the Lorenz system type. As exam-
ples, one can refer to Rikitake system [20], Sprott A system [1], Shimizu-Morioka
system [13], etc.

Nowadays three-dimensional nonlinear systems cannot provide adequate descrip-
tion of many phenomena in neural networks, social sciences and engineering, etc. To
better describe the real world, we often necessitate to introduce high-dimensional
(dimension at least four) nonlinear systems. Recently the hyperchaotic system has
become a focus research subject, see [6, 9, 30, 31, 5, 35, 27, 7] and the references
therein. The concept of hyperchaos was given by Réssler in [29]. The precise defini-
tion of hyperchaotic system is: (i) at least four-dimensional autonomous differential
system, (ii) a dissipative structure, and (iii) at least two unstable directions, of
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which at least one direction is nonlinear [7]. The hyperchaotic systems are very
useful in secure communication due to the fact that the dynamic information of
such systems are difficult to characterize and predict, see [37].

In this work we use the classical averaging theory to investigate the zero-Hopf
bifurcation of a hyperchaotic system. A zero-Hopf equilibrium is an equilibrium
point of a four-dimensional autonomous differential system which has a double zero
eigenvalue and a pair of purely imaginary eigenvalues. There are rich works on
three-dimensional zero-Hopf bifurcation, see for example [8, 23, 21, 19, 15], etc.
The zero-Hopf bifurcation of hyperchaotic Lorenz system (i.e. four-dimensional)
can be found in [7, 6, 18]. Actually there are few results on the n-dimensional
zero-Hopf bifurcation with n > 3.

In [38] Zhou et al. present the following four-dimensional hyperchaotic system

',t:a(y_'%.)a
y=br+u—y—2xz,
(1)

z =2y — cz,

U= —du— jx + exrz,

where a, b, ¢, d, j, e are real parameters. The hyperchaotic system (1) extend the
Lorenz system to dimension four, and is invariant under the symmetry with respect
to the z-axis, i.e. under the symmetry 7 (z,y, z,u) = (—z, —y, 2z, —u). For the zero-
Hopf bifurcation of system (1) at the origin, partial results are given by Yang et
al. in [36]. The objective of this paper is to study all the zero-Hopf bifurcations of
system (1).

The equilibria and zero-Hopf equilibria of system (1) are described in the next

two results.

Proposition 1. Let A = c¢(bd—d—j)/(d—e) with d # e. The hyperchaotic
system (1) has the following equilibria.

(i) If ¢ =0, system (1) has a straight line of equilibria (0,0, z,0).
(ii) If A < 0 and ¢ # 0, system (1) has an unique equilibrium point Ey =
(0,0,0,0).
(iii) If A > 0 and c # 0, system (1) has three equilibria Ey = (0,0,0,0),

bd—d—j i —b A
E1:<\/Z,\/Z, d_ej’_(6+]d_ee)\r> and

5, - (45,—@ ”d;d‘%@ﬂd"’e)ﬂ).
— e — e

Proposition 1 follows easily by direct computations.

Theorem 2. For the hyperchaotic system (1) the following statements hold.

(i) There is a two-parameter family of systems (1) for which the origin of
coordinates is a zero-Hopf equilibrium point. Namely, ¢ = 0, d = —a —
Lb=—(1+a+a®>+w?)/a, j=((1+a)+(1+a)w?)/a.
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(ii) There is a three-parameter family of systems (1) for which the equilibria
E1 5 are zero-Hopf equilibrium points. Namely, a =0, j =bd, c=—-d—1
and (d*e +de + e —d®) (d—e) > 0.

(iii) When ¢ = 0 there is a three-parameter family of system (1) for which
the equilibria (0,0, 29,0) is a zero-Hopf equilibrium points. Namely a =
—1—-d, j=0b-1)d+2(e—d) and (b—d—z) (d+1) > 1.

Theorem 2 is proved in section 3.

In the following theorem we characterize the periodic orbits bifurcating from the
zero-Hopf equilibrium FEy of system (1).
Theorem 3. Let

a®+a+1+w?
a

b= +€b1)

c=éecy,
d =—a—1 + é‘dl,
~(a+ 1P+ (a+1)w?
N a
with w > 0 and € > 0 a sufficiently small parameter. If n = (a + 1)2d; + a(a +
1)b1 +aji, di #0, eima(a+e+1) > 0 and 1 (w2d1 +17) ala+e+1) >0, then
for e > 0 sufficiently small the hyperchaotic system (1) has a zero-Hopf bifurcation

at the equilibrium point located at Ey and at most four periodic orbits can bifurcate
from this equilibrium when € = 0, and two of them are stable if either ¢y <0, dy <

0, <0, 0ornp >0, c; <O, f% < dy < 0. Moreover there are systems (1) for

+ e,

which this zero-Hopf bifurcation exhibits the four periodic orbits, see example 1.

The proofs of Theorem 3 and of the Example 1 are given in section 4, and use
the averaging theory of first order, see subsection 2.1.

Example 1. The hyperchaotic system
(2) t=x—y,y=2r+u—y—1x2, Z=2Y, U =—0Z,

has four small periodic orbits bifurcating from the equilibrium point (0,0,0,0), and
two of them are stable.

In order to study the zero-Hopf bifurcation at the equilibria F; and Fs it is
sufficient to study it for the equilibrium point F; due to the symmetry exhibited
by system (1). After translating the equilibrium F; at the origin of coordinates and
do the convenient changes of variables, similar to the ones of the proof of Theorem
3 we see that we cannot write system (1) in the normal form (3) and consequently
we cannot apply to it the averaging theory described in Theorem 4. On the other
hand, doing the changes of variables similar to the ones of the proof of Theorem 3,
we can write system (1) in the normal form (6) for applying the averaging theory
stated in Theorem 5, but unfortunately this system does not satisfy the assumption
(ii) of Theorem 5. Therefore the averaging theory does not give any information
on the possible periodic orbits of the zero-Hopf bifurcation at the equilibrium Ej.

We can apply the averaging theory for studying the zero-Hopf bifurcation at
the equilibria (0,0, z9,0) for all zp € R, after writing it in the normal form (3)



4 JAUME LLIBRE AND YUZHOU TIAN

doing similar changes of variables to the ones of the proof of Theorem 3. But the
determinant (5) evaluated at the zeros of the averaged function becomes zero, so
the averaging theory of Theorem 4 does not provide any information on the periodic
orbits which could exist in the zero-Hopf bifurcation at the equilibria (0, 0, 2o, 0).

In section 2 we present some basic results that we shall need for proving our
theorems.

2. PRELIMINARIES

2.1. Averaging theory. In this subsection we present the results on averaging
theory that we need for proving our results. Consider the following differential
equation

(3) x =eF (t,x) + %G (t,x,¢), (t,x,¢) €[0,00) x Q x (0,¢0],

where  is an open subset of R”, F (¢,x) and G (¢,x,¢) are T-periodic in ¢t. We
introduce the averaged function

(4) F(x)= % /O F (t,x) dt.

Theorem 4. Assume that F, its Jacobian OF /0x and its Hessian 0°F /0x?; G, its
Jacobian G /9% are defined, continuous and bounded by a constant independent of
€ in [0,00) x Q x (0, 9], and that the period T is a constant independent of €. Then
the following statements hold.

(i) If p is the zero of the averaged function F (x) such that the Jacobian

oF
(5) det <ax> ‘x:p £0,

then there exists a T-periodic solution x (t,e) of equation (3) such that
x(0,e) > p ase — 0.

(ii) The stability of the periodic solution x (t,€) is determined by the eigenvalues
of the Jacobian matriz (0F /0X) |x=p-

For more details about a proof of Theorem 4 see [33].

We consider the problem of the bifurcation of T—periodic solutions from differ-
ential systems of the form
(6) x = Fy(t,x) + eFi(t,x) + 2 F(t, %, €),
with € = 0 to € # 0 sufficiently small. Here the functions Fy, F; : R x Q@ — R” and
Fy : R x Q x (—€0,60) — R™ are C? functions, T-periodic in the first variable, and
) is an open subset of R™. The main assumption is that the unperturbed system
(7) ).(:F()(t,X),
has a submanifold of periodic solutions. A solution of this problem is given using
the averaging theory.

Let x(t,z, ) be the solution of the system (7) such that x(0,z,¢) = z. We write
the linearization of the unperturbed system along a periodic solution x(t,z,0) as

(8) Y = DxFO(t7 X(t7 z, O))y
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In what follows we denote by M, (t) some fundamental matrix of the linear differ-
ential system (8), and by & : R¥ x R"~* — R* the projection of R onto its first k
coordinates; i.e. &(x1,...,2n) = (T1,...,Tk)-

We assume that there exists a k—dimensional submanifold Z of Q filled with
T—periodic solutions of (7). Then an answer to the problem of bifurcation of 7—

periodic solutions from the periodic solutions contained in Z for system (6) is given
in the following result.

Theorem 5. Let W be an open and bounded subset of R*, and let 5 : CL(W) —
R"* be a C? function. We assume that

(i) 2 = {2a = (0, (), a € CIW)} C Q and that for each z, € Z the
solution x(t,2z4) of (7) is T—periodic;

(i) for each zo € Z there is a fundamental matriz M,_(t) of (8) such that the
matriz M, ' (0) — M, ' (T) has in the upper right corner the k x (n—k) zero
matriz, and in the lower right corner a (n — k) x (n — k) matriz A, with

det(Ay) # 0.

We consider the function F : C(W) — R*

) Fla)=¢ (;/O Mz_al(t)Fl(t,x(t,za))dt> .

If there exists a € W with F(a) = 0 and det ((dF/da) (a)) # 0, then there is a
T—periodic solution @(t,e) of system (6) such that ©(0,e) — 2z, as e — 0.

Theorem 5 goes back to Malkin [25] and Roseau [28], for a shorter proof see [2].

2.2. Roots of cubic equation. The Routh-Hurwitz Criterion gives necessary and
sufficient conditions in order that all the roots of a polynomial p (z) € R[z] have
negative real parts, for more details see page 231 of [10].

Theorem 6 (Routh-Hurwitz Criterion). All roots of the real polynomial p(xz) =
box™ + byt + -+ by_12 + by (bg > 0) have negative real parts if and only if

Ay >0,A,>0,...,A, >0,

where
by by bs
bp by by
0 b by ---
Aj=det | 0 by by by (by =0if k > n)
bi
is the Hurwitz determinant of order i (i =1,2,--- ,n).

Corollary 7. All roots of the real polynomial boz + b1 + box + bz (bg > 0) have
negative real parts if and only if

Al =b; >0,A2:blb2—b3bo>0,b3>0.



6 JAUME LLIBRE AND YUZHOU TIAN
3. PROOF OF THEOREM 2
(i) The characteristic polynomial p (A) of the linearization of system (1) at the
origin is
pAN) =X+ (a+ctd+ DN +(a(l —b+c+d)+ecd+c+d) N\
+(a(c(l—b+d)—bd+d+j)+cd) A+ ac(j — bd + d).

Since the origin of the hyperchaotic system (1) is a zero-Hopf equilibrium, p (\)
must be of the form p (A) = A? (A\? + w?) with w € RT. Then we obtain

2 1 2 1 3 1 2
e=0,d=—a—1, b= Foetlte o (et D+ (et D’
a a
(7i) Let A=c(bd—d—j7)/(d—e). Then c = A(d—e)/(bd—d — j). The char-
acteristic polynomial of the linear part of the system (1) at E; is given by

A(d—e) A(dla+b+d)—ela+d)—e—3j)
4 _ 3 2
p(A\) =X +(a j_bd+d+d+1>A + M —d A
a(b—1)e+ (a+1)d* — (a+ 1)de — aj
+ d—e A
Afa(d2b—e—2)+(b—1)e+d?> —35) + (d—e)(bd — j
L A(a(dEb—e—2)+( bd)e;' A=)\ gunga— e,
—a—]

If the equilibrium F; is a zero-Hopf equilibrium, then p (A) must be of the form
p(A) = A? (A\? 4+ w?) with w € R*. So we get that the parameters must satisfy

d (d2 + w2)

= | = A:Z 2 1 = -
a=0,j=bd A=dtdtuw+1 e=m T

Clearly A > 0, otherwise the equilibrium E; does not exist.

(#i7) The characteristic polynomial at equilibrium point (0,0, 2o, 0) is
PN =M+ (a+d+ 1N+ (a(d+1-b) +az+d) A\ +a(z0(d—e)+d+j—bd)\
Since (0,0, zp,0) is a zero-Hopf equilibrium, the parameters must be satisfied

P +d+w?+1 d (d? + w?)

—1-d b= -
“ : d+1 %0, J d+1

+ ez,

where w € R*. This completes the proof of Theorem 2.

4. PROOF OF THEOREM 3

Let

(b,c.d,j) =

2 1 2
(a+a++w +6b1,€81, —a—1 +€d1,

a+1)P’+(a+w* .
(a+1) a(a Jw +€]1>
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where w > 0 and € > 0 is a sufficiently small parameter. Then the hyperchaotic
system (1) becomes

&= aly — ),

a?+a+1+w?
a

y—u—xz—y+(— —|—b15>x,

Z=xy—ec1z,

1)w? 1)3
u:exz—u(—a—1+€d1)—<(a+ )w:—(a—o— ) +6j1>x.

Doing the rescaling of variables (x,y, z,u) — (ex, ey, ez, eu) system (10) writes

F=aly - ),

a2 +a+1+w?
y:U*y*——; + x+ex (b —2),

(11)

z=c(xy—12),

(a+1)2+ (a+1)w?

U=u+au— x+e(exz — diu— jix).

After the linear change of variables (z,y,z,u) — (X,Y, Z,U)

) b

awY +Z L awY —w?X +Z
@t T4 y=—
wa(a+1)(aY —wX +Y) + ((a+1)* +w?) Z

z=U, u= 3 ,
aw

(12) Wt

the linear part at the origin of system (11) for £ = 0 can be transformed into its
real Jordan normal form

0 w 00
-w 0 0 0
0 0 00
0 0 00

Under the change of variable (12), system (11) can be written as

i wy+ E(u—bl)(Qawy—O—z),
w
J = —wrt 6(awgwt ,Z)A7
(13) 4
Z=die(ala+ Dz —2) — W,
G <(awy+z) (wi}ciy —wr)+2) clu) 7

where we have written (z,y, z,u) instead of (X,Y, Z,U) and

abi(a+1)+di(a+1)2+ (1 —(a+e+1u)a
" .

(14) A=
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Performing the cylindrical change of variables (x,y, z,u) — (rcosf,rsinf, z, u),
system (13) becomes

dr sinf (a? (by — u)rcosd + di(a(a+ 1)rcosd — z))

— €

do aw?

(br —u)zcosf  A(awrsinf + z)sinf
w3 aw?

+

> + 0 (52)
= cFi (0,1, 2,u) + 0 (2),

(15) ;l; 6(d1 (z —ala+ 1)rcosb) n A(awrsi2n€+z)> —|—O(€2)

w w
= eFy (0,1, 2,u)+ 0 (%),

Ay — in6 inf — 0
EZTZ _ £ (crwn — (awr sin +zL(5w(asm wcosf)r + z)) Lo(2)

= eF3(0,r,z,u)+ 0 (e?).

System (15) is written in the normal form (3) for applying the averaging theory,
and satisfies all the assumptions of Theorem 4. Then using the notations of the
averaging theory described in Theorem 4, we have t = 6, T = 27, x = (r, z,u),

Fl (97 Tz, ’LL) ]:1 (r’ z, ’LL)
FO,r,z,u)=| Fr(b,r 2,u) and F (r,z,u) = | Fa(r,z,u) |,
F5 (0,7, 2z,u) Fs (r, z,u)
where
1 2 rA
Fi(ryz,u) = o ), Fy (0,7, 2z,u)df = o
L[ (wiy + A) 2
Fa(r,z,u) = %/0 Fy(0,r,z,u)df = —

a?w?r? — 2cqwtu + 222

1 2m
Fs(r,z,u) = %/ F5(0,r,z,u)df = — 5007
0

The system Fj (r,z,u) = Fa(r,z,u) = F3(r,z,u) = 0 has the following five
solutions

So = (anvo)v

N w 2c1m 0 n
b2 al\lala+e+1) "ala+te+1))’

e (Wdy +1)  w?di 41
=10 2
S3,4 ( , TW a )

(a+e+1) ala+e+1)

where 1 = (a + 1)2d; + a(a + 1)by + ajy. The first solution sy corresponds to the
equilibrium at the origin, so it is not a good solution. For other four solutions, we
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get

da(%ﬁ@ﬂ):da(%ﬁ@g>20fﬂ7
i (2 0 = ar (2 o)) = SR 0]

wb '
Since by assumptions d; # 0, cina (a + e+ 1) > 0and ¢; (w2d1 + 77) ala+e+1)>
0, the solutions s; exist and det (OF (s;) /0x) # 0 for i = 1,2,3,4. From Theorem
4 it follows that system (15) for £ > 0 sufficiently small has four 27-periodic or-
bits Vi = (Ti (07 g) ) % (075) y Ug (97 8)) such that (Ti (07 5) ) % <Ov 8) ) Wi (Oa E)) — 8; as
e — 0 withi=1,2,34.
The Jacobian matrices OF (s1) /0x and OF (s2) /0% have the same characteristic

equation

d +w?d d
_Cl+ 1)\2+Cl(n 4w 1))\_615177:0.
w w w

(16) A3

By Corollary 7 all the roots of equation (16) have negative real parts if

a+td S0 A (c1n + di(cr + di)w?)

)

~adin -
w w® w®

> 0, 0,
or equivalently if ¢; < 0, d; < 0, n < 0. Thus, the periodic orbits v; and 2 are
stable if ¢; < 0, dy <0, n <O.

The Jacobian matrices OF (s3) /0x and OF (s4) /0% have the same characteristic
equation

B 2c1 + d; \2 Cc1 (477+ 3w2d1) At c1dy (77+w2d1)

3
(17) A 2w 2w wd

=0.

Using Corollary 7 all the roots of equation (17) have negative real parts if

2c1 +d
_ 2a Lo

C1 (861 (77 + d1w2) — (201 + dl)dle) >0 Cldl (’I] + w2d1)
2w

0
’ 4w ’ w®

> 0,

or equivalently n > 0, ¢; <0, —% < dy < 0. This implies that the periodic orbits
w

v3 and 4 are stable if one of the three previous conditions hold. This completes
the proof of Theorem 3.

Proof of Example 1. Takinga =e= -1, b=2and c =d = j = 0, system (1)
becomes system (2). Since the origin of system (2) has a double zero eigenvalue
and a pair of purely imaginary eigenvalues +i, the origin is a zero-Hopf equilibrium
point. Let ¢; = d; = j1 = —1 and w = 1. Consider the perturbation of Theorem 3,
that is, b =2 +¢by, j =&, c = d = —¢ in system (2) with € > 0 a sufficiently small
parameter.

By the steps of averaging theory, we have the following functions

1 2
%,B (ryz,u) = —(u+2)z, F3 (r,z,u) = -

(18) Fi(r,z,u) = 5
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The system (18) has five solutions sg = (0,0,0), s12 = (Qiﬁ, —2) and s34 =
(£v2,0,-1). Since the determinant

0 (F1, Fa, F3) _ 0 (F1, Fa, F3) _
a(r,z,u) =2 and det o(r,z,u) =1

81,2 83,4

det

four periodic orbits can bifurcate from the zero-Hopf equilibrium at the origin. The
eigenvalues of s3 4 are —1 and (—1 + 2\/5) /2. For the solutions s 2 the associated

eigenvalues are —1/2 and (—1 + /17) /2. Therefore two of four periodic orbits are
stable. O
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