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In this paper, we give the algebraic conditions that a configuration of 5 points in the plane must satisfy in order to be the
configuration of zeros of a polynomial isochronous vector field.We use the obtained results to analyze configurations having some
of its zeros satisfying some particular geometric conditions.

1. Introduction

We start defining an isochronous vector field, and we ex-
press its general associated 1-form, with its respective
residues.

An isochronous vector field X is as a complex poly-
nomial vector field on C whose zeros are all isochronous

centers. A center is isochronous if the periods of the tra-
jectories surrounding it are constant.

Let X be a complex polynomial vector field on C of
degree n≥ 1, nonidentically zero, as follows:

X � bnz
n

+ bn− 1z
n− 1

+ · · · + b1z + b0􏼐 􏼑
z

zz
�
1
λ

z − p1( 􏼁 · · · z − pn( 􏼁
z

zz
, (1)

where the coefficients can be calculated by Vieta’s formulas,
in particular λ � 1/bn. An isochronous vector field X is
characterized by their associated 1-form:

η �
dz

bnz
n

+ bn− 1z
n− 1

+ · · · + b1z + b0
�

λdz

z − p1( 􏼁 · · · z − pn( 􏼁
,

(2)

which has a unique zero at infinity of multiplicity n − 2 and
simple poles with nonzero pure imaginary residues. For
n≥ 2, the residue of η at pj is

rj �
λ

pj − p1􏼐 􏼑 · · ·
􏽤

pj − pj􏼐 􏼑 · · · pj − pn􏼐 􏼑
, (3)

where the hat 􏽤(pj − pj) means that the factor (pj − pj) is
omitted (see [1]).

(e following well-known result characterizes the
polynomial isochronous vector fields.

Theorem 1 (see [1, 2]). Let X be a complex polynomial vector
field on C of degree n≥ 2 defined as in (1); then, the following
statements are equivalent:
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(a) X has n isochronous centers (b) <e zeros of X satisfy

X′ pj􏼐 􏼑 �
1
λ

pj − p1􏼐 􏼑 · · ·
􏽤

pj − pj􏼐 􏼑 · · · pj − pn􏼐 􏼑 ∈ iR
∗
, for all j � 1, . . . , n. (4)

(c) <eir residues satisfy

rj ∈ iR
∗
, for all j � 1, . . . , n. (5)

Here, iR∗ is the set of the pure imaginary complex
numbers different from zero.

Next, we characterize the polynomial isochronous vector
fields over the Riemann spheres in terms of the quotients of
its residues.

Definition 1. We say that the collection of zeros [p1, . . . , pn]

is an isochronous configuration if there exists a rotation eiθ0

such that the vector field eiθ0X is isochronous.

If the residues [r1, . . . , rn] belong to the line z � ρeiθ0 for
some θ0, then the configuration [p1, . . . , pn] is isochronous.
In short, the configuration [p1, . . . , pn] is isochronous if and
only if

rj

rk

� −
pk − p1( 􏼁 pk − p2( 􏼁 · · · 􏽤pk − pk( 􏼁 · · ·

􏽤
pk − pj􏼐 􏼑 · · · pk − pn( 􏼁

pj − p1􏼐 􏼑 pj − p2􏼐 􏼑 · · ·
􏽤

pj − pj􏼐 􏼑 · · ·
􏽤

pj − pk􏼐 􏼑 · · · pj − pn􏼐 􏼑
∈ R∗, (6)

for all j and k � 1, . . . , n with j≠ k. Here,R∗ is the set of real
numbers different from zero.

We can associate to each isochronous vector field X a
weighted n-tree in the following way. (e n vertices cor-
respond to the n zeros of X, and two vertices are connected
with an edge if the basins of the corresponding centers are
adjacent and the weights are the periods [1, 3]. We know that
each embedded n-tree (without weights) is realized by an
isochronous vector field X and that if the phase portraits of
two different isochronous vector fields are topologically
equivalent, then they have the same embedded n-tree (see
[3]).

A topological classification of the isochronous vector
fields of degree 2 can be found in [1, 4–6]. In [1], the
authors characterize the isochronous vector fields of
degree n in terms of the shape of the configuration of zeros
when n � 3 and 4, and they give partial results for n≥ 5
when the zeros present some symmetries. (e known
results for n � 4 and n � 5 are summarized in the next
section. Another reference about polynomial vector fields
is given in [7] and rational vector field on the Riemann
sphere in [8]. Finally, more general vector fields are
studied in [9, 10].

(e aim of this paper is to characterize the isochronous
vector fields of degree 5 in terms of the configurations of
zeroes without imposing any condition of symmetry.

If a polynomial vector field X over the Riemann sphere is
given, we can change the coordinates in such a way that X

has a zero at 0 and another zero at 1 because an affine
transformation over the Riemann space does not change the
main characteristics of a polynomial vector field, in par-
ticular the condition of to be isochronous, [1, 3]. (en, if the
complex polynomial vector field X has degree 5, it has 8 free

real parameters: six for the zeros and two for the main
coefficient. Assuming that the position of two zeros is fixed,
it will be proved that there can be up to seven different three-
parameter families of isochronous configurations, see
(eorem 6. Notice that the family of 5-degree isochronous
vector fields has only three real parameters. (ere are still
too much parameters to give a result providing all the
possible shapes of the zeros of the isochronous configura-
tions for n � 5. Nevertheless, we can reduce the parameter
space by fixing either the position or the shape of some zeros.
At the end of the paper, we will analyze the shape of the
isochronous configurations in some particular cases where
the zeros present some symmetries and we will complete
some of the cases studied in [1].

(e paper is structured as follows. In the next section, we
give a summary of the known results on isochronous vector
fields of degree 5. After that, in the following section, we
describe how to solve the set of equation (6) for an arbitrary
vector field of degree 5. Finally, in the last section, we give
explicitly the isochronous configurations in some particular
cases: when four zeros are at the vertices of either a par-
allelogram or an isosceles trapezoid, when two zeros are on
the line orthogonal to the line passing through other two
zeros, and when three zeros are at the vertices of an equi-
lateral triangle. We give numerical examples of some iso-
chronous configurations with three zeros at the vertices of
two isosceles triangles when p1 � 0, p2 � 1, and p3 � (1/2) +

i(1/25) and when p1 � 0, p2 � 1, and p3 � (1/2) + i(9/10).
Finally, we give examples of isochronous configurations
where the zeros do not satisfy any symmetry. We also an-
alyze the phase portrait of the isochronous vector fields
associated to the configurations. In particular, we find either
the star or fork topology (Figure 1) in all cases except when
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we have all the zeros in the line.We have not found examples
of the line topology when the zeros are not all in a line.

2. Some Known Results

In this section, we summarize some known results on iso-
chronous configurations of vector fields of degree n≥ 4 given
in [1].

Theorem 2 (see [1]). A polynomial vector field X of degree 4
is isochronous if and only if the zeros p1, p2, p3, and p4 are
either in a line or three are in the vertices of a triangle and one
is at its orthocenter.

(e phase portrait of the isochronous vector fields of
degree 5 can have as many different topologies as 5-trees, so
they can have three different topologies (see Figure 1), namely,
the star topology, the fork topology, and the line topology.

(e next theorem summarizes the results of isochronous
configurations that are valid for vector fields of degree n≥ 5.

Theorem 3 (see [1]). <e following statements hold.

(a) For each n≥ 3, if the zeros p1, p2, . . . , pn are in a line,
then X is isochronous and his phase portrait has the
line topology

(b) For each n≥ 4, if the zeros p2, p3, . . . , pn are at the
vertices of a regular polygon and p1 is at its center,
then X is isochronous and his phase portrait has the
star topology

(c) For each n≥ 4, there exist isochronous vector fields
with the zeros p1, . . . , pn− 2 in a line and the zeros pn− 1
and pn in new line orthogonal to the previous one
In addition, for n � 5, the following statements hold.

(d) If p1 � (1/2), p2 � (− 1/2), p3 � iy3, p4 � iy4, and
p5 � iy5, then X is isochronous if and only if
y3 + y4 + y5 � 4y3y4y5

(e) For n � 5, if p2, . . . , p5 are at the vertices of a
rhombus and p1 is at its center and if the residues of X

satisfy r1 � − 2(r2 + r3), r2 � r4, and r3 � r5, then X

is isochronous; moreover, its phase portrait has the
star topology

(f ) Assume that X is isochronous and p3, p4, and p5 are
in the bisector line of the segment with endpoints p1
and p2

(i) If p4 is in the convex hull of p1, p2, p3, and p5 and
the residues of X satisfy r4 � r1 + r2 + r3 + r5 and
|r1| � |r2|, then X is isochronous; moreover, the
phase portrait of X has the star topology

(ii) If p3 and p4 are in the convex hull of p1, p2, and
p5 and the residues of X satisfy |r3|< |r1| + |r2| +

|r4| and |r4|< |r5|, then X is isochronous; more-
over, its phase portrait has the fork topology

Although we are not interested in physical applications
in this paper, we mention some of them studied in [11]. For
example, let F(z) � 􏽐

n
j�1(mj/(z − zj)); then, the jth terms

may be regarded as the force with which a fixed mass (or
electric charge) mj at zj repeals (attracts if mj < 0) a movable
unit mass (or charge) at z, being the law of repulsion, the
inverse distance law. Equivalent interpretation can be made
in terms of masses (or charges) repelling according to the
inverse-square laws. Actually, in (eorem (3.1) in [10], it
says that the zeros of F(z) with all mj real are the points of
equilibrium in the field of force due to the systems of p

masses (point charges) mj at the fixed points zj repelling a
movable unit mass at zj according to the inverse distance
law. Note that the expression F(z) has the same form as the
1-form η given in (2) associated to an isochronous vector
field X, and it can be written as η � 􏽐

n
j�1(rj/(z − pj))dz,

with rj given in (3).
Still another interpretation in F(z) is that each term

mj/(z − zj) is the vector velocity in a two-dimensional flow
of an incompressible fluid due to a source of strength mj at
zj (sink if mj < 0).

3. Characterization of the Isochronous Vector
Fields of Degree 5

As previously said, without loss of generality, we can consider
that the position of two of the zeros of X are fixed to 0 and 1.

Assume that p1 � 0 and p2 � 1, and let p3 � x3 + iy3,
p4 � x4 + iy4, and p5 � x5 + iy5. From (6), the configuration
[p1, . . . , p5] is isochronous if and only if (rj/rk) ∈ R∗ for all
j and k � 1, . . . , n with j≠ k. Note that we only are interested
in configurations with pi ≠pj for i≠ j. We define

e1 � Im
r1

r2
􏼠 􏼡,

e2 � Im
r1

r3
􏼠 􏼡,

e3 � Im
r1

r4
􏼠 􏼡,

e4 � Im
r1

r5
􏼠 􏼡,

e5 � Im
r2

r3
􏼠 􏼡,

e6 � Im
r2

r4
􏼠 􏼡,

e7 � Im
r2

r5
􏼠 􏼡,

e8 � Im
r3

r4
􏼠 􏼡,

e9 � Im
r3
r5

􏼠 􏼡,

e10 � Im
r4

r5
􏼠 􏼡.

(7)
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(e denominators of the functions ei are defined when
pi ≠pj for i≠ j so we can drop them. Let fi be the numerator
of the factorization of ei for all i � 1, . . . , 10. (en,
[p1, . . . , p5] is isochronous if and only if
(x3, y3, x4, y4, x5, y5) is a solution of the set of polynomial
equations:

fi � 0, i � 1, . . . , 10. (8)

Next, we will provide information about the solutions of
(8). We only are interested in solutions of (8) satisfying

(xi, yi)≠ (xj, yj) for i≠ j. In what follows, these solutions
will be called valid solutions.

(e first two equations of system (8) can be written as

a1x
2
4 + a1y

2
4 − a1x4 + c1y4 � 0,

a2x
2
4 + a2y

2
4 + b2x4 + c2y4 � 0,

(9)

where

a1 � x5y3 − x
2
5y3 + x3y5 − x

2
3y5 − y

2
3y5 − y3y

2
5,

c1 � − x3x5 + x
2
3x5 + x3x

2
5 − x

2
3x

2
5 + x5y

2
3 − x

2
5y

2
3 + y3y5 + x3y

2
5 − x

2
3y

2
5 − y

2
3y

2
5,

a2 � x5y3 − 2x3x5y3 + x
2
5y3 − x3y5 + x

2
3y5 − y

2
3y5 + y3y

2
5,

b2 � − 2x3x5y3 + 3x
2
3x5y3 + x

2
5y3 − 2x3x

2
5y3 − x5y

3
3 + x

2
3y5 − x

3
3y5 − y

2
3y5

+ 3x3y
2
3y5 + y3y

2
5 − 2x3y3y

2
5,

c2 � x
2
3x5 − x

3
3x5 − x3x

2
5 + x

2
3x

2
5 − x5y

2
3 + 3x3x5y

2
3 − x

2
5y

2
3 + 2x3y3y5 − 3x

2
3y3y5

+ y
3
3y5 − x3y

2
5 + x

2
3y

2
5 − y

2
3y

2
5.

(10)

Systems of the form (9) will appear often in our analysis.
We give the solution of this kind of systems in the next
section, considering a generic system as (11).

Many solutions of (8) satisfy that yi � 0 for some
i � 3, 4, and 5, these solutions correspond to isochronous
configurations with at least three zeros aligned. In order to
simplify our computations, this case is treated separately, at
(eorem 4. From now on, the solutions of (8) with yi ≠ 0 for
all i � 3, 4, and 5 that are valid solutions will be called ad-
missible solutions.

3.1.<eResolution of Systems of the Form (9). Let us consider
a generic system of the form (9):

A1x
2

+ A1y
2

− A1x + C1y � 0,

A2x
2

+ A2y
2

+ B2x + C2y � 0.
(11)

Note that the two equations of (11) correspond to the
equations of two circles (eventually degenerated to a line)
passing through the point (0, 0). So, (x, y) � (0, 0) is always
a solution of (11).

After tedious but not difficult computations, we see that
when D1 � A1(A2 + B2) and D2 � A2C1 − A1C2 are not
simultaneously zero, then the solutions of system (11) are
(x, y) � (0, 0) and (x, y) � (xg, yg) with

xg, yg􏼐 􏼑 � −
A2C1 − A1C2( 􏼁 B2C1 + A1C2( 􏼁

D
2
1 + D

2
2

, −
A1 A2 + B2( 􏼁 B2C1 + A1C2( 􏼁

D
2
1 + D

2
2

􏼠 􏼡. (12)

Solving system D1 � 0 and D2 � 0, we get the following
conditions: κ1: A1 � 0, C1 � 0􏼈 􏼉, κ2: A1 � 0, A2 � 0􏼈 􏼉, and

κ3: B2 � − A2, A2C1 − A1C2 � 0􏼈 􏼉. (en, we can prove the
following result.

(a) (b) (c)

Figure 1: (e planar 5-trees. (a) (e star topology. (b) (e fork topology. (c) (e line topology.
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Lemma 1. Let κ1: A1 � 0, C1 � 0􏼈 􏼉, κ2: A1 � 0, A2 � 0􏼈 􏼉,
and κ3: B2 � − A2, A2C1 − A1C2 � 0􏼈 􏼉. <en, the following
statements hold.

(a) (x, y) � (0, 0) is a solution of (11) for all A1, C1, A2,
B2, and C2

(b) If neither of conditions κ1, κ2, and κ3 is satisfied, then
the solutions of (11) are (x, y) � (0, 0) and (x, y) �

(xg, yg) as given in (12)
(c) If condition κ1 is satisfied, then the solutions of (11)

are the solutions of equation A2x
2 + A2y

2 +

B2x + C2y � 0
(d) If condition κ1 is not satisfied and condition κ2 is

satisfied, then the solution of (11) is (x, y) � (0, 0)

when B2 ≠ 0 and (x, y) � (x, 0) when B2 � 0
(e) If condition κ1 is not satisfied and condition κ3 is

satisfied, then either the second equation is identically
0 or the two equations of (11) are linearly dependent

3.2. Isochronous Configurations with <ree Zeros in a Line.
Without loss of generality, we can assume that the zeros that
are aligned are p1, p2, and p3, so we assume that y3 � 0.

We substitute y3 � 0 into equations f1 � 0 and f2 � 0,
and we get the equations:

− x3 − 1( 􏼁x3h1 ≔ − x3 − 1( 􏼁x3 A1x
2
4 + A1y

2
4 − A1x4 + C1y4􏼐 􏼑 � 0,

x3 − 1( 􏼁x3h2 ≔ x3 − 1( 􏼁x3 A2x
2
4 + A2y

2
4 + B2x4 + C2y4􏼐 􏼑 � 0,

(13)

where we define h1 � A1x
2
4 + A1y

2
4 − A1x4 + C1y4 and h2 �

A2x
2
4 + A2y

2
4 + B2x4 + C2y4 with

A1 � y5,

C1 � − x5 + x
2
5 + y

2
5,

A2 � y5,

B2 � − x3y5,

C2 � − x3x5 + x
2
5 + y

2
5.

(14)

(e solutions with x3 � 1 and x3 � 0 are not valid be-
cause they correspond to p3 � p2 and p3 � p1, respectively.
Now, we analyze the solutions of system h1 � 0 and h2 � 0.
(is is a system of the form (11); hence, from Lemma 1, if
conditions κi with i � 1, 2, and 3 are not satisfied, then the
nontrivial solution of system h1 � 0 and h2 � 0 is

x4 � x5,

y4 � − y5.
(15)

Condition κ1 does not provide valid solutions because it
is satisfied when either (x5, y5) � (0, 0) or (x5, y5) � (1, 0)

(i.e., when either p5 � p1 or p5 � p2). Condition κ2 is sat-
isfied when y5 � 0; under this condition, B2 � 0; so, from
Lemma 1, the solution of system h1 � 0 and h2 � 0 is
(x4, y4) � (x, 0) with x ∈ R. Finally, condition κ3 is satisfied
either when x3 � 1, which does not provide a valid solution,

or when y5 � 0. (is last case satisfies condition κ2, so it has
already been studied.

In short, system f1 � 0 and f2 � 0 with y3 � 0 have only
two valid solutions:

s21 � y3 � 0, x4 � x5, y4 � − y5, y5 ≠ 0􏼈 􏼉,

s22 � y3 � 0, y4 � 0, y5 � 0􏼈 􏼉.
(16)

By substituting s21 into equation f3 � 0, we get

2x3y5 − x3x5 + x
2
5 + x3x

2
5 − x

3
5 − y

2
5 − x3y

2
5 + 3x5y

2
5􏼐 􏼑 � 0.

(17)

(e solutions x3 � 0 and y5 � 0 of this equation are not
valid, and the solutions of the last factor of the equation
are

x3 �
x
3
5 − x

2
5 − 3x5y

2
5 + y

2
5

x
2
5 − x5 − y

2
5

, (18)

when x2
5 − x5 − y2

5 ≠ 0 and either x5 � 1, x5 � 0, or x5 �

(1/2) when x2
5 − x5 − y2

5 � 0 (or equivalently when y5 �

±
������

x2
5 − x5

􏽱

). It is easy to check that the solutions with x2
5 −

x5 − y2
5 � 0 do not provide valid solutions. On the contrary,

the solution s21 with x3 given in (18) and the solution s22
satisfy all equations fi � 0. (erefore, they provide iso-
chronous configurations. In short, we have proved the
following theorem.

Theorem 4. If the zeros p1, p2, and p3 are in a line, then the
configuration [p1, . . . , p5] is isochronous if and only if it
satisfies one of the following statements:

(a) p1, p2, p3, p4, and p5 are in a line
(b) p1, p2, and p3 are in the bisector line of the segment

with endpoints p4 and p5

In particular, if p1 � 0, p2 � 1, p3 � x3,
p4 � x4 + iy4, and p5 � x5 + iy5, then X is isochro-
nous if and only if one of the following statements
holds:

(c) y4 � y5 � 0
(d) x4 � x5, y4 � − y5, and x3 � xℓ

3 � ((x3
5 − x2

5 −

3x5y
2
5 + y2

5)/(x2
5 − x5 − y2

5))

(eorem 4 completes in some sense the results in
(eorem 3.

From now on, we only will consider solutions of system
(8) with y3, y4, andy5 ≠ 0.

3.3. Admissible Solutions of System (8). Now we analyze the
solutions of (9) that provide solutions of (8) with pi ≠pj for
i≠ j and y3, y4, andy5 ≠ 0, that is, those provide admissible
solutions. System (9) is of the form (11) with
(x, y) � (x4, y4), A1 � a1, A2 � a2, B2 � b2, C1 � c1, and
C2 � c2 so we will apply Lemma 1. Here, we use the notation:

Complexity 5



K1: a1 � 0, c1 � 0􏼈 􏼉,

K2: a1 � 0, a2 � 0􏼈 􏼉,

K3: b2 � − a2, a2c1 − a1c2 � 0􏼈 􏼉.

(19)

In order to simplify our computations, we will use re-
sultants’ theory in some cases. Next, we summarize the basic
properties of the resultants.

Let P and Q be two polynomials in the variable x with
leading coefficient one. Let ai, i � 1, 2, . . . , n, be the roots of
P and bj, j � 1, 2, . . . , m, be the roots of Q. (e resultant of P

and Q, Res[P, Q], is the expression formed by the product of
all the differences ai − bj, i � 1, 2, . . . , n and j � 1, 2, . . . , m,
see for instance [12, 13].(emain property of the resultant is
that if P and Q have a common solution, then necessarily
Res[P, Q] � 0.

Let now P and Q be polynomials in the variables (x, y).
(ese polynomials can be considered as polynomials in x

with polynomial coefficients in y; then, the resultant with
respect to x, Res[P, Q, x], is a new polynomial in the variable
y with the following property. If P and Q have a common
solution (x0, y0), then Res[P, Q, x](y0) � 0 and similarly for
the variable y.

3.3.1. Solutions of (9) Satisfying Condition K1. System a1 � 0
and c1 � 0 (condition K1) can be written in the form (11)
with (x, y) � (x5, y5), A1 � C2 � y3, and B2 � C1 � − A2 �

− (x3 − x2
3 − y2

3) and can be solved by applying Lemma 1
again. Conditions κi for i � 1, 2, and 3 provide solutions
with either p3 � p2 or p3 � p1. (e solution (xg, yg) in
Lemma 1 becomes (x5, y5) � (1, 0) (i.e., p2 � p5). (ere-
fore, neither of the solutions of (9) satisfying condition K1
can provide valid solutions of (8).

3.3.2. Solutions of (9) Satisfying Condition K2. System a1 � 0
and a2 � 0 (condition K2) can be written again in the form
(11) with (x, y) � (x5, y5), A1 � A2 � y3, B2 � y3 − 2x3y3,
C1 � − (x3 − x2

3 − y2
3), and C2 � − (x3 − x2

3 + y2
3). All con-

ditions κiin Lemma 1 provide solutions with y3 � 0.
(erefore, conditions κi cannot provide admissible solutions
of (8).

(e solution (xg, yg) in Lemma 1 becomes

x5, y5( 􏼁 � x3,
x3 − x

2
3

y3
􏼠 􏼡. (20)

We substitute this solution into equation f1 � 0, and we
get an equation equivalent to

1 − x3( 􏼁x3y4 x
2
3 + y

2
3􏼐 􏼑 x3 − 1( 􏼁

2
+ y

2
3􏼐 􏼑 � 0. (21)

Clearly, neither of the solutions of this equation can
provide admissible solutions of (8). In short, neither of the
solutions of (9) satisfying condition K2 can provide valid
solutions of (8).

3.3.3. Admissible Solutions of (8) Satisfying Condition K3.
Finally, we analyze the solutions of system F1 � b2 + a2 � 0
and F2 � a2c1 − a1c2 � 0 (condition K3). System F1 � 0 and
F2 � 0 cannot be written in the form (11). We will analyze
the solution of this system by using the properties of
resultants.

We compute the resultant of F1 and F2 with respect to
x5, and we get

Res F1, F2, x5( 􏼁 � − 2y
3
3y

2
5 x

2
3 + y

2
3􏼐 􏼑 x

2
3 − 1􏼐 􏼑

2
+ y

2
3􏼒 􏼓

4
y3 − y5( 􏼁Fa, (22)

where

Fa � 9x
6
3 − 27x

5
3 + 3x

4
3y

2
3 + 18x

4
3y3y5 + 27x

4
3 − 6x

3
3y

2
3 − 36x

3
3y3y5 − 9x

3
3 − 5x

2
3y

4
3

+ 20x
2
3y

3
3y5 + 18x

2
3y3y5 + 5x3y

4
3 − 20x3y

3
3y5 + 3x3y

2
3 + y

6
3 + 2y

5
3y5 − 3y

4
3 + 2y

3
3y5.

(23)

By the properties of the resultant, we know that if
(x3, y3, x5, y5) is a solution of system F1 � 0 and F2 � 0,
then the coordinates (x3, y3, y5) satisfy equation
Res(F1, F2, x5) � 0. (us, in order to solve system F1 � 0
and F2 � 0, it is sufficient to find the solutions (x3, y3, y5)

of Res(F1, F2, x5) � 0 that satisfy system F1 � 0 and
F2 � 0.

Clearly, the first four factors of Res(F1, F2, x5) do not
provide admissible solutions of (8). (us, we only will
consider solutions with either y3 � y5 or Fa � 0.

Case y3 � y5:
We substitute y3 � y5 into equation F1 � 0, and we get

y5 x5 − x3( 􏼁 x
2
3 − 2x3x5 − 2x3 + 2x5 − y

2
5 + 1􏼐 􏼑 � 0. (24)

(e first two factors of this equation do no provide
admissible solutions of (8). From the last factor of the
equation, we have

y5 � ±y∗5 � ±
������������������

1 − x3( 􏼁 1 − x3 + 2x5( 􏼁

􏽱

. (25)
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We substitute y5 � ±y∗5 into equation F2 � 0, and we
get the following solutions:

x5 � x3,

x5 �
x3 − 1
2

,

x3 � 1,

x5 � x3 − 1,

x5 � x
∗
5

(26)

(e first solution corresponds to p3 � p5, the second and
the third imply y5 � 0, and the fourth corresponds to
p3 � p2. (erefore, the unique solutions of system F1 � 0
and F2 � 0 that can provide admissible solutions of (8) are

x5 � x
∗
5 �

1
2

4x3 − 1( 􏼁,

y5 � ±y∗5 � ±
�
3

√ ������

x3 − x
2
3

􏽱

.

(27)

Notice that y∗5 is defined for x3 ∈ [0, 1] and y∗5 � 0 when
either x3 � 0 or x3 � 1.

We substitute x5 � x∗5 and y5 � ±y∗5 into (8). Since
condition K3 is satisfied, equations f1 � 0 and f2 � 0 are
linearly dependent, so we will work with equations f1 � 0
and f4 � 0 instead of equations f1 � 0 and f2 � 0. If x5 �

x∗5 and y5 � ±y∗5 , then system f1 � 0 and f4 � 0 can be
written as

±
1
4

2x3 − 3( 􏼁 2x3 + 1( 􏼁F
∗
1 � 0,

±
1
8

2x3 − 3( 􏼁 2x3 − 1( 􏼁F
∗
2 � 0,

(28)

where

F
∗
1 � A

∗
1x

2
4 + A
∗
1y

2
4 − A
∗
1x4 + C

∗
1y4 � 0,

F
∗
2 � A

∗
2x

2
4 + A
∗
2y

2
4 + B
∗
2x4 + C

∗
2y4 � 0.

(29)

Here,

A
∗
1 � y
∗
5 ,

C
∗
1 � ∓2 x3 − x

2
3􏼐 􏼑,

A
∗
2 � 2y

∗
5 ,

B
∗
2 � 1 − 6x3( 􏼁y

∗
5 ,

C
∗
2 � ∓ 7 − 10x3( 􏼁x3,

(30)

where the upper sign corresponds to the positive value y∗5
and the lower sign corresponds to the negative value y∗5 .
Notice that, in order to obtain the expressions F∗1 and F∗2 , we
have substituted into systemf1 � 0 andf4 � 0 not only x5 �

x∗5 and y5 � ±y∗5 but also y2
5 � 3(x3 − x2

2), y3
5 � ±y∗5y2

5,
and y4

5 � 9(x3 − x2
2)

2.
Next, we analyze the solutions of (28) providing ad-

missible solutions of (8). (e factors (2x3 − 3) and (2x3 + 1)

do not provide solutions in the domain of definition of y∗5 ,
and the factor (2x3 − 1) provides solutions with p5 � p3. We
analyze the solutions of F∗1 � 0 and F∗2 � 0 by applying again
Lemma 1. Conditions κ1 and κ2 in Lemma 1 give solutions
with either p3 � p2 or p3 � p1, and condition κ3 gives so-
lutions with either p3 � p2, p3 � p1, or p5 � p3.(e solution
given by (xg, yg) in Lemma 1 becomes

x4, y4( 􏼁 � x3, ±
�
3

√ ������

x3 − x
2
3

􏽱

􏼒 􏼓, (31)

and it corresponds to p3 � p4. (erefore, the factor y3 � y5
does not provide admissible solutions of (8).

Case Fa � 0:
From equation Fa � 0, we get

y5 � y
⋆
5 � −

1
2y3d

y
2
3 − 3x

2
3􏼐 􏼑 − 3x

2
3 + 6x3 + y

2
3 − 3􏼐 􏼑 x

2
3 − x3 + y

2
3􏼐 􏼑,

(32)

where

d � 9x
4
3 − 18x

3
3 + 9x

2
3 + 10x

2
3 − 10x3 + 1􏼐 􏼑y

2
3 + y

4
3. (33)

Note that y⋆5 is defined when y3 ≠ 0 and d≠ 0.
Solutions with d � 0: solving equation d � 0 with respect

to y3, we get y3 � ±
��
d1

􏽰
and y3 � ±

��
d2

􏽰
where

d1 �
1
2

− 10x
2
3 + 10x3 − 1 −

�����������������������

2x3 − 1( 􏼁
2 16x

2
3 − 16x3 + 1􏼐 􏼑

􏽱

􏼒 􏼓,

d2 �
1
2

− 10x
2
3 + 10x3 − 1 +

�����������������������

2x3 − 1( 􏼁
2 16x

2
3 − 16x3 + 1􏼐 􏼑

􏽱

􏼒 􏼓.

(34)

(e domain of definition of d1 and d2 is the set

D � − ∞,
1
4

(2 −
�
3

√
)􏼒 􏼕∪

1
2

􏼚 􏼛∪
1
4

(2 −
�
3

√
), +∞􏼔 􏼓. (35)

On the contrary, analyzing the functions d1 and d2, we
can see that d1 ≤ − (3/16) when x3 ∈ D\(1/2), d1 � (3/4)

when x3 � (1/2), d2 � 0 when either x3 � 0 or x3 � 1, d2 < 0
when x3 ∈ D\ (1/2), 0, 1{ }, and d2 � (3/4) when x3 � (1/2).
(us, the solutions y3 � ±

��
d1

􏽰
and y3 � ±

��
d2

􏽰
are defined

only when x3 � (1/2). (erefore, the denominator of y⋆5 is
zero when either y3 � 0 or (x3, y3) � ((1/2), ±(

�
3

√
/2)). (e

solution y3 � 0 does not provide admissible solutions of
system (8).

Now we analyze the solutions of (8) with
(x3, y3) � ((1/2), ±(

�
3

√
/2)). In this case, Fa is identically 0.

By substituting (x3, y3) � ((1/2), ±(
�
3

√
/2)) into equation

F1 � 0 and solving the resulting equation, we get the so-
lutions y5 � ±y51 and y5 � ±y52 where

y51 �
1 +

��������������

− 12x
2
5 + 12x5 + 1

􏽱

2
�
3

√ ,

y52 �
1 −

��������������

− 12x
2
5 + 12x5 + 1

􏽱

2
�
3

√ .

(36)

Complexity 7



(ese solutions also satisfy equation F2 � 0. We sub-
stitute the solution with (x3, y3) � ((1/2), ±(

�
3

√
/2)) and

y5 � y51 into equations f1 � 0 and f4 � 0, and we obtain a
system of equations of the form (9) in the variables (x, y) �

(x4, y4) where the coefficients A1, C1, A2, B2, andC2 depend
on x5. We solve this system by applying Lemma 1 as we have
done in the previous cases, and we see that it has two unique
solutions, one satisfying p4 � p5 and the other one satisfying
p3 � p5. (e same occurs with the solution

(x3, y3) � ((1/2), − (
�
3

√
/2)) and y5 � − y51. Analyzing the

cases (x3, y3) � ((1/2), ±(
�
3

√
/2)) and y5 � ±y52 in a

similar way, we get three unique solutions, which satisfy
p4 � p5, p1 � p5, and p2 � p5, respectively. (erefore,
system (8) has no valid solutions when d � 0.

Solutions with d≠ 0: assume that (x3, y3)≠ ((1/
2), ±(

�
3

√
/2)). We substitute y5 � y⋆5 into equation F1 � 0,

and we solve the resulting equation obtaining in this way the
solutions:

y3 � 0,

x5 � x
(⋆,1)
5 �

1
2 d

12x
5
3 − 21x

4
3 + 8x

3
3y

2
3 + 6x

3
3 − 2x

2
3y

2
3 + 3x

2
3 − 4x3y

4
3 − 2x3y

2
3 + 3y

4
3 − y

2
3􏼐 􏼑,

x5 � x
(⋆,2)
5 �

1
2 x3 − 1( 􏼁d

15x
6
3 − 57x

5
3 + 13x

4
3y

2
3 + 81x

4
3 − 42x

3
3y

2
3 − 51x

3
3 − 3x

2
3y

4
3 + 44x

2
3y

2
3 + 12x

2
3 − x3y

4
3 − 15x3y

2
3 − y

6
3 + 3y

4
3􏼐 􏼑.

(37)

Note that the last solution is defined only when x3 ≠ 1.
First, we analyze the solution (x5, y5) � (x

(⋆,1)
5 , y⋆5 ). It is

easy to check that equation F2 � 0 is always satisfied when

(x5, y5) � (x
(⋆,1)
5 , y⋆5 ). We substitute this solution into

equations f1 � 0 and f4 � 0, and we get

y
2
3 − 3x

2
3􏼐 􏼑 − 3x

2
3 + 6x3 + y

2
3 − 3􏼐 􏼑 x

2
3 + y

2
3􏼐 􏼑 x

2
3 − 2x3 + y

2
3 + 1􏼐 􏼑F

⋆
1 � 0,

3x
2
3 − y

2
3􏼐 􏼑 − 3x

2
3 + 6x3 + y

2
3 − 3􏼐 􏼑 x

2
3 + y

2
3􏼐 􏼑 3x

4
3 − 6x

3
3 + 6x

2
3y

2
3 + 3x

2
3 − 6x3y

2
3 + 3y

4
3 − y

2
3􏼐 􏼑F
⋆
2 � 0,

(38)

where

F
⋆
1 � A

⋆
1x

2
4 + A
⋆
1y

2
4 − A
⋆
1x4 + C

⋆
1y4 � 0,

F
⋆
2 � A

⋆
2x

2
4 + A
⋆
2y

2
4 + B
⋆
2x4 + C

⋆
2y4.

(39)

Here,

A
⋆
1 � y3,

C
⋆
1 � − x

2
3 + x3 − y

2
3,

A
⋆
2 � − 2y

2
3 x

2
3 + y

2
3 − 1􏼐 􏼑d,

B
⋆
2 � 27x

9
3 − 135x

8
3 + 72x

7
3y

2
3 + 270x

7
3 − 288x

6
3y

2
3 − 270x

6
3 + 54x

5
3y

4
3 + 450x

5
3y

2
3

+ 135x
5
3 − 166x

4
3y

4
3 − 342x

4
3y

2
3 − 27x

4
3 + 202x

3
3y

4
3 + 126x

3
3y

2
3 − 8x

2
3y

6
3

− 114x
2
3y

4
3 − 18x

2
3y

2
3 − 9x3y

8
3 + 22x3y

6
3 + 23x3y

4
3 + 5y

8
3 − 10y

6
3 + y

4
3,

C
⋆
2 � − y3 − 27x

8
3 + 108x

7
3 − 80x

6
3y

2
3 − 162x

6
3 + 244x

5
3y

2
3 + 108x

5
3 − 78x

4
3y

4
3􏼐

− 254x
4
3y

2
3 − 27x

4
3 + 164x

3
3y

4
3 + 88x

3
3y

2
3 − 24x

2
3y

6
3 − 102x

2
3y

4
3 + 10x

2
3y

2
3

+28x3y
6
3 + 12x3y

4
3 − 8x3y

2
3 + y

8
3 − 10y

6
3 + 5y

4
3􏼑.

(40)

(e first factor of equation (38) gives solutions with
p5 � p1, the second one gives solutions with p5 � p2, and the
third factor does not give real solutions. (e fourth factor of

the first equation of (38) gives solutions with p3 � p2, and
the fourth factor of the second equation gives solutions with
p5 � p3. (erefore, neither of them provides valid solutions.
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We solve system F⋆1 � 0 and F⋆2 � 0 by applying Lemma
1 again, and we get the solutions (x4, y4) � (0, 0) and
(x4, y4) � (x

(⋆,1)
4 , y

(⋆,1)
4 ) with

x
(⋆,1)
4 � −

1
d

x
2
3 − 2x3 + y

2
3􏼐 􏼑 3x

3
3 − 6x

2
3 + 3x3y

2
3 + 3x3 − 2y

2
3􏼐 􏼑,

y
(⋆,1)
4 �

1
y3d

3x
3
3 − 6x

2
3 + 3x3y

2
3 + 3x3 − 2y

2
3􏼐 􏼑 3x

3
3 − 3x

2
3 + 3x3y

2
3 − y

2
3􏼐 􏼑,

(41)

when conditions κ1, κ2, and κ3 are not satisfied. Conditions
κ1 and κ2 provide solutions with y3 � 0, and the condition κ3
provides solutions with either p5 � p2, p5 � p3, p3 � p1,
p3 � p2, or d � 0. (erefore, these conditions cannot pro-
vide admissible solutions of (8). Finally, it is easy to check
that, for all i � 1, . . . , 10, the equations fi � 0 are satisfied
when (x4, y4) � (x

(⋆,1)
4 , y

(⋆,1)
4 ) and (x5, y5) � (x

(⋆,1)
5 , y⋆5 ). In

short, this solution will provide admissible solutions when
(x3, y3) is such that pi ≠pj for i≠ j and d≠ 0.

Now, we consider the solution (x5, y5) � (x
(⋆,2)
5 , y⋆5 )

(assuming that (x3, y3)≠ ((1/2), ±(
�
3

√
/2))), and we pro-

ceed in a similar way. First, we substitute the solution
(x5, y5) � (x

(⋆,1)
5 , y⋆5 ) into equation F2 � 0, and we get the

following equation:

− − 3x
2
3 + 6x3 + y

2
3 − 3􏼐 􏼑

2
x
2
3 + y

2
3􏼐 􏼑 x

2
3 − 2x3 + y

2
3 + 1􏼐 􏼑 x

2
3 − x3 + y

2
3􏼐 􏼑

2
3x

2
3 − 3x3 + y

2
3􏼐 􏼑G
⋆

� 0, (42)

where

G
⋆

� − 3x
6
3 + 24x

5
3 − 5x

4
3y

2
3 − 54x

4
3 + 32x

3
3y

2
3 + 48x

3
3 − x

2
3y

4
3 − 44x

2
3y

2
3 − 15x

2
3 + 8x3y

4
3 + 16x3y

2
3 + y

6
3 − 6y

4
3 + y

2
3. (43)

Clearly, the second factor of equation F2 � 0 does not
provide real solutions, the first and fourth factors provide
solutions with p5 � p1, the third provides solutions with
p3 � p2, and the fifth provides solutions with p5 � p3.
(erefore, the unique factor that can provide admissible
solutions of (8) is G⋆.

It is not difficult to check that

x
(⋆,2)
5 � x

(⋆,1)
5 −

G
⋆

2 x3 − 1( 􏼁d
. (44)

So, if x3 ≠ 1 and G⋆ � 0, then x
(⋆,2)
5 � x

(⋆,1)
5 , and this is the

case we have just been studied. Furthermore, if x3 � 1, then
equation F1 � 0 has only the two solutions y3 � 0 and
x5 � x

(⋆,1)
5 . Since the solution x

(⋆,2)
5 � x

(⋆,1)
5 is defined when

x3 � 1, we do not need to consider this case separately.

3.3.4. Admissible Solutions of (8) that Do Not Satisfy Any
Condition Ki. From Lemma 1, when neither of conditions

Ki is satisfied, the solutions of system f1 � 0 and f2 � 0 are
(x4, y4) � (0, 0) and (x4, y4) � (x40, y40) with

x40, y40( 􏼁 � xg, yg􏼐 􏼑, (45)

where (xg, yg) is defined in Lemma 1 and A1 � a1, A2 � a2,
B2 � b2, C1 � c1, and C2 � c2 are defined in (9). We sub-
stitute the solution (x4, y4) � (x40, y40) into equations fi �

0 for i � 3, . . . , 10, we factorize the resulting equations, and
we drop the denominators obtaining a new system of
polynomial equations:

gi � 0, i � 3, . . . , 10, (46)

where the function g5 is identically zero. Next, we analyze
the solutions of (46).

(e factorization of g7 consists of two factors:

g7 � 2􏽥g71􏽥g72, (47)

where
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􏽥g71 � x
3
3y5 − 3x

2
3x5y3 − 2x

2
3y5 + 2x3x

2
5y3 + 4x3x5y3 − 3x3y

2
3y5 + 2x3y3y

2
5

+ x3y5 − 2x
2
5y3 + x5y

3
3 − x5y3 + 2y

2
3y5 − 2y3y

2
5,

􏽥g72 � 2x3 − 1( 􏼁y
3
3y

7
5 + y

2
3 3x

3
3 + 3x5x

2
3 − 6x

2
3 − y

2
3x3 − 3x5x3 + 3x3 − 3x5y

2
3 + 2y

2
3􏼐 􏼑y

6
5

� +y3 6x5x
4
3 − 3x

4
3 − 4y

2
3x

3
3 − 12x5x

3
3 + 6x

3
3 − 6x5y

2
3x

2
3 + 9y

2
3x

2
3 + 6x5x

2
3 − 3x

2
3􏼐

− 4y
4
3x3 − 2x

2
5y

2
3x3 + 8x5y

2
3x3 − 6y

2
3x3 + 4x5y

4
3 + x

2
5y

2
3􏼑y

5
5 + − x

7
3 + 3x5x

6
3 + 2x

6
3􏼐

+ y
2
3x

5
3 − 9x5x

5
3 − 9x5y

2
3x

4
3 + 2y

2
3x

4
3 + 9x5x

4
3 − 2x

4
3 + 5y

4
3x

3
3 − 9x

2
5y

2
3x

3
3 + 27x5y

2
3x

3
3

− 9y
2
3x

3
3 − 3x5x

3
3 + x

3
3 − 11x5y

4
3x

2
3 − 2y

4
3x

2
3 + 5x

3
5y

2
3x

2
3 + 6x

2
5y

2
3x

2
3 − 18x5y

2
3x

2
3

+ 6y
2
3x

2
3 + 3y

6
3x3 + 11x

2
5y

4
3x3 + 3y

4
3x3 − 5x

3
5y

2
3x3 + 3x

2
5y

2
3x3 + x5y

6
3 − 2y

6
3 − 5x

3
5y

4
3

+2x
2
5y

4
3 − 3x5y

4
3􏼑y

4
5 + y3 6x5x

6
3 − 3x

6
3 − 18x

2
5x

5
3 + 4x

5
3 + 8x

3
5x

4
3 + 33x

2
5x

4
3􏼐

+ 10x5y
2
3x

4
3 − 5y

2
3x

4
3 − 18x5x

4
3 + x

4
3 − 16x

3
5x

3
3 − 12x

2
5x

3
3 − 12x

2
5y

2
3x

3
3 − 8x5y

2
3x

3
3

+ 4y
2
3x

3
3 + 12x5x

3
3 − 2x

3
3 + 2x5y

4
3x

2
3 − y

4
3x

2
3 + 8x

3
5x

2
3 − 3x

2
5x

2
3 + 12x

3
5y

2
3x

2
3

+ 12x5y
2
3x

2
3 − 3y

2
3x

2
3 + 6x

2
5y

4
3x3 − 8x5y

4
3x3 − 10x

4
5y

2
3x3 + 8x

3
5y

2
3x3 − 12x

2
5y

2
3x3

− 2x5y
6
3 + y

6
3 + 4x

3
5y

4
3 − 9x

2
5y

4
3 + 6x5y

4
3 + 5x

4
5y

2
3 − 4x

3
5y

2
3 + 3x

2
5y

2
3􏼑y

3
5

+ x5 − 1( 􏼁x5 x
7
3 − x5x

6
3 − 3x

6
3 − y

2
3x

5
3 + 3x5x

5
3 + 3x

5
3 + 11x5y

2
3x

4
3 − 3y

2
3x

4
3 − 3x5x

4
3􏼐

− x
4
3 − 5y

4
3x

3
3 − 11x

2
5y

2
3x

3
3 − 11x5y

2
3x

3
3 + 7y

2
3x

3
3 + x5x

3
3 + 9x5y

4
3x

2
3 + 3y

4
3x

2
3 + x

3
5y

2
3x

2
3

+ 15x
2
5y

2
3x

2
3 − 3x5y

2
3x

2
3 − 3y

2
3x

2
3 − 3y

6
3x3 + 9x

2
5y

4
3x3 − 18x5y

4
3x3 − x

3
5y

2
3x3 − 4x

2
5y

2
3x3

+3x5y
2
3x3 − 3x5y

6
3 + 3y

6
3 − x

3
5y

4
3 − 3x

2
5y

4
3 + 6x5y

4
3􏼑y

2
5 − x5 − 1( 􏼁

2
x
2
5y3 2x

5
3 − 2x5x

4
3􏼐

− 4x
4
3 + 8y

2
3x

3
3 + 4x5x

3
3 + 2x

3
3 − 18x5y

2
3x

2
3 − 3y

2
3x

2
3 − 2x5x

2
3 + 6y

4
3x3 + 6x

2
5y

2
3x3

+12x5y
2
3x3 − 3y

4
3 − 3x

2
5y

2
3 − 2x5y

2
3􏼑y5 + x5 − 1( 􏼁

3
x
3
5y

2
3 x

3
3 − x5x

2
3 − x

2
3 − 3y

2
3x3􏼐

+x5x3 + x5y
2
3 + y

2
3􏼑.

(48)

(en, the solutions of (46) must satisfy either 􏽥g71 � 0 or
􏽥g72 � 0.We see that factor 􏽥g72 is common to all the functions
gi for i � 3, 4, 6, 7, 8, 9, and 10. (erefore, all the solutions
(x3, y3, x5, y5) of equation 􏽥g72 � 0 that do not satisfy
conditions Ki with i � 1, 2, and 3 provide isochronous
configurations with (x4, y4) � (x40, y40).

It is easy to check that 􏽥g71 � − F1. (erefore, all the
solutions of equation 􏽥g71 � 0 satisfy condition K3, and the
solution (x4, y4) � (x40, y40) is not defined in this case.

Remark 1. Equation 􏽥g72 � 0 has at most seven different
solutions y5 � y5(x3, y3, x5) with y3 ≠ 0 when x3 ≠ (1/2), at
most six different solutions y5 � y5(y3, x5) with y3 ≠ 0 when
x3 � (1/2) and x5 ≠ (1/2), and solution (x3, y3) � ((1/
2), y3) and (x5, y5) � ((1/2), y5) when x3 � x5 � (1/2).

Indeed, if (2x3 − 1)y3
3 ≠ 0, then 􏽥g72 is a polynomial of

degree 7 in the variable y5; therefore, there could exist up to
seven different real solutions y5 � y5(x3, y3, x5) of 􏽥g72 � 0.
(e coefficient of degree 7 of 􏽥g72, (2x3 − 1)y3

3, is equal to
zero when either x3 � (1/2) or y3 � 0. Here, we are not
interested in solutions with y3 � 0. So, 􏽥g72 becomes a
polynomial of degree 6 with at most 6 solutions when x3 �

(1/2). If x3 � (1/2), then the coefficient of degree 6 of 􏽥g72 is

−
3
8

2x5 − 1( 􏼁y
2
3 4y

2
3 + 1􏼐 􏼑, (49)

which becomes zero when x5 � (1/2). But if x3 � (1/2) and
x5 � (1/2), then 􏽥g72 � 0.

We note that the solution with (x3, y3),
(x4, y4) � (x

(⋆,1)
4 , y

(⋆,1)
4 ), and (x5, y5) � (x

(⋆,1)
5 , y⋆5 ) always

satisfies equation 􏽥g72 � 0, but in this case, the solution
(x4, y4) � (x40, y40) is not defined because D2

1 + D2
2 � 0 (or

equivalently, because conditions Ki � 0 are satisfied for
some i � 1, 2, and 3). In short, we have proved the following
theorem.

Theorem 5. Let p1 � 0, p2 � 1, p3 � x3 + iy3, p4 � x4 + iy4,
and p5 � x5 + iy5. <en, we can have the following families of
solutions of (8) with pi ≠pj for i≠ j providing isochronous
configurations with yi ≠ 0 for i � 3, 4, and 5.

(a) Up to seven different three-parameter families of
solutions with (x4, y4) � (x40, y40) (see (45)) and
y5 � y5(x3, y3, x5) satisfying equation 􏽥g72 � 0 when
x3 ≠ (1/2)

(b) Up to six different two-parameter families of solu-
tions with (x4, y4) � (x40, y40) and y5 � y5(y3, x5)

satisfying equation 􏽥g72 � 0 when x3 � (1/2) and
x5 ≠ (1/2)
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(c) <e two-parameter family of solutions with (x4, y4) �

(x40, y40) � ((1/2), (( y3 + y5)/(4y3y5 − 1))), (x3,

y3) � ((1/2), y3), and (x5, y5) � ((1/2), y5)

(d) <e two-parameter family with (x4, y4) � (x
(⋆,1)
4 ,

y
(⋆,1)
4 ) and (x5, y5) � (x

(⋆,1)
5 , y⋆5 ), see (32), (37), and

(41)

Notice that the solution (x4, y4) � (x40, y40) is defined
only for solutions of 􏽥g72 � 0 that do not satisfy any of
conditions K1, K2, and K3 defined in (19). (e solution in
(d) is defined when (x3, y3)≠ ((1/2), ±(

�
3

√
/2)).

(eorem 4 gives a complete description of the iso-
chronous configurations with yi � 0 for some i � 3, 4, and 5,
and (eorem 5 gives a complete description of the iso-
chronous configurations with yi ≠ 0 for all i � 3, 4, and 5.
Hence, we have a complete description of all the isochronous
configurations of the vector fields of degree 5, which is
summarized in (eorem 6.

We can see that all the zeros given in (eorem 4 satisfy
equation 􏽥g72 � 0. (e zeros given by (eorem 4 (c) do not
provide solutions with (x4, y4) � (x40, y40) because in this
case, D2

1 + D2
2 � 0.(is does not happen with the zeros given

by (eorem 4 (d). Moreover, we can see that if y3 � 0 and
x3 � xℓ

3, then (x40, y40) � (x5, − y5). Hence, statement (d) of
(eorem 4 can be included in either statement (a), (b), or (c)
of(eorem 5 if we do not consider the assumption yi ≠ 0 for
all i � 3, 4, and 5.

Theorem 6. Let p1 � 0, p2 � 1, p3 � x3 + iy3, p4 � x4 + iy4,
and p5 � x5 + iy5. <e only solutions of (8) with pi ≠pj for
i≠ j providing isochronous configurations are the following.

(a) y3 � y4 � y5 � 0
(b) (x4, y4) � (x40, y40) (see (45)) and y5 � y5(x3, y3,

x5) is a solution of equation 􏽥g72 � 0 that does not
satisfy any of conditions K1, K2, andK3 defined in
(19)

(c) (x4, y4) � (x
(⋆,1)
4 , y

(⋆,1)
4 ) and (x5, y5) � (x

(⋆,1)
5 , y⋆5 ),

see (32), (37), and (41)

Remark 2. Using the symmetries of the configuration, it is
not difficult to see that if p1 � 0, p2 � 1, p3 � x3 + y3i,
p4 � x4 + y4i, and p5 � x5 + y5i are an isochronous con-
figuration, then so is the configuration p1 � 0, p2 � 1,
p3 � x3 − y3i, p4 � x4 − y4i, and p5 � x5 − y5i, the config-
uration p1 � 0, p2 � 1, p3 � 1 − x3 + y3i, p4 � 1 − x4+

y4i, andp5 � 1 − x5 + y5i, and the configuration p3 �

1 − x3 − y3i, p4 � 1 − x4 − y4i, andp5 � 1 − x5 − y5i. So, it
is sufficient to analyze the configurations with x3 ≤ (1/2) any
y3 ≥ 0.

4. Isochronous Configurations with n= 5 in
Some Particular Cases

In the previous section, more precisely in (eorem 6, we
have given a complete description of the isochronous
configurations with n � 5. Here, we will analyze the

isochronous configurations for some particular configura-
tions of zeros.

4.1. Four Zeros at the Vertices of a Parallelogram.
Without loss of generality, we can assume that the segment
joining p1 and p2 is an edge of the parallelogram; then, the
remaining vertices of the parallelogram can be taken as p3 �

x3 + y3i and p5 � x3 + 1 + y3i with y3 > 0. (e assumption
y3 > 0 is not restrictive by Remark 2.

Since y3 ≠ 0, all isochronous configurations of this type
are given by (eorem 5. First, we see that the solution with
(x4, y4) � (x

(⋆,1)
4 , y

(⋆,1)
4 ) and (x5, y5) � (x

(⋆,1)
5 , y⋆5 ) does not

provide isochronous configurations with four zeros at the
vertices of a parallelogram. Indeed, if the configuration of
p1, p2, p3, andp5 is a parallelogram, then (x3, y3) satisfies
equations x

(⋆,1)
5 � x3 + 1 and y⋆5 � y3, and this system of

equations does not have real solutions.
Now we substitute (x3, y3, x5, y5) � (x3, y3, x3 + 1, y3)

into equation 􏽥g72 � 0, and we get

− 4y
2
3 x

2
3 + y

2
3 − 1􏼐 􏼑 x

2
3 + y

2
3􏼐 􏼑

2
� 0. (50)

(is equation has a unique real solution with y3 > 0,
y3 �

�����

1 − x2
3

􏽱

. By substituting this solution into the ex-
pression of (x40, y40), we get

x4, y4( 􏼁 � x40, y40( 􏼁 �
x3 + 1
2

,

�����

1 − x
2
3

􏽱

2
⎛⎜⎜⎝ ⎞⎟⎟⎠. (51)

In short, we have a unique one parameter family of
configurations with four zeros at the vertices of a parallel-
ogram and y3 > 0. It is given by the solution

x3, y3( 􏼁 � x3,

�����

1 − x
2
3

􏽱

􏼒 􏼓,

x4, y4( 􏼁 �
x3 + 1
2

,

�����

1 − x
2
3

􏽱

2
⎛⎜⎜⎝ ⎞⎟⎟⎠,

x5, y5( 􏼁 � x3 + 1,

�����

1 − x
2
3

􏽱

􏼒 􏼓.

(52)

It is easy to check that, in this family of configurations,
p1, p2, p3, and p5 are at the vertices of a rhombus
(degenerated to a square when x3 � 0) and p4 is at its center.
(ese configurations correspond to the ones given by
(eorem 3(e), so its phase portrait has the star topology.

In short, we have proved the following result, which in
some sense can be thought as a generalization of the
statement (b) of (eorem 3.

Lemma 2. Assume that the configuration [p1, . . . , p5] is
isochronous. <e following statements hold.

(a) If the zeros p1, p2, p3, and p5 are at the vertices of a
parallelogram, then this parallelogram is a rhombus
and p4 is at the center of the rhombus.

(b) <ere exist a unique configuration with four zeros at
the vertices of a given rhombus. Assuming that the
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vertices of the rhombus are p1 � 0, p2 � 1, p3 �

x3 + i
�����
1 − x2

3

􏽱
, and p5 � x3 + 1 + i

�����
1 − x2

3

􏽱
, the con-

figuration satisfies

p4 �
x3 + 1
2

+ i

�����

1 − x
2
3

􏽱

2
. (53)

Notice that the rhombus is a square when x3 � 0.
(c) <e phase portrait associated to the configuration

[p1, . . . , p5] has the star topology.

4.2. Four Zeros at the Vertices of an Isosceles Trapezoid.
Without loss of generality, we can assume that the segment
joining p1 and p2 is an edge of the isosceles trapezoid; then,
the remaining vertices of the trapezoid can be taken as p3 �

x3 + y3i and p5 � 1 − x3 + y3i. As in the previous case, here
we have assumed that y3 > 0, and this is not restrictive by
Remark 2.

As in the previous section, since y3 ≠ 0, all isochronous
configurations of this type are given by (eorem 5. First, we
analyze the solution with (x4, y4) � (x

(⋆,1)
4 , y

(⋆,1)
4 ) and

(x5, y5) � (x
(⋆,1)
5 , y⋆5 ). By imposing that the configuration is

an isosceles trapezoid, we get the following equations:

x
(⋆,1)
5 � 1 − x3,

y
⋆
5 � y3.

(54)

Solving this system of equations, we get the solutions

x3, y3( 􏼁 �
1
2
, ±

1
2

�
3

√􏼠 􏼡, (55)

which is not a valid solution because p3 � p5.
Now we substitute (x3, y3, x5, y5) � (x3, y3, 1 − x3, y3)

into equation 􏽥g72 � 0, and we get

− 4 2x3 − 1( 􏼁
3
y
4
3 3x

4
3 − 6x

3
3 + 2x

2
3y

2
3 + 3x

2
3 − 2x3y

2
3 − y

4
3 + y

2
3􏼐 􏼑 � 0.

(56)

(e solution with x3 � (1/2) is not possible because it
corresponds to p3 � p5. (e last factor in (56) provides a
unique real solution with y3 > 0, and the solution

y3 � y
t
3 �

��������������

x
2
3 − x3 +

1
2
β +

1
2

􏽲

, (57)

where

β �

������������������������

16x
4
3 − 32x

3
3 + 20x

2
3 − 4x3 + 1

􏽱

. (58)

Substituting this solution into (x40, y40), we get

x40, y40( 􏼁 � x
t
40, y

t
40􏼐 􏼑 �

1
2
,
1 + 4 x3 − 1( 􏼁x3 − β( 􏼁

����������������
1 + 2 x3 − 1( 􏼁x3 + β

􏽱

4
�
2

√
x3 x3 − 1( 􏼁

⎛⎜⎜⎝ ⎞⎟⎟⎠. (59)

So, we have a unique one parameter family of isosceles
trapezoid configurations which is given by

x3, y3( 􏼁 � x3, y
t
3􏼐 􏼑,

x4, y4( 􏼁 � x
t
40, y

t
40􏼐 􏼑,

x5, y5( 􏼁 � 1 − x3, y
t
3􏼐 􏼑,

(60)

which are defined for x3 ≠ (1/2). It is not difficult to check
that yt

3 ≥yt
40 > 0 for all x3 ∈ R\ 0, 1{ } and that yt

3 � yt
40 when

x3 � (1/2). In short, we have proved the following result.

Lemma 3. Assume that the configuration [p1, . . . , p5] is
isochronous. <e following statements hold.

(a) If the zeros p1, p2, p3, and p5 are at the vertices of an
isosceles trapezoid, then p4 is at the interior of the
trapezoid on its axis of symmetry.

(b) <ere exist a unique configuration with four zeros at
the vertices of a given isosceles trapezoid. Assuming
that the vertices of the trapezoid are p1 � 0, p2 � 1,
p3 � x3 + iy3, and p5 � 1 − x3 + iy3, the configura-
tion satisfies y3 � yt

3 with yt
3 given in (57) and p4 �

xt
40 + iyt

40 with (xt
40, yt

40) given in (59).

We have plotted the phase portrait of the isochronous
vector fields associated to the configurations given by
Lemma 3(b) for many values of x3. After analyzing the
obtained results, we conjecture that all the isochronous
configurations given by Lemma 3(b) have a phase portrait
with the star topology.

4.3. Two Zeros on the Line Orthogonal to the Line Passing
throughOtherTwoZeros. In(eorem 4, we have proved that
if p1, p2, and p3 are in a line L, then p4 and p5 are either in
the same line L or L is the bisector line of the segment with
endpoints p4 and p5. Now we prove the following more
generic result.

Lemma 4. Assume that the configuration [p1, . . . , p5] is
isochronous. If p1 and p2 are in a line L and p3 and p5 are in a
line orthogonal to L and L′, then either p4 is in L and L is the
bisector line of the segment with endpoints p3 and p5 or p4 is
in L′ and L′ is the bisector line of the segment with endpoints
p1 and p2.

Proof. Assume that p1 � 0, p2 � 1, p3 � x3 + y3i, and p5 �

x3 + y5i with y3 > 0.(is is not restrictive by Remark 2. Let L
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be the line passing through p1 and p2 and L′ be the line
passing through p3 and p5.

Since y3 ≠ 0, all the isochronous configurations of this
type are given by(eorem 5.(e equation 􏽥g72 � 0 evaluated
at x5 � x3 becomes

1 − 2x3( 􏼁 y3 − y5( 􏼁
3

y3 + y5( 􏼁 x
2
3 − x3 + y3y5􏼐 􏼑

3
� 0.

(61)

We note that the solution of (61) with y3 � y5 does not
provide valid solutions of (8) because it corresponds to
p3 � p5. If y5 � (x3 − x2

3)/y3, then condition K2 is satisfied,
and therefore, the solution of (8) with (x4, y4) � (x40, y40) is
not defined. (e solutions of (61) x3 � (1/2) and y5 � − y3
provide valid solutions of (8) with (x4, y4) � (x40, y40)

which are given by

x3, y3( 􏼁 �
1
2
, y3􏼒 􏼓,

x4, y4( 􏼁 �
1
2
,

y3 + y5

4y3y5 − 1
􏼠 􏼡,

x5, y5( 􏼁 �
1
2
, y5􏼒 􏼓,

x3, y3( 􏼁 � x3, y3( 􏼁,

x4, y4( 􏼁 �
x
3
3 − x

2
3 − 3x3y

2
3 + y

2
3

x
2
3 − x3 − y

2
3

, 0􏼠 􏼡,

x5, y5( 􏼁 � x3, − y3( 􏼁,

(62)

respectively. In the first solution, p4 is on L′ and L′ is the
bisector line of the segment with endpoints p1 and p2. In the
second solution, p4 is on L and L is the bisector line of the
segment with endpoints p3 and p5. Notice that the solutions
given in (62) correspond to the configuration given in
(eorem 3(d).

Finally, we analyze the solutions of (8) with (x4, y4) �

(x
(⋆,1)
4 , y

(⋆,1)
4 ) and (x5, y5) � (x

(⋆,1)
5 , y⋆5 ). When x5 � x3,

equation x
(⋆,1)
5 � x3 is equivalent to

1 − 2x3( 􏼁 3x
4
3 − 6x

3
3 + 6x

2
3y

2
3 + 3x

2
3 − 6x3y

2
3 + 3y

4
3 − y

2
3􏼐 􏼑 � 0.

(63)

We can see that all the solutions of the second factor
provide solutions of (8) with y5 � y3 which are not valid.
(e solution x3 � (1/2) provides the following solution:

x3, y3( 􏼁 �
1
2
, y3􏼒 􏼓,

x4, y4( 􏼁 �
1
2
, −

1
4y3

􏼠 􏼡,

x5, y5( 􏼁 �
1
2
,
1 − 4y

2
3

8y3
􏼠 􏼡.

(64)

In this solution, p4 is on L′ and L′ is the bisector line of
the segment with endpoints p1 and p2. (is completes the
proof.

We note that the first solution in (62) and the solution in
(64) coincide when y5 � (1 − 4y2

3)/(8y3). □

4.4. <ree Zeros at the Vertices of an Equilateral Triangle.
Let p1, p2, and p3 be at the vertices of an equilateral triangle.
Without loss of generality, we can assume that y3 > 0; then,
the positions of the zeros are p1 � 0, p2 � 1,
p3 � (1/2) + (

�
3

√
/2)i, p4 � x4 + y4i, and p5 � x5 + y5i.

Since y3 ≠ 0, all the isochronous configurations of this
type are given by (eorem 5. By substituting (x3, y3) �

((1/2), (
�
3

√
/2)) into equation 􏽥g72 � 0 and solving the

resulting equation, we get the following solutions:

x5 �
1
2
,

y5 � −
x5 − 1

�
3

√ ,

y5 �
x5�
3

√ ,

y5 �
1 ±

��������������

− 12x
2
5 + 12x5 + 1

􏽱

2
�
3

√ .

(65)

(e first three solutions provide the following valid
solutions of (8) with (x4, y4) � (x40, y40):

x4, y4( 􏼁 �
1
2
,
2y5 +

�
3

√

4
�
3

√
y5 − 2

􏼠 􏼡,

x5, y5( 􏼁 �
1
2
, y5􏼒 􏼓,

x4, y4( 􏼁 �
x5

2x5 − 1
,

�
3

√
x5 − 1( 􏼁

6x5 − 3
􏼠 􏼡,

x5, y5( 􏼁 � x5, −
x5 − 1

�
3

√􏼠 􏼡,

x4, y4( 􏼁 �
x5

2x5 − 1
,

x5�
3

√
2x5 − 1( 􏼁

􏼠 􏼡,

x5, y5( 􏼁 � x5,
x5�
3

√􏼠 􏼡.

(66)

(e last solution provides solutions of (8) satisfying
condition K3; thus, the solution (x4, y4) � (x40, y40) is not
defined in this case. Finally, the solutions of (8) with
(x4, y4) � (x

(⋆,1)
4 , y

(⋆,1)
4 ) and (x5, y5) � (x

(⋆,1)
5 , y⋆5 ) are not

defined when (x3, y3) � ((1/2), (
�
3

√
/2)) because d � 0.

Analyzing the shape of the solutions of (66), we see that,
in the first solution of (66), the zeros p4 and p5 are on the
median of the triangle that passes through the vertex p3, in
the second solution of (66), the zeros p4 and p5 are on the
median passing through the vertex p2, and in the third
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solution, p4 and p5 are on the median passing through the
vertex p1. We note that when y5 � − (

�
3

√
/2), the first so-

lution of (66) is a square of vertices p1, p2, p3, and p5 and p4
at its center.

We have proved the following result.

Lemma 5. Assume that the configuration [p1, . . . , p5] is
isochronous. <e following statements hold.

(a) If p1, p2, and p3 are at the vertices of an equilateral
triangle, then p4 and p5 are in one of the medians of
the triangle, and therefore, p1, p2, p3, p4, and p5
satisfy statements of Lemma 4.

(b) <ere exists three different one-parameter families of
configurations with three zeros at the vertices of a
given equilateral triangle and two zeros in a median of
the triangle, one for each median. If the vertices of the
equilateral triangle are p1 � 0, p2 � 1, and p3 � (1/
2) + i(

�
3

√
/2), then these three one-parameter families

of configurations are given by p4 � x4 + iy4 and p5 �

x5 + iy5 with (x4, y4), (x5, y5) given in (66).

We have plotted the phase portrait of the isochronous
vector fields associated to the configurations given by
Lemma 5(b) for many values of the variable that acts as a
parameter. After analyzing the obtained results, we con-
jecture the following.

(i) If (x4, y4) and (x5, y5) are given by the first solution
in (66), then the phase portrait of the isochronous
configuration has star topology when y5 < (1/
(2

�
3

√
)) and fork topology when y5 > (1/(2

�
3

√
))

(ii) If (x4, y4) and (x5, y5) are given by the second
solution in (66), then the phase portrait of the
isochronous configuration has star topology when
x5 < (1/2) and fork topology when x5 > (1/2)

(iii) If (x4, y4) and (x5, y5) are given by the third so-
lution in (66), then the phase portrait of the iso-
chronous configuration has fork topology when
x5 < (1/2) and star topology when x5 > (1/2)

4.5. <ree Zeros at the Vertices of an Isosceles Triangle.
Let p1, p2, and p3 be at the vertices of an isosceles triangle.
Without loss of generality, we can assume that the positions
of the zeros are p1 � 0, p2 � 1, p3 � (1/2) + y3i,
p4 � x4 + y4i, and p5 � x5 + y5i with y3 > 0.

Since y3 ≠ 0, all the isochronous configurations of this
type are given by (eorem 5. From (eorem 5(d), the so-
lutions of (5) with (x4, y4) � (x

(⋆,1)
4 , y

(⋆,1)
4 ) and (x5, y5) �

(x
(⋆,1)
5 , y⋆5 ) become

x3, y3( 􏼁 �
1
2
, y3􏼒 􏼓,

x4, y4( 􏼁 �
1
2
, −

1
4y3

􏼠 􏼡,

x5, y5( 􏼁 �
1
2
,
1 − 4y

2
3

8y3
,􏼠 􏼡.

(67)

From(eorem 5(c), we obtain the two-parameter family
of solutions

x3, y3( 􏼁 �
1
2
, y3􏼒 􏼓,

x4, y4( 􏼁 �
1
2
,

y3 + y5

4y3y5 − 1
􏼠 􏼡,

x5, y5( 􏼁 �
1
2
, y5􏼒 􏼓.

(68)

(is solution corresponds to the configuration given by
(eorem 3(d). We note that the solutions (67) and (68)
coincide when

y5 �
1 − 4y

2
3

8y3
. (69)

From (eorem 5(b), we know the existence of up to
six different two-parameter families of solutions with
x5 ≠ (1/2), (x4, y4) � (x40, y40), and y5 � y5(y3, x5) sat-
isfying 􏽥g72 � 0. (e exact number of such families will
depend on the values of y3 and x5. Unfortunately,
equation 􏽥g72 � 0 for the isosceles triangle configurations
cannot be solved explicitly. We can solve it numerically
by setting the values of the parameters y3 and x5. Hence,
we have proved the following result.

Lemma 6. Assume thatX is isochronous and that p1, p2, and
p3 are at the vertices of an isosceles triangle. Let p1 � 0,
p2 � 1, and p3 � (1/2) + iy3 with y3 > 0 be the vertices of the
isosceles triangle. <en, the following statements hold.

(a) <ere exist up to six different two-parameter families
of isochronous configurations with x5 ≠ (1/2),
(x4, y4) � (x40, y40), and y5 � y5(y3, x5) satisfying
􏽥g72 � 0

(b) <ere exists the two-parameter family given by (68)
(c) <ere exists the additional one-parameter family

given by (67)

We note that configurations given in statements (b) and
(c) coincide when

y5 �
1 − 4y

2
3

8y3
. (70)

To give some examples of how the families given by
Lemma 6 are, now we will analyze numerically the families
of solutions of 􏽥g72 � 0 with x5 ≠ (1/2) for two particular
values of y3. We have chosen y3 � (1/25), which provides a
zero near p3 � (1/2) (i.e., the configuration with p3 at the
midpoint of the line segment joining p1 and p2), and
y3 � (9/10), which provides a zero near p3 � (

�
3

√
/2) (i.e.,

the configuration with p1, p2, and p3 at the vertices of an
equilateral triangle).

First, fixing the value of y3 � y30, we find the values of x5
where the number of solutions y5 � y5(y30, x5) can change
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by solving numerically the following system of polynomial
equations:

􏽥g72 � 0,

d􏽥g72

dy5
� 0.

(71)

Let x5 � αi for i � 1, . . . , n denote the values of x5
corresponding to the solutions of (1), and let α0 � − ∞ and
αn+1 �∞. For all i � 0, . . . , n, we find the number of so-
lutions of equation 􏽥g72 � 0 for a value x5 ∈ (αi, αi+1) by
solving numerically the polynomial equation 􏽥g72 � 0. We
note that due to the symmetry of the configuration, it is
sufficient to consider values of x5 < (1/2). Finally, to un-
derstand how the families of solutions are related, we
compute numerically the solutions of 􏽥g72 � 0 for values of x5
near the bifurcation values αi for i � 1, . . . , n. Here, we only
give the solution at a value x5 ∈ (αi, αi+1) for all i � 0, . . . , n

and at x5 � αi for all i � 1, . . . , n.(ese are the results that we
have obtained.

Case: y3 � (1/25)

Equation 􏽥g72 � 0 with y3 � (1/25) has the following
families of solutions.

(i) Two one-parameter families of solutions
y5 � y5((1/25), x5) when x5 ∈ (α0, α1) with α0 �

− ∞ and α1 � − 0.878799 . . .

(ii) (ree solutions y5 � y5((1/25), x5) when x5 � α1

(iii) Four one parameter families of solutions y5 � y5
((1/25), x5) when x5 ∈ (α1, α2) with α2 �

− 0.126632 . . .

(iv) Five solutions y5 � y5((1/25), x5) when x5 � α2
(v) Six one-parameter families of solutions

y5 � y5((1/25), x5) when x5 ∈ (α2, α3) with α3 � 0
(vi) Four one-parameter families of solutions

y5 � y5((1/25), x5) when x5 � α3
(vii) Six one-parameter families of solutions y5 �

y5((1/25), x5) when x5 ∈ (α3, α4) with α4 �

0.0258965 . . .

(viii) Five solutions y5 � y5((1/25), x5) when x5 � α4
(ix) Four solutions y5 � y5((1/25), x5) when x5 ∈ (α4,

α5) with α5 � (1/2)

Now, we give the isochronous configurations p1 � 0,
p2 � 1, p3 � (1/2) + i(1/25), p4 � x4 + iy4, and p5 � x5 +

iy5 at a given value x5 in each interval (αi, αi+1) with i �

0, . . . , 5 and at x5 � αi with i � 1, . . . , 5. We will use the
following notation: we denote the families of solutions by fi

for i � 1, . . . , 6, and the notation fij denotes a solution from
which we bifurcate the two families fi and fj.

(i) If x5 � − 1, then the two solutions of 􏽥g72 � 0
provide the isochronous configurations with

f1: x4, y4( 􏼁 � (1.841263521, 3.376637013), x5, y5( 􏼁 � (− 1, − 0.1950042462),

f2: x4, y4( 􏼁 � (15.61743666, 13.23676750), x5, y5( 􏼁 � (− 1, 7.575957509).
(72)

(e phase portrait associated to the isochronous
vector field given by f1 has the fork topology, and
the one given by f2 has the star topology.

(ii) If x5 � α1, then the solutions of 􏽥g72 � 0 provide the
isochronous configurations with

f1: x4, y4( 􏼁 � (1.848444615, 3.317980858), x5, y5( 􏼁 � α1, − 0.1654776458( 􏼁,

f34: x4, y4( 􏼁 � (1.011696918, − 0.001515843709), x5, y5( 􏼁 � α1, 2.797454186( 􏼁,

f2: x4, y4( 􏼁 � (16.58023312, 13.70216652), x5, y5( 􏼁 � α1, 7.491373514( 􏼁.

(73)
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(e phase portraits associated to the isochronous
vector fields given by f1 and f34 have the fork to-
pology, and the one given byf2 has the star topology.

(iii) If x5 � − (1/2), then the four solutions of 􏽥g72 � 0
provide the isochronous configurations with

f1: x4, y4( 􏼁 � (1.867414547, 3.115470806), x5, y5( 􏼁 � −
1
2
, − 0.08264979077􏼒 􏼓,

f3: x4, y4( 􏼁 � (− 0.1232221041, − 0.05229100159), x5, y5( 􏼁 � −
1
2
, 1.064778767􏼒 􏼓,

f4: x4, y4( 􏼁 � (6.907958078, − 2.048938409), x5, y5( 􏼁 � −
1
2
, 4.644413617􏼒 􏼓,

f2: x4, y4( 􏼁 � (20.94262385, 15.91785952), x5, y5( 􏼁 � −
1
2
, 7.206590362􏼒 􏼓.

(74)

Note that, from the family f34 given in (ii), bi-
furcate two families of solutions that we denote by
f3 and f4.
(e phase portraits associated to the isochronous
vector fields given by f1, f3, and f4 have the fork

topology, and the one given by f2 has the star
topology.

(iv) If x5 � α2, then the five solutions of 􏽥g72 � 0 pro-
vide the isochronous configurations with

f56: x4, y4( 􏼁 � (− 0.4495265553, 0.9614485424), x5, y5( 􏼁 � α2, − 0.05979381213( 􏼁,

f1: x4, y4( 􏼁 � (1.878034978, 2.879573610), x5, y5( 􏼁 � α2, − 0.01757256381( 􏼁,

f3: x4, y4( 􏼁 � (− 0.03560001187, − 0.03645028451), x5, y5( 􏼁 � α2, 0.4152272923( 􏼁,

f4: x4, y4( 􏼁 � (16.27721421, − 6.804796775), x5, y5( 􏼁 � α2, 5.385171289( 􏼁,

f2: x4, y4( 􏼁 � (30.02386019, 20.82877636), x5, y5( 􏼁 � α2, 6.890094940( 􏼁.

(75)

(e phase portraits associated to the isochronous
vector fields given by f1, f3, f4, and f56 have the
fork topology, and the one given by f2 has the star
topology.

(v) If x5 � − (1/20), then the six solutions of 􏽥g72 � 0
provide the isochronous configurations with

f5: x4, y4( 􏼁 � (− 0.1579167010, 0.4639398830), x5, y5( 􏼁 � −
1
20

, − 0.04620281861􏼒 􏼓,

f6: x4, y4( 􏼁 � (− 0.6577053363, 1.452342544), x5, y5( 􏼁 � −
1
20

, − 0.01438561542􏼒 􏼓,

f1: x4, y4( 􏼁 � (1.878710630, 2.825402973), x5, y5( 􏼁 � −
1
20

, − 0.006635633004􏼒 􏼓,

f3: x4, y4( 􏼁 � (0.001439481676, 0.002093770845), x5, y5( 􏼁 � −
1
20

, 0.2910582405􏼒 􏼓,

f4: x4, y4( 􏼁 � (19.64404887, − 8.633711360), x5, y5( 􏼁 � −
1
20

, 5.509564199􏼒 􏼓,

f2: x4, y4( 􏼁 � (33.35628670, 22.67993219), x5, y5( 􏼁 � −
1
20

, 6.819934961􏼒 􏼓.

(76)

(e phase portraits associated to the isochronous
vector fields given by f1, f3, f4, f5, and f6 have

the fork topology, and the one given by f2 has the
star topology.
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(vi) If x5 � 0, then the four solutions of 􏽥g72 � 0 provide
the three isochronous configurations with

f3: x4, y4( 􏼁 � (0.02289908105, 0.05342007123), x5, y5( 􏼁 � (0, 0.1930349677),

f4: x4, y4( 􏼁 � (22.37646822, − 10.13881729), x5, y5( 􏼁 � (0, 5.587207040),

f2: x4, y4( 􏼁 � (36.06938270, 24.19789721), x5, y5( 􏼁 � (0, 6.773091325).

(77)

(e fourth solution of 􏽥g72 � 0 is (x5, y5) � (0, 0),
and it does not provide an isochronous configu-
ration. At this solution, the three families of so-
lutions y5 � y5((1/25), x5) of 􏽥g72 � 0
corresponding to f5, f6, and f1 coincide.

(e phase portraits associated to the isochronous
vector fields given by f3 and f4 have the fork
topology, and the one given by f2 has the star
topology.

(vii) If x5 � (1/100), then the six solutions of 􏽥g72 � 0
provide the isochronous configurations with

f5: x4, y4( 􏼁 � (− 0.7105285631, 1.616886803), x5, y5( 􏼁 �
1
100

, 0.002419518544􏼒 􏼓,

f6: x4, y4( 􏼁 � (− 0.03179981882, 0.2585482764), x5, y5( 􏼁 �
1
100

, 0.01652281623􏼒 􏼓,

f1: x4, y4( 􏼁 � (1.878769832, 2.781350016), x5, y5( 􏼁 �
1
100

, 0.001277977173􏼒 􏼓,

f3: x4, y4( 􏼁 � (0.02541034717, 0.07171752269), x5, y5( 􏼁 �
1
100

, 0.1670678630􏼒 􏼓,

f4: x4, y4( 􏼁 � (22.98795700, − 10.47759276), x5, y5( 􏼁 �
1
100

, 5.602426971􏼒 􏼓,

f2: x4, y4( 􏼁 � (36.67728304, 24.53909014), x5, y5( 􏼁 �
1
100

, 6.763618187􏼒 􏼓.

(78)

(e phase portraits associated to the isochronous
vector fields given by f1, f3, f4, f5, and f6 have
the fork topology, and the one given by f2 has the
star topology.

(viii) If x5 � α4, then the five solutions of 􏽥g72 � 0 pro-
vide the isochronous configurations with

f5: x4, y4( 􏼁 � (− 0.7213143913, 1.653877238), x5, y5( 􏼁 � α4, 0.006016399475( 􏼁,

f36: x4, y4( 􏼁 � (0.01527596548, 0.1507327875), x5, y5( 􏼁 � α4, 0.08456876555( 􏼁,

f1: x4, y4( 􏼁 � (1.878709929, 2.769422027), x5, y5( 􏼁 � α4, 0.003275093401( 􏼁,

f4: x4, y4( 􏼁 � (24.01178345, − 11.04616649), x5, y5( 􏼁 � α4, 5.626418095( 􏼁,

f2: x4, y4( 􏼁 � (37.69558803, 25.11140165), x5, y5( 􏼁 � α4, 6.748486215( 􏼁.

(79)

(e phase portraits associated to the isochronous
vector fields given by f1, f36, f4, and f5 have the

fork topology, and the one given by f2 has the star
topology.
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(ix) If x5 � (3/10), then the four solutions of 􏽥g72 � 0
provide the isochronous configurations with

f5: x4, y4( 􏼁 � (− 0.8239444869, 2.112991297), x5, y5( 􏼁 �
3
10

, 0.03808849818􏼒 􏼓,

f1: x4, y4( 􏼁 � (1.871423616, 2.543910571), x5, y5( 􏼁 �
3
10

, 0.03043761676􏼒 􏼓,

f4: x4, y4( 􏼁 � (66.70297000, − 35.33061762), x5, y5( 􏼁 �
3
10

, 6.006030328􏼒 􏼓,

f2: x4, y4( 􏼁 � (80.32320661, 49.44048347), x5, y5( 􏼁 �
3
10

, 6.472332652􏼒 􏼓.

(80)

(e phase portraits associated to the isochronous vector
fields given by f1, f4, and f5 have the fork topology, and the
one given by f2 has the star topology.

We note that when x5⟶ (1/2), the solution families
f2 and f4 tend to a solution of 􏽥g72 � 0 with
(x5, y5) � ((1/2), (25/4)). (is solution does not provide a
solution of (8) because D2

1 + D2
2 � 0, and therefore,

(x40, y40) is not defined. Moreover, (x4, y4)⟶ (+∞, +∞)

along the solutions’ families f2 and f4 when x5⟶ (1/2).
On the contrary, the solution families f1 and f5 tend to a
solution of 􏽥g72 � 0 with (x5, y5) � ((1/2), (1/25)). (is
solution does not provide a valid solution because p3 � p5.
In this case, (x4, y4)⟶ (1.855487879, 2.348621176) and
(x4, y4)⟶ (− 0.8554878791, 2.348621176) along the so-
lutions’ families f1 and f5, respectively, when x5⟶ (1/2).

Case: y3 � (9/10):
Equation 􏽥g72 � 0 with y3 � (9/10) has the following

families of solutions.

(i) Two one-parameter families of solutions
y5 � y5((9/10), x5) when x5 ∈ (α0, α1) with
α0 � − ∞ and α1 � − 0.0137965 . . .

(ii) (ree solutions y5 � y5((9/10), x5) when x5 � α1
(iii) Four one-parameter families of solutions

y5 � y5((9/10), x5) when x5 ∈ (α1, α2) with α2 � 0
(iv) Two solutions y5 � y5((9/10), x5) when x5 � α2
(v) Four one-parameter families of solutions

y5 � y5((9/10), x5) when x5 ∈ (α2, α3) with
α3 � (1/2)

Now we give the isochronous configurations p1 � 0,
p2 � 1, p3 � (1/2) + i(9/10), p4 � x4 + iy4, and p5 � x5 +

iy5 at a given value x5 in each interval (αi, αi+1) with i �

0, . . . , 3 and at x5 � αi with i � 1, 2, and 3. As above, fi with
i � 1, . . . , 4 denotes the families of solutions and fij denotes
a solution from which we bifurcate the two families fi and
fj.

(i) If x5 � − (1/2), then two solutions of 􏽥g72 � 0 provide
the isochronous configurations with

f1: x4, y4( 􏼁 � (0.2273153488, 0.1290590866), x5, y5( 􏼁 � −
1
2
, − 0.2873400074􏼒 􏼓,

f2: x4, y4( 􏼁 � (0.2050985302, 0.3874083254), x5, y5( 􏼁 � −
1
2
, 0.8291856821􏼒 􏼓.

(81)

(e phase portrait associated to the isochronous
vector field given by f1 has the fork topology, and
the one given by f2 has the star topology.

(ii) If x5 � α1, then the solutions of 􏽥g72 � 0 provide the
isochronous configurations with

f1: x4, y4( 􏼁 � (− 0.03026264711, − 0.01730520403), x5, y5( 􏼁 � α1, − 0.007886903324( 􏼁,

f2: x4, y4( 􏼁 � (0.06989971864, − 0.1553809110), x5, y5( 􏼁 � α1, 0.01504460688( 􏼁,

f34: x4, y4( 􏼁 � (− 0.1760156610, 0.2985515049), x5, y5( 􏼁 � α1, 0.1098723790( 􏼁.

(82)
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(e phase portrait associated to the isochronous
vector field given by f1 has the fork topology, and
the ones given by f2 and f34 have the star topology.

(iii) If x5 � − (1/100), then the four isochronous con-
figurations are given by

f1: x4, y4( 􏼁 � (− 0.03421033191, − 0.01956401179), x5, y5( 􏼁 � −
1
100

, − 0.005716181684􏼒 􏼓,

f2: x4, y4( 􏼁 � (0.07267869959, − 0.1594371587), x5, y5( 􏼁 � −
1
100

, 0.01081966297􏼒 􏼓,

f3: x4, y4( 􏼁 � (− 0.1515620634, 0.2353327280), x5, y5( 􏼁 � −
1
100

, 0.05238535873􏼒 􏼓,

f4: x4, y4( 􏼁 � (− 0.1965428001, 0.3621824381), x5, y5( 􏼁 � −
1
100

, 0.1660213488􏼒 􏼓.

(83)

Note that, from the family f34 given in (ii), bifurcate
two families of solutions that we denote by f3 and
f4.
(e phase portrait associated to the isochronous
vector field given by f1 has the fork topology, and

the ones given by f2, f3, and f4 have the star
topology.

(iv) If x5 � 0, then the two solutions of 􏽥g72 � 0 provide a
unique isochronous configuration with

f4: x4, y4( 􏼁 � (− 0.2129653240, 0.4198478686), x5, y5( 􏼁 � (0, 0.2147580631). (84)

(e other solution of 􏽥g72 � 0 is (x5, y5) � (0, 0),
and it does not provide isochronous configurations.
At this solution, the three families of solutions y5 �

y5((9/10), x5) of 􏽥g72 � 0 corresponding to f1, f2,
and f3 coincide.

(e phase portrait associated to the isochronous
vector field given by f4 has the star topology.

(v) If x5 � (3/10), then the four solutions of 􏽥g72 � 0
provide a unique isochronous configuration with

f3: x4, y4( 􏼁 � (0.2692037018, − 0.1777437971), x5, y5( 􏼁 �
3
10

, − 0.3420260454􏼒 􏼓,

f2: x4, y4( 􏼁 � (0.3264300730, − 0.3521082462), x5, y5( 􏼁 �
3
10

, − 0.1880843834􏼒 􏼓,

f1: x4, y4( 􏼁 � (− 0.8646324249, − 0.4976775204), x5, y5( 􏼁 �
3
10

, 0.1697279313􏼒 􏼓,

f4: x4, y4( 􏼁 � (− 0.9156482786, 1.092880633), x5, y5( 􏼁 �
3
10

, 0.3673099827􏼒 􏼓.

(85)

(e phase portrait associated to the isochronous vector
field given by f1 has the fork topology, and the ones given by
f2, f3, and f4 have the star topology.

We note that when x5⟶ (1/2), the solution families
f1 and f4 tend to a solution of 􏽥g72 � 0 with
(x5, y5) � ((1/2), (5/18)). (is solution does not provide a

solution of (8) because D2
1 + D2

2 � 0, and therefore,
(x40, y40) is not defined. Moreover, (x4, y4)⟶ (0, 0)

along the solutions’ families f1 and f4 when
x5⟶ (1/2). (e solution families f2 and f3 tend to the
following solutions, which provide isochronous
configurations:
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Figure 2: (e isochronous configurations with (x3, y3, x5) � (− (8/10), 1, − (2/10)). (a) (x4, y4, y5) ≈ (− 4.312, − 1.551, − 2.856). (b)
(x4, y4, y5) ≈ (− 1.164, 1.452, − 0.952). (c) (x4, y4, y5) ≈ (1.199, 2.531, − 0.322). (d) (x4, y4, y5) ≈ (− 0.260, 0.069, − 0.045). (e)
(x4, y4, y5) ≈ (0.036, − 0.556, 0.282).
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f3: x4, y4( 􏼁 �
1
2
, − 0.2183503419􏼒 􏼓, x5, y5( 􏼁 �

1
2
, − 0.3816496581􏼒 􏼓,

f2: x4, y4( 􏼁 �
1
2
, − 0.3816496581􏼒 􏼓, x5, y5( 􏼁 �

1
2
, − 0.2183503419􏼒 􏼓.

(86)

(e phase portraits associated to the isochronous vector
fields given by f2 and f3 have the star topology.

4.6. More Examples. In the previous sections, we have
studied particular cases where the configuration of some of
the zeros is symmetric. By proceeding as in the last section,

we could analyze the isochronous configurations when p1,
p2, and p3 are in an arbitrary triangle obtaining in this way
isochronous configurations having no symmetries. For ex-
ample, if x3 � − (8/10), y3 � 1, and x5 � − (2/10), then we
obtain five isochronous configurations that are given by

x4, y4( 􏼁 � (− 4.312509774, − 1.551253710), x5, y5( 􏼁 � −
2
10

, − 2.856970625􏼒 􏼓,

x4, y4( 􏼁 � (− 1.164499645, 1.452969805), x5, y5( 􏼁 � −
2
10

, − 0.9524134598􏼒 􏼓,

x4, y4( 􏼁 � (1.199397231, 2.531219547), x5, y5( 􏼁 � −
2
10

, − 0.3220182178􏼒 􏼓,

x4, y4( 􏼁 � (− 0.2605712264, − 0.06904887457), x5, y5( 􏼁 � −
2
10

, − 0.04520614246􏼒 􏼓,

x4, y4( 􏼁 � (0.03635581518, − 0.5567650011), x5, y5( 􏼁 � −
2
10

, 0.2820385942􏼒 􏼓.

(87)

In Figure 2, we show the phase portraits of the isochronous
vector fields associated to these configurations with their
corresponding 5-trees. We observe that the phase portrait of
the first and the third configurations have the star topology,
while the other three have the fork topology. Note that, in the
second configuration, three zeros are in the bisector line of the
other two, and this does not happen in the fourth and the fifth.

For the moment, we have not been able to find examples
of isochronous vector fields having a phase portrait with line
topology whose zeros are not aligned. We conjecture that
there are no isochronous vector fields having a phase portrait
with line topology whose zeros are not aligned.
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