LIMIT CYCLES OF PLANAR DISCONTINUOUS PIECEWISE LINEAR HAMILTONIAN SYSTEMS WITHOUT EQUILIBRIA SEPARATED BY REDUCIBLE CUBICS

REBIHA BENTERKI ${ }^{1}$, JOHANA JIMENEZ ${ }^{2}$ AND JAUME LLIBRE ${ }^{3}$

Abstract

Due to their applications to many physical phenomena during these last decades the interest for studying the discontinuous piecewise differential systems has increased strongly. The limit cycles play a main role in the study of any planar differential system, but to determine the maximum number of limits cycles that a class of planar differential systems can have is one of the main problems in the qualitative theory of the planar differential systems. Thus in general to provide a sharp upper bound for the number of crossing limit cycles that a given class of piecewise linear differential system can have is a very difficult problem. In this paper we characterize the existence and the number of limit cycles for the piecewise linear differential systems formed by linear Hamiltonian systems without equilibria and separated by a reducible cubic curve, formed either by an ellipse and a straight line, or by a parabola and a straight line parallel to the tangent at the vertex of the parabola. Hence we have solved the extended 16th Hilbert problem to this class of piecewise differential systems.

1. Introduction and statement of the main Results

Andronov, Vitt and Khaikin [1] started around 1920's the study of the piecewise differential systems mainly motivated for their applications to some mechanical systems, and nowadays these systems still continue to receive the attention of many researchers. Thus these differential systems are widely used to model processes appearing in mechanics, electronics, economy, etc., see for instance the books [6] and [28], and the survey [25], as well as the hundreds of references cited there.

A limit cycle is a periodic orbit of the differential system isolated in the set of all periodic orbits of the system. Limit cycles are important in the study of the differential systems. Thus limit cycles have played and are playing a main role for explaining physical phenomena, see for instance the limit cycle of van der Pol equation [26, 27], or the one of the BelousovZhavotinskii model [2, 29], etc.

The extended 16th Hilbert problem, that is, to find an upper bound for the maximum number of limit cycles that a given class of differential systems can exhibit, is in general an unsolved problem. Only for very few classes of differential system this problem has been solved. For the class of discontinuous piecewise differential systems here studied, we can obtain its solution by using the first integrals provided by the Hamiltonians of the systems which form the discontinuous piecewise differential systems. For the statement of the classical 16th Hilbert problem see [14, 16, 20].

Of course in order that a discontinuous piecewise differential system be defined on the discontinuous line, which separates the different differential systems forming the discontinuous piecewise differential system, we follow the rules of Filippov, see [9].

[^0]The discontinuous piecewise differential systems formed by linear differential systems can exhibit two kinds of limit cycles, the crossing and the sliding limit cycles, the first are the ones which only contain isolated points of the line of discontinuity, and the second the ones which contains arcs of the line of discontinuity. Here we only study the crossing limit cycles.

The simplest class of discontinuous piecewise differential systems are the planar ones formed by two pieces separated by a straight line having a linear differential system in each piece. Several authors have tried to determine the maximum number of crossing limit cycles for this class of discontinuous piecewise differential systems. Thus, in one of the first papers dedicated to this problem, Giannakopoulos and Pliete [12] in 2001, showed the existence of discontinuous piecewise linear differential systems with two crossing limit cycles. Then, in 2010 Han and Zhang [13] found other discontinuous piecewise linear differential systems with two crossing limit cycles and they conjectured that the maximum number of crossing limit cycles for discontinuous piecewise linear differential systems with two pieces separated by a straight line is two. But in 2012 Huan and Yang [15] provided numerical evidence of the existence of three crossing limit cycles in this class of discontinuous piecewise linear differential systems. In 2012, Llibre and Ponce [22] inspired by the numerical example of Huan and Yang, proved for the first time that there are discontinuous piecewise linear differential systems with two pieces separated by a straight line having three crossing limit cycles. Later on, other authors obtained also three crossing limit cycles for discontinuous piecewise linear differential systems with two pieces separated by a straight line, see Braga and Mello [7] in 2013, Buzzi, Pessoa and Torregrosa [8] in 2013, Liping Li [20] in 2014, Freire, Ponce and Torres [11] in 2014, and Llibre, Novaes and Teixeira [21] in 2015. But proving that discontinuous piecewise linear differential systems separated by a straight line have at most three crossing limit cycles is an open problem. Also some discontinuous piecewise differential systems separated by two parallel straight lines have been studied, see for instance [23, 24].

Recently, in $[4,17,18]$ the authors have studied the extended 16th Hilbert problem to discontinuous piecewise linear differential centers separated by either conics, or cubics. However for the discontinuous piecewise linear Hamiltonian systems without equilibrium points, it was proven in [10] that such systems separated by two parallel straight lines can have at most one crossing limit cycle. In [5] it was proven that there is an example of two crossing limit cycles when these systems are separated by three parallel straight lines, and they can also have two crossing limit cycles if the curve of separation is a parabola, and three crossing limit cycles if the curve of separation is either an ellipse or a hyperbola. In [3] the authors provided the maximum number of crossing limit cycles when the curve of separation of these systems is an irreducible cubic.

In this paper we give the solution of the extended 16th Hilbert problem for discontinuous piecewise linear differential Hamiltonian systems without equilibrium points separated by two different reducible cubic curves, formed either by an ellipse and a straight line, or by a parabola and a straight line parallel to the tangent at the vertex of the parabola. More precisely, we provide the maximum number of crossing limit cycles for these systems, when these limit cycles intersected with the cubic of separation in four points.

Note that if a crossing limit cycle of a discontinuous piecewise linear differential Hamiltonian systems without equilibrium points intersects in two points the discontinuity line formed either by an ellipse and a straight line, or by a parabola and a straight line parallel to the tangent at the vertex of the parabola, this crossing limit cycle must intersect in two points either the straight line, or the ellipse or the parabola, and these types of crossing limit cycles already have been studied in $[10,5]$, as we have mention previously. For this reason in this paper we study the crossing limit cycles with intersect in four points the reducible cubic formed by either by an ellipse and a straight line, or by a parabola and a straight line parallel to the tangent at the vertex of the parabola.

Doing an affine change if the reducible cubic is formed by an ellipse and a straight line we can transform it into the reducible cubic

$$
\Gamma_{k}=\left\{(x, y) \in \mathbb{R}^{2}:(x-k)\left(x^{2}+y^{2}-1\right)=0, k \geq 0\right\}
$$

formed by the circle $x^{2}+y^{2}=1$ and the straight line $x=k$ with $k \geq 0$. In a similar way if the reducible cubic is formed by a parabola and a straight line parallel to the tangent at the vertex of the parabola we can transform it into the reducible cubic

$$
\Sigma_{k}=\left\{(x, y) \in \mathbb{R}^{2}:(y-k)\left(y-x^{2}\right)=0, k \in \mathbb{R}\right\},
$$

formed by the parabola $y=x^{2}$ and the straight line $y=k$ with $k \in \mathbb{R}$
First in Subsection 1.1 we shall consider the piecewise linear Hamiltonian systems without equilibrium points separated by the reducible cubic Γ_{k}, and after in Subsection 1.2 we shall consider the piecewise linear Hamiltonian systems without equilibrium points separated by the reducible cubic Σ_{k}.

The next result is proved in [10].
Lemma 1. An arbitrary linear differential Hamiltonian system in \mathbb{R}^{2} without equilibrium points can be written as

$$
\dot{x}=-\lambda b x+b y+\mu, \quad \dot{y}=-\lambda^{2} b x+\lambda b y+\sigma,
$$

where $\sigma \neq \lambda \mu$ and $b \neq 0$. The Hamiltonian function of this Hamiltonian system is

$$
\begin{equation*}
H(x, y)=-\frac{1}{2} \lambda^{2} b x^{2}+\lambda b x y-\frac{b}{2} y^{2}+\sigma x-\mu y . \tag{1}
\end{equation*}
$$

Of course $H(x, y)$ is a first integral of the Hamiltonian system.
1.1. The line of discontinuity is a circle and a straight line. We denote by \mathcal{C}_{1} the class of planar discontinuous piecewise linear Hamiltonian systems without equilibrium points separated by Γ_{k} with $k>1$. Let \mathcal{C}_{2} be the class of planar discontinuous piecewise linear Hamiltonian systems without equilibrium points separated by Γ_{k} with $k=1$. For these two classes we get the following three zones

$$
\begin{align*}
& Z^{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}, \\
& Z^{2}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}>1 \text { and } x<k\right\}, \tag{2}\\
& Z^{3}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}>1 \text { and } x>k\right\} .
\end{align*}
$$

Now we denote by \mathcal{C}_{3} the class of piecewise linear Hamiltonian systems without equilibrium points separated by Γ_{k} with $0 \leq k<1$. In this case Γ_{k} separate the plane into four zones

$$
\begin{align*}
& Z^{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}>1 \text { and } x>k\right\}, \\
& Z^{2}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}>1 \text { and } x<k\right\}, \\
& Z^{3}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1 \text { and } x<k\right\}, \tag{3}\\
& Z^{4}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1 \text { and } x>k\right\} .
\end{align*}
$$

We have three different configurations of crossing limit cycles for the class \mathcal{C}_{3}. The first one which will be denoted by Conf 1 are the limit cycles formed by four pieces of orbits, such that in each zone of (3) we have one piece of orbit of the linear Hamiltonian system without equilibria leaving in that zone, see Figure 4A.

The second configuration of limit cycles denoted by Conf 2 are the limit cycles formed by pieces of orbits belonging to the three zones either Z^{1}, Z^{2} and Z^{4}, or Z^{1}, Z^{2} and Z^{3}. We are going to consider only the three zones Z^{1}, Z^{2} and Z^{4}, because by a similar analysis we obtain the crossing limit cycles intersecting the three zones Z^{1}, Z^{2} and Z^{3}, for this configuration see Figure 4B.

Finally the third configuration namely Conf $\mathbf{3}$ is formed by pieces of orbits belonging to the three zones either Z^{1}, Z^{3} and Z^{4}, or Z^{2}, Z^{3} and Z^{4}. For the same reason as in

Figure 1. (A) The three zones for the class \mathcal{C}_{1}. (B) The four zones for the class \mathcal{C}_{3}.
the second configuration, we are going to consider only the three zones Z^{1}, Z^{3} and Z^{4}, see Figure 4c.

We notice that we can obtain two new configurations by combining the three previous ones, such as Conf 1 and Conf 2, Conf 1 and Conf 3. Note that we cannot have the configuration Conf 2 and Conf 3, and Conf 1, Conf 2 and Conf 3.

Our main result on the crossing limit cycles of the discontinuous piecewise linear Hamiltonian systems without equilibria when the discontinuity line is formed by a circle and a straight line is the following one.

Theorem 1. The following statements hold for the discontinuous piecewise linear Hamiltonian systems without equilibria when the discontinuity line is formed by a circle and a straight line. The maximum number of crossing limit cycles for the class
(i) \mathcal{C}_{1} or \mathcal{C}_{2} is three and this maximum is reached in Example 1 for the class \mathcal{C}_{1} and in Example 2 for the class \mathcal{C}_{2}, see Figure 3A and Figure 3B, respectively;
(ii) \mathcal{C}_{3} with Conf 1 is three and this maximum is reached in Example 3, see Figure 4A;
(iii) \mathcal{C}_{3} with Conf 2 is three and this maximum is reached in Example 4, see Figure 4B;
(iv) \mathcal{C}_{3} with Conf 3 is three and this maximum is reached in Example 5, see Figure 4c;
(v) \mathcal{C}_{3} with Conf 1 and Conf 2 simultaneously is six and this maximum is reached in Example 6, see Figure 5;
(vi) \mathcal{C}_{3} with Conf 1 and Conf 3 simultaneously is six and this maximum is reached in Example 7, see Figure 6.

Theorem 1 is proved in section 2.
1.2. The line of discontinuity is a parabola and a straight line parallel to the tangent at the vertex of the parabola. Let $\mathcal{C}_{\Sigma_{k^{-}}}$be the class of discontinuous piecewise linear Hamiltonian systems without equilibria separated by $\Sigma_{k^{-}}$with $k<0$. In this case we have following three zones in the plane

$$
\begin{aligned}
& Z_{\Sigma_{k^{-}}}^{1}=\left\{(x, y) \in \mathbb{R}^{2}: y>x^{2}\right\}, \\
& Z_{\Sigma_{k^{-}}}^{2}=\left\{(x, y) \in \mathbb{R}^{2}: y<x^{2} \text { and } y>k\right\}, \\
& Z_{\Sigma_{k^{-}}}^{3}=\left\{(x, y) \in \mathbb{R}^{2}: y<x^{2} \text { and } y<k\right\} .
\end{aligned}
$$

Let $\mathcal{C}_{\Sigma_{0}}$ be the class of discontinuous piecewise linear Hamiltonian systems without equilibria separated by Σ_{k} with $k=0$. When the discontinuity curve is Σ_{0} we have following four

Figure 2. (A) Three zones for the class $\mathcal{C}_{k^{-}}$. (B) Four zones for the class \mathcal{C}_{0}. (C) Five zones for the class $\mathcal{C}_{k^{+}}$.
zones in the plane

$$
\begin{aligned}
& Z_{\Sigma_{0}}^{1}=\left\{(x, y) \in \mathbb{R}^{2}: y>x^{2}\right\}, \\
& Z_{\Sigma_{0}}^{2}=\left\{(x, y) \in \mathbb{R}^{2}: y<x^{2} \text { and } y>0, x<0\right\}, \\
& Z_{\Sigma_{0}}^{3}=\left\{(x, y) \in \mathbb{R}^{2}: y<x^{2} \text { and } y<0\right\}, \\
& Z_{\Sigma_{0}}^{4}=\left\{(x, y) \in \mathbb{R}^{2}: y<x^{2} \text { and } y>0, x>0\right\} .
\end{aligned}
$$

In this class we have two configurations of crossing limit cycles, first crossing limit cycles with Conf 4 which are constituted by pieces of orbits of the four Hamiltonian systems considered, see Figure 8A. Second crossing limit cycles with Conf 5 which intersect only three zones, in this case we have two options, first we have the case where the crossing limit cycles are formed by parts of orbits of the Hamiltonian systems in the zones $Z_{\Sigma_{0}}^{1}, Z_{\Sigma_{0}}^{3}$ and $Z_{\Sigma_{0}}^{4}$ and second the crossing limit cycles that intersect only the three zones $Z_{\Sigma_{0}}^{1}, Z_{\Sigma_{0}}^{2}$ and $Z_{\Sigma_{0}}^{3}$, without loss of generality we can consider the first case because the study of the second is the same, see Figure 8B. Here we observe that it is not possible to have crossing limit cycles with Conf 5 that satisfy those two cases simultaneously, because the orbits of the Hamiltonian system in the zone $Z_{\Sigma_{0}}^{3}$ would not be nested. In statement (ii) of Theorem 2 we study the discontinuous piecewise linear Hamiltonian systems without equilibria in $\mathcal{C}_{\Sigma_{0}}$ which have crossing limit cycles with Conf 4 and Conf 5 separately, and in statement (iii) of Theorem 2 we study the case when the crossing limit cycles with Conf 4 and Conf 5 appear simultaneously.

Let $\mathcal{C}_{\Sigma_{k+}}$ be the class of discontinuous piecewise linear Hamiltonian systems without equilibria separated by Σ_{k} with $k>0$, in this case we have the following five zones in the plane

$$
\begin{aligned}
Z_{\Sigma_{k+}}^{1} & =\left\{(x, y) \in \mathbb{R}^{2}: y>x^{2} \text { and } y>k\right\}, \\
Z_{\Sigma_{k^{+}}}^{2} & =\left\{(x, y) \in \mathbb{R}^{2}: y<x^{2} \text { and } y>k, x<-\sqrt{k}\right\}, \\
Z_{\Sigma_{k^{+}}}^{3} & =\left\{(x, y) \in \mathbb{R}^{2}: y>x^{2} \text { and } y<k\right\}, \\
Z_{\Sigma_{k^{+}}}^{4} & =\left\{(x, y) \in \mathbb{R}^{2}: y<x^{2} \text { and } y>k, x>\sqrt{k}\right\}, \\
Z_{\Sigma_{k^{+}}}^{5} & =\left\{(x, y) \in \mathbb{R}^{2}: x^{2}<y<k\right\} .
\end{aligned}
$$

In this class we have six different configurations of crossing limit cycles.
First we have crossing limit cycles such that are formed by pieces of orbits of the four Hamiltonian systems in the zones $Z_{\Sigma_{k^{+}}}^{1}, Z_{\Sigma_{k^{+}}}^{5}, Z_{\Sigma_{k^{+}}}^{3}$ and $Z_{\Sigma_{k^{+}}}^{4}$, or crossing limit cycles
formed by pieces of orbits of the four Hamiltonian systems in the zones $Z_{\Sigma_{k+}}^{1}, Z_{\Sigma_{k+}+}^{2}, Z_{\Sigma_{k++}}^{3}$ and $Z_{\Sigma_{k^{+}}}^{5}$, namely crossing limit cycles with Conf 6^{+}and crossing limit cycles with Conf 6^{-}, respectively, see Figure 11. In statement (ii) of Theorem 2 we study the crossing limit cycles with Conf 6^{+}because the study for the case of crossing limit cycles with Conf 6^{-}is the same. Second we have crossing limit cycles with Conf 7, which intersect the three zones $Z_{\Sigma_{k^{+}}}^{1}, Z_{\Sigma_{k^{+}}}^{5}$ and $Z_{\Sigma_{k^{+}}}^{3}$, see Figure 9B. Third we have the crossing limit cycles with Conf 8, which intersect the zones $Z_{\Sigma_{k^{+}}}^{1}, Z_{\Sigma_{k^{+}}}^{2}, Z_{\Sigma_{k^{+}}}^{3}$ and $Z_{\Sigma_{k^{+}}}^{4}$, see Figure 9C. And finally we have the crossing limit cycles formed by pieces of orbits of the three Hamiltonian systems in the zones $Z_{\Sigma_{k+}}^{1}, Z_{\Sigma_{k+}}^{3}$ and $Z_{\Sigma_{k+}}^{4}$, or crossing limit cycles formed by pieces of orbits of the three Hamiltonian systems in the zones $Z_{\Sigma_{k^{+}}}^{1}, Z_{\Sigma_{k^{+}}}^{2}$ and $Z_{\Sigma_{k^{+}}}^{3}$, namely crossing limit cycles with Conf 9^{+}and crossing limit cycles with Conf 9^{-}, respectively, see Figure 9D. Without loss of generality in statement (ii) of Theorem 2 we study the crossing limit cycles with Conf 9^{+}because the study by the crossing limit cycles with Conf 9^{-}is the same. We observe that there are no crossing limit cycles that intersect the five zones $Z_{\Sigma_{k+}}^{i}$ for $i=1,2,3,4,5$. Then in statement (ii) of Theorem 2 we study the crossing limit cycles with Conf 6^{+}, Conf 7, Conf 8 and Conf 9^{+}separately. In statements (iii)-(ix) of Theorem 2 we study the discontinuous piecewise linear Hamiltonian systems without equilibria in the class $\mathcal{C}_{\Sigma_{k}+}$ which have crossing limit cycles with two configurations simultaneously. Finally in statements (x)-(xii) we study the discontinuous piecewise linear Hamiltonian systems without equilibria in the class $\mathcal{C}_{\Sigma_{k+}}$ which have crossing limit cycles with three different configurations simultaneously.

Our main result on the crossing limit cycles of the discontinuous piecewise linear Hamiltonian systems without equilibria when the discontinuity curve is formed by a parabola and a straight line parallel to the tangent at the vertex of the parabola is the following one.

Theorem 2. The following statements hold for the discontinuous piecewise linear Hamiltonian systems without equilibria when the discontinuity line is formed by a parabola and a straight line parallel to the tangent at the vertex of the parabola. The maximum number of crossing limit cycles for the class
(i) $\mathcal{C}_{\Sigma_{k^{-}}}$is three and this maximum is reached, see Figure 7;
(ii) $\mathcal{C}_{\Sigma_{0}}$ or $\mathcal{C}_{\Sigma_{k}+}$ with either Conf 4, or Conf 5 , or Conf 6^{+}, or $\operatorname{Conf} 7$, or Conf 8, or Conf 9^{+}is three, respectively, see Figure 8A-Figure 9D;
(iii) $\mathcal{C}_{\Sigma_{k}+}$ with Conf 4 and Conf 5 simultaneously is six, see Figure 10;
(iv) $\mathcal{C}_{\Sigma_{k+}}$ with Conf 6^{+}and Conf 6^{-}simultaneously is six, see Figure 11;
(v) $\mathcal{C}_{\Sigma_{k}+}$ with Conf 6^{-}and Conf 7 simultaneously is six, see Figure 12A;
(vi) $\mathcal{C}_{\Sigma_{k}+}$ with Conf 6^{+}and Conf 8 simultaneously is six, see Figure 12B;
(vii) $\mathcal{C}_{\Sigma_{k}+}$ with Conf 6^{+}and $\operatorname{Conf} 9^{+}$simultaneously is six, see Figure 13;
(viii) $\mathcal{C}_{\Sigma_{k+}}$ with Conf 7 and Conf 8 simultaneously is six, see Figure 14;
(ix) $\mathcal{C}_{\Sigma_{k+}}$ with Conf 8 and Conf 9^{+}simultaneously is six, see Figure 15;
(x) $\mathcal{C}_{\Sigma_{k+}}$ with Conf 6^{-}, Conf 7 and Conf 8 simultaneously is nine, see Figure 16;
(xi) $\mathcal{C}_{\Sigma_{k}+}$ with Conf 6^{+}, Conf 8 and Conf 9^{+}simultaneously is nine, see Figure 17;
(xii) $\mathcal{C}_{\Sigma_{k}+}$ with Conf 6^{-}, Conf 6^{+}and Conf 8 simultaneously is six with 2 (resp. 3) limit cycles with Conf $6^{-}, 3$ (resp. 2) limit cycles with Conf 6^{+}and 1 limit cycle with Conf 8, Figure 18 (resp. 19).

Theorem 2 is proved in section 3 .

Figure 3. (A) The three limit cycles of the discontinuous piecewise differential system (5). (B) The three limit cycles of the discontinuous piecewise differential system (6).

2. Proof of Theorem 1

Proof of statement (i) of Theorem 1. We have to prove that the maximum number of crossing limit cycles of the class \mathcal{C}_{1} intersecting the curve Γ_{k} in four points is three. In a similar way we should prove the statement for the classes \mathcal{C}_{2} and \mathcal{C}_{3}.

By Lemma 1 we can consider the discontinuous piecewise linear Hamiltonian systems

$$
\dot{x}=-\lambda_{i} b_{i} x+b_{i} y+\mu_{i}, \quad \dot{y}=-\lambda_{i}^{2} b_{i} x+\lambda_{i} b_{i} y+\sigma_{i}, \text { in the zone } Z_{i}, \text { with } i=1,2,3 .
$$

with $b_{i} \neq 0$ and $\sigma_{i} \neq \lambda_{i} \mu_{i}$, and the three zones Z_{i} are defined in (2). Their corresponding Hamiltonian first integrals are as (1)

$$
H_{i}(x, y)=-\left(\lambda_{i}^{2} b_{i} / 2\right) x^{2}+\lambda_{i} b_{i} x y-\left(b_{i} / 2\right) y^{2}+\sigma_{i} x-\mu_{i} y, \text { with } i=1,2,3 .
$$

In order to have a crossing limit cycle which intersects Γ_{k} in the points $A_{i}=\left(x_{i}, y_{i}\right)$, $B_{i}=\left(z_{i}, w_{i}\right), C_{i}=\left(k, f_{i}\right)$ and $D_{i}=\left(k, h_{i}\right)$, where A_{i} and B_{i} are points on the circle $x^{2}+y^{2}-1=0$ and $i=1,2,3$, these points must satisfy the following system

$$
\begin{align*}
& e_{1}=H_{1}\left(x_{i}, y_{i}\right)-H_{1}\left(z_{i}, w_{i}\right)=0, \\
& e_{2}=H_{2}\left(x_{i}, y_{i}\right)-H_{2}\left(k, f_{i}\right)=0, \\
& e_{3}=H_{2}\left(z_{i}, w_{i}\right)-H_{2}\left(k, h_{i}\right)=0, \\
& e_{4}=H_{3}\left(k, f_{i}\right)-H_{3}\left(k, h_{i}\right)=0, \tag{4}\\
& x_{i}^{2}+y_{i}^{2}-1=0, \\
& z_{i}^{2}+w_{i}^{2}-1=0 .
\end{align*}
$$

The points A_{i} and B_{i} can take the form $A_{i}=\left(\cos r_{i}, \sin r_{i}\right), B_{i}=\left(\cos s_{i}, \sin s_{i}\right)$, and due to the fact that they satisfy equation e_{1}, then by solving $e_{1}=0$ when $i=1$ for the parameter σ_{1}, we get

$$
\begin{aligned}
\sigma_{1}= & \frac{1}{2\left(\cos r_{1}-\cos s_{1}\right)}\left(b _ { 1 } \operatorname { s i n } (r _ { 1 } - s _ { 1 }) \left(-\left(\lambda_{1}^{2}-1\right) \sin \left(r_{1}+s_{1}\right)-2 \lambda_{1}\right.\right. \\
& \left.\left.\cos \left(r_{1}+s_{1}\right)\right)+2 \mu_{1}\left(\sin r_{1}-\sin s_{1}\right)\right) .
\end{aligned}
$$

Figure 4. (A) The three limit cycles of Conf 1 of the discontinuous piecewise differential system (7). (B) The three limit cycles of Conf 2 of the discontinuous piecewise differential system (9). (C) The three limit cycles of Conf 3 of the discontinuous piecewise differential system (11).

Since the points $A_{2}=\left(\cos r_{2}, \sin r_{2}\right), B_{2}=\left(\cos s_{2}, \sin s_{2}\right)$ also satisfy equation $e_{1}=0$, we obtain the following expression of the parameter μ_{1}

$$
\begin{aligned}
\mu_{1}= & \frac{1}{4\left(\cos \left(\frac{1}{2}\left(r_{1}-2 r_{2}+s_{1}\right)\right)-\cos \left(\frac{1}{2}\left(r_{1}+s_{1}-2 s_{2}\right)\right)\right)}\left(b_{1} \csc \left(\frac{r_{1}-s_{1}}{2}\right)\right. \\
& \left(-\lambda_{1} \cos r_{1} \sin \left(2 r_{2}\right)+\cos r_{2} \sin \left(r_{1}-s_{1}\right)\left(\left(\lambda_{1}^{2}-1\right) \sin \left(r_{1}+s_{1}\right)+2 \lambda_{1}\right.\right. \\
& \left.\cos \left(r_{1}+s_{1}\right)\right)-\left(\lambda_{1}^{2}-1\right) \cos r_{1} \sin \left(r_{2}-s_{2}\right) \sin \left(r_{2}+s_{2}\right)+\lambda_{1}^{2}\left(-\cos s_{2}\right) \\
& \sin \left(r_{1}-s_{1}\right) \sin \left(r_{1}+s_{1}\right)+\cos s_{2} \sin \left(r_{1}-s_{1}\right) \sin \left(r_{1}+s_{1}\right)-\lambda_{1} \sin \left(2 r_{1}\right) \\
& \cos s_{2}+\lambda_{1} \cos r_{1} \sin \left(2 s_{2}\right)-\lambda_{1}^{2} \cos ^{2} r_{2} \cos s_{1}+\cos s_{1}\left(\lambda_{1} \sin \left(2 r_{2}\right)\right. \\
& \left.\left.\left.-\sin ^{2} r_{2}+\left(\sin s_{2}-\lambda_{1} \cos s_{2}\right)^{2}\right)+\lambda_{1} \sin \left(2 s_{1}\right) \cos s_{2}\right)\right) .
\end{aligned}
$$

Likewise the points $A_{3}=\left(\cos r_{3}, \sin r_{3}\right), B_{3}=\left(\cos s_{3}, \sin s_{3}\right)$ satisfy equation $e_{3}=0$, by solving it for the parameter λ_{1} and we get the two values $\lambda_{1}^{1,2}=\left(A \pm 2 \sqrt{2} \sin \left(\frac{1}{2}\left(r_{1}-r_{2}+s_{1}-\right.\right.\right.$ $\left.\left.\left.s_{2}\right)\right) \sqrt{B}\right) / C$ given in the appendix. Now if we suppose that the points $A_{4}=\left(\cos r_{4}, \sin r_{4}\right)$,

Figure 5. Three limit cycles of Conf 1 and three limit cycles of Conf 2 for the class of the discontinuous piecewise differential system (12).

Figure 6. Three limit cycles of Conf 1 and three limit cycles of Conf $\mathbf{3}$ for the class of the discontinuous piecewise differential system (13).
$B_{4}=\left(\cos s_{4}, \sin s_{4}\right)$ satisfy equation $e_{3}=0$, then we obtain $b_{1}=0$. This is a contradiction to the assumptions. Therefore we have proved that the maximum number of crossing limit cycles for the class \mathcal{C}_{1} intersecting the curve Γ_{k} in four points is three.

Now we shall provide differential systems of class $\mathcal{C}_{1}, \mathcal{C}_{2}$ and \mathcal{C}_{3} separated by Γ_{k} with three limit cycles.

We will explain the method for constructing an example of three crossing limit cycles intersecting Γ_{k} in four points, and by a similar way we build the remaining examples.

Example 1: Three crossing limit cycles for the class \mathcal{C}_{1}. Here we consider the three zones defined in (2) for $k=2.5$. We consider the Hamiltonian systems

$$
\begin{align*}
& \dot{x}=-0.02 . . x+0.2 . . y+0.316667 . ., \dot{y}=0.02 . . y-0.002 . . x \text { in } Z^{1}, \\
& \dot{x}=10.8 . . x+18 y-3, \dot{y}=-6.48 . . x-10.8 . . y \text { in } Z^{2} \tag{5}\\
& \dot{x}=5 . x-3 y-1.38889 . ., \dot{y}=8.33333 . . x-5 y \text { in } Z^{3} .
\end{align*}
$$

The first integrals of the linear Hamiltonian systems (5) are

$$
\begin{aligned}
& H_{1}(x, y)=-0.001 . . x^{2}+0.02 . . x y-0.1 . . y^{2}-0.316667 . . y \\
& H_{2}(x, y)=-3.24 . . x^{2}-10.8 . . x y-9 y^{2}+3 y \\
& H_{3}(x, y)=4.16667 . . x^{2}-5 x y+1.5 y^{2}+1.38889 . . y
\end{aligned}
$$

respectively.
The discontinuous piecewise linear differential system formed by the linear Hamiltonian systems (5) has exactly three crossing limit cycles, because the system of equations (4) has the three real solutions $S_{i}=\left(x_{i}, y_{i}, z_{i}, w_{i}, f_{i}, h_{i}\right)$ for $i=1,2,3$, where

$$
\begin{aligned}
& S_{1}=(0.244811 . .,-0.969571 . ., 0.767202 . ., 0.641406 . .,-2.05982 . .,-0.60685 . .), \\
& S_{2}=(0.390566 . .,-0.920575 . ., 0.912879 . ., 0.40823 .,-1.8861 . .,-0.780563 . .) \\
& S_{3}=(0.535321 . .,-0.844649 . ., 0.979509 . ., 0.201401 . .,-1.62201 . ., 1.04466 . .)
\end{aligned}
$$

Then these three limit cycles are drawn in Figure 3A.
Example 2: Three crossing limit cycles for the class \mathcal{C}_{2}. We consider the three zones defined in (2) with $k=1$. We consider the Hamiltonian systems

$$
\begin{align*}
& \dot{x}=15 x-3 y-11.25 . ., \dot{y}=75 . x-15 . y+22.5 \text { in } Z^{1} \\
& \dot{x}=4 x+20 y-3, \dot{y}=-0.8 x-4 y+6 \text { in } Z^{2} \tag{6}\\
& \dot{x}=-0.4 x+4 y+0.6, \dot{y}=-0.04 x+0.4 y-1 \text { in } Z^{3} .
\end{align*}
$$

The first integrals of the Hamiltonian systems (6) are

$$
\begin{aligned}
& H_{1}(x, y)=37.5 . . x^{2}-15 x y+22.5 . . x+\frac{3 y^{2}}{2}+11.25 . . y \\
& H_{2}(x, y)=-0.4 x^{2}-4 x y+6 x-10 y^{2}+3 y \\
& H_{3}(x, y)=-0.02 . . x^{2}+0.4 . . x y-x-2 y^{2}-0.6 . . y
\end{aligned}
$$

respectively.
The discontinuous piecewise linear Hamiltonian system (6) has exactly three crossing limit cycles, because the system of equations (4) has the three real solutions $S_{i}=\left(x_{i}, y_{i}, z_{i}, w_{i}, f_{i}, h_{i}\right)$ for $i=1,2,3$, where

$$
\begin{aligned}
& S_{1}=(0.559983 . ., 0.828504 . ., 0.619895 . .,-0.784685 . ., 0.878709 . .,-0.978709 . .), \\
& S_{2}=(0.755607 . ., 0.655025 . ., 0.754335 . .,-0.65649 . ., 0.7,-0.8), \\
& S_{3}=(0.903742 . ., 0.881627 . .,-0.471947 . ., 0.428077 . ., 0.462348 . .,-0.562348 . .) .
\end{aligned}
$$

These solutions provide three crossing limit cycles of the piecewise linear differential Hamiltonian system (4), which are illustrate in Figure 3B. This completes the proof of statement (i).

To complete the proof of statements (ii)-(iv) of Theorem 1 we shall provide discontinuous piecewise linear Hamiltonian systems without equilibrium points separated by the cubic curve Γ_{k} with three limit cycles for the class \mathcal{C}_{3} of Conf 1; Conf 2; Conf 3.

Example 3: Three crossing limit cycles of Conf 1 for the class \mathcal{C}_{3}. For this class we consider the four zones defined in (3). We consider the Hamiltonian systems

$$
\begin{align*}
& \dot{x}=-6.8 . . x+4 y-2, \dot{y}=-11.56 x+6.8 y-2 \text { in } Z^{1}, \\
& \dot{x}=1.06216 . . x+2 y-1.28925 . ., \dot{y}=-0.564089 . . x-1.06216 . . y+3.92358 . . \text { in } Z^{2}, \tag{7}\\
& \dot{x}=-4 x+2 y-2.8 ., \dot{y}=-8 x+4 y-1 \text { in } Z^{3}, \\
& \dot{x}=121.33 . . x+3 y+508.239 . ., \dot{y}=-4907.01 . . x-121.33 . . y+611.017 . . \text { in } Z^{4} .
\end{align*}
$$

The linear Hamiltonian systems in (7) have the first integrals

$$
\begin{aligned}
& H_{1}(x, y)=-5.78 . . x^{2}+6.8 . . x y-2 x-2 y^{2}+2 y \\
& H_{2}(x, y)=-0.282045 . . x^{2}-1.06216 . . x y+3.92358 . . x-y^{2}+1.28925 . . y, \\
& H_{3}(x, y)=-4 x^{2}+4 x y-x-y^{2}+2.8 . . y \\
& H_{4}(x, y)=-2453.5 . . x^{2}-121.33 . . x y+611.017 . . x-1.5 y^{2}-508.239 . . y
\end{aligned}
$$

respectively.
The discontinuous piecewise linear Hamiltonian system (7) has exactly three crossing limit cycles intersecting Γ_{k} in the points $A_{i}=\left(x_{i}, y_{i}\right), B_{i}=\left(z_{i}, w_{i}\right), C_{i}=\left(k, f_{i}\right)$ and $D_{4}=\left(k, h_{i}\right)$ for $i=1,2,3$, where A_{i} and B_{i} are points on the circle $x^{2}+y^{2}-1=0$, because the system of equations

$$
\begin{align*}
& H_{1}\left(x_{i}, y_{i}\right)-H_{1}\left(k, f_{i}\right)=0 \\
& H_{2}\left(z_{i}, w_{i}\right)-H_{2}\left(k, f_{i}\right)=0, \\
& H_{3}\left(z_{i}, w_{i}\right)-H_{3}\left(k, h_{i}\right)=0, \\
& H_{4}\left(x_{i}, y_{i}\right)-H_{4}\left(k, h_{i}\right)=0, \tag{8}\\
& x_{i}^{2}+y_{i}^{2}-1=0, \\
& z_{i}^{2}+w_{i}^{2}-1=0,
\end{align*}
$$

with $k=0$, has only three real solutions $S_{i}=\left(x_{i}, y, i, z_{i}, w_{i}, f_{i}, h_{i}\right)$ for $i=1,2,3$, where

$$
\begin{aligned}
& S_{1}=(0.859402 . ., 0.5113 . .,-0.573716 . ., 0.819054 . ., 3.12047 . .,-0.724745 . .), \\
& S_{2}=(0.795991 . ., 0.605309 . .,-0.403541 . ., 0.914962 . ., 2.8 . .,-0.5 . .) \\
& S_{3}=(0.708174 . ., 0.706038 . .,-0.208691 . ., 0.977982 . ., 2.3798 . .,-0.207107 . .) .
\end{aligned}
$$

These three limit cycles are drawn in Figure 4A. This completes the proof of statement (ii).
Example 4: Three crossing limit cycles of Conf 2 for the class \mathcal{C}_{3}. In (3), we work only with the three zones Z^{1}, Z^{2} and Z^{4}, with $k=0$, and we consider the Hamiltonian systems

$$
\begin{align*}
& \dot{x}=19-18 x-3 y, \dot{y}=-68+108 x+18 y \text { in } Z^{1} \\
& \dot{x}=-3.88389 x-2 y+5.99641 . ., \dot{y}=7.54231 . . x+3.88389 . . y-7.99048 . . \text { in } Z^{2}, \tag{9}\\
& \dot{x}=6+2 x-2 y, \dot{y}=-2+2 x-2 y \text { in } Z^{4}
\end{align*}
$$

The first integrals of the Hamiltonian systems (9) are

$$
\begin{aligned}
& H_{1}(x, y)=54 x^{2}+18 x y-68 x+\frac{3 y^{2}}{2}-19 y \\
& H_{2}(x, y)=3.77115 . x^{2}+3.88389 . . x y-7.99048 . . x+y^{2}-5.99641 . . y \\
& H_{4}(x, y)=x^{2}-2 x y-2 x+y^{2}-6 y
\end{aligned}
$$

respectively
The discontinuous piecewise linear differential system formed by the linear Hamiltonian systems (9) has exactly three crossing limit cycles, because the system of equations

$$
\begin{align*}
& H_{1}\left(x_{i}, y_{i}\right)-H_{1}\left(k, f_{i}\right)=0 \\
& H_{1}\left(z_{i}, w_{i}\right)-H_{1}\left(k, h_{i}\right)=0, \\
& H_{2}\left(z_{i}, w_{i}\right)-H_{2}\left(k, f_{i}\right)=0 \\
& H_{4}\left(x_{i}, y_{i}\right)-H_{4}\left(z_{i}, w_{i}\right)=0, \tag{10}\\
& x_{i}^{2}+y_{i}^{2}-1=0 \\
& z_{i}^{2}+w_{i}^{2}-1=0
\end{align*}
$$

for $k=0$ has the three real solutions $S_{i}=\left(x_{i}, y_{i}, z_{i}, w_{i}, f_{i}, h_{i}\right)$ for $i=1,2,3$, where

$$
\begin{aligned}
& S_{1}=(0.597407 . ., 0.801938 . ., 0.29046 . ., 0.956887 . ., 4.80282 . ., 1.19718 . .), \\
& S_{2}=(0.736107 . ., 0.676866 . ., 0.161682 . ., 0.986843 . ., 4.86511 . ., 1.13489 . .) \\
& S_{3}=(0.831057 . ., 0.556188 . ., 0.0773343 . ., 0.997005 . ., 4.92764 . ., 1.07236 . .) .
\end{aligned}
$$

These three limit cycles are drawn in Figure 4B. This completes the proof of statement (iii).

Example 5: Three crossing limit cycles of Conf 3 for the class \mathcal{C}_{3}. Here we consider the three zones Z^{1}, Z^{3} and Z^{4} defined in (3) with $k=0$.

$$
\begin{align*}
\dot{x}= & -\frac{43 x}{2}+43 y+6, \dot{y}=-\frac{43 x}{4}+\frac{43 y}{2}-2, \text { in } Z^{1}, \\
\dot{x}= & -5.01788 . . x+10 y+1.37209 \ldots, \dot{y}=-2.51792 . . x+5.01788 . . y \tag{11}\\
& -0.356396 . ., \text { in } Z^{4} \\
\dot{x}= & -5.2 . x+13 y+1.78427 . ., \dot{y}=-2.08 . . x+5.2 . . y+7, \text { in } Z^{3} .
\end{align*}
$$

The first integrals of the Hamiltonian systems (11) are

$$
\begin{aligned}
& H_{1}(x, y)=-\frac{43 x^{2}}{8}+\frac{43 x y}{2}-2 x-\frac{43 y^{2}}{2}-6 y \\
& H_{2}(x, y)=-1.25896 . . x^{2}+5.01788 . . x y-0.356396 . . x-5 y^{2}-1.37209 . . y \\
& H_{3}(x, y)=-1.04 . . x^{2}+5.2 x y+7 x-\frac{13 y^{2}}{2}-1.78427 . . y
\end{aligned}
$$

respectively.
The discontinuous piecewise linear differential system formed by the linear Hamiltonian systems (11) has exactly three crossing limit cycles, because the system of equations (4) has the solutions $S_{i}=\left(x_{i}, y_{i}, z_{i}, w_{i}, f_{i}, h_{i}\right)$ for $i=1,2,3$, where

$$
\begin{aligned}
& S_{1}=(0.92178 . .,-0.387712 . ., 0.478499 . ., 0.878088 . .,-0.974503 . ., 0.7) \\
& S_{2}=(\{0.988715 . .,-0.149808 ., 0.647429 . ., 0.762126 . .,-0.819428 . ., 0.544924 . .) \\
& S_{3}=(0.980618 . ., 0.195928 . ., 0.855019 . ., 0.518597 . .,-0.616986 . ., 0.342483 . .)
\end{aligned}
$$

These three limit cycles are drawn in Figure 4c. This completes the proof of statement (iv).

Proof of statement (v) of Theorem 1. In order to have limit cycles with Conf 1 and Conf 2 simultaneously, the points of intersection of the limit cycles with Conf 1 with Γ_{k} must satisfy system (8) with $k=0$, and the points of intersection of the limit cycles with Conf 2 with Γ_{k} must satisfy system (10). In statement (ii) and (iii) of Theorem 1 we proved that the maximum number of limit cycles with Conf 1 and Conf 2 is three, then we know that the upper bound of maximum number of limit cycles with both configurations is six.

Example 6: Six crossing limit cycles for the class \mathcal{C}_{3}, with three limit cycles of Conf 1 and three limit cycles of Conf 2. Here we consider the four zones defined in (3).
(12)

$$
\begin{aligned}
& \dot{x}=-3.37125 . . x-y+3.95604 . ., \dot{y}=11.3653 . . x+3.37125 . . y-11.7972 . . \text { in } Z^{1}, \\
& \dot{x}=-0.121473 . . x-\frac{1}{2} y+2.02017 . ., \dot{y}=0.0295115 . . x+0.121473 . . y-0.684232 . . \text { in } Z^{2}, \\
& \dot{x}=0.328515 . . x+y+3, \dot{y}=-0.107922 . . x-0.328515 . . y-1.29868 . . \text { in } Z^{3}, \\
& \dot{x}=-9.2 x-2.3 y+17, \dot{y}=36.8 x+9.2 y-56 \text { in } Z^{4} .
\end{aligned}
$$

The first integrals of the Hamiltonian systems (12) are

$$
\begin{aligned}
& H_{1}(x, y)=5.68265 . . x^{2}+3.37125 . . x y-11.7972 . . x+\frac{y^{2}}{2}-3.95604 . . y \\
& H_{2}(x, y)=0.0147557 . . x^{2}+0.121473 . . x y-0.684232 . . x+\frac{1}{4} y^{2}-2.02017 . . y \\
& H_{3}(x, y)=-0.0539609 x^{2}-0.328515 x y-1.29868 x-\frac{y^{2}}{2}-3 y \\
& H_{4}(x, y)=18.4 x^{2}+9.2 x y-56 x+1.15 y^{2}-17 y
\end{aligned}
$$

respectively.

For the discontinuous piecewise differential system (13), system (8) with $k=0$, has the three real solutions

$$
\begin{aligned}
& S_{1}=(0.224513 . .,-0.974471 . .,-0.98,0.198997,8.21167 . .,-0.231664 . .) \\
& S_{2}=(0.359928 . .,-0.93298 . .,-0.812094 . ., 0.583526 . ., 7.77944 . ., 0.239163 . .), \\
& S_{2}=(0.503738 . .,-0.863856 . .,-0.41,0.912086 . ., 7.31697 . ., 0.743252 . .)
\end{aligned}
$$

and system (10), has the three real solutions

$$
\begin{aligned}
& S_{1}=(0.65827 . .,-0.752782 . ., 0.093398 . ., 0.995629 . ., 6.82398 . ., 1.25669 . .), \\
& S_{2}=(0.825187 . .,-0.56486 . ., 0.309897 ., 0.95077 . ., 6.31504 . ., 1.76563 . .) \\
& S_{2}=(0.986374 . .,-0.164516 . ., 0.630863 . ., 0.775894 . ., 5.87164 . ., 2.20904 . .)
\end{aligned}
$$

These six limit cycles are presented in Figure 5. This completes the proof of statement (v).

Proof of statement (vi) of Theorem 1. To get limit cycles with Conf 1 and Conf $\mathbf{3}$ simultaneously, the points of intersection of the limit cycles with Conf 1 and Conf $\mathbf{3}$ with Γ_{k} must satisfy system (8) and (4), respectively, with $k=0$. In statement (ii) and (iv) of Theorem 1 we showed that the maximum number of limit cycles with Conf 1 and Conf $\mathbf{3}$ is three, then we know that the upper bound of maximum number of limit cycles with both configurations is six.

Example 7: Six crossing limit cycles for the class \mathcal{C}_{3}, with three limit cycles of Conf 1 and three others of Conf 3. Here we consider the four zones defined in (3) with $k=0$ with the following Hamiltonian systems
(13)

$$
\begin{aligned}
& \dot{x}=-8.8 x+22 y-3, \dot{y}=-3.52 x+8.8 y-4 \text { in } Z^{1} \\
& \dot{x}=30.9637 . . x+30 y+0.9 . ., \dot{y}=-31.9584 . . x-30.9637 . . y+24.1071 . . \text { in } Z^{2}, \\
& \dot{x}=0.713131 . . x+0.9 y-0.162525 . ., \dot{y}=-0.565063 . . x-0.713131 . . y+0.620587 . . \text { in } Z^{3}, \\
& \dot{x}=-8.37872 . . x+22 y-3.97708 . ., \dot{y}=-3.19104 . . x+8.37872 . . y-3.05205 . . \text { in } Z^{4} .
\end{aligned}
$$

The first integrals of the Hamiltonian systems (13) are

$$
\begin{aligned}
& H_{1}(x, y)=-1.76 x^{2}+8.8 x y-4 x-11 y^{2}+3 y \\
& H_{2}(x, y)=-13.0028 . . x^{2}-27.9315 . . x y+24.0252 . . x-15 y^{2}-0.9 y \\
& H_{3}(x, y)=-0.282531 . . x^{2}-0.713131 . . x y+0.620587 . . x-0.45 . . y^{2}+0.162525 . . y, \\
& H_{4}(x, y)=-1.59552 . . x^{2}+8.37872 . . x y-3.05205 . . x-11 y^{2}+3.97708 . . y
\end{aligned}
$$

respectively.
For the discontinuous piecewise differential system (13), system (8) with $k=0$, has the three real solutions

$$
\begin{aligned}
& S_{1}=(0.859956 . .,-0.510369 . ., 0.89,0.45596 . ., 1.232 . .,-0.895261 . .), \\
& S_{2}=(0.925727 . .,-0.378193 . .,-0.818732 . ., 0.574176 . ., 1.14562 . .,-0.79916 . .), \\
& S_{3}=(0.969836 . .,-0.243758 . .,-0.7,0.714143 . ., 1.05112 . .,-0.694334 . .),
\end{aligned}
$$

and system (4), has the three real solutions

$$
\begin{aligned}
& S_{1}=(0.995048 . .,-0.0993944 . ., 0.167496 . ., 0.985873 . ., 0.937707 . .,-0.576541 . .), \\
& S_{2}=(0.997733 . .0 .0672986 . ., 0.41691 . ., 0.908948 . ., 0.799221 . .,-0.438055 . .), \\
& S_{3}=(0.954489 . ., 0.298247 . ., 0.659704 . ., 0.751525 . .0 .621163 . .,-0.259997 . .)
\end{aligned}
$$

These six limit cycles are drawn in Figure 6. This completes the proof of statement (vi).

Figure 7. Three limit cycles of system (16) intersecting Σ_{-1}.

Figure 8. (A) Three limit cycles with Conf 4 of system (17). (B) Three limit cycles with Conf 5 of system (19).

3. Proof of Theorem 2

We will prove the statement (i). For the other statements the proof is completely analogous.

Proof of statement (i) of Theorem 2. From Lemma 1 we can consider an arbitrary piecewise linear differential Hamiltonian system in $\mathcal{C}_{\Sigma_{k^{-}}}$formed by the following three linear Hamiltonian systems without equilibrium points

$$
\begin{equation*}
\dot{x}=-\lambda_{i} b_{i} x+b_{i} y+\mu_{i}, \quad \dot{y}=-\lambda_{i}^{2} b_{i} x+\lambda_{i} b_{i} y+\sigma_{i} \text { in } Z_{\Sigma_{k^{-}}}^{i}, \tag{14}
\end{equation*}
$$

for $i=1,2,3$, where $\sigma_{i} \neq \lambda_{i} \mu_{i}$ and $b_{i} \neq 0$. The Hamiltonian functions associated to these systems are

$$
H_{i}(x, y)=-\frac{1}{2} \lambda_{i}^{2} b_{i} x^{2}+\lambda_{i} b_{i} x y-\frac{b_{i}}{2} y^{2}+\sigma_{i} x-\mu_{i} y, \text { in } Z_{\Sigma_{k^{-}}}^{i} \text { for } i=1,2,3 .
$$

Figure 9. (A) Three limit cycles with Conf 6^{+}of system (22). (B) Three limit cycles with Conf 7 of system (24). (C) Three limit cycles with Conf 8 of system (26). (D) Three limit cycles with Conf 9^{+}of system (27).

In order to have a limit cycle which intersects $\Sigma_{k^{-}}$in four different points $\left(x_{1}, x_{1}^{2}\right),\left(x_{2}, x_{2}^{2}\right)$, $\left(x_{3}, k\right)$ and $\left(x_{4}, k\right)$, these points must satisfy the system

$$
\begin{align*}
& H_{1}\left(x_{1}, x_{1}^{2}\right)-H_{1}\left(x_{2}, x_{2}^{2}\right)=0 \\
& H_{2}\left(x_{2}, x_{2}^{2}\right)-H_{2}\left(x_{3}, k\right)=0 \\
& H_{3}\left(x_{3}, k\right)-H_{3}\left(x_{4}, k\right)=0, \tag{15}\\
& H_{4}\left(x_{4}, k\right)-H_{4}\left(x_{1}, x_{1}^{2}\right)=0, \quad k<0 .
\end{align*}
$$

Assume that the discontinuous piecewise linear differential system (14) has four limit cycles. For this we must suppose that system (15) has four real solutions, namely $\left(x_{1}^{(i)}, x_{2}^{(i)}, x_{3}^{(i)}, x_{4}^{(i)}\right)$, with $i=1,2,3,4$. We consider that $\left(x_{1}^{(1)}, x_{2}^{(1)}, x_{3}^{(1)}, x_{4}^{(1)}\right)$ satisfies system (15), solving the first and the third equations we obtain the expressions of the parameters μ_{1} and σ_{3}, respectively

$$
\begin{aligned}
\mu_{1} & =\frac{2 \sigma_{1}-b_{1}\left(x_{1}^{(1)}+x_{2}^{(1)}-\lambda_{1}\right)\left(\left(x_{1}^{(1)}\right)^{2}+\left(x_{2}^{(1)}\right)^{2}-\left(x_{1}^{(1)}+x_{2}^{(1)}\right) \lambda_{1}\right)}{2\left(x_{1}^{(1)}+x_{2}^{(1)}\right)} \\
\sigma_{3} & =\frac{1}{2} b_{3} \lambda_{3}\left(-2 k+\left(x_{3}^{(1)}+x_{4}^{(1)}\right) \lambda_{3}\right)
\end{aligned}
$$

When we suppose the second solution of system (15) we fixed the points $\left(x_{1}^{(2)}, x_{2}^{(2)}, x_{3}^{(2)}\right)$ and by third equation we get that $x_{4}^{(2)}=x_{3}^{(1)}+x_{4}^{(1)}-x_{3}^{(2)}$. Moreover from the first equation of system (15) we get

$$
\begin{aligned}
\sigma_{1}= & \frac{b_{1}\left(x_{1}^{(2)}-x_{2}^{(2)}\right)}{2\left(x_{1}^{(2)}-x_{2}^{(2)}+\frac{-\left(x_{1}^{(2)}\right)^{2}+\left(x_{2}^{(2)}\right)^{2}}{x_{1}^{(1)}+x_{2}^{(1)}}\right)}\left((x _ { 1 } ^ { (2) } + x _ { 2 } ^ { (2) } - \lambda _ { 1 }) \left(\left(x_{1}^{(2)}\right)^{2}+\left(\left(x_{2}^{(2)}\right)^{2}\right.\right.\right. \\
& \left.\left.-\left(x_{1}^{(2)}+x_{2}^{(2)}\right) \lambda_{1}\right)-\frac{\left(x_{1}^{(2)}+x_{2}^{(2)}\right)\left(x_{1}^{(1)}+x_{2}^{(1)}-\lambda_{1}\right)\left(\left(x_{1}^{(1)}\right)^{2}+\left(x_{2}^{(1)}\right)^{2}-\left(x_{1}^{(1)}+x_{2}^{(1)}\right) \lambda_{1}\right)}{x_{1}^{(1)}+x_{2}^{(1)}}\right)
\end{aligned}
$$

If we suppose a third solution, we fixed the points $\left(x_{1}^{(3)}, x_{2}^{(3)}, x_{3}^{(3)}\right)$, and from the third equation we get that $x_{4}^{(3)}=x_{3}^{(1)}+x_{4}^{(1)}-x_{3}^{(3)}$. By first equation we obtain

$$
\begin{aligned}
\lambda_{1}= & \left(\left(x_{1}^{(1)}\right)^{3}\left(x_{1}^{(2)}+x_{2}^{(2)}-x_{1}^{(3)}-x_{2}^{(3)}\right)+\left(x_{1}^{(1)}\right)^{2} x_{2}^{(1)}\left(x_{1}^{(2)}+x_{2}^{(2)}-x_{1}^{(3)}-x_{2}^{(3)}\right)+\left(x_{2}^{(1)}\right)^{3}\left(x_{1}^{(2)}\right.\right. \\
& \left.+x_{2}^{(2)}-x_{1}^{(3)}-x_{2}^{(3)}\right)+\left(x_{1}^{(2)}+x_{2}^{(2)}\right)\left(x_{1}^{(3)}+x_{2}^{(3)}\right)\left(\left(x_{1}^{(2)}\right)^{2}+\left(x_{2}^{(2)}\right)^{2}-\left(x_{1}^{(3)}\right)^{2}-\left(x_{2}^{(3)}\right)^{2}\right) \\
& +x_{2}^{(1)}\left(-\left(x_{1}^{(2)}\right)^{3}-\left(x_{1}^{(2)}\right)^{2} x_{2}^{(2)}-x_{1}^{(2)}\left(x_{2}^{(2)}\right)^{2}-\left(x_{2}^{(2)}\right)^{3}+\left(x_{1}^{(3)}\right)^{3}+\left(x_{1}^{(3)}\right)^{2} x_{2}^{(3)}+x_{1}^{(3)}\left(x_{2}^{(3)}\right)^{2}\right. \\
& \left.+\left(x_{2}^{(3)}\right)^{3}\right)+x_{1}^{(1)}\left(-\left(x_{1}^{(2)}\right)^{3}-\left(x_{1}^{(2)}\right)^{2} x_{2}^{(2)}-x_{1}^{(2)}\left(x_{2}^{(2)}\right)^{2}-\left(x_{2}^{(2)}\right)^{3}+\left(x_{1}^{(3)}\right)^{3}+\left(x_{2}^{(1)}\right)^{2}\left(x_{1}^{(2)}\right.\right. \\
& \left.\left.\left.+x_{2}^{(2)}-x_{1}^{(3)}-x_{2}^{(3)}\right)+\left(x_{1}^{(3)}\right)^{2} x_{2}^{(3)}+x_{1}^{(3)}\left(x_{2}^{(3)}\right)^{2}+\left(x_{2}^{(3)}\right)^{3}\right)\right) /\left(2 \left(\left(x_{1}^{(2)}\right)^{2} x_{1}^{(3)}+x_{1}^{(2)} x_{2}^{(2)} x_{1}^{(3)}\right.\right. \\
& +\left(x_{2}^{(2)}\right)^{2} x_{1}^{(3)}-x_{1}^{(2)}\left(x_{1}^{(3)}\right)^{2}-x_{2}^{(2)}\left(x_{1}^{(3)}\right)^{2}+\left(x_{1}^{(1)}\right)^{2}\left(x_{1}^{(2)}+x_{2}^{(2)}-x_{1}^{(3)}-x_{2}^{(3)}\right)+\left(x_{2}^{(1)}\right)^{2} \\
& \left(x_{1}^{(2)}+x_{2}^{(2)}-x_{1}^{(3)}-x_{2}^{(3)}\right)+\left(x_{1}^{(2)}\right)^{2} x_{2}^{(3)}+x_{1}^{(2)} x_{2}^{(2)} x_{2}^{(3)}+\left(x_{2}^{(2)}\right)^{2} x_{2}^{(3)}-x_{1}^{(2)} x_{1}^{(3)} x_{2}^{(3)} \\
& -x_{2}^{(2)} x_{1}^{(3)} x_{2}^{(3)}-x_{1}^{(2)}\left(x_{2}^{(3)}\right)^{2}-x_{2}^{(2)}\left(x_{2}^{(3)}\right)^{2}+x_{2}^{(1)}\left(-\left(x_{1}^{(2)}\right)^{2}-x_{1}^{(2)} x_{2}^{(2)}-\left(x_{2}^{(2)}\right)^{2}+\left(x_{1}^{(3)}\right)^{2}\right. \\
& \left.+x_{1}^{(3)} x_{2}^{(3)}+\left(x_{2}^{(3)}\right)^{2}\right)+x_{1}^{(1)}\left(-\left(x_{1}^{(2)}\right)^{2}-x_{1}^{(2)} x_{2}^{(2)}-\left(x_{2}^{(2)}\right)^{2}+\left(x_{1}^{(3)}\right)^{2}+x_{2}^{(1)}\left(x_{1}^{(2)}+x_{2}^{(2)}\right.\right. \\
& \left.\left.\left.\left.-x_{1}^{(3)}-x_{2}^{(3)}\right)+x_{1}^{(3)} x_{2}^{(3)}+\left(x_{2}^{(3)}\right)^{2}\right)\right)\right) .
\end{aligned}
$$

When we suppose the fourth solution $\left(x_{1}^{(4)}, x_{2}^{(4)}, x_{3}^{(4)}, x_{3}^{(1)}+x_{4}^{(1)}-x_{3}^{(4)}\right)$, from the first equation we have that $b_{1}=0$ which is a contradiction, because from Lemma $1 b_{i} \neq 0$ for $i=1,2,3$. Therefore the maximum number of limit cycles in this case is three. Now we prove that this upper bound is attached. We observed that the upper bound found does not depend of value of parameter $k<0$, then we can consider without loss of generality that $k=-1$. We consider the discontinuous piecewise linear differential system defined by the following three linear Hamiltonian systems
(16)

$$
\begin{aligned}
& \dot{x}=-24.293899 . .-0.692634 . . x+\frac{3}{2} y, \dot{y}=-19.232427 . .-0.319828 . . x+0.692634 . . y, \\
& \dot{x}=-378.204351 . .+62.383901 . . x-4 y, \dot{y}=916.621187 . .+972.937795 . . x-62.383901 . . y, \\
& \dot{x}=\frac{9}{10}-\frac{7}{2} x-\frac{35}{4} y, \dot{y}=\frac{7}{2}+\frac{7}{5} x+\frac{7}{2} y
\end{aligned}
$$

in the zones $Z_{\Sigma_{-1}}^{1}, Z_{\Sigma_{-1}}^{2}$ and $Z_{\Sigma_{-1}}^{3}$, respectively. Then for system (16), we have that system (15) has three real solutions $\left(x_{1}^{(i)}, x_{2}^{(i)}, x_{3}^{(i)}, x_{4}^{(i)}\right), i=1,2,3$, namely

$$
\left(3,-2,-\frac{7}{2}, \frac{7}{2}\right),\left(2.625658 . .,-\frac{17}{10} . .,-\frac{31}{10}, \frac{31}{10}\right),\left(\frac{14}{5},-1.843412 . .,-3.287307 . ., 3.287307 . .\right)
$$

These three real solutions provide the three limit cycles intersecting Σ_{-1} shown in Figure 7. This completes the proof of statement (i).

Proof of statement (ii) of Theorem 2. The proof in this statement is similar to the proof of statement (i). For each configuration of limit cycles that intersect Σ_{k} with $k \geq 0$ we have that the upper bound of limit cycles is three. In what follows we show examples of piecewise linear differential system in $\mathcal{C}_{\Sigma_{0}}$ with three limit cycles with Conf 4 and Conf 5, respectively. And piecewise linear differential system in $\mathcal{C}_{\Sigma_{k}+}$ with three limit cycles with Conf 6^{+}, Conf 7, Conf 8 and Conf 9^{+}, respectively.
Crossing limit cycles with Conf 4: In order to have a limit cycle with Conf 4 which intersects Σ_{0} in four different points $\left(x_{1}, x_{1}^{2}\right),\left(x_{2}, x_{2}^{2}\right),\left(x_{3}, 0\right)$ and $\left(x_{4}, 0\right)$, these points must satisfy system (15) with $k=0$. We consider the discontinuous piecewise linear differential system defined by the following four linear Hamiltonian systems

$$
\begin{align*}
& \dot{x}=\frac{17}{2}-\frac{207}{50} x-\frac{69}{10} y, \dot{y}=-\frac{53}{10}+\frac{621}{250} x+\frac{207}{50} y \tag{17}\\
& \dot{x}=48.069511 . .+11.825263 . . x-\frac{31}{5} y, \dot{y}=-7.155434 . .+22.554330 . . x-11.825263 . . y, \\
& \dot{x}=\frac{9}{2}+\frac{156}{25} x-\frac{39}{10} y, \dot{y}=-\frac{13}{10}+9.984000 . . x-\frac{156}{25} y \\
& \dot{x}=17.727172 . .-7.176019 . . x-\frac{27}{5} y, \dot{y}=-1.428092 . .+9.536159 . . x+7.176019 . . y
\end{align*}
$$

in the zones $Z_{\Sigma_{0}}^{1}, Z_{\Sigma_{0}}^{2}, Z_{\Sigma_{0}}^{3}$ and $Z_{\Sigma_{0}}^{4}$, respectively. For the discontinuous piecewise differential system (17), system (15) has three real solutions $\left(x_{1}^{(i)}, x_{2}^{(i)}, x_{3}^{(i)}, x_{4}^{(i)}\right), i=1,2,3$ given by

$$
\begin{aligned}
& (1.517382 . .,-2.102549 . .,-1.142394 . ., 1.402811 . .), \\
& (1.474836 . .,-2.058730 . .,-0.973819 . ., 1.234236 . .), \\
& (1.427170 . .,-2.00939 . .,-0.774355 . ., 1.034772 . .) .
\end{aligned}
$$

These solutions provide the three limit cycles with Conf $\mathbf{4}$ shown in Figure 8A.
Crossing limit cycles with Conf 5: In order to have a limit cycle with Conf 5 which intersects Σ_{0} in the four different points $\left(x_{1}, x_{1}^{2}\right),\left(x_{2}, x_{2}^{2}\right),\left(x_{3}, 0\right)$ and $\left(x_{4}, 0\right)$, they must satisfy

$$
\begin{align*}
& H_{1}\left(x_{1}, x_{1}^{2}\right)-H_{1}\left(x_{2}, x_{2}^{2}\right)=0 \\
& H_{4}\left(x_{2}, x_{2}^{2}\right)-H_{4}\left(x_{3}, k\right)=0 \tag{18}\\
& H_{3}\left(x_{3}, k\right)-H_{3}\left(x_{4}, k\right)=0 \\
& H_{4}\left(x_{4}, k\right)-H_{4}\left(x_{1}, x_{1}^{2}\right)=0, \quad \text { with } \quad k=0
\end{align*}
$$

We consider the discontinuous piecewise linear differential system defined by the following three linear Hamiltonian systems

$$
\begin{align*}
\dot{x} & =-4.711119 . .+3.915394 . . x-\frac{3}{2} y, \dot{y}=-11.965988 . .+10.220210 . . x-3.915394 . . y \tag{19}\\
\dot{x} & =\frac{9}{10}+\frac{27}{10} x-\frac{3}{2} y, \dot{y}=-5.022000 . .+\frac{243}{50} x-\frac{27}{10} y \\
\dot{x} & =-3.005265 . .+2.848936 . . x-\frac{11}{10} y, \dot{y}=-7.616106 . .+7.378583 . . x-2.848936 . . y
\end{align*}
$$

in the zones $Z_{\Sigma_{0}}^{1}, Z_{\Sigma_{0}}^{3}$ and $Z_{\Sigma_{0}}^{4}$, respectively. For the discontinuous piecewise differential system (19), system (18) has three real solutions $\left(x_{1}^{(i)}, x_{2}^{(i)}, x_{3}^{(i)}, x_{4}^{(i)}\right), i=1,2,3$ given by

$$
\left(2, \frac{1}{2}, \frac{2}{5}, \frac{5}{3}\right),\left(\frac{93}{50}, 0.628914 . ., \frac{47}{100}, \frac{479}{300}\right),(1.696225 . ., 0.780317 . ., 0.534387 . ., 1.532279 . .)
$$

These solutions provide the three limit cycles with Conf 5 shown in Figure 8B.

Crossing limit cycles with Conf 6^{+}: In order to have a limit cycle with Conf 6^{+}which intersects Σ^{+}in four different points $\left(x_{1}, x_{1}^{2}\right),\left(x_{2}, k\right),\left(x_{3}, x_{3}^{2}\right)$ and $\left(x_{4}, k\right)$, these points must satisfy

$$
\begin{align*}
& H_{1}\left(x_{1}, x_{1}^{2}\right)-H_{1}\left(x_{2}, k\right)=0 \\
& H_{5}\left(x_{2}, k\right)-H_{5}\left(x_{3}, x_{3}^{2}\right)=0 \\
& H_{3}\left(x_{3}, x_{3}^{2}\right)-H_{3}\left(x_{4}, k\right)=0 \tag{20}\\
& H_{4}\left(x_{4}, k\right)-H_{4}\left(x_{1}, x_{1}^{2}\right)=0, \quad \text { for } k>0 .
\end{align*}
$$

To have a limit cycle with Conf 6^{-}which intersects Σ^{+}in four different points, these points must satisfy the system

$$
\begin{align*}
& H_{2}\left(x_{1}, x_{1}^{2}\right)-H_{2}\left(x_{2}, k\right)=0 \\
& H_{3}\left(x_{2}, k\right)-H_{3}\left(x_{3}, x_{3}^{2}\right)=0 \\
& H_{5}\left(x_{3}, x_{3}^{2}\right)-H_{5}\left(x_{4}, k\right)=0 \tag{21}\\
& H_{1}\left(x_{4}, k\right)-H_{1}\left(x_{1}, x_{1}^{2}\right)=0, \quad \text { for } k>0
\end{align*}
$$

We provide an example of a piecewise linear differential system with three limit cycles with Conf 6^{+}. We observed that the upper bound found does not depend of the value of the parameter $k>0$, then we can consider without loss of generality that $k=4$. We consider the discontinuous piecewise linear differential system defined by the following four linear Hamiltonian systems

$$
\begin{align*}
\dot{x} & =-4.133710 . .+6.015251 . . x-\frac{3}{2} y, \dot{y}=-5.920817 . .+24.122170 . . x-6.015251 . . y \tag{22}\\
\dot{x} & =5.325742 . .+2.017936 . . x-\frac{17}{5} y, \dot{y}=4.036253 . .+1.197666 . . x-2.017936 . . y \\
\dot{x} & =-8.981178 . .+3.946297 . . x-y, \dot{y}=-15.942643 . .+15.573265 . . x-3.946297 . . y \\
\dot{x} & =-2.454956 . .+4.664679 . . x+\frac{3}{2} y, \dot{y}=6.613677 . .-14.506158 . . x-4.664679 . . y
\end{align*}
$$

in the zones $Z_{\Sigma_{4}}^{1}, Z_{\Sigma_{4}}^{3}, Z_{\Sigma_{4}}^{4}$ and $Z_{\Sigma_{4}}^{5}$, respectively. For the discontinuous piecewise differential system (22), system (20) has three real solutions $\left(x_{1}^{(i)}, x_{2}^{(i)}, x_{3}^{(i)}, x_{4}^{(i)}\right), i=1,2,3$ given by

$$
\left(4,-\frac{2}{5}, \frac{1}{2}, 5\right),\left(\frac{193}{50},-\frac{31}{100}, \frac{13}{20}, \frac{483}{100}\right),\left(\frac{7}{2},-\frac{3}{25}, \frac{83}{100}, \frac{441}{100}\right) .
$$

These solutions provide the three limit cycles with Conf 6^{+}shown in Figure 9A.
Crossing limit cycles with Conf 7: In order to have a limit cycle with Conf 7 which intersects Σ^{+}in the four different points $\left(x_{1}, k\right),\left(x_{2}, k\right),\left(x_{3}, x_{3}^{2}\right)$ and $\left(x_{4}, x_{4}^{2}\right)$, they must satisfy the system

$$
\begin{align*}
& H_{1}\left(x_{1}, k\right)-H_{1}\left(x_{2}, k\right)=0, \\
& H_{5}\left(x_{2}, k\right)-H_{5}\left(x_{3}, x_{3}^{2}\right)=0, \\
& H_{3}\left(x_{3}, x_{3}^{2}\right)-H_{3}\left(x_{4}, x_{4}^{2}\right)=0, \tag{23}\\
& H_{5}\left(x_{4}, x_{4}^{2}\right)-H_{5}\left(x_{1}, k\right)=0, \quad \text { with } k>0 .
\end{align*}
$$

We can suppose without loss of generality that $k=4$. We consider the discontinuous piecewise linear differential system defined by the following three linear Hamiltonian systems (24)

$$
\begin{aligned}
& \dot{x}=-2-6 x-\frac{3}{2} y, \dot{y}=-5.491482 . .+24 x+6 y \\
& \dot{x}=22.645454 . .-36.659999 . . x-\frac{47}{5} y, \dot{y}=-35.463636 . .+142.973999 . . x+36.659999 . . y, \\
& \dot{x}=5.300000 . .-8.579999 . . x-\frac{11}{5} y, \dot{y}=-8.300000 . .+33.461999 . . x+8.579999 . . y,
\end{aligned}
$$

in the zones $Z_{\Sigma_{3}}^{1}, Z_{\Sigma_{3}}^{3}$ and $Z_{\Sigma_{3}}^{5}$, respectively. For the discontinuous piecewise differential system (24), system (23) has three real solutions $\left(x_{1}^{(i)}, x_{2}^{(i)}, x_{3}^{(i)}, x_{4}^{(i)}\right), i=1,2,3$ given by

$$
\begin{aligned}
& (0.502842 . .,-1.545218 . .,-0.572025 . ., 0.848539 . .), \\
& (0.442709 . .,-1.485086 . .,-0.427227 . ., 0.781483 . .), \\
& (0.378567 . .,-1.420944 . .,-0.276975 . ., 0.700080 . .) .
\end{aligned}
$$

These solutions provide the three limit cycles with Conf 7 shown in Figure 9B.
Crossing limit cycles with Conf 8: In order to have a limit cycle with Conf $\mathbf{8}$ which intersects Σ^{+}in four different points $\left(x_{1}, x_{1}^{2}\right),\left(x_{2}, x_{2}^{2}\right),\left(x_{3}, k\right)$ and $\left(x_{4}, k\right)$, they must satisfy

$$
\begin{align*}
& H_{1}\left(x_{1}, x_{1}^{2}\right)-H_{1}\left(x_{2}, x_{2}^{2}\right)=0, \\
& H_{2}\left(x_{2}, x_{2}^{2}\right)-H_{2}\left(x_{3}, k\right)=0, \\
& H_{3}\left(x_{3}, k\right)-H_{3}\left(x_{4}, k\right)=0, \tag{25}\\
& H_{4}\left(x_{4}, k\right)-H_{4}\left(x_{1}, x_{1}^{2}\right)=0, \quad \text { with } k>0 .
\end{align*}
$$

We can consider without loss of generality that $k=2$. We consider the discontinuous piecewise linear differential system defined by the following four linear Hamiltonian systems (26)

$$
\begin{aligned}
& \dot{x}=\frac{9}{2}+\frac{19}{50} x-\frac{19}{10} y, \dot{y}=\frac{17}{10}+0.076000 . . x-\frac{19}{50} y \\
& \dot{x}=10.930108 . .+7.204668 . . x-\frac{11}{5} y, \dot{y}=99.090506 . .+23.594202 . x-7.204668 . . y \\
& \dot{x}=-\frac{69}{2}-6.229999 . . x-\frac{89}{10} y, \dot{y}=-\frac{93}{10}+\frac{4361}{1000} x+6.229999 . . y \\
& \dot{x}=32.954952 . .-16.575663 . . x-\frac{17}{5} y, \dot{y}=-277.274017 . .+80.809593 . . x+16.575663 . . y,
\end{aligned}
$$

in the pieces $Z_{\Sigma_{2}}^{1}, Z_{\Sigma_{2}}^{2}, Z_{\Sigma_{2}}^{3}$ and $Z_{\Sigma_{2}}^{4}$, respectively. For the discontinuous piecewise differential system (26), system (25) has three real solutions $\left(x_{1}^{(i)}, x_{2}^{(i)}, x_{3}^{(i)}, x_{4}^{(i)}\right), i=1,2,3$ given by

$$
\begin{aligned}
& (2.514526 . .,-2.427396 . .,-6.114467 . ., 4.665258 . .), \\
& (2.449236 . .,-2.371782 . .,-6.028697 . ., 4.579488 . .), \\
& (2.374832 . .,-2.310077 . .,-5.941517 . ., 4.492308 . .) .
\end{aligned}
$$

These solutions provide the three limit cycles with Conf 8 shown in Figure 9c.
Crossing limit cycles with Conf 9^{+}: In order to have a limit cycle with Conf 9^{+}which intersects Σ^{+}in the four different points $\left(x_{1}, x_{1}^{2}\right),\left(x_{2}, x_{2}^{2}\right),\left(x_{3}, k\right)$ and $\left(x_{4}, k\right)$, they must satisfy system (18) with $k>0$. Without loss of generality we can suppose that $k=4$. We consider the discontinuous piecewise linear differential system defined by the following three linear Hamiltonian systems
(27)

$$
\begin{aligned}
\dot{x} & =-170.859539 . .+99.779168 . . x-15 y, \dot{y}=-1139.726782 . .+663.725497 . . x-99.779168 . . y \\
\dot{x} & =\frac{9}{10}+\frac{148}{5} x-4 y, \dot{y}=-779.664000 . .+219.040000 . . x-\frac{148}{5} y \\
\dot{x} & =116.632274 . .-30.946111 . . x-\frac{23}{10} y, \dot{y}=-1635.644521 . .+416.374692 . . x+30.946111 . . y
\end{aligned}
$$

in the zones $Z_{\Sigma_{4}}^{1}, Z_{\Sigma_{4}}^{3}$, and $Z_{\Sigma_{4}}^{4}$, respectively. For the discontinuous piecewise differential system (27), system (18) with $k=4$, has three real solutions $\left(x_{1}^{(i)}, x_{2}^{(i)}, x_{3}^{(i)}, x_{4}^{(i)}\right), i=1,2,3$ given by

$$
\left(4,3, \frac{16}{5}, 5\right),\left(4.109491 . ., \frac{141}{50}, \frac{303}{100}, \frac{517}{100}\right),\left(\frac{47}{10}, 2.053733 . ., 2.068270 . ., 6.131729 . .\right) .
$$

These solutions provide the three limit cycles with Conf 9^{+}shown in Figure 9D. This completes the proof of statement (ii).

Figure 10. Three limit cycles with Conf 4, and three limit cycles with Conf 5 of system (28) simultaneously.

Proof of statement (iii) of Theorem 2. In order to have limit cycles with Conf 4 and Conf 5 simultaneously, the points of intersection of the limit cycles with Conf 4 with Σ_{0} must satisfy system (15) with $k=0$, and the points of intersection of the limit cycles with Conf 5 with Σ_{0} must satisfy system (18). In statement (ii) we proved that the maximum number of limit cycles with Conf 4 and Conf 5 is three, then we have that the upper bound of maximum number of limit cycles with both configurations is six. We provide an example of a piecewise linear differential system in $\mathcal{C}_{\Sigma_{0}}$ such that have six limit cycles with three limit cycles with Conf 4 and Conf 5 , respectively. This is the upper bound is reached. We consider the discontinuous piecewise linear differential system defined by the following four linear Hamiltonian systems
(28)
$\dot{x}=-154.076990 . .-28.017658 . . x+15 y, \dot{y}=-387.181918 . .-52.332611 . . x+28.017658 . . y$,
$\dot{x}=-0.400024 . .+0.532848 . . x-\frac{3}{10} y, \dot{y}=0.058205 . .+0.946425 . . x-0.532848 . . y$,
$\dot{x}=\frac{9}{10}+\frac{28}{5} x-4 y, \dot{y}=-8.101333 . .+7.839999 . . x-\frac{28}{5} y$,
$\dot{x}=-3.005265 . .+2.848936 . . x-\frac{11}{10} y, \dot{y}=-7.616106 . .+7.378583 . . x-2.848936 . . y$,
in the zones $Z_{\Sigma_{0}}^{1}, Z_{\Sigma_{0}}^{2}, Z_{\Sigma_{0}}^{3}$ and $Z_{\Sigma_{0}}^{4}$, respectively. For the discontinuous piecewise differential system (28), system (15) with $k=0$, has the following three real solutions

$$
\begin{aligned}
\left(\frac{27}{10},-\frac{1}{10},-0.166825 . ., 2.233491 . .\right) & \left(\frac{69}{25},-0.147032 . .,-0.232725 . ., 2.299392 . .\right), \\
& \left(\frac{14}{5},-0.177898 . .,-0.278200 . ., 2.344866 \ldots .\right),
\end{aligned}
$$

and system (18) with $k=0$, has the three real solutions

$$
\left(2, \frac{1}{2}, \frac{2}{5}, \frac{5}{3}\right),\left(\frac{93}{50}, 0.628914 . ., \frac{47}{100}, \frac{479}{300}\right),(1.393438 . ., 1.075216 . ., 0.604474 . ., 1.462192 . .) .
$$

These solutions provide the three limit cycles with Conf 4 and Conf 5 shown in Figure 10. This completes the proof of statement (iii).

Figure 11. Three limit cycles with Conf 6^{-}and Conf 6^{+}of system (29).

Proof of statement (iv) of Theorem 2. In order to have limit cycles with Conf 6^{-}and Conf 6^{+}simultaneously, the points of intersection of the limit cycles with Conf 6^{+}and $\Sigma_{k^{+}}$must satisfy system (20), and the points of intersection of the limit cycles with Conf 6^{-}and Σ_{k+} must satisfy system (21). In statement (ii) we proved that the maximum number of limit cycles with each configuration is three, then we have that the upper bound of maximum number of limit cycles with both configurations is six. We provide an example of a piecewise linear differential system in $\mathcal{C}_{\Sigma_{k+}}$ such that have six limit cycles with three limit cycles with each configuration. This is the upper bound is reached. Without loss of generality we can suppose that $k=4$. We consider the discontinuous piecewise linear differential system defined by the following five linear Hamiltonian systems

$$
\begin{align*}
& \dot{x}=-23138.489410 . .+403.676452 . . x+\frac{9}{2} y, \dot{y}=2942.120325 . .- 36212.150741 \ldots x \\
&-403.676452 . . y, \\
& \dot{x}=4.276633 . .+1.873985 . . x-\frac{3}{10} y, \dot{y}=4.991226 . .+11.706072 . . x-1.873985 . . y, \\
& \dot{x}=15.472057 . .-3.117904 . . x-\frac{17}{5} y, \dot{y}=-13.354567 . .+2.859213 . . x+3.117904 . . y, \\
& \dot{x}=48.158492 . .-6.082779 . . x-y, \dot{y}=-31.590984 . .+37.000210 . . x+6.082779 . . y, \\
& \dot{x}=-151.854124 . .-136.354901 . . x+\frac{3}{2} y, \dot{y}=-10611.949690 . .- 12395.106180 . . x \\
&+136.354901 . . y,
\end{align*}
$$

in the pieces $Z_{\Sigma_{4}}^{1}, Z_{\Sigma_{4}}^{2}, Z_{\Sigma_{4}}^{3}, Z_{\Sigma_{4}}^{4}$ and $Z_{\Sigma_{4}}^{5}$, respectively. For the discontinuous piecewise differential system (29), (20), has the three real solutions

$$
\left(5, \frac{1}{2}, \frac{9}{20}, \frac{23}{5}\right),\left(\frac{9}{2}, \frac{19}{20}, \frac{91}{100}, \frac{7}{2}\right),\left(\frac{41}{10}, 1.196150 . ., 1.163297 . ., 2.719447 . .\right),
$$

and system (21), has the following three real solutions

$$
\begin{array}{r}
\left(-\frac{18}{5},-\frac{9}{2},-\frac{49}{50},-1\right),(-3,-3.411586 . .,-1.557354 . .,-1.546135 . .), \\
\left(-2.809209 . .,-\frac{31}{10},-1.671884 . .,-1.662653 . .\right) .
\end{array}
$$

These solutions provide the three limit cycles with Conf 6^{-}and Conf 6^{+}shown in Figure 11. This completes the proof of statement (iv).

Proof of statement (v) of Theorem 2. In order to have limit cycles with Conf 6^{-}and Conf 7 simultaneously, the points of intersection of the limit cycles with Conf 6^{-}and $\Sigma_{k^{+}}$must satisfy system (21), and the points of intersection of the limit cycles with Conf 7 and $\Sigma_{k^{+}}$ must satisfy system (23). In statement (ii) we proved that the maximum number of limit cycles with each configuration is three, then we have that the maximum number of limit cycles with both configurations is six. Moreover this upper bound is reached. Without loss of generality we can suppose that $k=3$. We consider the discontinuous piecewise linear differential system defined by the following four linear Hamiltonian systems
(30)

$$
\begin{aligned}
\dot{x} & =-0.567977 . .-5.151614 . . x-\frac{3}{2} y, \dot{y}=-6.233588 . .+17.692757 . . x+5.151614 . . y, \\
\dot{x} & =11.250254 . .+0.637407 . . x-\frac{2}{5} y, \dot{y}=-35.085985 . .+1.015720 . . x-0.637407 . . y, \\
\dot{x} & =22.645454 . .-36.659999 . . x-\frac{47}{5} y, \dot{y}=-35.463636 . .+142.973999 . . x+36.659999 . . y, \\
\dot{x} & =5.300000 . .-8.579999 . . x-\frac{11}{5} y, \dot{y}=-8.300000 . .+33.461999 . . x+8.579999 . . y,
\end{aligned}
$$

in the pieces $Z_{\Sigma_{3}}^{1}, Z_{\Sigma_{3}}^{2}, Z_{\Sigma_{3}}^{3}$ and $Z_{\Sigma_{3}}^{5}$, respectively. For the discontinuous piecewise differ-

Figure 12. (A) Three limit cycles with Conf 6^{-}and Conf 7 of system (30). (B) Three limit cycles with Conf 6^{+}and Conf $\mathbf{8}$ of system (31).
ential system (30), system (21), has the following three real solutions

$$
\begin{array}{r}
\left(-\frac{41}{10},-\frac{5}{2}, 1.569412 . ., 1.457623 . .\right),\left(-\frac{106}{25},-\frac{263}{100}, 1.647799 . ., 1.587623 . .\right), \\
\left(-\frac{199}{50},-2.401954 . ., 1.508473 . ., 1.359577 . .\right),
\end{array}
$$

and (23), has the three real solutions

$$
\begin{aligned}
& (0.502842 . .,-1.545218 . .,-0.572025 . ., 0.848539 . .), \\
& (0.442709 . .,-1.485086 . .,-0.427227 . ., 0.781483 . .), \\
& (0.378567 . .,-1.420944 . .,-0.276975 . ., 0.700080 . .) .
\end{aligned}
$$

These solutions provide the three limit cycles with Conf 6^{-}and Conf 7 shown in Figure 12A. This completes the proof of statement (v).

Proof of statement (vi) of Theorem 2. In order to have limit cycles with Conf 6^{+}and Conf 8 simultaneously, the points of intersection of the limit cycles with Conf 6^{+}and
$\Sigma_{k^{+}}$must satisfy system (21), and the points of intersection of the limit cycles with Conf 8 and $\Sigma_{k^{+}}$must satisfy system (25). In statement (ii) we proved that the maximum number of limit cycles with each configuration is three, then we have that the maximum number of limit cycles with both configurations is six. Moreover this upper bound is reached. Without loss of generality we can consider that $k=4$. We consider the discontinuous piecewise linear differential system defined by the following five linear Hamiltonian systems
(31)

$$
\begin{aligned}
\dot{x} & =-0.325270 . .-1.247316 . . x-\frac{3}{2} y, \dot{y}=-35.808990 . .+1.037199 . . x+1.247316 . . y \\
\dot{x} & =-13.295856 . .-8.394370 . . x-2 y, \dot{y}=47.825295 . .+35.232724 . . x+8.394370 . . y \\
\dot{x} & =33.366737 . .-7.961636 . . x-\frac{17}{5} y, \dot{y}=-44.896945 . .+18.643428 . . x+7.961636 . . y \\
\dot{x} & =65.056521 . .-17.010074 . . x-y, \dot{y}=-1052.5380642 . .+289.342621 . . x+17.010074 . . y, \\
\dot{x} & =74.167422 . .+12.003227 . . x+\frac{3}{2} y, \dot{y}=-187.420662 . .-96.051650 . . x-12.003227 . . y
\end{aligned}
$$

in the pieces $Z_{\Sigma_{4}}^{1}, Z_{\Sigma_{4}}^{2}, Z_{\Sigma_{4}}^{3}, Z_{\Sigma_{4}}^{4}$ and $Z_{\Sigma_{4}}^{5}$, respectively. For the discontinuous piecewise differential system (31), system (20), has the following three real solutions

$$
\left(\frac{7}{2},-\frac{6}{5}, \frac{2}{5}, \frac{19}{5}\right),\left(\frac{71}{20},-\frac{143}{100}, \frac{31}{100}, \frac{389}{100}\right),\left(\frac{343}{100},-0.893313 . ., 0.533583 . ., 3.654678 . .\right),
$$

and (25), has the three real solutions

$$
\begin{array}{r}
\left(4,-3,-\frac{16}{5}, \frac{23}{5}\right), \\
\left(4.073407 . .,-3.179377 . .,-3.311999 . ., \frac{589}{125}\right) \\
\left(4.144187 . .,-3.341881 . .,-3.420000 . ., \frac{241}{50}\right)
\end{array}
$$

These solutions provide the three limit cycles with Conf 6^{+}and Conf 8 shown in Figure 12B. This completes the proof of statement (vi).

Proof of statement (vii) of Theorem 2. In order to have limit cycles with Conf 6^{+}and Conf 9^{+}simultaneously, the points of intersection of the limit cycles with Conf 6^{+}and $\Sigma_{k^{+}}$must satisfy system (20), and the points of intersection of the limit cycles with Conf 9^{+}and $\Sigma_{k^{+}}$must satisfy system (18) with $k>0$. In statement (ii) we proved that the maximum number of limit cycles with each configuration is three, then we have that the maximum number of limit cycles with both configurations is six. Moreover this upper bound is reached. We can suppose without loss of generality that $k=4$. We consider the discontinuous piecewise linear differential system defined by the following four linear Hamiltonian systems
(32)

$$
\begin{aligned}
\dot{x} & =-17.085953 . .+9.977916 . . x-\frac{3}{2} y, \dot{y}=-113.972678 . .+66.372549 . . x-9.977916 . . y \\
\dot{x} & =34.897550 . .-4.677048 . . x-\frac{7}{2} y, \dot{y}=-44.332934 . .+6.249936 . . x+4.677048 . . y, \\
\dot{x} & =65.922589 . .-17.491280 . . x-\frac{13}{10} y, \dot{y}=-924.494729 . .+235.342217 . . x+17.491280 . . y, \\
\dot{x} & =13.883036 . .+3.280745 . . x-\frac{9}{2} y, \dot{y}=-44.382913 . .+2.391842 . . x-3.280745 . . y,
\end{aligned}
$$

in the pieces $Z_{\Sigma_{4}}^{1}, Z_{\Sigma_{4}}^{3}, Z_{\Sigma_{4}}^{4}$ and $Z_{\Sigma_{4}}^{5}$, respectively. For the discontinuous piecewise differential system (32), system (20), has the following three real solutions

$$
\begin{array}{r}
\left(6,1.209968 . ., \frac{7}{5}, 8.457532 . .\right),\left(\frac{156}{25}, 1.006799 . ., \frac{5}{4}, 8.915579 . .\right), \\
\left(\frac{117}{20}, 1.328327 . ., 1.486618 . ., 8.175706 . .\right),
\end{array}
$$

and (18), has the three real solutions

$$
\left(4,3, \frac{16}{5}, 5\right),\left(4.109491 . ., \frac{141}{50}, \frac{303}{100}, \frac{517}{100}\right),\left(\frac{47}{10}, 2.053733 . ., 2.068270 . ., 6.131729 . .\right) .
$$

These solutions provide the three limit cycles with Conf 6^{+}and Conf 9^{+}shown in Figure 13. This completes the proof of statement (vii).

Figure 13. Three limit cycles with Conf 6^{+}and Conf 9^{+}of system (32).

Proof of statement (viii) of Theorem 2. In order to have limit cycles with Conf 7 and Conf 8 simultaneously, the points of intersection of the limit cycles with Conf 7 and $\Sigma_{k^{+}}$must satisfy system (23), and the points of intersection of the limit cycles with Conf 8 and $\Sigma_{k^{+}}$must satisfy system (25). In statement (ii) we proved that the maximum number of limit cycles with each configuration is three, then we have that the maximum number of limit cycles with both configurations is six. Moreover this upper bound is reached. Without loss of generality we can suppose that $k=3$. We consider the discontinuous piecewise linear differential system defined by the following five linear Hamiltonian systems (33)

$$
\begin{aligned}
\dot{x} & =-453.807220 . .-20.414445 . . x-\frac{3}{2} y, \dot{y}=83.559977 . .+277.833055 . . x+20.414445 . . y, \\
\dot{x} & =-29.218386 . .-5.465711 . . x+\frac{2}{5} y, \dot{y}=-414.702614 . .-74.685013 . . x+5.465711 . . y, \\
\dot{x} & =22.645454 . .-36.659999 . . x-\frac{47}{5} y, \dot{y}=-35.463636 . .+142.973999 . . x+36.659999 . . y, \\
\dot{x} & =3.918325 . .-3.744301 . . x+\frac{6}{5} y, \dot{y}=33.556264 . .-11.683162 . . x+3.744301 . . y, \\
\dot{x} & =5.300000 . .-8.579999 . . x-\frac{11}{5} y, \dot{y}=-8.300000 . .+33.461999 . . x+8.579999 . . y,
\end{aligned}
$$

in the zones $Z_{\Sigma_{3}}^{1}, Z_{\Sigma_{3}}^{2}, Z_{\Sigma_{3}}^{3}, Z_{\Sigma_{3}}^{4}$ and $Z_{\Sigma_{3}}^{5}$, respectively. For the discontinuous piecewise differential system (33), system (23), has the following three real solutions

$$
\begin{aligned}
& (0.502842 . .,-1.545218 . .,-0.572025 . ., 0.848539 . .), \\
& (0.442709 . .,-1.485086 . .,-0.427227 . ., 0.781483 . .), \\
& (0.378567 . .,-1.420944 . .,-0.276975 . ., 0.700080 . .),
\end{aligned}
$$

and (25), has the three real solutions

$$
\begin{array}{r}
\left(\frac{84}{25},-\frac{79}{20},-4.562376 . ., \frac{88}{25}\right),\left(\frac{3297}{1000},-\frac{387}{100},-4.492376 . ., \frac{69}{20}\right), \\
\left(\frac{34301}{10000},-4.039424 . .,-4.622376 . ., \frac{179}{50}\right) .
\end{array}
$$

These solutions provide the three limit cycles with Conf 7 and Conf 8 shown in Figure 14. This completes the proof of statement (viii).

Figure 14. Three limit cycles with Conf 7 and Conf 8 of system (33).

Proof of statement (ix) of Theorem 2. In order to have limit cycles with Conf 8 and Conf 9^{+}simultaneously, the points of intersection of the limit cycles with Conf 8 and $\Sigma_{k^{+}}$must satisfy system (25), and the points of intersection of the limit cycles with Conf 9^{+}and $\Sigma_{k^{+}}$ must satisfy system (18) with $k>0$. In statement (ii) we proved that the maximum number of limit cycles with each configuration is three, then we have that the maximum number of limit cycles with both configurations is six. Moreover this upper bound is reached. Without loss of generality we can suppose that $k=4$. We consider the discontinuous piecewise linear differential system defined by the following four linear Hamiltonian systems
(34)

$$
\begin{aligned}
\dot{x} & =-17.085953 . .+9.977916 . . x-\frac{3}{2} y, \dot{y}=-113.972678 . .+66.372549 . . x-9.977916 . . y \\
\dot{x} & =-23.136372 . .+2.354826 . . x-\frac{3}{10} y, \dot{y}=81.642102 . .+18.484031 . . x-2.354826 . . y \\
\dot{x} & =\frac{431}{10}+14.700000 . . x-\frac{7}{2} y, \dot{y}=-194.334000 . .+\frac{3087}{50} x-14.700000 . . y \\
\dot{x} & =65.922589 . .-17.491280 . . x-\frac{13}{10} y, \dot{y}=-924.494729 . .+235.342217 . . x+17.491280 . . y
\end{aligned}
$$

in the zones $Z_{\Sigma_{4}}^{1}, Z_{\Sigma_{4}}^{2}, Z_{\Sigma_{4}}^{3}$ and $Z_{\Sigma_{4}}^{4}$, respectively. For the discontinuous piecewise differential system (34), system (25), has the following three real solutions

$$
\begin{array}{r}
(9,-2.341532 . .,-6.604799 . ., 14.804799 . .),\left(\frac{457}{50},-2.481840 . .,-6.933823 . ., 15.133823 . .\right), \\
\left(\frac{187}{20},-2.692262 . .,-7.432829 . ., 15.632829 . .\right),
\end{array}
$$

and (18), has the three real solutions

$$
\left(4,3, \frac{16}{5}, 5\right),\left(4.109491 . ., \frac{141}{50}, \frac{303}{100}, \frac{517}{100}\right),\left(\frac{47}{10}, 2.053733 . ., 2.068270 . ., 6.131729 . .\right) .
$$

These solutions provide the three limit cycles with Conf 8 and Conf 9^{+}shown in Figure 15. This completes the proof of statement (ix).

Figure 15. Three limit cycles with Conf 8 and Conf 9^{+}of system (34).

Figure 16. Three limit cycles with Conf 6^{-}, Conf 7 and Conf 8 of system (35).

Figure 17. Three limit cycles with Conf 6^{+}, Conf 8 and Conf 9^{+}of system (36).

Proof of statement (x) of Theorem 2. In order to have limit cycles with Conf 6^{-}, Conf 7 and Conf 8 simultaneously, the points of intersection of the limit cycles with Conf 6^{-} and $\Sigma_{k^{+}}$must satisfy system (21), the points of intersection of the limit cycles with Conf 7 and $\Sigma_{k^{+}}$must satisfy system (23) and the points of intersection of the limit cycles with Conf 8 and $\Sigma_{k^{+}}$must satisfy system (25). In statement (ii) we proved that the maximum number of limit cycles with each configuration is three, then we have that the maximum number of limit cycles with the three configurations simultaneously, is nine. Moreover this upper bound is reached. Without loss of generality we can suppose that $k=3$. We consider the discontinuous piecewise linear differential system defined by the following five linear Hamiltonian systems
(35)

$$
\begin{aligned}
\dot{x} & =-0.567977 . .-5.151614 . . x-\frac{3}{2} y, \dot{y}=-6.233588 . .+17.692757 . . x+5.151614 . . y \\
\dot{x} & =11.250254 . .+0.637407 . . x-\frac{2}{5} y, \dot{y}=-35.085985 . .+1.015720 . . x-0.637407 . . y \\
\dot{x} & =22.645454 . .-36.659999 . . x-\frac{47}{5} y, \dot{y}=-35.463636 . .+142.973999 . . x+36.659999 . . y, \\
\dot{x} & =-13.170507 . .+3.348185 . . x+\frac{6}{5} y, \dot{y}=36.547853 . .-9.341954 . . x-3.348185 . . y \\
\dot{x} & =5.300000 . .-8.579999 . . x-\frac{11}{5} y, \dot{y}=-8.300000 . .+33.461999 . . x+8.579999 . . y
\end{aligned}
$$

in the zones $Z_{\Sigma_{3}}^{1}, Z_{\Sigma_{3}}^{2}, Z_{\Sigma_{3}}^{3}, Z_{\Sigma_{3}}^{4}$ and $Z_{\Sigma_{3}}^{5}$, respectively. For the discontinuous piecewise differential system (35), system (21), has the following three real solutions

$$
\begin{array}{r}
\left(-\frac{41}{10},-\frac{5}{2}, 1.569412 . ., 1.457623 . .\right),\left(-\frac{106}{25},-\frac{263}{100}, 1.647799 . ., 1.587623 . .\right), \\
\left(-\frac{199}{50},-2.401954 . ., 1.508473 . ., 1.359577 . .\right),
\end{array}
$$

and (23), has the three real solutions

$$
\begin{aligned}
& (0.502842 . .,-1.545218 . .,-0.572025 . ., 0.848539 . .), \\
& (0.442709 . .,-1.485086 . .,-0.427227 . ., 0.781483 . .) \\
& (0.378567 . .,-1.420944 . .,-0.276975 . ., 0.700080 . .)
\end{aligned}
$$

and system (25), has the three real solutions

$$
\begin{array}{r}
(1.847758 . .,-4.593279 . .,-3.042376 . ., 2),\left(1.910216 . .,-4.699349 . .,-3.192376 . ., \frac{43}{20}\right) \\
\left(1.962805 . .,-4.784530 . .,-3.322376 . ., \frac{57}{25}\right)
\end{array}
$$

These solutions provide the three limit cycles with Conf 6^{-}, Conf 7 and Conf 8 shown in Figure 16. This completes the proof of statement (x).

Proof of statement (xi) of Theorem 2. In order to have limit cycles with Conf 6^{+}, Conf 8 and Conf 9^{+}simultaneously, the points of intersection of the limit cycles with Conf 6^{+} and $\Sigma_{k^{+}}$must satisfy system (20), the points of intersection of the limit cycles with Conf 8 and $\Sigma_{k^{+}}$must satisfy system (25) and the points of intersection of the limit cycles with Conf 9^{+}and $\Sigma_{k^{+}}$must satisfy system (18) with $k>0$. In statement (ii) we proved that the maximum number of limit cycles with each configuration is three, then we have that the maximum number of limit cycles with the three configurations, is nine. Moreover this upper bound is reached. Without loss of generality we can suppose that $k=3$. We consider the discontinuous piecewise linear differential system defined by the following five linear

Hamiltonian systems
(36)

$$
\begin{aligned}
\dot{x} & =-17.085953 . .+9.977916 . . x-\frac{3}{2} y, \dot{y}=-113.972678 . .+66.372549 . . x-9.977916 . . y \\
\dot{x} & =-2.306102 . .-0.633078 . . x-\frac{3}{10} y, \dot{y}=2.662449 . .+1.335961 . . x+0.633078 . . y \\
\dot{x} & =34.897550 . .-4.677048 . . x-\frac{7}{2} y, \dot{y}=-44.332934 . .+6.249936 . . x+4.677048 . . y \\
\dot{x} & =65.922589 . .-17.491280 . . x-\frac{13}{10} y, \dot{y}=-924.494729 . .+235.342217 . . x+17.491280 . . y, \\
\dot{x} & =13.883036 . .+3.280745 . . x-\frac{9}{2} y, \dot{y}=-44.382913 . .+2.391842 . . x-3.280745 . . y
\end{aligned}
$$

in the zones $Z_{\Sigma_{4}}^{1}, Z_{\Sigma_{4}}^{2}, Z_{\Sigma_{4}}^{3}, Z_{\Sigma_{4}}^{4}$ and $Z_{\Sigma_{4}}^{5}$, respectively. For the discontinuous piecewise differential system (36), system (20), has the following three real solutions

$$
\begin{array}{r}
\left(6,1.209968 . ., \frac{7}{5}, 8.457532 . .\right),\left(\frac{156}{25}, 1.006799 . ., \frac{5}{4}, 8.915579 . .\right), \\
\left(\frac{117}{20}, 1.328327 . ., 1.486618 . ., 8.175706 . .\right),
\end{array}
$$

and (25), has the three real solutions

$$
\begin{array}{r}
(9,-2.341532 . .,-6.604799 . ., 14.804799 . .),\left(\frac{93}{10},-2.642166 . .,-7.313423 . ., 15.513423 . .\right), \\
\left(\frac{943}{100},-2.772412 . .,-7.624652 . ., 15.824652 . .\right),
\end{array}
$$

and system (18), has the three real solutions

$$
\left(4,3, \frac{16}{5}, 5\right),\left(4.109491 . ., \frac{141}{50}, \frac{303}{100}, \frac{517}{100}\right),\left(\frac{47}{10}, 2.053733 . ., 2.068270 . ., 6.131729 . .\right)
$$

These solutions provide the three limit cycles with Conf 6^{+}, Conf 8 and Conf 9^{+}shown in Figure 17. This completes the proof of statement (xi).

Figure 18. Three limit cycles with Conf 6^{+}, two limit cycles with Conf 6^{-}and one limit cycle with Conf 8 of system (37).

Proof of statement (xii) of Theorem 2. In order to have limit cycles with Conf 6^{+}, Conf 6^{-}and Conf 8 simultaneously, the points of intersection of the limit cycles with Conf 6^{+} and $\Sigma_{k^{+}}$must satisfy system (20), the points of intersection of the limit cycles with Conf 6^{-}and $\Sigma_{k^{+}}$must satisfy system (21) and the points of intersection of the limit cycles with Conf 8 and $\Sigma_{k^{+}}$must satisfy system (25). If we suppose that there is one solution for each

Figure 19. Two limit cycles with Conf 6^{+}, three limit cycles with Conf 6^{-}and one limit cycle with Conf 8 of system (38).
system (20) and (21), then similar to statement (i) of Theorem 2, we obtain the value of the parameters $\gamma_{1}, \delta_{1}, \gamma_{2}, \gamma_{3}, \delta_{3}, \gamma_{4}, \gamma_{5}, \delta_{5}$.

Now we have two options, first we suppose that there is a solution of system (25), then we obtain the value of the parameters $\lambda_{1}, \delta_{2}, \lambda_{3}$ and δ_{4}, therefore we have two options, first we can suppose that there is a second solution of system (25) then we obtain the value of the parameters λ_{2} and λ_{4}, hence in the zones $Z_{\Sigma^{+}}^{1}, Z_{\Sigma^{+}}^{2}, Z_{\Sigma^{+}}^{3}, Z_{\Sigma^{+}}^{4}$ we only have the parameters $b_{1}, b_{2}, b_{3}, b_{4}$ as unknowns and in the zone $Z_{\Sigma^{+}}^{5}$ we have λ_{5}, b_{5} as unknowns. Therefore we can obtain at most one solution either of system (20) or of system (21) and we cannot obtain more solutions of systems (20), (21) and (25), because we would have that $b_{i}=0$ for some $i=1,2,3,4,5$. Hence we would have five limit cycles with two (resp. one) limit cycles with Conf 6^{+}, one (resp. two) limit cycle(s) with Conf 6^{-}and two limit cycles with Conf 8. Second we can suppose that there is a second solution for each system (20) and (21), then we obtain the values of the parameters $\lambda_{2}, \lambda_{4}, \lambda_{5}$ hence we cannot obtain more solutions of systems (20), (21) and (25), because we would have that $b_{i}=0$ for some $i=1,2,3,4,5$. Therefore in this case we would obtain five limit cycles with two limit cycles with Conf 6^{+}, two limit cycles with Conf 6^{-}and one limit cycle with Conf 8.

Second, after considering the first solution of each system (20) and (21), we can suppose that there is a second solution for each system (20) and (21), then we obtain the values of $\lambda_{1}, \delta_{2}, \lambda_{3}$ and δ_{4}. Then in the zones $Z_{\Sigma^{+}}^{1}, Z_{\Sigma^{+}}^{3}$ and $Z_{\Sigma^{+}}^{5}$ we only have the parameters b_{1}, b_{3} and b_{5} as unknowns and in the zones $Z_{\Sigma^{+}}^{2}$ and $Z_{\Sigma^{+}}^{4}$ we have the parameters $\lambda_{2}, b_{2}, \lambda_{4}, b_{4}$ unknowns. Hence can have two cases, first we can suppose that there is a solution of system (25), then we determine the value of parameters λ_{2} and λ_{4}, hence we cannot to have more limit cycles because we would have that $b_{i}=0$ for some $i=1,2,3,4,5$. Therefore we would have five limit cycles with two limit cycles with Conf 6^{+}, two limit cycles with Conf 6^{-} and one limit cycle with Conf 8 . Second we can suppose that there is a third solution of system (20) (resp. (21)) and we obtain the value of parameter λ_{4} (res. λ_{2}), then in the zone $Z_{\Sigma^{+}}^{4}$ (resp. $Z_{\Sigma^{+}}^{2}$) we only have the parameter b_{4} (resp. b_{2}) as unknown and in the zone $Z_{\Sigma^{+}}^{2}\left(\right.$ resp. $\left.Z_{\Sigma^{+}}^{4}\right)$ we have that the parameters λ_{2}, b_{2} (res. λ_{4}, b_{4}) as unknowns. Now we suppose that there is one solution of system (25) and we obtain the parameter λ_{2} (res. λ_{4}). We observe that we cannot obtain more solutions of systems (20), (21) and (25), because we would have that $b_{i}=0$ for some $i=1,2,3,4,5$. Therefore we have at most six limit cycles with three (resp. two) limit cycles with Conf 6^{+}, two (resp. three) limit cycles with Conf 6^{-}and one limit cycle with Conf 8 . We observe that these six limit cycles can be
either three limit cycles with Conf 6^{+}, two limit cycles with Conf 6^{-}and one limit cycle with Conf 8 or two limit cycles with Conf 6^{+}, three limit cycles with Conf 6^{-}and one limit cycle with Conf 8. We shall give an example of each case.

We observe that without loss of generality we can suppose that $k=4$. We consider the discontinuous piecewise linear differential system defined by the following five linear Hamiltonian systems
(37)

$$
\left.\begin{array}{rl}
\dot{x}=-23138.489410 . .+403.676452 . . x+\frac{9}{2} y, \dot{y}= & 2942.120325 . .-36212.150741 . . x \\
& -403.676452 . . y
\end{array}\right] \begin{aligned}
& \dot{x}=1.812606 . .+1.308936 . . x-\frac{3}{10} y, \dot{y}=-25.828218 . .+5.711045 . . x-1.308936 . . y \\
& \dot{x}=15.472057 . .-3.117904 . . x-\frac{17}{5} y, \dot{y}=-13.354567 . .+2.859213 . . x+3.117904 . . y, \\
& \dot{x}=48.158492 . .-6.082779 . . x-y, \dot{y}=-31.590984 . .+37.000210 . . x+6.082779 . . y \\
& \dot{x}=-151.854124 . .-136.354901 . . x+\frac{3}{2} y, \dot{y}=-10611.949690 . .-12395.106180 . . x \\
&+136.354901 . . y
\end{aligned}
$$

in the zones $Z_{\Sigma_{3}}^{1}, Z_{\Sigma_{3}}^{2}, Z_{\Sigma_{3}}^{3}, Z_{\Sigma_{3}}^{4}$ and $Z_{\Sigma_{3}}^{5}$, respectively. For the discontinuous piecewise differential system (37), system (20) has the following three real solutions

$$
\left(5, \frac{1}{2}, \frac{9}{20}, \frac{23}{5}\right),\left(\frac{9}{2}, \frac{19}{20}, \frac{91}{100}, \frac{7}{2}\right),\left(\frac{41}{10}, 1.196150 . ., 1.163297 . ., 2.719447 . .\right) ;
$$

and (21) has the two real solutions

$$
\left(-\frac{18}{5},-\frac{9}{2},-\frac{49}{50},-1\right),(-3,-3.411586 . .,-1.557354 . .,-1.546135 . .) ;
$$

and system (25) has the real solution

$$
\left(5.688640 . .,-4.154651 . .,-5.682382 . ., \frac{63}{10}\right) .
$$

These solutions provide the three limit cycles with Conf 6^{+}, the two limits cycles with Conf 6^{-}and the limit cycle with Conf 8 shown in Figure 18.

Now we consider the discontinuous piecewise linear differential system defined by the following five linear Hamiltonian systems

$$
\begin{gather*}
\dot{x}=-23138.489410 . .+403.676452 . . x+\frac{9}{2} y, \begin{array}{c}
\\
\\
\\
-403.676452 . . y
\end{array} \tag{38}\\
\dot{x}=4.276633 . .+1.873985 . . x-\frac{3}{10} y, \dot{y}=4.991226 . .+11.706072 . . x-1.873985 . . y \\
\dot{x}=15.472057 . .-3.117904 . . x-\frac{17}{5} y, \dot{y}=-13.354567 . .+2.859213 . . x+3.117904 . . y, \\
\dot{x}=293.931246 . .-44.804431 . . x-y, \dot{y}=-6905.938713 . .+2007.437106 . . x \\
+44.804431 . . y
\end{gather*}
$$

in the zones $Z_{\Sigma_{3}}^{1}, Z_{\Sigma_{3}}^{2}, Z_{\Sigma_{3}}^{3}, Z_{\Sigma_{3}}^{4}$ and $Z_{\Sigma_{3}}^{5}$, respectively. For the discontinuous piecewise differential system (38), system (20) has the following two real solutions

$$
\left(5, \frac{1}{2}, \frac{9}{20}, \frac{23}{5}\right)\left(\frac{9}{2}, \frac{19}{20}, \frac{91}{100}, \frac{7}{2}\right) ;
$$

and (21) has the three real solutions

$$
\begin{array}{r}
\left(-\frac{18}{5},-\frac{9}{2},-\frac{49}{50},-1\right),(-3,-3.411586 . .,-1.557354 . .,-1.546135 . .), \\
\left(-2.809209 . .,-\frac{31}{10},-1.671884 . .,-1.662653 . .\right)
\end{array}
$$

and system (25) has the real solution

$$
\left(\frac{667}{100},-4.419374 . .,-6.225080 . ., 6.842698 . .\right)
$$

These solutions provide the two limit cycles with Conf 6^{+}, the three limits cycles with Conf 6^{-}and the limit cycle with Conf 8 shown in Figure 19. This completes the proof of statement (xii).

4. The Appendix

Here we provide the values A, B and C

$$
\begin{aligned}
& A=\csc \left(\frac{r_{3}-s_{3}}{2}\right)\left(-\cos \left(\frac{1}{2}\left(3 r_{1}-r_{2}+2 r_{3}+s_{1}-s_{2}\right)\right)+\cos \left(\frac { 1 } { 2 } \left(r_{1}-r_{2}+4 r_{3}\right.\right.\right. \\
& \left.\left.+s_{1}-s_{2}\right)\right)+\cos \left(\frac{1}{2}\left(r_{1}-3 r_{2}-2 r_{3}+s_{1}-s_{2}\right)\right)-\cos \left(\frac { 1 } { 2 } \left(r_{1}-r_{2}-4 r_{3}\right.\right. \\
& \left.\left.+s_{1}-s_{2}\right)\right)-\cos \left(\frac{1}{2}\left(r_{1}-r_{2}+2 r_{3}+3 s_{1}-s_{2}\right)\right)-\cos \left(\frac { 1 } { 2 } \left(3 r_{1}+r_{2}-2 r_{3}\right.\right. \\
& \left.\left.+s_{1}+s_{2}\right)\right)+\cos \left(\frac{1}{2}\left(r_{1}+3 r_{2}-2 r_{3}+s_{1}+s_{2}\right)\right)-\cos \left(\frac { 1 } { 2 } \left(r_{1}+r_{2}-2 r_{3}\right.\right. \\
& \left.\left.+3 s_{1}+s_{2}\right)\right)+\cos \left(\frac{1}{2}\left(r_{1}+r_{2}-2 r_{3}+s_{1}+3 s_{2}\right)\right)+\cos \left(\frac { 1 } { 2 } \left(r_{1}-r_{2}-2 r_{3}\right.\right. \\
& \left.\left.+s_{1}-3 s_{2}\right)\right)+\cos \left(\frac{1}{2}\left(3 r_{1}-r_{2}+s_{1}-s_{2}+2 s_{3}\right)\right)+\cos \left(\frac { 1 } { 2 } \left(r_{1}-r_{2}+3 s_{1}\right.\right. \\
& \left.\left.-s_{2}+2 s_{3}\right)\right)-\cos \left(\frac{1}{2}\left(r_{1}-r_{2}+s_{1}-s_{2}+4 s_{3}\right)\right)-\cos \left(\frac { 1 } { 2 } \left(r_{1}-3 r_{2}+s_{1}\right.\right. \\
& \left.\left.-s_{2}-2 s_{3}\right)\right)+\cos \left(\frac{1}{2}\left(3 r_{1}+r_{2}+s_{1}+s_{2}-2 s_{3}\right)\right)-\cos \left(\frac { 1 } { 2 } \left(r_{1}+3 r_{2}+s_{1}\right.\right. \\
& \left.\left.+s_{2}-2 s_{3}\right)\right)+\cos \left(\frac{1}{2}\left(r_{1}+r_{2}+3 s_{1}+s_{2}-2 s_{3}\right)\right)-\cos \left(\frac { 1 } { 2 } \left(r_{1}+r_{2}+s_{1}\right.\right. \\
& \left.\left.+3 s_{2}-2 s_{3}\right)\right)-\cos \left(\frac{1}{2}\left(r_{1}-r_{2}+s_{1}-3 s_{2}-2 s_{3}\right)\right)+\cos \left(\frac { 1 } { 2 } \left(r_{1}-r_{2}+s_{1}\right.\right. \\
& \left.-s_{2}-4 s_{3}\right) \text {), } \\
& B=-\left(\cos \left(r_{1}-r_{2}\right)+\cos \left(r_{1}-r_{3}\right)+\cos \left(r_{2}-r_{3}\right)-2 \cos \left(r_{1}-s_{1}\right)+\cos \left(r_{2}-s_{1}\right)\right. \\
& +\cos \left(r_{3}-s_{1}\right)+\cos \left(r_{1}-s_{2}\right)-2 \cos \left(r_{2}-s_{2}\right)+\cos \left(r_{3}-s_{2}\right)+\cos \left(s_{1}-s_{2}\right) \\
& +2 \cos \left(r_{1}-r_{2}+s_{1}-s_{2}\right)+\cos \left(2 r_{1}-2 r_{2}+s_{1}-s_{2}\right)-\cos \left(2 r_{1}-r_{2}-r_{3}\right. \\
& \left.+s_{1}-s_{2}\right)-\cos \left(r_{1}-2 r_{2}+r_{3}+s_{1}-s_{2}\right)+\cos \left(r_{1}-2 r_{2}+2 s_{1}-s_{2}\right)-\cos \left(r_{1}\right. \\
& \left.-r_{2}-r_{3}+2 s_{1}-s_{2}\right)+\cos \left(2 r_{1}-r_{2}+s_{1}-2 s_{2}\right)-\cos \left(r_{1}-r_{2}+r_{3}+s_{1}-2 s_{2}\right) \\
& +\cos \left(r_{1}-r_{2}+2 s_{1}-2 s_{2}\right)+\cos \left(r_{1}-s_{3}\right)+\cos \left(r_{2}-s_{3}\right)-2 \cos \left(r_{3}-s_{3}\right) \\
& +\cos \left(s_{1}-s_{3}\right)+2 \cos \left(r_{1}-r_{3}+s_{1}-s_{3}\right)-\cos \left(2 r_{1}-r_{2}-r_{3}+s_{1}-s_{3}\right) \\
& +\cos \left(2 r_{1}-2 r_{3}+s_{1}-s_{3}\right)-\cos \left(r_{1}+r_{2}-2 r_{3}+s_{1}-s_{3}\right)-\cos \left(r_{1}-r_{2}-r_{3}\right. \\
& \left.+2 s_{1}-s_{3}\right)+\cos \left(r_{1}-2 r_{3}+2 s_{1}-s_{3}\right)-\cos \left(2 r_{1}-r_{2}+s_{1}-s_{2}-s_{3}\right)-\cos \left(2 r_{1}\right. \\
& \left.-r_{3}+s_{1}-s_{2}-s_{3}\right)+\cos \left(r_{1}+r_{2}-r_{3}+s_{1}-s_{2}-s_{3}\right)+\cos \left(r_{1}-r_{2}+r_{3}+s_{1}\right. \\
& \left.-s_{2}-s_{3}\right)-\cos \left(r_{1}-r_{2}+2 s_{1}-s_{2}-s_{3}\right)-\cos \left(r_{1}-r_{3}+2 s_{1}-s_{2}-s_{3}\right)+\cos \left(s_{2}\right. \\
& \left.-s_{3}\right)+2 \cos \left(r_{2}-r_{3}+s_{2}-s_{3}\right)-\cos \left(r_{1}+r_{2}-2 r_{3}+s_{2}-s_{3}\right)+\cos \left(2 r_{2}-2 r_{3}\right. \\
& \left.+s_{2}-s_{3}\right)+\cos \left(r_{1}+r_{2}-r_{3}-s_{1}+s_{2}-s_{3}\right)-\cos \left(2 r_{2}-r_{3}-s_{1}+s_{2}-s_{3}\right) \\
& +\cos \left(r_{1}-r_{2}-r_{3}+s_{1}+s_{2}-s_{3}\right)-\cos \left(r_{1}-2 r_{3}+s_{1}+s_{2}-s_{3}\right)-\cos \left(r_{2}-2 r_{3}\right. \\
& \left.+s_{1}+s_{2}-s_{3}\right)+\cos \left(r_{2}-2 r_{3}+2 s_{2}-s_{3}\right)-\cos \left(r_{2}-r_{3}-s_{1}+2 s_{2}-s_{3}\right)-\cos \left(r_{1}\right. \\
& \left.-2 r_{2}+r_{3}-s_{2}+s_{3}\right)+\cos \left(r_{1}-r_{2}+r_{3}-s_{1}-s_{2}+s_{3}\right)-\cos \left(r_{1}-2 r_{2}+s_{1}-s_{2}\right. \\
& \left.+s_{3}\right)+\cos \left(r_{1}-r_{2}-r_{3}+s_{1}-s_{2}+s_{3}\right)-\cos \left(r_{1}-r_{2}+r_{3}-2 s_{2}+s_{3}\right)-\cos \left(r_{1}\right. \\
& \left.-r_{2}+s_{1}-2 s_{2}+s_{3}\right)+\cos \left(2 r_{1}-r_{3}+s_{1}-2 s_{3}\right)-\cos \left(r_{1}+r_{2}-r_{3}+s_{1}-2 s_{3}\right) \\
& +\cos \left(r_{1}-r_{3}+2 s_{1}-2 s_{3}\right)-\cos \left(r_{1}+r_{2}-r_{3}+s_{2}-2 s_{3}\right)+\cos \left(2 r_{2}-r_{3}+s_{2}\right. \\
& \left.-2 s_{3}\right)-\cos \left(r_{1}-r_{3}+s_{1}+s_{2}-2 s_{3}\right)-\cos \left(r_{2}-r_{3}+s_{1}+s_{2}-2 s_{3}\right)+\cos \left(r_{2}-r_{3}\right. \\
& \left.\left.+2 s_{2}-2 s_{3}\right)-6\right) \csc ^{2}\left(\frac{1}{2}\left(r_{1}-r_{2}+s_{1}-s_{2}\right)\right) \sin ^{2}\left(\frac{r_{3}-s_{3}}{2}\right) \text {, }
\end{aligned}
$$

$$
\begin{aligned}
C= & 2\left(-\cos \left(\frac{1}{2}\left(r_{1}-3 r_{2}-r_{3}+s_{1}-s_{2}-s_{3}\right)\right)+\cos \left(\frac{1}{2}\left(r_{1}-r_{2}-3 r_{3}+s_{1}-s_{2}-s_{3}\right)\right)\right. \\
& -\cos \left(\frac{1}{2}\left(3 r_{1}+r_{2}-r_{3}+s_{1}+s_{2}-s_{3}\right)\right)+\cos \left(\frac{1}{2}\left(r_{1}+3 r_{2}-r_{3}+s_{1}+s_{2}-s_{3}\right)\right) \\
& -\cos \left(\frac{1}{2}\left(r_{1}+r_{2}-r_{3}+3 s_{1}+s_{2}-s_{3}\right)\right)+\cos \left(\frac{1}{2}\left(r_{1}+r_{2}-r_{3}+s_{1}+3 s_{2}-s_{3}\right)\right) \\
& -\cos \left(\frac{1}{2}\left(r_{1}-r_{2}-r_{3}+s_{1}-3 s_{2}-s_{3}\right)\right)+\cos \left(\frac{1}{2}\left(3 r_{1}-r_{2}+r_{3}+s_{1}-s_{2}+s_{3}\right)\right) \\
& -\cos \left(\frac{1}{2}\left(r_{1}-r_{2}+3 r_{3}+s_{1}-s_{2}+s_{3}\right)\right)+\cos \left(\frac{1}{2}\left(r_{1}-r_{2}+r_{3}+3 s_{1}-s_{2}+s_{3}\right)\right) \\
& \left.-\cos \left(\frac{1}{2}\left(r_{1}-r_{2}+r_{3}+s_{1}-s_{2}+3 s_{3}\right)\right)+\cos \left(\frac{1}{2}\left(r_{1}-r_{2}-r_{3}+s_{1}-s_{2}-3 s_{3}\right)\right)\right) .
\end{aligned}
$$

Acknowledgements

The third author is supported by the Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación grants MTM2016-77278-P (FEDER) and PID2019-104658GB-I00 (FEDER), the Agència de Gestió d'Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017-777911.

References

[1] A. Andronov, A. Vitt and S. Khaikin, Theory of Oscillations, Pergamon Press, Oxford, 1966.
[2] B. P. Belousov, A periodic reaction and its mechanism, Collection of Short Papers on Radiation Medicine for 1958 (1959).(Moscow: Med. Publ.) [in Russian].
[3] A.Belfar R. Benterki and J. Llibre, Limit cycles of planar discontinuous piecewise linear Hamiltonian systems without equilibrium points and separated by irreducible cubics, submitted 2020.
[4] R. Benterki and J. Llibre, The limit cycles of discontinuous piecewise linear differential systems formed by centers and separated by irreducible cubic curves I, to appear in Dynamics of Continuous, Discrete and Impulsive Systems-Series A, 2020.
[5] R. Benterki and J.LLibre, Crossing limit cycles of planar piecewise linear Hamiltonian systems without Equilibrium Points, Mathematics 2020, 8, 755, pp. 14.
[6] M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications, Appl. Math. Sci., vol. 163, Springer-Verlag, London, 2008.
[7] D. C. Braga and L. F. Mello, Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane, Nonlinear Dyn. 73 (2013), 1283-1288.
[8] C. Buzzi, C. Pessoa and J. Torregrosa, Piecewise linear perturbations of a linear center, Discrete Contin. Dyn. Syst. 33 (2013), 3915-3936.
[9] A.F. Filippov, Differential equations with discontinuous right-hand sides, translated from Russian. Mathematics and its Applications (Soviet Series) vol. 18, Kluwer Academic Publishers Group, Dordrecht, 1988.
[10] A.F. Fonseca, J. Llibre and L.F. Mello, Limit cycles in planar piecewise linear Hamiltonian systems with three zones without equilibrium points, Int. J. Bifurcation and Chaos 30 No. 11 (2020), 2050157, pp. 8.
[11] E. Freire, E. Ponce and F. Torres, A general mechanism to generate three limit cycles in planar Filippov systems with two zones, Nonlinear Dynamics 78 (2014), 251-263.
[12] F. Giannakopoulos and K. Pliete, Planar systems of piecewise linear differential equations with a line of discontinuity, Nonlinearity 14 (2001), 1611-1632.
[13] M. Han and W. Zhang, On hopf bifurcation in non-smooth planar systems, J. Differential Equations 248(9) (2010), 2399-2416.
[14] D. Hilbert, Mathematische Probleme, Lecture, Second Internat. Congr. Math. (Paris, 1900), Nachr. Ges. Wiss. G"ottingen Math. Phys. KL. (1900), 253-297; English transl., Bull. Amer. Math. Soc. 8 (1902), 437-479; Bull. (New Series) Amer. Math. Soc. 37 (2000), 407-436.
[15] S.M. Huan and X.S. Yang, On the number of limit cycles in general planar piecewise linear systems, Disc. Cont. Dyn. Syst. 32(6) (2012), 2147-2164.
[16] Yu. Ilyashenko, Centennial history of Hilbert's 16th problem, Bull. (New Series) Amer. Math. Soc. 39 (2002), 301-354.
[17] J.J. Jimenez, J. Llibre and J.C. Medrado, Crossing limit cycles for a class of piecewise linear differential centers separated by a conic, Electron. J. Differential Equations 41 (2020), 36 pp.
[18] J.J. Jimenez, J. Llibre and J.C. Medrado, Crossing limit cycles for piecewise linear differential centers separated by a reducible cubic curve, Electron. J. Qual. Theory Differ. Equ. 19 (2020), 48 pp.
[19] J. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 47-106.
[20] L. Li, Three crossing limit cycles in planar piecewise linear systems with saddle-focus type, Electron. J. Qual. Theory Differ. Equ. 2014, No. 70, pp. 14.
[21] J. Llibre, D. D. Novaes and M. A. Teixeira, Maximum number of limit cycles for certain piecewise linear dynamical systems, Nonlinear Dyn. 82 (2015), 1159-1175.
[22] J. Llibre and E. Ponce, Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. Contin. Discr. Impul. Syst., Ser. B 19 (2012), 325-335.
[23] J. Llibre, E. Ponce and C. Valls, Two limit cycles in Liénard piecewise linear differential systems, J. Nonlinear Sci. 29 (2019), no. 4, 1499-1522.
[24] J. Llibre, E. Ponce and C. Valls, Uniqueness and non-uniqueness of limit cycles for piecewise linear differential systems with three zones and no symmetry, J. Nonlinear Sci. 25 (2015), no. 4, 861887.
[25] O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems: a survey, Phys. D 241 (2012), 1826-1844.
[26] B. van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Review (later Wireless World) 1 (1920), 701-710.
[27] B. van der Pol, On relaxation-oscillations, The London, Edinburgh and Dublin Phil. Mag. \& J. of Sci. 2(7) (1926), 978-992.
[28] D. J. W. Simpson, Bifurcations in Piecewise-Smooth Continuous Systems, World Sci. Ser. Nonlinear Sci. Ser. A, vol. 69, World Scientific, Singapore, 2010.
[29] A.M. Zhabotinsky, Periodical oxidation of malonic acid in solution (a study of the Belousov reaction kinetics), Biofizika 9 (1964), 306-311.
${ }^{1}$ Département de Mathématiques, Université Mohamed El Bachir El Ibrahimi, Bordj Bou Arréridj 34000, El Anasser, Algeria

Email address: r.benterki@univ-bba.dz
${ }^{2}$ Universidade Federal do Oeste da Bahia, 46470000 Bom Jesus da Lapa, Bahia, Brazil
Email address: jjohanajimenez@gmail.com
${ }^{3}$ Departament de Matematiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

Email address: jllibre@mat.uab.cat

[^0]: Date:
 2010 Mathematics Subject Classification. Primary 34C29, 34C25, 47H11.
 Key words and phrases. limit cycles, discontinuous piecewise linear Hamiltonian systems, reducible cubic curves.

