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 Abstract— This paper presents an exhaustive study of the 

sensitivity in reflective-mode phase-variation sensors based on 

an open-ended transmission line with a step-impedance 

discontinuity. Such discontinuity delimits the sensing region 

(which extends up to the open end of the so-called sensing line), 

from the transmission line section connected to the input port 

(design line), which is used to enhance the sensitivity. The 

theoretical analysis provides the design guidelines to achieve a 

sensor with high sensitivity, as compared to the one based on an 

ordinary (uniform) line with similar length. In particular, it is 

shown that for sensitivity optimization, the electrical length of 

the design line must be set to 90º (or an odd multiple), whereas 

either a 90º (or an odd multiple) or a 180º (or an even or odd 

multiple) sensing line can be alternatively used in order to 

maximize the sensitivity. It is shown that the impedance 

contrast, defined as the ratio between the characteristic 

impedances of the design and sensing line, is a key parameter 

for sensitivity enhancement, and it must be as low or as high as 

possible for the 90º or 180º sensing lines, respectively. For 

validation purposes, two prototype devices (one with a 90º and 

the other one with a 180º sensing line) have been designed and 

fabricated following the design guidelines. Such devices have 

been tested by loading the sensing region with several materials 

with different dielectric constants. As compared to the ordinary 

line based sensors, it is found that the maximum sensitivity is 

enhanced by a factor of 19.7 and 11.4 in the phase-variation 

sensor based on a 90º and 180º sensing line, respectively. Finally, 

the sensor concept is generalized to a multi-section step-

impedance transmission line as a means of further increasing 

the sensitivity, and a prototype device exhibiting 528.7º 

maximum sensitivity is implemented. 

Index Terms–Reflective-mode sensor, microwave sensor, 

phase-variation sensor, microstrip, stepped-impedance 

transmission line.  

I. INTRODUCTION 

LANAR microwave sensors have attracted the interest of 

many researchers in recent years. Their low cost and low 

profile (including the possibility to implement conformal 

sensors on flexible substrates), their compatibility with fully 

planar fabrication processes, and with other sensing 

technologies (e.g., microfluidics, lab-on-a-chip, etc.), their 

potential for wireless connectivity, and their robustness 

against hostile and harsh conditions, among others, are key 

aspects that explain the increasing interest of these sensors 
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within the microware community. Other advantageous 

aspects concern the inherently low cost of microwave 

generation and detection systems. Moreover, microwave 

sensors are especially suited for material characterization, 

since microwaves are very sensitive to the properties of the 

materials to which they interact (including interaction at 

different scales, i.e., through the near-field or the far-field). 

Probably most planar microwave sensors reported to date 

are based on frequency variation [1]-[9]. In such sensors, the 

working principle is typically the variation of the resonance 

frequency and quality factor of a resonator-loaded line, 

caused by the presence of the material under test (MUT). 

These sensors are relatively simple, but a wideband 

interrogation signal is needed for measurement. Wideband 

signals are also required in frequency splitting sensors [10]-

[16], a variant of frequency variation sensors. Although 

frequency splitting sensors are not truly differential-mode 

sensors [17]-[28], their working principle is based on 

symmetry disruption between the so-called reference (REF) 

material and the MUT (such materials should be placed on 

top of two identical resonators symmetrically loading a line) 

[29].  

Although frequency variation and frequency splitting 

sensors exhibiting good performance have been reported, the 

main limitation of these sensors concerns the fact that the 

bandwidth required for measurement is given by the output 

dynamic range. Thus, implementing sensors with a high 

dynamic range is possible at the expense of a higher cost of 

the associated electronics (based on wideband voltage 

controlled oscillators –VCOs).   

According to the previous paragraph, it is clear that the 

implementation of sensors operating at a single frequency 

represents a very interesting solution in terms of sensor costs 

in a real scenario. Examples of single-frequency sensors can 

be found in the literature, including coupling modulation 

sensors [30]-[40], differential mode sensors [17],[25],[28] 

and phase-variation sensors [20],[25]. In this paper, we are 

interested in reflective-mode phase-variation sensors, due to 

their simplicity (the structure is a simple one-port network) 

and low cost (other reflective mode sensors have been 

recently reported [22],[41],[42]). The specific sensor 
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structure is an open-ended line with a step-impedance 

discontinuity, and the main objective of the paper is to carry 

out an exhaustive sensitivity analysis in order to obtain the 

design guidelines for sensitivity optimization. Moreover, it is 

also an objective of the paper to experimentally validate the 

main conclusions of the analysis. For that purpose, a pair of 

prototype device sensors are designed, fabricated, and tested 

(by considering materials with different dielectric constant). 

To gain insight on the potential of the approach for sensitivity 

enhancement, the proposed sensors are compared with 

phase-variation sensors based on ordinary (uniform) lines. 

As it will be shown, the results demonstrate that the 

sensitivity can substantially be improved by considering a 

stepped-impedance transmission line adequately designed 

(i.e., according to the inferred guidelines). Moreover, a 

procedure to further optimize the sensitivity, by considering 

a multi-section step-impedance transmission line, is 

reported. 

The work is organized as follows: Section II reports the 

structure and working principle of the proposed sensor, and 

justifies the need to include a step-impedance discontinuity 

for sensitivity enhancement. The sensitivity analysis is 

carried out in Section III. Such section ends with the required 

design conditions for sensitivity optimization, derived from 

the analysis. Section IV is devoted to the experimental 

validation, and performance comparison with other sensors 

based on ordinary (uniform) lines. The generalization of the 

concept to multiple step-impedance discontinuities is 

considered in Section V, where it is shown that the sensitivity 

can be enhanced at wish without the need of elongating the 

sensing line (a relevant property of the proposed sensors). 

Moreover, a comparison with other sensors where phase 

variation is the operating principle is carried out in this 

section. Finally, the main conclusions are highlighted in 

Section VI.  

II. THE PROPOSED REFLECTIVE-MODE PHASE-VARIATION 

SENSOR AND WORKING PRINCIPLE 

The typical schematic/topology of the proposed reflective-

mode phase-variation sensor is depicted in Fig. 1. It is a one-

port network consisting of an open-ended transmission line 

with a step-impedance discontinuity. The sensitive region, 

indicated by a dashed rectangle in Fig 1, is delimited by the 

step discontinuity and the open end of the line. For obvious 

reasons, such line, with characteristic impedance, Zs, and 

electrical length at the design frequency, s, is designated as 

sensing line. The line section comprised between the step-

impedance discontinuity and the input port (with 

characteristic impedance Z and electrical length ), 

fundamental for sensitivity optimization, is identified as 

design line in this paper.  
 

 
 

Fig. 1. Typical schematic/topology of the proposed reflective-mode phase-
variation sensor based on a step-impedance discontinuity. 

This sensor is devoted to material characterization, and the 

working principle is the variation experienced by the phase 

of the reflection coefficient, , when a certain material 

(material under test –MUT) is placed on top of the sensing 

region. Note that, ideally (i.e., by excluding the effects of 

losses), the modulus of the reflection coefficient should be 

 = 1. By considering a uniform and matched open-ended 

line, i.e., with characteristic impedance identical to the 

reference impedance of the port, Z0, the reflection coefficient 

is simply [43] 

 = 𝑒−2𝑗𝑠                               (1) 

Note that the previous reflection coefficient is the one 

corresponding to the structure of Fig. 1 by considering  = 0 

(absence of design line) and Zs = Z0. In such uniform (and 

matched) line, a variation of the phase of the line, s, 

produced by a change in the dielectric constant of the MUT, 

generates a variation in the phase of the reflection coefficient 

given by   




= −2
𝑠
                                 (2) 

and, consequently, the sensitivity of the phase of the 

reflection coefficient, , with the phase of the line is simply 

𝑑

𝑑𝑠

= −2                                   (3) 

However, the key sensor parameter is the sensitivity of  

with the dielectric constant of the MUT, MUT, given by 

𝑆 =
𝑑

𝑑𝑀𝑈𝑇
=

𝑑

𝑑𝑠


𝑑𝑠

𝑑𝑀𝑈𝑇
                        (4) 

In (2)-(4), the effects of MUT on  through the variation of 

Zs have been omitted. In general, such effects are not 

negligible, and should be accounted for by adding an 

additional term in (4), see Appendix A. However, for the 

conditions that optimize the sensitivity, to be discussed later, 

such term is identically null, as demonstrated in Appendix A. 

Consequently, we adopt expression (4) in the present study, 

as far as the main objective is the implementation of sensors 

with optimum sensitivity.  

The last derivative on the right-hand side member of (4), 

dS/dMUT, depends on the length of the line, its transverse 

geometry, and also on the dielectric constant of the substrate, 

r. Obviously, the longer the line, the higher the sensitivity, 

as it is well known [25], but this strategy for sensitivity 

enhancement goes against size reduction. The transverse 

geometry does not have a strong influence on the phase 

variation, since the effective dielectric constant of the line 

has a soft dependence on the transverse geometry of the line. 

Finally, low-dielectric constant substrates favor sensitivity 

optimization, but there is a limit concerning the sensitivity 

improvement achievable with this strategy since r > 1 

(moreover, sometimes the substrate is dictated by external 

constraints or specifications). Thus, in summary, the last 

derivative in (4) cannot be significantly engineered in order 

to substantially improve its contribution to the overall 

sensitivity. Nevertheless, the effects of such term in the total 

sensitivity will be analyzed at the end of the next section. 

Concerning the first term, d/ds, for a uniform and 

matched line, the value is given by equation (3). However, 

by introducing further degrees of freedom (i.e., a step-



impedance discontinuity, as depicted in Fig. 1), it is possible 

to engineer the line and substantially improve the first term 

on the right-hand side member of (4), as it will be 

demonstrated in this paper. The design parameters include 

the characteristic impedances of both the sensing and the 

design transmission line sections, as well as their electrical 

lengths. The idea of optimizing the sensitivity in these 

reflective-mode phase-variation sensors by means of 

impedance contrast is inspired by the well-known effect of 

size reduction in half-wavelength or quarter-wavelength 

stepped-impedance resonators [44], which can be attributed 

to a further variation of the phase of the signal along the 

whole element. In particular, stepped-impedance shunt stubs 

(SISS) with extreme impedance contrast can be considered 

to be semi-lumped resonators, as discussed in [45]. 

III. SENSITIVITY ANALYSIS 

The main purpose of this section is to analyze in detail the 

first term of the right-hand side member of (4), d/ds, in 

order to determine the optimum design parameters (Z, Zs,  

and s) for sensitivity optimization. However, we will also 

obtain analytically the last derivative in (4), by considering a 

semi-infinite MUT. This is important since the transverse 

geometry of the line has influence on this term, but it also 

determines the characteristic impedance of the sensing line, 

thereby influencing the first term. Let us first carry out the 

sensitivity analysis corresponding to the first term of (4), 

d/ds, by considering a uniform (not necessarily matched) 

sensing line directly connected to the input port (i.e., without 

the presence of the design line, or the discontinuity), and then 

the general case of the structure with step-impedance 

discontinuity (Fig. 1). The last subsection will be devoted to 

the analysis of the last term in (4). 

A. Sensitivity Analysis for a Uniform and Mismatched 

Sensing Line Directly Connected to the Input Port 

By eliminating the design line (equivalent to consider the 

general case with  = 0), the impedance seen from the input 

port and the reflection coefficient referred to Z0 (the 

reference impedance of the port), are given by [43] 

𝑍𝑖𝑛 = −𝑗𝑍𝑠 cot 
𝑠
                           (5) 

and 

 =
+𝑍0+𝑗𝑍𝑠 cot 𝑠

−𝑍0+𝑗𝑍𝑠 cot 𝑠

                             (6) 

respectively. The phase of the reflection coefficient is thus 

 


= 2arctan (
𝑍𝑠 cot 𝑠

𝑍0
)                        (7) 

and the sensitivity of  with s, designated as Ss, is found to 

be 

𝑆𝑠
=

𝑑

𝑑𝑠

= −
2

𝑍0
𝑍𝑠

sin2𝑠+
𝑍𝑠
𝑍0

cos2𝑠

                    (8) 

Let us now calculate the values of s that maximize, or 

minimize, the sensitivity. For that purpose, the derivative of 

(8) is calculated. The result can be expressed as 

𝑑𝑆𝑠

𝑑𝑠

=
4(

𝑍0
𝑍𝑠

−
𝑍𝑠
𝑍0

) sin 𝑠 cos 𝑠

(
𝑍0
𝑍𝑠

sin2𝑠+
𝑍𝑠
𝑍0

cos2𝑠)
2                         (9) 

For the trivial case with Zs = Z0 (matched sensing line), the 

derivative of the sensitivity is null, as expected since the 

sensitivity is constant (and given by expression 3). However, 

if Zs  Z0, the values of s that provide extreme values to the 

sensitivity (those that null the numerator of 9) satisfy either 

s = n, or s = (2n + 1)/2, with n = 0, 1, 2,... The 

corresponding sensitivities are found to be 

  𝑆𝑠
= −2

𝑍0

𝑍𝑠
= −

2

𝑍𝑠̅̅ ̅
      for s = n                    (10a) 

  𝑆𝑠
= −2

𝑍𝑠

𝑍0
= −2𝑍𝑠

̅̅ ̅    for s = (2n + 1)/2       (10b) 

where 𝑍𝑠
̅̅ ̅ is the normalized impedance of the sensing line. 

According to expressions (10), for sensitivity optimization, 

the normalized impedance of the sensing line must be high if 

the electrical length satisfies s = (2n + 1)/2, and it must be 

low for s = n. Note that the limits are dictated by the 

maximum and minimum achievable values of the normalized 

impedance. For instance, if the impedance span is delimited 

by Zs = 25  (minimum value) and Zs = 150  (maximum 

value), and Z0 = 50 , the upper limit of the magnitude of the 

sensitivity is Ss,max = 6 [achieved if Zs = 150 , i.e.,  𝑍𝑠
̅̅ ̅ = 

3, and s = (2n + 1)/2]. Figure 2 depicts a plot of the 

sensitivity (expression 8) as a function of 𝑍𝑠
̅̅ ̅ and s, where 

the above-cited guidelines for sensitivity optimization are 

confirmed. It can also be concluded that for 𝑍𝑠
̅̅ ̅ > 1, the 

sensitivity is maximized and minimized for s = (2n + 1)/2 

and s = n, respectively, whereas for 𝑍𝑠
̅̅ ̅ < 1, s = n 

provides the maximum value of the sensitivity, and the 

sensitivity is a minimum for s = (2n + 1)/2.  

 

Fig. 2. Plot of the sensitivity of the phase of the reflection coefficient with 

the phase of the sensing line, for the case of the sensing line directly 

connected to the input port. Note that the sensitivity takes negative values, 

but its magnitude is maximized, or minimized, according to the line 
impedance and electrical length combinations indicated in the text. 

B. Sensitivity Analysis for an Open-Ended Line with a 

Step-Impedance Discontinuity (General Case)  

In this subsection, the main objective is to explore the 

possibility of further enhancing the sensitivity by adding 

degrees of freedom to the phase-variation sensor. For that 

purpose, the structure of Fig. 1, with a step-impedance 

discontinuity achieved by cascading a transmission line 

section between the sensing line and the input port, is 

considered. In this case, the impedance seen from the input 

port is 

𝑍𝑖𝑛 =
𝑗𝑍(𝑍 tan −𝑍𝑠 cot 𝑠)

𝑍+𝑍𝑠 cot 𝑠 tan 
                         (11) 



whereas the reflection coefficient is found to be 

 =
−𝑍0(𝑍+𝑍𝑠 tan  cot 𝑠)+𝑗𝑍(𝑍tan −𝑍𝑠 cot 𝑠)

+𝑍0(𝑍+𝑍𝑠 tan  cot 𝑠)+𝑗𝑍(𝑍 tan −𝑍𝑠 cot 𝑠)
           (12)                           

and the phase of the reflection coefficient is 




= 2arctan (
𝑍(𝑍𝑠 cot 𝑠−𝑍tan )

𝑍0(𝑍+𝑍𝑠 tan  cot 𝑠)
)                 (13) 

Let us now evaluate the sensitivity as defined in (8). After 

some simple calculation, the following result is obtained: 

𝑆𝑠
=

−2𝑍2𝑍𝑠𝑍0(1+tan2)

𝑍0
2(𝑍 sin 𝑠+𝑍𝑠 tan  cos 𝑠)

2
+𝑍2(𝑍 tan  sin 𝑠−𝑍𝑠 cos 𝑠)

2   (14)                 

Note that if  = 0, equation (14) simplifies to expression (8), 

as expected. 

Since the main purpose of the analysis is to find the 

conditions for sensitivity optimization by considering the 

addition of the design line, it is pertinent to calculate the 

derivative of Ss with the electrical length of this line, . By 

forcing the resulting expression to be zero, the value of  

providing the maximum value of the sensitivity (provided the 

other design values, i.e., s, Zs, and Z, are fixed) is expected 

to be found. However, in order to simplify the calculation, 

we have inferred the derivative with respect to tan. The 

following result has been found:  

𝑑𝑆𝑠

𝑑 tan 
= −4

(𝑍0
2𝑍𝐴

2+𝑍2𝑍𝐵
2)𝑍2𝑍𝑠𝑍0 tan −𝑍2𝑍𝑠𝑍0(1+tan2)(𝑍0

2𝑍𝐴𝑍𝑠 cos 𝑠+𝑍2𝑍𝐵𝑍 sin 𝑠)

(𝑍0
2𝑍𝐴

2+𝑍2𝑍𝐵
2)

2    

(15)                 

where we have used ZA and ZB, defined as 

𝑍𝐴 = 𝑍 sin 
𝑠

+ 𝑍𝑠 tan  cos 
𝑠
                (16a)                 

𝑍𝐵 = 𝑍 tan  sin 
𝑠

− 𝑍𝑠 cos 
𝑠
                (16b)                 

for simplification purposes. The zero (or zeros) in (15) are 

given by those values of tan that null the numerator. Thus, 

rearranging the numerator and forcing it to be zero, the 

following second order equation (tan being the unknown) 

results: 

𝑍𝑍𝑠 sin 
𝑠

cos 
𝑠

tan2 + (𝑍2 sin2
𝑠

− 𝑍𝑠
2cos2

𝑠
) tan  −

𝑍𝑍𝑠 sin 
𝑠

cos 
𝑠

= 0                (17)                 

and the two solutions (  = 1 and  = 2) are 

tan 
1

=
𝑍𝑠 cos 𝑠

𝑍 sin 𝑠

                             (18a)                 

tan 
2

= −
𝑍 sin 𝑠

𝑍𝑠 cos 𝑠

                         (18b)                 

Thus, for 1 and 2 given by (18), the sensitivity (calculated 

using 14), should be a local (or absolute) maximum or 

minimum. The specific values are: 

𝑆𝑠
|
1

= −
2𝑍2𝑍𝑠

𝑍0

1

𝑍2sin2𝑠+𝑍𝑠
2cos2𝑠

                (19a)                 

𝑆𝑠
|
2

= −2𝑍0𝑍𝑠
1

𝑍2sin2𝑠+𝑍𝑠
2cos2𝑠

               (19b)                 

Nevertheless, in order to be sure that the convenient value of 

 for sensitivity optimization is either 1 or 2, it should be 

verified that Ss does not exhibit poles (zeros in the 

denominator). Inspection of (14) reveals that the 

denominator cannot be zero, unless both squared terms are 

simultaneously null, and this is not possible.  

In view of expressions (19), it follows that if Z < Z0, the 

sensitivity is larger for 2, and it is larger for 1 if Z > Z0. Let 

us now calculate the derivative of expressions (19) with s, 

in order to calculate the value of s that maximizes, or 

minimizes, these values. The following values are obtained: 

𝑑𝑆𝑠
|
1

𝑑𝑠

=
4𝑍2𝑍𝑠

𝑍0

(𝑍2−𝑍𝑠
2) sin 𝑠 cos 𝑠

(𝑍2sin2𝑠+𝑍𝑠
2cos2𝑠)

2                (20a)                 

𝑑𝑆𝑠
|
2

𝑑𝑠

= 4𝑍0𝑍𝑠
(𝑍2−𝑍𝑠

2) sin 𝑠 cos 𝑠

(𝑍2sin2𝑠+𝑍𝑠
2cos2𝑠)

2              (20b)                 

and for both equations, the derivative is null if s = n, or s 

= (2n + 1)/2.  

Concerning (20a), if s = (2n + 1)/2, then 1 = n, 

according to (18). Conversely, if s = n, then it follows that 

1 = (2n + 1)/2. The sensitivity in the former case is 

𝑆𝑠
=

−2𝑍𝑠

𝑍0
= −2𝑍𝑠

̅̅ ̅                          (21)                 

and the following value results for s = n, and 1 = (2n + 

1)/2: 

𝑆𝑠
=

−2𝑍2

𝑍0𝑍𝑠
= −2

𝑍2

𝑍𝑠̅̅ ̅
                         (22)                 

It is clear in view of (21) and (22) that for Z > Z0 > Zs, (22) is 

a maximum and (21) is a minimum. 

Concerning (20b), if s = (2n + 1)/2, then 2 = (2n + 

1)/2, and 2 = n if s = n. The sensitivity in the former 

case is  

𝑆𝑠
=

−2𝑍0𝑍𝑠

𝑍2 = −2
𝑍𝑠̅̅ ̅

𝑍2                          (23)                 

For 2 = n and s = n, the sensitivity is found to be: 

𝑆𝑠
=

−2𝑍0

𝑍𝑠
=  −2

1

𝑍𝑠̅̅ ̅
                            (24)                 

Inspection of (23) and (24) reveals that for Z < Z0 < Zs, (23) 

is a maximum and (24) is a minimum. 

According to the previous analysis, it can be concluded that 

for sensitivity optimization, there are two optimum 

combinations regarding the electrical lengths of the sensing 

and design lines (plus the corresponding multiples): 

 Case A: s = (2n + 1)/2 and  = (2n + 1)/2. In this 

case, the line impedances should satisfy Z < Z0 < Zs, and 

the value of the sensitivity is given by (23), 

corresponding to a maximum. Moreover, the lower the 

impedance contrast, defined as the ratio between the 

characteristic impedances of the design and sensing 

line, the higher the sensitivity. 

 Case B: s = n and  = (2n + 1)/2. In this case, the 

line impedances should satisfy Z > Z0 > Zs, and the value 

of the sensitivity is given by (22), also corresponding to 

a maximum. A high impedance contrast enhances the 

sensitivity, in this case. 

It is interesting to compare the values of the maximum 

sensitivities, given by (22) and (23) for the s = n and s = 

(2n + 1)/2 sensing lines, respectively, with the 

corresponding values without design line, given by (10a) and 

(10b). The ratio for s = (2n + 1)/2 is 1/𝑍̅2, whereas it is 𝑍̅2 

for s = n. According to these values, the sensitivity can be 

substantially enhanced by including the so-called design line 

with the adequate impedance value (low for s = (2n + 1)/2, 



and high for s = n). The reason is that the dependence of 

such ratios with the normalized impedance of the design line 

is squared. 

Figure 3 plots the dependence of the sensitivity Ss with s 

and , calculated by means of expression (14), for two cases: 

(i) Z < Z0 < Zs, and (ii) Z > Z0 > Zs. The figure confirms that 

the sensitivity is optimum (maximum) for the phase 

combinations predicted by the analysis. It is also interesting 

to mention that for any value of s, there are two values of   

in the interval [0-](designated as 1 and 2 in expression 

18), where the sensitivity is either a maximum or a minimum. 

The positions of the maxima in the -s plane are indicated 

in Fig. 3 (blue regions). Note that these positions converge to 

the canonical values if the electrical length of the sensing line 

is either s = n or s = (2n + 1)/2.  

The maximum value of the magnitude of the sensitivity for 

the two cases considered in Fig. 3, given by equation (22) for 

Z = 150  and Zs = 25 , and by equation (23) for  Z = 25  

and Zs = 150 , are found to be Ss= 36 and Ss= 24, 

respectively. With these high values of the sensitivity of the 

phase of the reflection coefficient with the phase of the 

sensing line, it is expected that the overall sensitivity, given 

by expression (4), can be significantly optimized. 

Interestingly, these high sensitivity values have been 

achieved with perfectly implementable transmission lines 

(i.e., the considered high, 150 Ω, and low, 25 Ω, 

characteristic impedances correspond to implementable line 

widths, at least in microstrip technology and line 

implementation in most commercial microwave substrates).  

 
(a) 

 
(b) 

Fig. 3. Plot of the sensitivity of the phase of the reflection coefficient with 

the phase of the sensing line, as a function of the electrical lengths of the 

sensing and design lines, for two cases: (a) Z = 150  and Zs = 25 ; (b) 

Z = 25  and Zs = 150 . The reference impedance of the port is Z0 = 50 . 

In this case, the sensitivity is presented in level charts, rather than three-
dimensional views, for better comprehension. 

C. Sensitivity of the Phase of the Sensing Line with the 

Dielectric Constant of the MUT 

For the calculation of the last derivative in (4), dS/dMUT, 

let us first express the phase of the sensing line in terms of 

the effective dielectric constant of the line, eff, i.e., 


𝑠

=
𝑙𝑠

𝑐
√𝑒𝑓𝑓                             (25) 

In (25), ls is the length of the sensing line,  is the angular 

frequency, and c is the speed of light in vacuum. By 

considering a semi-infinite MUT (in the vertical direction) 

on top of the sensing line, the effective dielectric constant can 

be expressed as [43] 

𝑒𝑓𝑓 =
𝑟+𝑀𝑈𝑇

2
+

𝑟−𝑀𝑈𝑇

2
𝐹                   (26)                  

where r is the dielectric constant of the substrate and F is a 

geometry factor given by 

𝐹 = (1 + 12
ℎ

𝑊𝑠
)

−1/2

                        (27a) 

for Ws/h ≥ 1, or by      

𝐹 = (1 + 12
ℎ

𝑊𝑠
)

−1/2

+ 0.04 (1 −
𝑊𝑠

ℎ
)

2

         (27b)  

for Ws/h < 1. In (27), h and Ws are the substrate thickness and 

the width of the sensing line, respectively, and it is assumed 

that t << h, where t is the thickness of the metallic layer. In 

practice, if the MUT is thick enough, so that the 

electromagnetic field generated by the line does not reach the 

MUT-air interface, the MUT can be considered to be semi-

infinite, and equation (26) can be used for analysis purposes.  

The last term in (4) can be expressed as                              

𝑑𝑠

𝑑𝑀𝑈𝑇
=

𝑑𝑠

𝑑𝑒𝑓𝑓

𝑑𝑒𝑓𝑓

𝑑𝑀𝑈𝑇
=  

𝑙𝑠

4𝑐√𝑒𝑓𝑓
(1 − 𝐹)           (28) 

and introducing (26) in (28), after some simple algebra one 

obtains 
𝑑𝑠

𝑑𝑀𝑈𝑇
=

𝑙𝑠

2√2𝑐

1

√𝑟
1+𝐹

(1−𝐹)2+𝑀𝑈𝑇
1

1−𝐹

                  (29) 

It is apparent by inspection of (29) that operating at high 

frequency and/or choosing a long sensing line favors 

sensitivity (as it was anticipated before, and it is well known). 

For sensitivity optimization, it is also convenient to select the 

substrate with the smallest possible dielectric constant. The 

effects of the transverse geometry of the line are included in 

F. From (27), it follows that F decreases by increasing h or 

by decreasing Ws. A decrease in F favors the sensitivity, as it 

can be easily deduced from (29). Therefore, for sensitivity 

optimization it is convenient to deal with high impedance 

sensing lines, as far as for the implementation of these lines, 

either narrow line widths and/or or thick substrates are 

needed. According to these comments, the preferred option 

for the implementation of the sensors is to choose the line 

impedances satisfying Z < Z0 < Zs, rather than Z > Z0 > Zs.  

However, the final decision should be taken by considering 

the maximum and minimum achievable line impedances 

(determined by the substrate in use and by the available 

fabrication technology), and evaluating the whole sensitivity 

using (4), (29), and either (22) or (23) depending on each 

case. 

It should also be mentioned that if the thickness of the MUT 

does not obey the semi-infinite requirement criterion, 

𝑆𝑠
< 𝑆𝑠

|
𝑧𝑠=𝑍0

 

𝑆𝑠
< 𝑆𝑠

|
𝑧𝑠=𝑍0

 

 



expression (29) cannot be considered to be valid, and thereby 

it cannot be used to predict the overall sensitivity of the 

sensor. Nevertheless, the conclusions of the previous 

paragraph, on the effects of the substrate characteristics 

(dielectric constant) and transverse geometry of the line on 

sensitivity, do hold.  

IV. EXPERIMENTAL VALIDATION 

Experimental validation of the theory of the preceding 

section is carried out by considering two prototype sensors 

based on a step-impedance discontinuity. In one case, the line 

impedances and electrical lengths satisfy Z < Z0 < Zs, s = (2n 

+ 1)/2 and  = (2n + 1)/2 (case A of the previous Section). 

For the second prototype, the transmission line sections are 

chosen following the guidelines corresponding to case B of 

Section III, i.e., Z > Z0 > Zs, s = n and  = (2n + 1)/2. 

Moreover, for comparison purposes, a set of four sensors 

without the presence of the design line (i.e., without step-

impedance discontinuity), and lengths comparable to those 

of the step-impedance discontinuity based sensors, are also 

designed and fabricated. All sensors are fabricated on the 

Rogers RO4003C substrate with dielectric constant r = 3.55, 

thickness h = 1.524 mm and loss factor tan= 0.0022 (the 

prototypes are fabricated by means of the LPKF H100 

drilling machine), and the frequency of operation is set to 

f = 2 GHz.  

For case A, the line impedances are set to Z = 25Ω and 

Zs = 150 Ω (with Z0 = 50 Ω). With these values, the width of 

the lines, inferred from the transmission line calculator 

included in Keysight ADS, have been found to be Ws = 

0.242 mm and W = 9.1 mm, where W is the width of the 

design line. The electrical lengths of both the design and 

sensing line are set to  = s = 90º, in order to implement the 

sensor with the minimum physical length. Note that the 

sensitivity can be improved by elongating the sensing line 

(considering an electrical length equal to an odd multiple of 

90º). However, the objective in this paper is to demonstrate 

the potential for sensitivity improvement with the proposed 

strategy (step-impedance discontinuity), leading to high 

sensitivity phase-variation sensors compatible with small 

sizes. The calculated physical lengths of the design and 

sensing lines are l = 18.3 mm and ls = 23.65 mm, respectively 

(note that these lengths are unequal since the phase velocities 

of the design and sensing lines are not identical). The 

photograph of the designed sensor is depicted in Fig. 4(a), 

where it can be appreciated that a 50-Ω access line (with 

length of 10 mm) has been added for connector soldering (the 

width of this 50-Ω line is 3.42 mm). 

The second sensor (case B) has been designed with the 

following values of characteristic impedances and electrical 

lengths: Z = 150Ω, Zs = 25 Ω,  = 90º, and s = 180º. Line 

widths and lengths are in this case W = 0.242 mm, Ws = 

9.1 mm, l = 20.7 mm and ls = 42.1 mm. The photograph of 

this prototype sensor is shown in Fig. 4(b).  

Finally, an additional set of four sensors, based on uniform 

lines, has been designed according to the following 

considerations. One sensor is implemented by means of a 

s = 90º sensing line with high characteristic impedance 

(Zs = 150 Ω), in order to achieve good sensitivity [see 10(b)]. 

Another sensor consists of a low-impedance (Zs = 25 Ω) 

sensing line with electrical length s = 180º [according to the 

high sensitivity criterion of 10(a)]. Finally, the last two 

sensors are simply a 180º and 90º uniform and matched (50-

Ω) lines. These four sensors are also depicted in Fig. 4, where 

the inclusion of the 50-Ω access lines can be appreciated. The 

lengths of these access lines have been chosen in order to 

achieve sensors with comparable lengths, i.e, for those with 

identical sensing lines. The sensing regions are indicated by 

the dashed rectangles.  

For the six fabricated sensors, we have placed on top of the 

sensing areas several dielectric slabs with different dielectric 

constants. Such slabs are uncoated microwave substrates 

with well-known dielectric constant. Their thickness is 

roughly 3 mm (achieved by stacking up two 1.5-mm slabs). 

With this thickness, the MUT can be considered to be semi-

infinite in the vertical direction, as it has been inferred from 

independent simulations (not shown), indicating that the 

phase of the reflection coefficient does not significantly vary 

for thicker MUT slabs. Figure 5 depicts the variation of the 

phase of the reflection coefficient experienced by the 

different sensors for the different dielectric loads (indicated 

in the caption of Fig. 5). The measurement of the reflection 

coefficient has been inferred by means of the Keysight 

85072A vector network analyzer. It can be seen that the 

sensors with step-impedance discontinuity exhibit stronger 

variation of the phase of the reflection coefficient with the 

dielectric constant of the material under test. By contrast, 

sensors of Fig. 4(e) and Fig. 4(f), based on a uniform matched 

line, exhibit the softer dependence. Thus, these results point 

out the potential of step-impedance lines for sensitivity 

enhancement, provided the electrical length and 

characteristic impedance of the line sections is adequately 

selected.  

 

Fig. 4. Photographs of the fabricated reflective-mode phase-variation 

sensors. (a) Sensor with step-impedance discontinuity and Z < Z0 < Zs; (b) 
sensor with step-impedance discontinuity and Z > Z0 > Zs; (c) sensor with 

uniform mismatched sensing line and Zs > Z0; (d) sensor with uniform 

mismatched sensing line and Zs < Z0; (e) sensor based on a 90º uniform 50-
Ω sensing line and (f) sensor based on a 180º uniform 50-Ω sensing line. 

Figure 5 also includes the simulation results, inferred by 

means of the Ansys HFSS commercial software. The 

agreement with the measured data is very good. In order to 

validate the sensitivity analysis carried out in Section III, we 

have included further simulated data points by considering 

additional hypothetical materials with different dielectric 

constants in the range between MUT = 1 to MUT = 10.5. From 

the simulated data points, we have obtained the sensitivity, 

also included in Fig. 5. The sensitivity in the limit when 



MUT = MUT  REF   0 (REF being the dielectric constant 

of vacuum, i.e.,  REF  = 1) is indicated in Fig. 5 for each 

sensor. We have calculated the sensitivity for MUT = 1 by 

means of expression (4), where the last term is given by (29), 

and the first term (Ss) is obtained by means of (3), (10a), 

(10b), (22) or (23), depending on the specific sensor. These 

theoretical sensitivities, designated as Sth, are also indicated 

in Fig. 5. As it can be seen, the agreement with the 

sensitivities inferred from the simulated data points, S, is 

very good, thereby validating the sensitivity analysis 

developed in the preceding section. 

It is remarkable that the sensitivity for small perturbations 

is significantly enhanced by considering the step-impedance 

discontinuity. Note that for the sensor of Fig. 4(a), the 

sensitivity is roughly 4 times larger than the one of the sensor 

of Fig. 4(c), with identical sensing line, and 19.7 times larger 

than the one of the sensor of Fig. 4(e). On the other hand, the 

sensor of Fig. 4(b) exhibits a sensitivity better than the one 

of the sensors of Figs. 4(d) and 4(f) by a factor of 9 and 11.4, 

respectively.  
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Fig. 5. Measured and simulated phase of the reflection coefficient for the 
sensors of Fig. 4, and simulated sensitivity. (a) Sensor with step-impedance 

discontinuity and Z < Z0 < Zs; (b) sensor with step-impedance discontinuity 

and Z > Z0 > Zs; (c) sensor with uniform mismatched sensing line and Zs > 
Z0; (d) sensor with uniform mismatched sensing line and Zs < Z0; (e) sensor 

based on a 90º uniform 50-Ω sensing line and (f), sensor based on a 180º 

uniform 50-Ω sensing line. The measured dielectric loads are 3-mm slabs of 
uncoated PLA (ɛMUT = 3), Rogers RO4003C (ɛMUT = 3.55), FR4 (ɛMUT = 4.4) 

and Rogers RO3010 (ɛMUT = 10.2) substrates. The sensitivities in the limit of 
small perturbations are given in absolute value. 

It can be seen in Fig. 5 that as MUT increases, the magnitude 

of the sensitivity decreases, and such decrement is more 

pronounced for the sensors exhibiting the larger sensitivity 

for small perturbations, i.e., those including the step-

impedance discontinuity. These sensors exhibit smaller 

linearity, as compared to those based on uniform matched 

lines, but they are able to detect tiny variations of the 

dielectric constant as compared to the one of a reference 

material by virtue of their high sensitivity. Since the sensing 

lines have been designed in order to exhibit either 90º or 180º 

by considering that they are unloaded, it follows that the 

reference dielectric constant in our study is the one of air, and 

for this reason the sensitive is a maximum for MUT = 1. 

Nevertheless, highly sensitive dielectric constant 

measurements in the vicinity of a different reference value 

are possible by simply forcing the sensing lines to exhibit the 

required electrical length (90º or 180º) at the operating 

frequency and the required value of Zs when they are loaded 

with the reference sample. For instance, by considering the 

Rogers RO4003C with dielectric constant 3.55 as reference 

sample, it is expected that the phase of the reflection 

coefficient for the different considered MUT can be clearly 

distinguished (nevertheless, further designs and validations 

are out of the scope of this paper).  

V. GENERALIZATION OF THE CONCEPT AND DISCUSSION 

It has been theoretically demonstrated and experimentally 

validated in this paper that a step-impedance discontinuity is 

useful to increase the sensitivity in these reflective-mode 

phase-variation sensors. Moreover, it has been shown that 

the electrical length of the design line must be set to  = (2n 

+ 1)/2, whereas either a s = (2n + 1)/2 or a s = n 

sensing line is needed for that purpose (in each case, with the 

convenient impedance contrast, as discussed in Section III). 

In this section, it is shown that the sensitivity of the phase of 

the reflection coefficient with the phase of the sensing line 

(and thereby the overall sensitivity) for small perturbations 

can be further improved by considering a multi-step-

impedance transmission line, as the one shown in Fig. 6(a). 

It is a generalization of the structure of Fig. 1, based on a 

cascade of high and low impedance transmission line 

sections of identical electrical length, i.e.,  = (2n + 1)/2, 

followed by the sensing line (with electrical length s and 

characteristic impedance Zs). The characteristic impedances 

of the high or low impedance transmission line sections are 

designated by Zi,, where i = 1,2,…N denotes the specific 

section, and N is the total number of Sections (e.g., N = 1 for 

the structure of Fig. 1). 

According to Fig. 6, the impedance seen from the  

discontinuity in contact with the sensing line, looking at the 

open end, is called Zin,s, and it is given by expression (5). The 

impedance seen from any other discontinuity looking at the 

open end of the structure, Zin,i, can be expressed in terms of 

the impedance seen from the previous discontinuity as 

  𝑍𝑖𝑛,𝑖 =
𝑍𝑖

2

𝑍𝑖𝑛,𝑖−1
                             (30) 

from which it follows (using mathematical induction) that 

the impedance seen from the input port can be expressed as 

  𝑍𝑖𝑛,𝑁 = 𝑍𝑖𝑛,𝑠
(−1)𝑁

∏ {𝑍𝑖
2(−1)𝑖+𝑁

}
𝑁

𝑖=1
              (31) 

or (using 5) 

  𝑍𝑖𝑛,𝑁 = (−𝑗𝑍𝑠)(−1)𝑁
(cot 

𝑠
)

(−1)𝑁

∏ {𝑍𝑖
2(−1)𝑖+𝑁

}
𝑁

𝑖=1
(32)             

In (31) and (32), the symbol  denotes the product operator. 

The reflection coefficient seen from the input port is thus 

   =
𝑗(−1)𝑁+1(𝑍𝑠cot 𝑠)

(−1)𝑁
∏  −𝑍0

𝑗(−1)𝑁+1(𝑍𝑠cot 𝑠)
(−1)𝑁

∏  +𝑍0

                   (33)             

and the phase of the reflection coefficient is given by  






= 2arctan (
(−1)𝑁(𝑍𝑠cot 𝑠)

(−1)𝑁
∏  

𝑍0
)             (34) 

Note that in (33) and (34) the argument of the product 

operator has been omitted for simplicity. After some simple 

(but tedious) algebra, the sensitivity of  with s, designated 

as Ss in (8), is found to be 

𝑆𝑠
= −

2

𝑍0

∏   (𝑍𝑠)(−1)𝑁 
(sin 𝑠)

(−1)𝑁+1

(cos 𝑠)
(−1)𝑁−1

 + 
∏   (𝑍𝑠)(−1)𝑁

𝑍0
 

(cos 𝑠)
(−1)𝑁+1

(sin 𝑠)
(−1)𝑁−1

 

(35)                       

and it takes a maximum, or a minimum, value, depending on 

the set of impedances Zi, when the electrical length of the 

sensing line is either s = (2n + 1)/2 or s = n, as 

anticipated before. In order to evaluate (35) for these specific 

values of s, it is necessary to distinguish if the number of 

sections, N, is even or odd. Consequently, four different 

cases appear, and, for each case, the sensitivity is found to 

be: 

 Case A’: s = (2n + 1)/2 and N odd. 

𝑆𝑠
= −

2𝑍𝑠𝑍0

∏ {𝑍𝑖
2(−1)𝑖+𝑁

}

𝑁

𝑖=1

                 (36a) 

 Case B’: s = n and N odd. 

𝑆𝑠
= −

2∏ {𝑍𝑖
2(−1)𝑖+𝑁

}

𝑁

𝑖=1

𝑍𝑠𝑍0
               (36b)                          

 Case C’: s = (2n + 1)/2 and N even. 

𝑆𝑠
= −

2𝑍𝑠∏ {𝑍𝑖
2(−1)𝑖+𝑁

}

𝑁

𝑖=1

𝑍0
             (36c)                          

 Case D’: s = n and N even. 

𝑆𝑠
= −

2𝑍0

𝑍𝑠∏ {𝑍𝑖
2(−1)𝑖+𝑁

}

𝑁

𝑖=1

              (36d)                          

Note that for N = 1 (cases A’ and B’), expressions (36a) and 

(36b) coincide with expressions (23) and (22), respectively, 

as expected, since the multi-stepped impedance transmission 

line for this case is the one of Fig. 1.  

Inspection of expressions (36) reveals that Zs appears in the 

numerator for s = (2n + 1)/2 and it appears in the 

denominator for s = n. Thus, it can be concluded that for 

quarter-wavelength (or odd multiple) sensing lines, a high 

characteristic impedance is required for sensitivity 

optimization (regardless of the number of sections of the 

structure). Conversely, low impedance values are needed in 

half-wavelength (or multiple) sensing lines. To infer the 

effects of the characteristic impedances of the quarter-

wavelength transmission line sections, Zi (with i = 1,2…N), 

on the sensitivity, we should analyze carefully the product 

operator that appears in expressions (36). For N odd (cases 

A’ and B’), it follows that the characteristic impedance of a 

section with odd order (i.e., with i odd) appears as 𝑍𝑖
2, 

whereas for an even-order section the corresponding term in 

the product is 𝑍𝑖
−2. Under these circumstances, the 

requirement of a high or low value of Zi for sensitivity 

optimization depends on whether the product operator is 

present either in the numerator or in the denominator in 

expressions (36). Particularly, for case A’, with the product 

operator in the denominator, the odd-order transmission line 

sections must exhibit low impedance values, whereas high 

characteristic impedance sections are required for the even 

sections. The opposite conditions apply for case B’, as far as 

the product operator appears in the numerator of (36b). For 

N even (cases C’ and D’) and i odd, the impedance is negative 

squared (𝑍𝑖
−2), whereas it appears as 𝑍𝑖

2 for N even and i 

even. Consequently, for case C’, with the product operator in 

the numerator of (36c), the odd sections must exhibit low 

characteristic impedance, and the line impedance must be 

high for the even sections. Finally, it is obvious that for case 

D’ (half-wavelength sensing line), the sections that should 

exhibit high impedance for sensitivity optimization are those 

with odd index. 

From the previous analysis, it can be concluded that for 

sensitivity optimization, regardless of the number of sections 

N, if the electrical length of the sensing line is s = (2n + 

1)/2, the impedance of this line must be high, and the 

impedance of the cascaded quarter-wavelength sections must 

alternatively exhibit low and high values (with a low 

impedance value for the section adjacent to the sensing line, 

i.e., the one with i = 1). For s = n, the sensing line must be 

a low-impedance line, a high-impedance line is required for 

the first section (i = 1), a low-impedance line for the second 

section, and so on. Thus, it is clear that a non-uniform 

stepped-impedance transmission line based on quarter 

wavelength sections, cascaded to an open-ended quarter- or 

half-wavelength line, is a very useful structure for sensitivity 

enhancement in phase-variation sensors. Note that, with the 

reported approach, the sensitivity can be as high as desired, 

without the need to increase the length of the sensing line (as 

occurs in typical phase-variation sensors [20],[25]). For that 

purpose, it suffices to include the necessary number of 

sections (with as much contrast of impedance as possible) to 

obtain the required (high or low) value of the product 

operator in (36). 

Note that the effects of losses on sensor performance 

(sensitivity) have not been considered so far. From the 

analysis developed in detail in Appendix B, it can be 

concluded that the sensitivity is not substantially degraded, 

at least under the low-loss approximation (an approximation 

valid for many MUTs). It should also be clarified that 

although in the Appendix B a method for estimating the loss 

tangent of the MUT is suggested (see last part), resonant 

methods are, in general, preferred for that purpose. In the 

present study, validation of the theoretical analysis is carried 

out by considering samples with different dielectric 

constants, and also with different loss tangents. Nevertheless, 

the considered input variable is the dielectric constant of the 

MUT. Note, however, that the proposed phase-variation 

sensors can be applied to material analysis and composition, 

quality control processes, or to defect detection in samples, 

since changes in the dielectric constant of the MUT are 

involved in these applications. Through a proper design, the 

proposed sensing strategy may be also useful for the 

characterization of liquid composition (e.g., determination of 

solute content in liquid solutions, etc.). Nevertheless, this is 

out of the scope of the present paper. 

Despite the fact that the reported experimental results of 

Section IV (with N = 1) are indicative of the potential of the 



approach for sensitivity enhancement, let us consider a 

further example, corresponding to case C’ with N = 2. The 

impedances are set to Zs = 150 , Z1 = 25  and Z2 = 86.6  

(the operating frequency and substrate characteristics are 

identical to those of the prototypes of Section IV). The 

impedance Z2 has been chosen in order to obtain Ss = 72, i.e., 

3 times the sensitivity of the previous structure with Zs = 150 

 and Z = 25  (N = 1). Figure 6(b) shows the photograph 

of the fabricated prototype.  

 
(a) 

 

 
(b) 

Fig. 6. General schematic/topology of the N-sections reflective-mode phase-
variation sensor (a) and photograph of the fabricated device with N = 2 (b). 

Dimensions (in mm) are ws = 0.242, ls = 23.65, w1 = 9.1, l1 = 18.3, w2 = 1.22 

and l2 = 21.5.  
 

The phase variations of the reflection coefficient, in 

reference to the one of the bare sensor, inferred from full 

wave electromagnetic simulation by considering MUTs with 

dielectric constants varying in the interval 1 to 4, are depicted 

in Fig. 7. From these simulated data, the sensitivity in the 

low-perturbation limit (MUT  1) is found to be S=  528.7º, 

by far superior to those achieved in the structures with N = 1 

of Section IV. As indicated before, with the considered 

impedance values, the sensitivity of the phase of the 

reflection coefficient with the phase of the sensing line 

(calculated from 36c) is found to be Ss = 72. The sensitivity 

of s with MUT was calculated in the previous section (i.e., 

ds/dMUT = 7.75º), since in one of the prototypes of that 

section the sensing line is identical to the one considered in 

the sensor of Fig. 6. From the product (see 4), the total 

sensitivity is found to be Sth= 558º, in reasonable agreement 

with the result inferred from full wave simulation. The 

discrepancy is mainly attributed to the excessive variation of 

 with MUT, which limits the accurate calculation of the 

sensitivity from the derivative of a set of discrete data points. 

Nevertheless, potential non-ideality effects caused by the 

step discontinuities, not considered in the theoretical 

analysis, may play also a role.  

Due to the lack of available samples with MUT in the high 

sensitive region (MUT  1), we have carried out an 

experiment consisting of obtaining the phase of the reflection 

coefficient for a MUT with dielectric constant MUT = 3.55 

(the uncoated Rogers RO4003C substrate used before), but 

for different vertical distances (air gap, g) with regard to the 

sensing line. Note that this is equivalent to modify the 

dielectric constant of a hypothetical semi-infinite MUT in 

contact with the sensing line. Such equivalent dielectric 

constant, MUT,eq, can be estimated by simulation. For that 

purpose we have simulated the structure by considering 

different air gaps in the interval from g = 0 mm to g = 3 mm 

(far enough so as to consider that the electromagnetic field 

generated by the line does not reach the MUT). From the 

output variable, , resulting for each air gap distance (Fig. 

8), the equivalent dielectric constant, MUT,eq, can be 

determined by reading it from Fig. 7 (i.e., using the simulated 

phase variation of Fig. 8, Fig. 7 provides MUT,eq for each 

simulated point). Thus, we can generate a correspondence 

between the air gap g, and the equivalent dielectric constant 

MUT,eq. Such dependence is given in the inset of Fig. 9, where 

the phase dependence with MUT,eq for the experimental data 

(squared symbols) and with MUT for the simulations is 

depicted. The agreement is reasonably good taking into 

account the difficulty in controlling the air gap distance for 

small values. In addition, in this experiment, similar to the 

previous experimental campaigns, two slabs have been 

stacked up. By screwing the whole MUT against the sensing 

region, as done in the previous measurements, the presence 

of a thin air layer between the slabs is minimized. However, 

this has not been done in the measurements of Fig. 8, because 

the MUT is not in contact with the sensing region.  
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Fig. 7. Simulated phase of the reflection coefficient for different values of 

MUT for the sensor of Fig. 6, and simulated sensitivity. The theoretical 
sensitivity, designated as Sth, is also indicated. The sensitivities in the limit 

of small perturbations are given in absolute value. 
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Fig. 8. Measured phase of the reflection coefficient for the sensor of Fig. 6, 

by loading the sensing region with a MUT separated a variable distance g. 
The considered MUT is the uncoated Rogers RO4003C with thickness h = 3 

mm and dielectric constant MUT = 3.55.  
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Fig. 9. Measured phase of the reflection coefficient for the sensor of Fig. 6, 

by loading the sensing region with a MUT separated a variable distance g. 
The considered MUT is the uncoated Rogers RO4003C with thickness h = 

3 mm (two stacked slabs) and dielectric constant MUT = 3.55. The equivalent 

dielectric constant for the measured data is given by g, according to the 
correspondence curve shown in the inset. For the simulated data, the 

horizontal axis is the dielectric constant of a hypothetical semi-infinite MUT 

in contact with the sensing region. In other words, the simulated curve is the 
one of Fig. 7, but restricted to a smaller range. 

 

Nevertheless, the sensor is able to detect tiny variations of 

MUT,eq in the vicinity of MUT,eq = 1, corresponding to air gap 

separations close to 3 mm. This experiment, emulating low 

perturbations in the dielectric constant of the MUT in the 

highly sensitive region, validates the structure of Fig. 6 as a 

sensor exhibiting very high sensitivity with relatively small 

sensing region. 

The results of these section and those of Section IV are 

indicative of the huge potential of these step-impedance 

transmission line reflective-mode phase-variation sensors for 

sensitivity enhancement, without the need to consider large 

sensing areas (or MUTs). Comparison of the reported phase-

variation sensors with other sensors devoted to dielectric 

characterization is not easy, since there are few sensors 

available in the literature whose working principle is phase 

variation. In [20],[25], the reported phase-variation sensors 

are based on long (uniform) sensing lines (meandered in 

[25]), in order to achieve high sensitivity. In [25], the 

sensitivity of the sensor (a differential-mode sensor operating 

in transmission) is very good (S = 415.6º), but at the expense 

of a pair of meandered lines of length 67.03 cm (the reported 

sensitivity of the sensor of [20] is worse, i.e., S = 54.85º). 

Moreover, the sensing area for the MUT in the sensor of [25] 

is as large as 105.56 cm2. By contrast, the sensing area of the 

sensor reported in this section (Fig. 6) is 15.08 cm2, and the 

reported sensitivity is as high as 528.7º (simulated). This 

combination of sensitivity and sensing area is very 

competitive. Moreover, the sensitivity can be further 

enhanced (maintaining the sensing region unaltered) by 

simply considering additional sections, as indicated before 

(this interesting property is not present in the sensors 

reported in [20],[25]). It should also be mentioned that the 

sensing region of the device can actually be made much 

smaller, since a width of few times the width of the sensing 

line suffices. 

There are other sensors available in the literature where the 

working principle is phase variation, but the output variable 

is not the phase [17],[27],[28]. In the recent paper [28], it was 

demonstrated that by combining a pair of mirrored 

meandered lines with a double rat-race structure 

conveniently designed, the sensitivity of the differential 

sensor can be enhanced (in that sensor, the output variable is 

the magnitude of the transmission coefficient of the resulting 

two-port device). Nevertheless, the sensitivity enhancement 

capability of the strategy proposed in this work is by far 

superior to the one of [28]. In [17] and [27], the reported 

sensors are also based on phase variation, although the output 

variable is not the phase, but the magnitude of the 

transmission coefficient [17], or the magnitude of the cross-

mode transmission coefficient [27]. The sensitivity of such 

sensors [17],[27] is high, thanks to the strong dispersion of 

the considered sensing lines (left handed lines in [17] and 

electro-inductive-wave transmission lines in [27]). It is 

especially remarkable the sensitivity of the sensor in [17], but 

at the expense of a relatively large sensing area (not given in 

[17]). However, further increasing the sensitivity requires the 

elongation of the sensing lines in both sensors. Moreover, the 

robustness of these sensors against fabrication related 

tolerances is limited since either defect ground structures, 

vias, or other elements loading the lines are needed. By 

contrast, the phase-variation sensors reported in this paper 

are implemented by a mere cascade of alternating high/low 

impedance transmission line sections. A comparison of these 

sensors is summarized in Table I. 

TABLE I 

COMPARISON OF VARIOUS SENSORS BASED ON PHASE VARIATION 

Ref. 
Maximum 

Sensitivity* Resolution** Size*** Frequency 

[17] 600 dB 0.0017 N.A. 2.3 GHz 

[20] 54.85º 0.0911 2.5 cm2 10 GHz 

[25] 415.6º 0.0120 105.6 cm2 6 GHz 

[27] 25.33 dB 0.0395 44.55 cm2 4.6 GHz 

[28] 17.62 dB 0.0560 1.2 cm2 2 GHz 

Proposed 

design 

(Fig. 6) 

528.7º 0.0095 15.08 cm2 2 GHz 

*Units are degrees for sensors where the output variable is a phase, and units 
are dB for sensors where the output variable is a transmission coefficient. 
**The resolution in the dielectric constant is calculated by assuming that 

either 5º or 1dB in the output variable (depending on the case) can be 
discriminated. 
***The size corresponds to the sensing area. 

In summary, the reported sensors exhibit a good 

combination of size (sensing region) and performance 

(sensitivity), they operate at a single frequency, they are 

based on a reflective-mode one-port structure, and, most 

important, the sensitivity, the key sensor parameter, can be 

enhanced at wish, keeping unaltered the region devoted to 

the MUT. This later aspect is very relevant and a unique 

feature of the reported sensors. Moreover, the part of the 

sensors excluding the sensing region is as simple as a stepped 

impedance transmission line consisting of cascaded quarter-

wavelength transmission line sections. As it has been shown, 

few sections suffice to achieve very high sensitivity. 

VI. CONCLUSIONS 

In conclusion, a strategy to significantly enhance the 

sensitivity of reflective-mode phase-variation sensors based 

on open-ended lines has been reported in this paper. From a 

detailed sensitivity analysis, it is demonstrated that by 

considering a step-impedance discontinuity, with the sensing 

region comprising the space between the discontinuity and 

the open end, the sensitivity can be engineered. It is 

concluded from such analysis that for sensitivity 



enhancement, the electrical length of the sensing line must 

be either a multiple of 180º, or an odd multiple of 90º, 

whereas the line present between the discontinuity and the 

input port (design line) should exhibit a phase of 90º (or an 

odd multiple). Moreover, sensitivity is enhanced by 

impedance contrast. Particularly, high impedance sensing 

line and low impedance design line is a necessary condition 

for sensitivity optimization in sensors with 90º sensing lines, 

whereas in sensors with 180º sensing lines, the impedance 

contrast should be the opposite one. For validation purposes, 

a first set of six prototype sensors has been fabricated. Two 

of them exhibit a step-impedance discontinuity and have 

been designed following the design guidelines of the 

theoretical analysis. In two sensors, a uniform mismatched 

sensing line (with high impedance in one case and low 

impedance in the other one) has been considered. Finally, the 

other sensors have been implemented by means of uniform 

90º and 180 º matched lines. In all these sensors, the variation 

of the phase of the reflection coefficient (the output variable) 

with the dielectric constant of the material under test (MUT) 

has been inferred by considering different dielectric slabs. 

The sensor sensitivity, the key parameter, has been inferred 

from simulations, since a large number of data points is 

required for the accurate determination of such parameter. 

From the results, it is concluded that the proposed strategy, 

based on the step-impedance discontinuity, is very useful for 

the implementation of highly sensitive phase-variation 

sensors. In the last part of the paper, it has been demonstrated 

that the sensitivity can further be enhanced by simply 

cascading further quarter-wavelength transmission line 

sections with alternating high and low impedance. By this 

means, the sensitivity can be increased at wish, maintaining 

the sensing region unaltered. This is an essential and unique 

property of these phase-variation sensors. The sensitivity 

achieved in the last designed and fabricated prototype, based 

on three quarter-wavelength step-impedance transmission 

line sections (including the sensing line section), is S = 

528.7º. This is 56.2 times larger than the sensitivity achieved 

in the reflective-mode phase-variation sensor based on an 

ordinary and matched line with identical sensing line length. 

These sensors may be of special interest in applications 

related to the measurement of small changes in the dielectric 

constant of the MUT, including determination of material 

composition of solids and liquids (e.g. concentration of 

solute in very diluted solutions), detection of defects in 

samples (as compared to a reference), sensing and 

monitoring of industrial processes (e.g., wine fermentation), 

etc. These applications are left for future works. In the 

present paper, the main objective has been to demonstrate the 

potential of these step-impedance reflective-mode phase-

variation sensors for sensitivity optimization, on the basis of 

a detailed sensitivity analysis, validated through simulation 

and simple experiments. 

APPENDIX A 

EXACT CALCULATION OF THE SENSITIVITY 

Actually, the variation of MUT modifies both the phase, s, 

and the characteristic impedance, Zs, of the sensing line. 

Therefore, the sensitivity of the phase of the reflection 

coefficient, , with MUT should be expressed as 

𝑆 =
𝑑

𝑑𝑀𝑈𝑇
=

𝑑

𝑑𝑠


𝑑𝑠

𝑑𝑀𝑈𝑇
+

𝑑

𝑑𝑍𝑠


𝑑𝑍𝑠

𝑑𝑀𝑈𝑇
             (A1) 

However, by including the last term of the right-hand side 

member of (A1), the phase and impedance conditions for 

sensitivity optimization are roughly the same as those give in 

the body of the text. Specifically, for the structure based only 

on the sensing line, the sensitivity is optimized when the 

phase of such line is either s = n (with Zs low), or s = (2n 

+ 1)/2 (with Zs high), with n = 0, 1, 2,... Moreover, under 

such phase conditions, the derivative d/dZs is null. Hence, 

the sensitivity given by (4) provides an accurate result as far 

as it is calculated for the optimum phase conditions. Indeed, 

for the different structures considered in this paper, the phase 

conditions that optimize d/ds are those that null d/dZs. 

Consequently, the exhaustive study focused on d/ds 

optimization, conducted in Section III and generalized in 

Section V, is fully justified. Let us next demonstrate the 

previous assertions for the structure based simply on the 

sensing line (and considering implementation in microstrip 

technology). 

The two terms of the first product in (A1) are given by (8) 

and (28), but they can be alternatively expressed as: 

𝑑

𝑑𝑠

= −
2

𝑍𝑠
𝑍0

sin−2𝑠

1+(
𝑍𝑠
𝑍0

)
2

cot2𝑠

                       (A2) 

𝑑𝑠

𝑑𝑀𝑈𝑇
=  

𝑠

4𝑒𝑓𝑓
(1 − 𝐹)                      (A3) 

The two terms of the second product are easily inferred from 

(7) and from the expression providing the characteristic 

impedance of a microstrip line, i.e.,  

𝑑

𝑑𝑍𝑠
=

2

1+(
𝑍𝑠
𝑍0

)
2

cot2𝑠


cot 𝑠

𝑍0
                    (A4) 

𝑑𝑍𝑠

𝑑𝑀𝑈𝑇
=

𝑑𝑍𝑠

𝑑𝑒𝑓𝑓

𝑑𝑒𝑓𝑓

𝑑𝑀𝑈𝑇
= − 

𝑍𝑠

4𝑒𝑓𝑓
(1 − 𝐹)          (A5) 

Introducing (A2)-(A5) in (A1), the sensitivity is found to be 

𝑆 = −
𝑍𝑠(1−𝐹)

2𝑍0𝑒𝑓𝑓

𝑠sin−2𝑠+cot 𝑠

1+(
𝑍𝑠
𝑍0

)
2

cot2𝑠

                     (A6) 

Let us now calculate the derivative of (A6) with respect to s, 

in order to obtain the values of s that maximize the 

sensitivity. After some algebra, one obtains 

𝑑𝑆

𝑑𝑠

= −
𝑍𝑠(1−𝐹)sin−2𝑠

𝑍0𝑒𝑓𝑓


cot 𝑠{(
𝑍𝑠
𝑍0

)
2

·cot 𝑠+𝑠(
𝑍𝑠
𝑍0

)
2

−𝑠}

(1+(
𝑍𝑠
𝑍0

)
2

cot2𝑠)
2      (A7)                     

It is apparent that s = (2n + 1)/2 nulls (A7). For such phase 

of the sensing line, the sensitivity (A6) is 

𝑆 = −
𝑍𝑠(1−𝐹)

2𝑍0𝑒𝑓𝑓


𝑠
                          (A8) 

This value is identical to the one inferred from (4), using 

(10b) and (28), and for such phase value the line impedance 

Zs must be high in order to obtain high sensitivity. By 

contrast, for s = n, equation (A7) is not strictly null. There 

is, however, an additional condition that nulls (A7), i.e.,  


𝑠

tan 
𝑠

=
𝑍𝑠

2

𝑍0
2−𝑍𝑠

2                           (A9) 



and the solution of (A9) can be approximated by s = n as 

far as Zs < Z0. Thus, it can be concluded that for Zs < Z0 there 

is a maximum of the sensitivity very close to s = n. 

Consequently, it is reasonable to set the phase of the sensing 

line to such value for low impedance sensing lines. For s = 

n, the sensitivity is 

𝑆 = −
𝑍0(1−𝐹)

2𝑍𝑠𝑒𝑓𝑓


𝑠
                         (A10) 

also given by (4), but in this case utilizing (10a) and (28). For 

both phases, s = n and s = (2n + 1)/2, equation (A4) is 

null and, for that reason, the sensitivity can be calculated 

using the simplified expression (4). 

Despite the fact that the previous analysis has been carried 

out on the basis of the structure of Section III.A, for the 

structure of Section III.B, consisting of the sensing line plus 

an additional (design) line, a similar behavior occurs. 

Namely, for the optimum phase conditions, summarized in 

Section III.B, the derivative d/dZs is also null, and therefore 

the sensitivity can be calculated according to (4). Let us 

demonstrate this by calculating such derivative from (13). 

After some simple calculation, the following result is 

obtained: 

𝑑

𝑑𝑍𝑠
=

2𝑍0𝑍2 cot 𝑠(1+tan2)

𝑍0
2(𝑍 + 𝑍𝑠 tan  cot 𝑠)

2
+𝑍2(𝑍𝑠 cot 𝑠−𝑍 tan )

2     (A11)                  

and it follows that d/dZs = 0 for  = (2n + 1)/2 and s = 

n or s = (2n + 1)/2 (the optimum phase conditions 

according to the analysis of Section III.B). This applies also 

to the generalized structure, with an arbitrary number of 

cascaded high/low impedance design lines with i = (2n + 

1)/2.  

Obviously, the calculation of the sensitivity for phases 

different than those corresponding to the optimum values 

[i.e., i = (2n + 1)/2 and s = n or s = (2n + 1)/2] would 

require the use of (A1), rather than (4). Nevertheless, the 

paper is entirely focused on sensitivity optimization for small 

perturbations (representing small variations of the phase of 

the sensing line around the optimum value). For this reason, 

the analysis of Section III, generalized in Section V, is 

justified. Indeed, the good agreement between the theoretical 

sensitivities for small perturbations, inferred from (4), and 

those calculated from the simulated data when MUT  1 (see 

Figs. 5 and 7) validate the theory. 

 APPENDIX B 

EFFECTS OF LOSSES ON SENSOR SENSITIVITY 

Let us evaluate Ss by considering the effects of losses in 

the MUT (to a first-order approximation, the ohmic losses of 

the step-impedance transmission line, as well as the dielectric 

losses of the substrate, can be neglected, provided the 

considered substrate is a low-loss material). The impedance 

seen from the step-impedance discontinuity adjacent to the 

sensing line, Zin,s, is no longer given by equation (5), since 

the complex propagation constant, , must be considered in 

order to account for the effects of the lossy MUT. Thus, such 

impedance is given by 

𝑍𝑖𝑛,𝑠 = 𝑍𝑠 coth 𝑙𝑠                        (B.1) 

where  =  + j, and  and  are the attenuation constant 

and the phase constant, respectively, of the sensing line. 

After some simple algebra, (B.1) can be expressed as 

𝑍𝑖𝑛,𝑠 = 𝑍𝑠
sinh 2𝑙𝑠−𝑗 sin 2𝑠

cosh 2𝑙𝑠−cos 2𝑠

                  (B.2) 

with s = ls. The impedance seen from the input port of the 

whole sensor, Zin,N, is calculated by means of (31), with Zin,s 

given by (B.2). The reflection coefficient is thus 

    =
(𝑍𝑠

sinh 2𝑙𝑠−𝑗 sin 2𝑠
cosh 2𝑙𝑠−cos 2𝑠

)
(−1)𝑁

∏  −𝑍0

(𝑍𝑠
sinh 2𝑙𝑠−𝑗 sin 2𝑠
cosh 2𝑙𝑠−cos 2𝑠

)
(−1)𝑁

∏  +𝑍0

                  (B.3)             

where  is the product operator defined in (31) with the 

argument omitted, for simplicity. At this point, in order to 

calculate the phase of the reflection coefficient by 

considering losses, it is convenient to distinguish between 

even- and odd-order structures. For N even, the reflection 

coefficient can be expressed as 

    =
𝑍𝑠 ∏  (sinh 2𝑙𝑠−𝑗 sin 2𝑠)−𝑍0(cosh 2𝑙𝑠−cos 2𝑠)

𝑍𝑠 ∏  (sinh 2𝑙𝑠−𝑗 sin 2𝑠)+𝑍0(cosh 2𝑙𝑠−cos 2𝑠)
       (B.4)                              

and the phase of the reflection coefficient is 




= arctan (
𝑍𝑠 ∏  sin 2𝑠

𝑍0(cosh 2𝑙𝑠−cos 2𝑠)−𝑍𝑠 ∏  sinh 2𝑙𝑠
) +               

 + arctan (
𝑍𝑠 ∏  sin 2𝑠

𝑍0(cosh 2𝑙𝑠−cos 2𝑠)+𝑍𝑠 ∏  sinh 2𝑙𝑠
)  (B.5)            

The sensitivity with the phase of the sensing line is therefore 

𝑆𝑠
=

𝐹
2𝑍𝑠 ∏  cos 2𝑠(𝑍0(cosh 2𝑙𝑠−cos 2𝑠)−𝑍𝑠 ∏  sinh 2𝑙𝑠)−2𝑍𝑠𝑍0 ∏(sin 2𝑠)

2
 

(𝑍0(cosh 2𝑙𝑠−cos 2𝑠)−𝑍𝑠 ∏  sinh 2𝑙𝑠)
2  + 

+𝐹′
2𝑍𝑠 ∏  cos 2𝑠(𝑍0(cosh 2𝑙𝑠−cos 2𝑠)+𝑍𝑠 ∏  sinh 2𝑙𝑠)−2𝑍𝑠𝑍0 ∏(sin 2𝑠)

2
 

(𝑍0(cosh 2𝑙𝑠−cos 2𝑠)+𝑍𝑠 ∏  sinh 2𝑙𝑠)
2   

(B.6)                     

where the factors F and F’ defined as 

𝐹 =
1

1+(𝑋)2                           (B.7a)                          

𝐹′ =
1

1+(𝑋′)2                         (B.7b)                          

have been introduced for simplicity. In (B.7), X and X’ are 

the arguments of the arctan in the first and second term of the 

right hand side member of expression (B.5).  

For N odd, the reflection coefficient is found to be 

    =
−𝑍0(sinh 2𝑙𝑠−𝑗 sin 2𝑠)+𝑍𝑠

−1 ∏  (cosh 2𝑙𝑠−cos 2𝑠)

𝑍0(sinh 2𝑙𝑠−𝑗 sin 2𝑠)+𝑍𝑠
−1 ∏  (cosh 2𝑙𝑠−cos 2𝑠)

      (B.8)                              

and the phase of the reflection coefficient is 




= arctan (
𝑍0 sin 2𝑠

𝑍𝑠
−1 ∏  (cosh 2𝑙𝑠−cos 2𝑠)−𝑍0 sinh 2𝑙𝑠

) +               

 + arctan (
𝑍0 sin 2𝑠

𝑍𝑠
−1 ∏  (cosh 2𝑙𝑠−cos 2𝑠)+𝑍0 sinh 2𝑙𝑠

)  (B.9)            

Taking the derivative of (B.9), the sensitivity is obtained, i.e., 

𝑆𝑠
=

𝐹
2𝑍0 cos 2𝑠(𝑍𝑠

−1 ∏  (cosh 2𝑙𝑠−cos 2𝑠)−𝑍0 sinh 2𝑙𝑠)−2𝑍0𝑍𝑠
−1 ∏(sin 2𝑠)

2
 

(𝑍𝑠
−1 ∏  (cosh 2𝑙𝑠−cos 2𝑠)−𝑍0 sinh 2𝑙𝑠)

2  + 

+𝐹′
2𝑍0 cos 2𝑠(𝑍𝑠

−1 ∏  (cosh 2𝑙𝑠−cos 2𝑠)+𝑍0 sinh 2𝑙𝑠)−2𝑍0𝑍𝑠
−1 ∏(sin 2𝑠)

2
 

(𝑍𝑠
−1 ∏  (cosh 2𝑙𝑠−cos 2𝑠)+𝑍0 sinh 2𝑙𝑠)

2   

(B.10)                     



with F and F’ given by (B.7), and X and X’ corresponding to 

the arguments of the arctan of the first and second term of the 

right hand side member of (B.9), respectively. 

If we now consider the two optimum phases of the sensing 

line for sensitivity optimization, four cases (similar to those 

enumerated in Section V) arise:  

 Case A’: s = (2n + 1)/2 and N odd. Evaluation of 

(B.10) gives: 

𝑆𝑠
= −

2𝑍0

𝑍𝑠
−1 ∏(cosh 2𝑙𝑠+1) 

 {
1

1−
𝑍0 sinh 2𝑙𝑠

𝑍𝑠
−1 ∏(cosh 2𝑙𝑠+1) 

+
1

1+
𝑍0 sinh 2𝑙𝑠

𝑍𝑠
−1 ∏(cosh 2𝑙𝑠+1) 

}                 

(B.11) 

For moderate and low-loss materials (i.e., satisfying ls 

<< 1), (B.11) can be approximated by 

𝑆𝑠
= −

2𝑍0

𝑍𝑠
−1 ∏(1+2𝑙𝑠

2) 
                  (B.12)  

where it has been assumed that sinh(2ls)  2ls and  

cosh(2ls)   1 + 22ls
2.          

 Case B’: s = n and N odd. In this case, the sensitivity 

(using B.10) is found to be 

𝑆𝑠
=

2𝑍0

𝑍𝑠
−1 ∏(cosh 2𝑙𝑠−1)−𝑍0 sinh 2𝑙𝑠 

+
2𝑍0

𝑍𝑠
−1 ∏(cosh 2𝑙𝑠−1)+𝑍0 sinh 2𝑙𝑠 

                  

               (B.13) 

and the result for the low-loss approximation can be 

expressed as  

𝑆𝑠
=

𝑍0

𝑍𝑠
−1 ∏2𝑙𝑠

2
−𝑍0𝑙𝑠 

+
𝑍0

𝑍𝑠
−1 ∏2𝑙𝑠

2
+𝑍0𝑙𝑠 

=
2𝑍0𝑍𝑠

−1 ∏  

𝑍𝑠
−22𝑙𝑠

2
∏  2−𝑍0

2 
  (B.14)         

 Case C’: s = (2n + 1)/2 and N even. Evaluation of 

(B.6) provides 

𝑆𝑠
= −

2𝑍𝑠 ∏  

𝑍0(cosh 2𝑙𝑠+1)
 {

1

1−
𝑍𝑠 ∏  sinh 2𝑙𝑠

𝑍0(cosh 2𝑙𝑠+1)

+
1

1+
𝑍𝑠 ∏  sinh 2𝑙𝑠

𝑍0(cosh 2𝑙𝑠+1)

}                 

(B.15) 

and the following result is obtained for the low-loss 

approximation: 

𝑆𝑠
= −

2𝑍𝑠 ∏  

𝑍0(1+2𝑙𝑠
2)

                   (B.16)               

 Case D’: s = n and N even. In this case, (B.6) is  

𝑆𝑠
=

2𝑍𝑠 ∏  

𝑍0(cosh 2𝑙𝑠−1)−𝑍𝑠 ∏  sinh 2𝑙𝑠
+

2𝑍𝑠 ∏  

𝑍0(cosh 2𝑙𝑠−1)+𝑍𝑠 ∏  sinh 2𝑙𝑠
                  

               (B.17) 

and the result for the low-loss approximation can be 

expressed as  

𝑆𝑠
=

𝑍𝑠 ∏  

𝑍0
2𝑙𝑠

2
−𝑍𝑠 ∏  

+
𝑍𝑠 ∏  

𝑍0
2𝑙𝑠

2
+𝑍𝑠 ∏  

=
2𝑍0𝑍𝑠 ∏  

𝑍0
22𝑙𝑠

2−𝑍𝑠
2 ∏  2 

  (B.18)         

Inspection of expressions (B.12), (B.14), (B.16) and (B.18) 

reveals that losses do not alter so much the sensitivity, as 

compared to the lossless case, provided the low-loss 

approximation is satisfied (ls << 1). The reason is that the 

term that accounts for losses (ls) appears squared in those 

equations. Consequently, its contribution to the sensitivity is 

small. Indeed, in the limit ls  0, the sensitivities (B.12), 

(B.14), (B.16) and (B.18) are simplified to those given by 

expressions (36) of Section V, corresponding to the lossless 

cases (as expected).  

Since the sensitivity has been evaluated at specific values 

of the phase of the sensing line [s = (2n + 1)/2 and s = 

n], it is also convenient to directly compare the output 

variable of the considered sensors, , for the lossless and 

low-loss approximation cases. For N even, expression (B.5), 

with sinh(2ls)  2ls and  cosh(2ls)   1 + 22ls
2,  

provides 




= arctan (
𝑍𝑠 ∏  sin 2𝑠

𝑍0(1−cos 2𝑠){1+
2𝑙𝑠(𝑍0𝑙𝑠−𝑍𝑠 ∏  )

𝑍0(1−cos 2𝑠)
}
) +               

 + arctan (
𝑍𝑠 ∏  sin 2𝑠

𝑍0(1−cos 2𝑠){1+
2𝑙𝑠(𝑍0𝑙𝑠+𝑍𝑠 ∏  )

𝑍0(1−cos 2𝑠)
}
)  (B.19)            

and such expression can be further approximated by 




= 2arctan (
𝑍𝑠 ∏  

𝑍0
cot 

𝑠
) −

𝑍𝑠 ∏  

𝑍0
cot 𝑠

1+(
𝑍𝑠 ∏  

𝑍0
cot 𝑠)

2 
42𝑙𝑠

2

(1−cos 2𝑠)
 

(B.20)              

where the first-order Taylor expansion arctan[A/(1+x)] = 

arctan[A]  Ax/(1+A2), with x small, and the trigonometric 

identity sin(2s)/(1-cos2s) = cots have been used. For N 

odd, following a similar procedure, the phase of the 

reflection coefficient can be approximated by 




= 2arctan (
𝑍𝑠𝑍0

∏  
cot 

𝑠
) −

𝑍𝑠𝑍0
∏  

cot 𝑠

1+(
𝑍𝑠𝑍0

∏  
cot 𝑠)

2 
42𝑙𝑠

2

(1−cos 2𝑠)
 

(B.21)              

As it can be appreciated, if losses are small, the phase of the 

reflection coefficient does not significantly change as 

compared to the lossless case (note that, again, the lossy 

term, ls, appears squared). Moreover, (B.20) and (B.21) 

coincide with expression (34) in the limit ls  0, as 

expected. 

Indeed, for low-loss MUTs, it can be concluded from 

(B.20) and (B.21) that the phase of the reflection coefficient, 

, does not depend on the attenuation constant of the sensing 

line,  (in turn related to the loss factor of the MUT). 

Moreover, it is well known that if losses are small, the phase 

constant of the sensing line, , is uniquely determined by the 

effective dielectric constant of that line [43]. Therefore, the 

output variable of the proposed sensor, , can be used for 

the determination of the dielectric constant of the MUT, 

despite the presence of losses (provided losses are small).  

To end this appendix, it is worth-mentioning that from the 

measurement of the reflection coefficient at the operating 

frequency (including not only the phase, but also the 

modulus), it is possible to infer the attenuation constant of 

the sensing line, . It can be isolated from (B.4) or (B.8), 

depending on whether N is even or odd, as far as  is inferred 

from measurement, and s can be obtained from (34). From 

the attenuation constant, it is possible to obtain the loss 

tangent of the MUT, e.g., from a calibration curve inferred 

from MUTs with well-known loss factor. Nevertheless, this 

aspect is out of the scope of this paper, since for the 

measurement of the loss factor of the MUT, in general, 

resonant methods are preferred. 
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