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Abstract. Let ẋ = P (x, y), ẏ = Q(x, y) be a differential system with
P and Q real polynomials, and let d = max{degP,degQ}. A singular
point p of this differential system is a global center if R2 \ {p} is filled
with periodic orbits. We prove that if d is even then the polynomial
differential systems have no global centers.

1. Introduction and statement of the main results

A singular point q of a vector field defined in R2 is a center if it has a
neighbourhood filled of periodic orbits with the unique exception of q. The
period annulus of the center q is the maximal neighbourhood U of q such
that all the orbits contained in U are periodic except of course q. A center
is global if its period annulus is R2 \ {q}. The notion of center goes back to
Poincaré, see [6].

It is well known that any quadratic polynomial system (i.e. n = 2) has no
global centers. The proof of this result is very large. It is based in classifying
all the centers of the quadratic systems and then see that they are not global
centers, see [2, 3, 4, 7, 8].

Let P,Q ∈ R[x, y] and d = max{degP,degQ}. We will show that the
polynomial differential system

(1) ẋ = P (x, y), ẏ = Q(x, y),

with d even do not have global centers. This is the main aim of this paper.
Our proof for all d even is shorter than the existing one for d = 2.

Theorem 1. The polynomial differential system (1) with even degree has
no global centers.

The proof of Theorem 1 is given in section 3.

In the following section we state and prove some auxiliary results that
will be used during the proof.
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2. Auxiliary results

In the proof of Theorem 1 we will use the Poincaré compactification of a
planar polynomial vector field X (x, y) = (P (x, y), Q(x, y)) of degree d. The
Poincaré compactification of X , denoted by p(X ), is an induced vector field
on S2 = {y = (y1, y2, y3) ∈ R3 : y21 + y22 + y23 = 1}. We call S2 the Poincaré
sphere. For more details on the Poincaré compactification see [5, Chapter
5]. Here we just introduce what will be needed.

Denote by TpS2 be the tangent space to S2 at the point p. Assume that
X is defined in the plane T(0,0,1)S2 = R2. Consider the central projection

f : T(0,0,1)S2 → S2. This map defines two copies of X , one in the open

northern hemisphere H+ and other in the open southern hemisphere H−.
Denote by X 1 the vector field Df ◦ X defined on S2 except on its equator
S1 = {y ∈ S2 : y3 = 0}. Clearly S1 is identified to the infinity of R2. In
order to extend X 1 to a vector field on S2 (including S1) it is necessary that
X satisfies suitable conditions. In the case that X is a planar polynomial
vector field of degree n then p(X ) is the only analytic extension of yd−13 X ′
to S2. On S2 \ S1 = H+ ∪ H− there are two symmetric copies of p(X ), one
in H+ and other in H−, and knowing the behaviour of p(X ) around S1, we
know the behaviour of X at infinity. The Poincaré compactification has the
property that S1 is invariant under the flow of p(X ). The singular points of
X are called the finite singular points of X or of p(X ), while the singular
points of p(X ) contained in S1, i.e. at infinity, are called the infinite singular
points of X or of p(X ). It is known that the infinity singular points appear
in pairs diametrically opposed.

To study the vector field p(X ) we use six local charts on S2 given by
Uk = {y ∈ S2 : yk > 0}, Vk = {y ∈ S2 : yk < 0} for k = 1, 2, 3. The
corresponding local maps φk : Uk → R2 and ψk : Vk → R2 are defined as
φk(y) = −ψk(y) = (ym/yk, yn/yk) for m < n and m,n 6= k. We denote by
z = (u, v) the value of φk(y) or ψk(y) for any k, such that (u, v) will play
different roles depending on the local chart we are considering. The points
of the infinity S1 in any chart have v = 0. The expression for p(X) in local
chart (U1, φ1) is given by
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The infinite singular points are the endpoints of the straight lines de-
fined by the real linear factors of the homogeneous polynomial yPd(x, y) −
xQd(x, y), being Pd and Qd the homogeneous parts of the polynomials P
and Q of degree d.

Let q be an infinite singular point and let h be a hyperbolic sector of
q. We say that h is degenerate if its two separatrices are contained in the
equator of S2 (i.e. in S1). It is well-known that an infinite singular point
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p formed by two degenerated hyperbolic sectors must have its linear part
identically zero (see for instance Chapters 2,3 and Theorems 2.5, 2.19 and
3.5 of [5].

For proving Theorem 1 we will use the following proposition which char-
acterizes when a polynomial differential system has a global center.

Proposition 2. A polynomial vector field X (x, y) = (P (x, y), Q(x, y)) with-
out a line of singular points at infinity, has a global center if and only if it
has a unique finite singular point which is a center and all the infinite sin-
gular points in the Poincaré sphere, if they exist, must be formed by two
degenerated hyperbolic sectors.

3. Proof of Theorem 1

It is well known that any homogeneous polynomial of degree d factorizes
as

r1∏

i=1

(aix+ biy)li
r2∏

k=0

(αkx
2 + βkxy + γky

2)jk ,

where li ≥ 0 for all i = 1, . . . , r1, jk ≥ 0 and β2k−4αkγk < 0 for k = 0, . . . , r2
and

∑r1
i=1 li +

∑r2
k=0 2jk = d.

Let d1 be the degree of P and d2 be the degree of Q. We assume that
d = max{d1, d2}. The infinite singular points in the Poincaré disc of system
(1) correspond to the linear factors of the quantity

Gd(x, y) = yPd(x, y)− xQd(x, y) = 0

(it is well understood that Pd or Qd could be zero).

We will separate the proof of Theorem 1 in two propositions dealing re-
spectively with the cases Gd 6≡ 0 and Gd ≡ 0. We start with the case
Gd 6≡ 0.

Proposition 3. Any polynomial differential system (1) of degree d even and
with Gd 6≡ 0 do not have global centers.

Proof. Taking into account that Gd 6≡ 0, doing a rotation of the coordinate
with respect to the origin we can assume that all the infinite singular points
are in the local charts U1 ∪ V1. We introduce the notation

Gd−k(x, y) = yPd−k(x, y)− xQd−k(x, y) = 0, k = 0, . . . , d.

In the local chart U1 system (1), using system (2), can be written as

u̇ = −Gd(1, u) + vGd−1(1, u) + . . .+ vd−1G0(1, 0),

v̇ = −vPd(1, u)− v2Pd−1(1, u)− . . .− vdP0(1, u).
(3)
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The Jacobian matrix of any singular point (ū, 0) of the local chart U1 is of
the form (

∂

∂u
Gd(1, ū) Gd−1(1, ū)

0 −Pd(1, ū)

)
.

So the singular point (ū, 0) if it exists (that is if Gd(1, ū) = 0) must be formed
by two degenerate hyperbolic sectors, and as pointed out above it must be

linearly zero. Hence
∂

∂u
Gd(1, ū) = 0. This implies that Gd(1, ū) = 0 and

∂

∂u
Gd(1, ū) = 0 and so the singular point (ū, 0) must have multiplicity two

as a zero of Gd(1, u). This implies that if Gd has a real linear factor then it
must have at least multiplicity two and so in general must be of the form
(recall that Gd has degree d+ 1)

(4) Gd =

r1∏

i=1

(aix+ biy)li
r2∏

k=0

(αkx
2 + βkxy + γky

2)jk ,

where li ≥ 2 for all i = 1, . . . , r1, jk ≥ 0 and β2k−4αkγk < 0 for k = 0, . . . , r2
and

∑r1
i=1 li +

∑r2
k=0 2jk = d+ 1.

Note that since d+1 is odd in (4), there exists at least i ∈ {1, . . . , r1} and
without loss of generality we can assume that it is i = 1, such that l1 ≥ 3 is
odd. Then

Gd(x, y) = (a1x+ b1y)l1
r1∏

i=2

(aix+ biy)li
r2∏

k=0

(αkx
2 + βkxy + γky

2)jk .

We can assume without loss of generality that b1 6= 0, otherwise we do a
rotation with respect to the origin. Note that

Gd(1, u) = (a1 + b1u)l1
r1∏

i=2

(ai + biu)li
r2∏

k=0

(αk + βku+ γku
2)jk .

Setting the new variable a1 + b1u = U (that is u = (U − a1)/b1 we have

(5) Gd(1, U) = Gd

(
1,
U − a1
b1

)
=: U l1Γ + h.o.t.,

where

Γ =

r1∏

i=2

(
aib1 − bia1

b1

)li r2∏

k=0

(
αkb

2
1 − βka1b1 + γka

2
1

b21

)jk

6= 0

(because U = 0 has exactly multiplicity l1) and h.o.t means the higher order
terms in the variable U . Taking the new variables (U, v), it follows from (3)
and (5) that the system in the local chart U1 restricted to V = 0 can be
written as

U̇ |v=0 = (d+ 1)U l1Γ + h.o.t., v̇|v=0 = 0.

Note that the U -axis is invariant. In the positive semi-axis {U > 0, V = 0}
and in a neighborhood of (U, V ) = (0, 0) the orbit travels in the opposite
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sense to the orbit in the negative semi-axis {U < 0, V = 0}, and so the local
phase portrait around (U, V ) = (0, 0) cannot be formed by two degenerated
hyperbolic sectors. Hence, any Hamiltonian system (1) with n even and
with Hn+1 of the form (4) cannot have global centers. This concludes the
proof of Proposition 3. �

Proposition 4. A polynomial differential system (1) of degree d even and
with Gd ≡ 0 has no global centers.

Proof. Taking into account that the line at infinity is formed by singular
points we must have that

Gd(x, y) ≡ 0 that is yPd(x, y) ≡ xQd(x, y),

which implies that there exists a polynomial Rd(x, y) of degree d− 1 odd so
that

(6) Pd(x, y) = xRd(x, y) and Qd(x, y) = yRd(x, y)

Note if system (1) has a global center then it has a unique finite singular
point which is the origin and since the period annulus of that finite singular
point is R2 \ 0, then the boundary of the period annulus U of the center
of p(X ) located at (0, 0, 1) is the equator of S2 or H+. Since there are no
finite singular points in H+, except the center at (0, 0, 1), and the infinite is
formed by singular points, it follows that the boundary of the period annulus
U is either a finite periodic orbit γ, or it is S1. If it is S1 then since it is
formed by fixed points, then each singular point cannot be the ω-limit or de
α-limit of any orbit. Now we show that it cannot be a finite periodic orbit
γ. It it would be, we consider the Poincaré map π defined in a transversal
section Π through γ. Since the vector field p(X ) is analytic, it follows that
π is also analytic. Hence as π is the identity map in Π ∩ U it must be the
identity map in Π ∩ (H+ \ U). But then the orbits in Π ∩ (H+ \ U) near U
are also periodic, and γ is not the boundary of U , a contradiction.

In the local chart U1 system (1), using system (2), can be written as

u̇ = vGd−1(1, u) + . . .+ vd−1G0(1, u),

v̇ = −vRd(1, u)− v2Pd−1(1, u)− . . .− vdP0(1, u).
(7)

The line at infinity v = 0 if filled by singular points. We introduce the
parameterization of time ds = vdt. With this new time system (7) becomes

u̇ = Gd−1(1, u) + vGd−2(1, u) + . . .+ vd−2G0(1, u),

v̇ = −Rd(1, u)− vPd−1(1, u)− . . .− vd−1P0(1, u),
(8)

where now the dot means derivative in the new time s.

SinceRd(1, u) 6≡ 0, there exists u so thatRd(1, u) 6= 0, and so a point (u, 0)
is a regular point for system (8). Since v̇|v=0 = −Rd(1, u), and v̇|v=0,u=u 6= 0
such point which is a singular point of system (8) would be the ω-limit or
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the α − limit of some orbit of system (7) and by the explanation above,
system (1) cannot have a global center.

�

Proof of Theorem 1. The proof of Theorem 1 is an immediate consequence
of Propositions 3 and 4. �
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Bellaterra, Barcelona, Catalonia, Spain

Email address: jllibre@mat.uab.cat
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