Meromorphic integrability of the Hamiltonian systems with homogeneous potentials of degree -4 *

Jaume Llibre ${ }^{\mathrm{a}}$ and Yuzhou Tian ${ }^{\mathrm{b}, *}$
${ }^{a}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona, Catalonia, Spain
E-mail: jllibre@mat.uab.cat
${ }^{b}$ School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai 519082, P.R. China
E-mail: tianyzh3@mail2.sysu.edu.cn

Abstract

We characterize the meromorphic Liouville integrability of the Hamiltonian systems

 with Hamiltonian $H=\left(p_{1}^{2}+p_{2}^{2}\right) / 2+V\left(q_{1}, q_{2}\right)$, being $V\left(q_{1}, q_{2}\right)$ a homogeneous potential of degree -4 , with the exception of the potential $V_{8}=1 /\left(q_{1}^{4}+6 \mu q_{1}^{2} q_{2}^{2}+q_{2}^{4}\right)$ when $\mu \in\{-5 / 3,-2 / 3\}$. For this potential we only can prove that it has no polynomial first integral.2010 MSC: Primary 37K10, Secondary 37J30, 37C10.
Keywords: Hamiltonian system with 2-degrees of freedom, homogeneous potential of degree -4, meromorphic integrability, Darboux point.

1 Introduction and main results

Hamiltonian systems play an important role in the theory of the dynamical systems due to the fact that these systems occur frequently in mathematical physics, particularly in mechanics, engineering and other fields. In order to describe global information on the Hamiltonian systems is good to find sufficient number of first integrals. The fact that a Hamiltonian system has some additional first integral independent with its Hamiltonian is a rare phenomenon which lead to a difficult problem, how to determine whether a given Hamiltonian system has additional independent first integrals.

In this work we consider the Hamiltonian systems of two degrees of freedom

$$
\begin{equation*}
\dot{q}_{i}=p_{i}, \quad \dot{p}_{i}=-\frac{\partial V}{\partial q_{i}}, \quad i=1,2, \tag{1.1}
\end{equation*}
$$

with the Hamiltonian

$$
\begin{equation*}
H=\frac{1}{2} \sum_{i=1}^{2} p_{i}+V(\mathbf{q}) \tag{1.2}
\end{equation*}
$$

where $V(\mathbf{q})=V\left(q_{1}, q_{2}\right) \in \mathbb{C}\left[q_{1}, q_{2}\right]$ is a homogeneous polynomial potential of degree $k \in \mathbb{Z}$.
Let $A=A(\mathbf{q}, \mathbf{p})$ and $B=B(\mathbf{q}, \mathbf{p})$ be two functions with $\mathbf{q}=\left(q_{1}, q_{2}\right)$ and $\mathbf{p}=\left(p_{1}, p_{2}\right)$. Their Poisson bracket is defined as

$$
\begin{equation*}
\{A, B\}=\sum_{i=1}^{2}\left(\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}\right) . \tag{1.3}
\end{equation*}
$$

[^0]The functions A and B are in involution if $\{A, B\}=0$. A non-constant function $I=I(\mathbf{q}, \mathbf{p})$ is called a first integral of the Hamiltonian system (1.1) if I is in involution with the Hamiltonian function H, i.e. $\{H, I\}=0$. Since the Poisson bracket is antisymmetric, it is obvious that H itself is always a first integral. The functions H and I are functionally independent if their gradients are linearly independent for all points of \mathbb{C}^{4} except perhaps in a zero Lebesgue measure set. The Hamiltonian system (1.1) is completely or Liouville integrable if it has two functionally independent first integrals H and I.

During the past four decades, there have had an extensive study on the integrability of the Hamiltonian systems (1.1), as it is shown in the papers $[1,2,4-6,8,9,14,15,19]$. The fundamental tools to investigate the integrability problem for system (1.1) are Painlevé test [7] and direct methods [10]. In [22, 23] Ziglin proved a relation between the integrability of Hamiltonian systems and the monodromy group of variational equations along a particular solution, and gave the necessary conditions of integrability for complex Hamiltonian systems. Yoshida proved some criteria for the nonexistence of an additional first integral in Hamiltonian systems with homogeneous potentials, see [20, 21]. Using the differential Galois group Morales and Ramis [18] obtained necessary conditions for the existence of an additional meromorphic first integral of Hamiltonian systems (1.1) with homogeneous potentials.

Recently Maciejewski and Przybylska [16] completely solved the meromorphic integrability problem of Hamiltonian systems (1.1) with homogeneous polynomial potentials of degree 3. Maciejewski et al. [17] and Llibre et al. [12] characterized all integrable Hamiltonian systems (1.1) with homogeneous polynomial potentials of degree 4. The integrability of Hamiltonian systems (1.1) with homogeneous potentials of degrees $2,1,0,-1$ or -2 were characterized in [13]. We note that Hamiltonian systems (1.1) with homogeneous potentials of degrees $2,1,0$ or -1 has always a polynomial first integral independent with the Hamiltonian. The polynomial integrability of Hamiltonian systems (1.1) with homogeneous potentials of degree -3 have been classified in [11].

The objective of this paper is to study the integrability of the Hamiltonian system (1.1) with homogeneous potentials of degree -4 , i.e. with

$$
\begin{equation*}
V=V\left(q_{1}, q_{2}\right)=\frac{1}{a q_{1}^{4}+b q_{1}^{3} q_{2}+c q_{1}^{2} q_{2}^{2}+d q_{1} q_{2}^{3}+e q_{2}^{4}}=\frac{1}{Q\left(q_{1}, q_{2}\right)}, \tag{1.4}
\end{equation*}
$$

where $Q\left(q_{1}, q_{2}\right) \not \equiv 0$.
Our main results are the following.
Proposition 1. After a linear change of variables and a rescaling, the potential (1.4) can be written in one of the following forms:

$$
V_{0}= \pm \frac{1}{q_{1}^{4}} ; \quad V_{1}=\frac{1}{4 q_{1}^{3} q_{2}} ; \quad V_{2}= \pm \frac{1}{6 p_{1}^{2} p_{2}} ; \quad V_{3}= \pm \frac{1}{\left(q_{1}^{2}+q_{2}^{2}\right)^{2}} ; \quad V_{4}= \pm \frac{1}{q_{2}^{2}\left(6 q_{1}^{2}-q_{2}^{2}\right)} ; V_{5}= \pm \frac{1}{q_{2}^{2}\left(6 q_{1}^{2}+q_{2}^{2}\right)} ;
$$

$V_{6}=\frac{1}{q_{1}^{4}+6 \mu q_{1}^{2} q_{2}^{2}-q_{2}^{4}} ; V_{7}=-\frac{1}{q_{1}^{4}+6 \mu q_{1}^{2} 2_{2}^{2}+q_{2}^{4}}$ with $\mu>-\frac{1}{3}$ and $\mu \neq \frac{1}{3} ; V_{8}=\frac{1}{q_{1}^{4}+6 \mu q_{1}^{2} q_{2}^{2}+q_{2}^{4}}$ with $\mu \neq \pm \frac{1}{3}$.
Proposition 1 is proved in Section 4.
Theorem 1. Hamiltonian system (1.1) with the potential:
(a) V_{0} is completely integrable with the additional polynomial first integral p_{2}.
(b) V_{3} is completely integrable with the additional polynomial first integral $q_{2} p_{1}-q_{1} p_{2}$.
(c) V_{i} for $i=1,2,4,5,6,7$ does not admit an additional meromorphic first integral.
(d) V_{8} does not admit an additional meromorphic first integral if $\mu \notin\left\{-\frac{5}{3},-\frac{2}{3}\right\}$. If $\mu \in\left\{-\frac{5}{3},-\frac{2}{3}\right\}$ then V_{8} does not admit an additional polynomial first integral.

The proof of Theorem 1 is given in Section 5 .

2 Darboux point

The point $\mathbf{d}=\left(d_{1}, d_{2}\right) \in \mathbb{C}^{2} \backslash\{0\}$ is called a Darboux point of system (1.1) if it satisfies the gradient equation

$$
\begin{equation*}
V^{\prime}(\mathbf{d})=\gamma \mathbf{d} \tag{2.1}
\end{equation*}
$$

where $V^{\prime}(\mathbf{d})$ is the gradient of $V(\mathbf{d})$ and $\gamma \in \mathbb{C} \backslash\{0\}$. If \mathbf{d} is a Darboux point, then the point $\tilde{\mathbf{d}}=\omega \mathbf{d}$, where $\omega \in \mathbb{C} \backslash\{0\}$ satisfies $V^{\prime}(\tilde{\mathbf{d}})=\omega^{k-2} \gamma \tilde{\mathbf{d}}=\tilde{\gamma} \tilde{\mathbf{d}}$, and consequently $\tilde{\mathbf{d}}$ is also a Darboux point. Thus these Darboux points form an equivalence class. We can view a Darboux point d as a point in a projective space $\mathbf{d}=\left[d_{1}: d_{2}\right] \in \mathbb{C P}^{1}$, for more details see [17].

Given a Darboux point \mathbf{d} we consider the Hessian matrix $V^{\prime \prime}(\mathbf{q})$ evaluated at the Darboux point \mathbf{d}, that is,

$$
V^{\prime \prime}(\mathbf{d})=\left(\begin{array}{cc}
\frac{\partial^{2} V}{\partial q_{1}^{2}}(\mathbf{d}) & \frac{\partial^{2} V}{\partial q_{1} \partial q_{2}}(\mathbf{d}) \tag{2.2}\\
\frac{\partial^{2} V}{\partial q_{2} \partial q_{1}}(\mathbf{d}) & \frac{\partial^{2} V}{\partial q_{2}^{2}}(\mathbf{d})
\end{array}\right)
$$

Since the potential V is a homogeneous function of degree k, the number $k-1$ is always an eigenvalue for any Darboux point d. The eigenvalues of the Hessian matrix $V^{\prime \prime}(\mathbf{d})$ are denoted by $\{k-1, \lambda\}$. We say that λ is the non-trivial eigenvalue.

Consider the following potential

$$
\begin{equation*}
V\left(q_{1}, q_{2}\right)=\frac{1}{a_{0} q_{1}^{m}+a_{1} q_{1}^{m-1} q_{2}+\cdots+a_{m-1} q_{1} q_{2}^{m-1}+a_{m} q_{2}^{m}} \tag{2.3}
\end{equation*}
$$

with $m \geq 2$. Let $z=q_{2} / q_{1}$. The potential (2.3) can be rewrite as

$$
V=\frac{1}{q_{1}^{m} v(z)}
$$

where $v(z)=a_{0}+a_{1} z+\cdots+a_{m} z^{m}$. In order to calculate the Darboux points and the non-trivial eigenvalue λ associated to potential (2.3), we define the polynomials

$$
\begin{equation*}
h(z)=m v(z)-z v^{\prime}(z), \quad g(z)=\left(1+z^{2}\right) v^{\prime}(z)-m z v(z) \tag{2.4}
\end{equation*}
$$

where $v^{\prime}(z)$ denotes the derivative of $v(z)$ with respect to z.
The next result is due to Llibre et al., see Proposition 6 of [11].
Proposition 2. Assume that $g \not \equiv 0$. The Darboux points $\mathbf{d}=\left[1: z_{*}\right]$ associated with potential (2.3) are given by the zeros of $g(z)=0$ for which $h(z) \neq 0$. Moreover the non-trivial eigenvalue of $V^{\prime \prime}(\mathbf{d})$ is given by $\lambda\left(z_{*}\right)=g^{\prime}\left(z_{*}\right) / h\left(z_{*}\right)+1$.

3 Morales-Ramis theory

The necessary condition for the complete meromorphic integrability of Hamiltonian systems (1.1) with homogeneous potentials V was given by Morales and Ramis, see page 100 of [18].

Theorem 2 (Morales-Ramis). Assume that the Hamiltonian system defined by the Hamiltonian (1.2) with a homogeneous potential V of degree $k \in \mathbb{Z} \backslash\{0\}$ is completely integrable with meromorphic first integrals, then the non-trivial eigenvalues λ associated to its Darboux points must satisfy the conditions of Table 1, where p is an integer.

Table 1: The Morales-Ramis table.

Degree	Eigenvalue λ	Degree	Eigenvalue λ
k	$p+p(p-1) \frac{k}{2}$	-3	$\frac{25}{24}-\frac{1}{24}\left(\frac{12}{5}+6 p\right)^{2}$
2	arbitrary	3	$-\frac{1}{24}+\frac{1}{24}(2+6 p)^{2}$
-2	arbitrary	3	$-\frac{1}{24}+\frac{1}{24}\left(\frac{3}{2}+6 p\right)^{2}$
-5	$\frac{49}{40}-\frac{1}{40}\left(\frac{10}{3}+10 p\right)^{2}$	3	$-\frac{1}{24}+\frac{1}{24}\left(\frac{6}{5}+6 p\right)^{2}$
-5	$\frac{49}{40}-\frac{1}{40}(4+10 p)^{2}$	3	$-\frac{1}{24}+\frac{1}{24}\left(\frac{12}{5}+6 p\right)^{2}$
-4	$\frac{9}{8}-\frac{1}{8}\left(\frac{4}{3}+4 p\right)^{2}$	4	$-\frac{1}{8}+\frac{1}{8}\left(\frac{4}{3}+4 p\right)^{2}$
-3	$\frac{25}{24}-\frac{1}{24}(2+6 p)^{2}$	5	$-\frac{9}{40}+\frac{1}{40}\left(\frac{10}{3}+10 p\right)^{2}$
-3	$\frac{25}{24}-\frac{1}{24}\left(\frac{3}{2}+6 p\right)^{2}$	5	$-\frac{9}{40}+\frac{1}{40}(4+10 p)^{2}$
-3	$\frac{25}{24}-\frac{1}{24}\left(\frac{6}{5}+6 p\right)^{2}$	k	$\frac{1}{2}\left(\frac{k-1}{k}+p(p+1) k\right)$

4 Homogeneous potentials of degree -4

To prove Proposition 1, we need the following result which was given in Theorem 2.6 of Cima and Llibre in [3].

Theorem 3. For each real fourth-order binary form $Q\left(q_{1}, q_{2}\right)$ there exists some $\sigma \in G L(2, \mathbb{R})$ which transforms $Q\left(q_{1}, q_{2}\right)$ in one and only one of the following canonical forms:
(I) $Q=q_{1}^{4}+6 \mu q_{1}^{2} q_{2}^{2}+q_{2}^{4}$ with $\mu<-\frac{1}{3}$;
(II) $Q=\alpha\left(q_{1}^{4}+6 \mu q_{1}^{2} q_{2}^{2}+q_{2}^{4}\right)$ with $\mu>-\frac{1}{3}$ and $\mu \neq \frac{1}{3}$;
(III) $Q=q_{1}^{4}+6 \mu q_{1}^{2} q_{2}^{2}-q_{2}^{4}$;
(IV) $Q=\alpha q_{2}^{2}\left(6 q_{1}^{2}+q_{2}^{2}\right)$;
(V) $Q=\alpha q_{2}^{2}\left(6 q_{1}^{2}-q_{2}^{2}\right)$;
(VI) $Q=\alpha\left(q_{1}^{2}+q_{2}^{2}\right)^{2}$;
(VII) $Q=6 \alpha p_{1}^{2} p_{2}^{2}$;
(VIII) $Q=4 q_{1}^{3} q_{2}$;
(IX) $Q=\alpha q_{1}^{4}$;
(X) $Q=0$;
where $\alpha= \pm 1$ and $G L(2, \mathbb{R})$ is the linear group.
Proof of Proposition 1. It follows immediately from Theorem 3 and the fact that the linear changes of variables are canonical changes in the theory of Hamiltonian systems.

5 Proof of Theorem 1

Potentials V_{0} and V_{3}. It is immediate to check that the Hamiltonian system (1.1) with the potentials V_{0} and V_{3} have polynomial first integral $I=p_{2}$ and $I=q_{2} p_{1}-q_{1} p_{2}$, respectively. So statements (a) and (b) hold.

By Theorem 2 we know that if potential (1.4) is integrable, then its eigenvalue λ must be one of Table 1. For convenience, we define the following sets

$$
\begin{aligned}
& \mathcal{Z}_{-4}^{1}=\left\{\frac{9}{8}-\frac{1}{8}\left(\frac{4}{3}+4 p\right)^{2}: p \in \mathbb{Z}\right\} \\
& \mathcal{Z}_{-4}^{2}=\{p-2(p-1) p: p \in \mathbb{Z}\} \\
& \mathcal{Z}_{-4}^{3}=\left\{\frac{1}{2}\left(\frac{5}{4}-4 p(p+1)\right): p \in \mathbb{Z}\right\}
\end{aligned}
$$

Potential V_{1}. Using Proposition 2 we obtain the Darboux points $z_{*}= \pm 1 / \sqrt{3}$ and the corresponding non-trivial eigenvalue $\lambda=-1$. It is easy to check that $-1 \notin\left\{\mathcal{Z}_{-4}^{1} \cup \mathcal{Z}_{-4}^{2} \cup \mathcal{Z}_{-4}^{3}\right\}$. By Theorem $2 V_{1}$ is not integrable.

Potential V_{2}. By Proposition 2 the potential V_{2} has the Darboux points $z_{*}= \pm 1$. The corresponding non-trivial eigenvalue is $\lambda=-1$. Since $-1 \notin\left\{\mathcal{Z}_{-4}^{1} \cup \mathcal{Z}_{-4}^{2} \cup \mathcal{Z}_{-4}^{3}\right\}$, by Theorem 2 the Hamiltonian system (1.1) with the potential V_{2} is not integrable.

Potential V_{4}. Analogously the potential V_{4} has the Darboux points $z_{*}= \pm \sqrt{3} / 2$ with nontrivial eigenvalue $\lambda=-5 / 3$. It is not difficult to check that $-5 / 3 \notin\left\{\mathcal{Z}_{-4}^{1} \cup \mathcal{Z}_{-4}^{2} \cup \mathcal{Z}_{-4}^{3}\right\}$. By Theorem $2 V_{4}$ is not integrable.

Potential V_{5}. The potential V_{5} has the Darboux points $z_{*}= \pm \sqrt{6} / 2$. The corresponding non-trivial eigenvalue is $\lambda=-1 / 3$. Since $-1 / 3 \notin\left\{\mathcal{Z}_{-4}^{1} \cup \mathcal{Z}_{-4}^{2} \cup \mathcal{Z}_{-4}^{3}\right\}$, the Hamiltonian system (1.1) with the potential V_{5} is not integrable.

Potential V_{6}. Using the notations of Proposition 2, we get $g\left(z_{*}\right)=4\left(3 \mu-1-(3 \mu+1) z_{*}^{2}\right) z_{*}$ and $h\left(z_{*}\right)=12 z_{*}^{2} \mu+4$.

If $\mu=-1 / 3$, then this potential has Darboux points $z_{*}=0$ with non-trivial eigenvalue $\lambda=-1 \notin\left\{\mathcal{Z}_{-4}^{1} \cup \mathcal{Z}_{-4}^{2} \cup \mathcal{Z}_{-4}^{3}\right\}$. Therefore the potential V_{6} for $\mu=-1 / 3$ is not integrable.

If $\mu \neq-1 / 3$, it has 3 Darboux points of the form [1: z_{*}]

$$
z_{*, 1}=0 \quad \text { and } \quad z_{*, 2}= \pm \sqrt{\frac{3 \mu-1}{3 \mu+1}}
$$

and 2 Darboux points of the form $[0: z] z= \pm \sqrt[3]{2}$. The corresponding non-trivial eigenvalues are $\pm 3 \mu$ and $4 /\left(1+9 \mu^{2}\right)-1$. If potential V_{6} is integrable, then eigenvalues $\pm 3 \mu \in\left\{\mathcal{Z}_{-4}^{1} \cup \mathcal{Z}_{-4}^{2} \cup \mathcal{Z}_{-4}^{3}\right\}$. So we need to analyse nine possible cases, that is, $3 \mu \in \mathcal{Z}_{-4}^{j}$ and $-3 \mu \in \mathcal{Z}_{-4}^{k}$ for $j, k=1,2,3$. The integer of Table 1 corresponding to the case $3 \mu \in \mathcal{Z}_{-4}^{j}$ (respectively $-3 \mu \in \mathcal{Z}_{-4}^{k}$) is denoted by p_{0} (respectively p). All the possible values of integers p_{0} and p are shown in Table 2 , where $\eta=\sqrt{3(3-8 \mu)}$ and $\xi=\sqrt{3(3+8 \mu)}$ satisfy $\eta^{2}+\xi^{2}=18$.

Table 2: Integers p_{0} and p.

Eigenvalue 3μ	Integer p_{0}	Eigenvalue -3μ	Integer p
$3 \mu \in \mathcal{Z}_{-4}^{1}$	$\frac{1}{12}(-4 \pm 3 \eta)$	$-3 \mu \in \mathcal{Z}_{-4}^{1}$	$\frac{1}{12}(-4 \pm 3 \xi)$
$3 \mu \in \mathcal{Z}_{-4}^{2}$	$\frac{1}{4}(3 \pm \eta)$	$-3 \mu \in \mathcal{Z}_{-4}^{2}$	$\frac{1}{4}(3 \pm \xi)$
$3 \mu \in \mathcal{Z}_{-4}^{3}$	$\frac{1}{4}(-2 \pm \eta)$	$-3 \mu \in \mathcal{Z}_{-4}^{3}$	$\frac{1}{4}(-2 \pm \xi)$

Case $3 \mu \in \mathcal{Z}_{-4}^{1}$ and $-3 \mu \in \mathcal{Z}_{-4}^{1}$. Since $p_{0}, p \in \mathbb{Z}$ we have $(3 \eta, 3 \xi) \in \mathbb{N} \times \mathbb{N}$. From the equation $\eta^{2}+\xi^{2}=18$, it follows that $(\eta, \xi)=(3,3)$. Thus $\mu=0$.

Case $3 \mu \in \mathcal{Z}_{-4}^{1}$ and $-3 \mu \in \mathcal{Z}_{-4}^{2}$. Similarly $(3 \eta, \xi) \in \mathbb{N} \times \mathbb{N}$. Using the equation $\eta^{2}+\xi^{2}=18$ we obtain $(\eta, \xi)=(3,3)$. So $\mu=0$.

The remaining cases can be analyzed in a similar way. We summarize all the possible values for η, ξ and μ in Table 3. Consequently if the potential V_{6} is completely integrable, then $\mu=0$. For $\mu=0$ the non-trivial eigenvalue $4 /\left(1+9 \mu^{2}\right)-1$ becomes $3 \notin\left\{\mathcal{Z}_{-4}^{1} \cup \mathcal{Z}_{-4}^{2} \cup \mathcal{Z}_{-4}^{3}\right\}$. So the Hamiltonian system (1.1) with the potential V_{6} is not integrable.

Table 3: The values of η, ξ and μ.

Condition	(η, ξ)	μ
$(3 \eta, 3 \xi) \in \mathbb{N} \times \mathbb{N}$	$(3,3)$	0
$(3 \eta, \xi) \in \mathbb{N} \times \mathbb{N}$	$(3,3)$	0
$(\eta, 3 \xi) \in \mathbb{N} \times \mathbb{N}$	$(3,3)$	0
$(\eta, \xi) \in \mathbb{N} \times \mathbb{N}$	$(3,3)$	0

Potential V_{7}. From Proposition 2 it follows that the Darboux points of the form [1: z_{*}] are given by the zeros of $g\left(z_{*}\right)=4(3 \mu-1) z_{*}\left(z_{*}^{2}-1\right)$ for which $h\left(z_{*}\right)=-4\left(3 \mu z_{*}^{2}+1\right) \neq 0$. We have that the Darboux points $\left[1: z_{*}\right]$ are $z_{*, 1}=0$ and $z_{*, 2}= \pm 1$, and the Darboux points of the form $[0: z]$ are $z= \pm \sqrt[3]{2}$. The corresponding non-trivial eigenvalues are $\lambda_{1}=3 \mu$ and $\lambda_{2}=-1+4 /(1+3 \mu)$. The necessary conditions for the complete meromorphic integrability of potential V_{7} are $\lambda_{1,2} \in\left\{\mathcal{Z}_{-4}^{1} \cup \mathcal{Z}_{-4}^{2} \cup \mathcal{Z}_{-4}^{3}\right\}$. We need to consider nine possible cases, that is, $\lambda_{1} \in \mathcal{Z}_{-4}^{j}$ and $\lambda_{2} \in \mathcal{Z}_{-4}^{k}$ for $j, k=1,2,3$. For each case there exist two integers p_{0} and p such that $\lambda_{1} \in \mathcal{Z}_{-4}^{j}$ and $\lambda_{2} \in \mathcal{Z}_{-4}^{k}$. All the possible values of the integers p_{0} and p are given in Table 4, where $\eta=\sqrt{3(3-8 \mu)}$ and $\zeta=\sqrt{17-32 /(1+3 \mu)}$ satisfy $\eta^{2} \zeta^{2}-17 \zeta^{2}-17 \eta^{2}+33=0$. Recall that $\mu>-1 / 3$ and $\mu \neq 1 / 3$. Thus $\eta \in[0,1) \cup(1, \sqrt{17}]$ and $\zeta \in[0,1) \cup(1, \sqrt{17}]$.

Table 4: Integers p_{0} and p.

Eigenvalue λ_{1}	Integer p_{0}	Eigenvalue λ_{2}	Integer p
$\lambda_{1} \in \mathcal{Z}_{-4}^{1}$	$\frac{1}{12}(-4 \pm 3 \eta)$	$\lambda_{2} \in \mathcal{Z}_{-4}^{1}$	$\frac{1}{12}(-4 \pm 3 \zeta)$
$\lambda_{1} \in \mathcal{Z}_{-4}^{2}$	$\frac{1}{4}(3 \pm \eta)$	$\lambda_{2} \in \mathcal{Z}_{-4}^{2}$	$\frac{1}{4}(3 \pm \zeta)$
$\lambda_{1} \in \mathcal{Z}_{-4}^{3}$	$\frac{1}{4}(-2 \pm \eta)$	$\lambda_{2} \in \mathcal{Z}_{-4}^{3}$	$\frac{1}{4}(-2 \pm \zeta)$

For $\lambda_{1,2} \in \mathcal{Z}_{-4}^{1}$, we have $(3 \eta, 3 \zeta) \in \mathbb{N} \times \mathbb{N}$ due to the fact that p_{0} and p are integers. Combining with the conditions $\eta \in[0,1) \cup(1, \sqrt{17}], \zeta \in[0,1) \cup(1, \sqrt{17}]$ and $\eta^{2} \zeta^{2}-17 \zeta^{2}-17 \eta^{2}+33=0$, we conclude that η and ζ do not exist. The analysis of other cases are similar. We list all the possible values of η, ξ and ζ in Table 5. So $\lambda_{1} \notin\left\{\mathcal{Z}_{-4}^{1} \cup \mathcal{Z}_{-4}^{2} \cup \mathcal{Z}_{-4}^{3}\right\}$ or $\lambda_{2} \notin\left\{\mathcal{Z}_{-4}^{1} \cup \mathcal{Z}_{-4}^{2} \cup \mathcal{Z}_{-4}^{3}\right\}$. Therefore the Hamiltonian system (1.1) with the potential V_{7} is not integrable.

In summary statement (c) of Theorem 1 is proved.
Table 5: The values of η, ζ and μ.

Condition	(η, ζ)	μ
$(3 \eta, 3 \zeta) \in \mathbb{N} \times \mathbb{N}$	\varnothing	\varnothing
$(3 \eta, \zeta) \in \mathbb{N} \times \mathbb{N}$	\varnothing	\varnothing
$(\eta, 3 \zeta) \in \mathbb{N} \times \mathbb{N}$	\varnothing	\varnothing
$(\eta, \xi) \in \mathbb{N} \times \mathbb{N}$	\varnothing	\varnothing

Potential V_{8}. Applying Proposition 2 the Darboux points of the form $\left[1: z_{*}\right]$ are given by the zeros of $g\left(z_{*}\right)=4(1-3 \mu) z_{*}\left(z_{*}^{2}-1\right)$ for which $h\left(z_{*}\right)=4\left(3 \mu z_{*}^{2}+1\right) \neq 0$. The Darboux points of the form $\left[1: z_{*}\right]$ and $[0: z]$ are respectively $z_{*, 1}=0$ and $z_{*, 2}= \pm 1$, and $z= \pm \mathbf{i} \sqrt[3]{2}$ with $\mathbf{i}=\sqrt{-1}$. The corresponding non-trivial eigenvalues are $\lambda_{1}=3 \mu$ and $\lambda_{2}=-1+4 /(1+3 \mu)$. By the same reasons as above one can get Table 4. Next we will divide the proof into two cases:

Case (i) $\mu>-\frac{1}{3}$ and $\mu \neq \frac{1}{3}$.
Case (ii) $\mu<-\frac{1}{3}$.
The Case (i) is the same as the potential V_{7}. Thus statement (d) holds for Case (i).
Now we consider Case (ii). Since $\mu<-\frac{1}{3}, \eta=\sqrt{3(3-8 \mu)}$ and $\zeta=\sqrt{17-32 /(1+3 \mu)}$, we
get that $\eta>\sqrt{17}, \zeta>\sqrt{17}$ and

$$
\begin{equation*}
\zeta=\sqrt{\frac{256}{\eta^{2}-17}+17} \tag{5.1}
\end{equation*}
$$

Since p must be an integer we have Table 6. Let $\tilde{\eta}=3 \eta$ and $\tilde{\zeta}=3 \zeta$. Then equation (5.1) becomes

$$
\begin{equation*}
\tilde{\zeta}=3 \sqrt{\frac{2304}{\tilde{\eta}^{2}-153}+17} \tag{5.2}
\end{equation*}
$$

with $\tilde{\eta}>3 \sqrt{17}$ and $\tilde{\zeta}>3 \sqrt{17}$. If $(3 \eta, 3 \zeta) \in \mathbb{N} \times \mathbb{N}$, then $(\tilde{\eta}, \tilde{\zeta}) \in \mathbb{N} \times \mathbb{N}$ with $\tilde{\eta} \geq 13$ and $\tilde{\zeta} \geq 13$. Furthermore, $13 \leq \tilde{\zeta} \leq 38$ due to the fact that equation (5.2) is decreasing with $\tilde{\eta}$. For each value of $\tilde{\zeta}=13,14, \ldots, 38$, equation (5.2) provides a value of $\tilde{\eta}$. We get the first row of Table 6 . For the second row of Table 6, equation (5.1) can be rewrite as

$$
\begin{equation*}
\zeta=\sqrt{\frac{2304}{\tilde{\eta}^{2}-153}+17} \tag{5.3}
\end{equation*}
$$

with $\tilde{\eta}>3 \sqrt{17}$ and $\zeta>\sqrt{17}$. If $(\tilde{\eta}, \zeta) \in \mathbb{N} \times \mathbb{N}$, then $\tilde{\eta} \geq 13$ and $\zeta \geq 5$. Since equation (5.3) is decreasing with $\tilde{\eta}$, we have $5 \leq \zeta \leq 12$. The second row of Table 6 holds. The remaining rows of Table 6 are obtained in a similar way.

Table 6: The values of η, ζ and μ.

Condition	(η, ζ)	μ
$(3 \eta, 3 \zeta) \in \mathbb{N} \times \mathbb{N}$	$(5,7)$ or $(7,5)$	$-\frac{2}{3}$ or $-\frac{5}{3}$
$(3 \eta, \zeta) \in \mathbb{N} \times \mathbb{N}$	$(5,7)$ or $(7,5)$	$-\frac{2}{3}$ or $-\frac{5}{3}$
$(\eta, 3 \zeta) \in \mathbb{N} \times \mathbb{N}$	$(5,7)$ or $(7,5)$	$-\frac{2}{3}$ or $-\frac{5}{3}$
$(\eta, \xi) \in \mathbb{N} \times \mathbb{N}$	$(5,7)$ or $(7,5)$	$-\frac{2}{3}$ or $-\frac{5}{3}$

For $\mu=-2 / 3$ the non-trivial eigenvalues are $\lambda_{1}=-2$ and $\lambda_{2}=-5$. For $\mu=-5 / 3$, the non-trivial eigenvalues are $\lambda_{1}=-5$ and $\lambda_{2}=-2$. Obviously $-2 \in \mathcal{Z}_{-4}^{2}(p=2)$ and $-5 \in \mathcal{Z}_{-4}^{2}$ $(p=-1)$. For $\mu=-2 / 3$ or $-5 / 3$, we cannot use Theorem 2 to decide whether or not the Hamiltonian system is meromorphically integrable. Next we show that V_{8} does not admit an additional polynomial first integral when $\mu \in\{-5 / 3,-2 / 3\}$.

Consider the following potential

$$
\begin{equation*}
V=\frac{1}{q_{1}^{4}+6 \mu q_{1}^{2} q_{2}^{2}+q_{2}^{4}} \tag{5.4}
\end{equation*}
$$

with $\mu \in\{-5 / 3,-2 / 3\}$. The corresponding Hamiltonian system (1.1) is

$$
\begin{equation*}
\dot{q}_{1}=p_{1}, \quad \dot{q}_{2}=p_{2}, \quad \dot{p}_{1}=\frac{4 q_{1}\left(q_{1}^{2}+3 \mu q_{2}^{2}\right)}{\left(q_{1}^{4}+6 \mu q_{1}^{2} q_{2}^{2}+q_{2}^{4}\right)^{2}}, \quad \dot{p}_{2}=\frac{4 q_{2}\left(3 \mu q_{1}^{2}+q_{2}^{2}\right)}{\left(q_{1}^{4}+6 \mu q_{1}^{2} q_{2}^{2}+q_{2}^{4}\right)^{2}} \tag{5.5}
\end{equation*}
$$

After a rescaling of the time variable $d t=\left(q_{1}^{4}+6 \mu q_{1}^{2} q_{2}^{2}+q_{2}^{4}\right)^{2} d s$, system (5.5) becomes

$$
\begin{array}{ll}
\dot{q}_{1}=p_{1}\left(q_{1}^{4}+6 \mu q_{1}^{2} q_{2}^{2}+q_{2}^{4}\right)^{2}, & \dot{q}_{2}=p_{2}\left(q_{1}^{4}+6 \mu q_{1}^{2} q_{2}^{2}+q_{2}^{4}\right)^{2} \tag{5.6}\\
\dot{p}_{1}=4 q_{1}\left(q_{1}^{2}+3 \mu q_{2}^{2}\right), & \dot{p}_{2}=4 q_{2}\left(3 \mu q_{1}^{2}+q_{2}^{2}\right)
\end{array}
$$

Doing the transformation $\left(q_{1}, q_{2}, p_{1}, p_{2}\right) \mapsto\left(q_{1}, q_{2}, p_{1}, P\right)$ with $P=q_{2} p_{1}-q_{1} p_{2}$, system (5.6) writes

$$
\begin{align*}
& \dot{q}_{1}=p_{1}\left(q_{1}^{4}+6 \mu q_{1}^{2} q_{2}^{2}+q_{2}^{4}\right)^{2}, \quad \dot{q}_{2}=\frac{q_{2} p_{1}-P}{q_{1}}\left(q_{1}^{4}+6 \mu q_{1}^{2} q_{2}^{2}+q_{2}^{4}\right)^{2} \tag{5.7}\\
& \dot{p}_{1}=4 q_{1}\left(q_{1}^{2}+3 \mu q_{2}^{2}\right), \quad \dot{P}=4(1-3 \mu) q_{1} q_{2}\left(q_{1}+q_{2}\right)\left(q_{1}-q_{2}\right)
\end{align*}
$$

Suppose that system (5.6) has a polynomial first integral $F\left(q_{1}, q_{2}, p_{1}, p_{2}\right) \in \mathbb{C}\left[q_{1}, q_{2}, p_{1}, p_{2}\right]$. In the new variables (q_{1}, q_{2}, p_{1}, P), it can be written as

$$
\begin{equation*}
\bar{F}\left(q_{1}, q_{2}, p_{1}, P\right)=F\left(q_{1}, q_{2}, p_{1}, \frac{q_{2} p_{1}-P}{q_{1}}\right)=\sum_{j=-n}^{n} f_{j}\left(q_{2}, p_{1}, P\right) q_{1}^{j}, \tag{5.8}
\end{equation*}
$$

where $f_{j}\left(q_{2}, p_{1}, P\right) \in \mathbb{C}\left[q_{2}, p_{1}, P\right]$. Since $\bar{F}\left(q_{1}, q_{2}, p_{1}, P\right)$ is a first integral of system (5.7), we have

$$
\begin{equation*}
\dot{q}_{1} \frac{\partial \bar{F}}{\partial q_{1}}+\dot{q}_{2} \frac{\partial \bar{F}}{\partial q_{2}}+\dot{p}_{1} \frac{\partial \bar{F}}{\partial p_{1}}+\dot{P} \frac{\partial \bar{F}}{\partial P}=0 \tag{5.9}
\end{equation*}
$$

For clarity we introduce the following differential operators acting on $f_{j}\left(q_{2}, p_{1}, P\right) \in \mathbb{C}\left[q_{2}, p_{1}, P\right]$:

$$
\begin{aligned}
\mathcal{A}\left[f_{j}\right] & :=j p_{1} f_{j}+\left(q_{2} p_{1}-P\right) \frac{\partial f_{j}}{\partial q_{2}}, \\
\mathcal{B}\left[f_{j}\right] & :=3 \mu q_{2}^{4} \mathcal{A}\left[f_{j}\right]-(1-3 \mu) q_{2} \frac{\partial f_{j}}{\partial P}+3 \mu \frac{\partial f_{j}}{\partial p_{1}}, \\
\mathcal{C}\left[f_{j}\right] & :=\left(18 \mu^{2}+1\right) q_{1}^{4} \mathcal{A}\left[f_{j}\right]+2\left((1-3 \mu) q_{2} \frac{\partial f_{j}}{\partial P}+\frac{\partial f_{j}}{\partial p_{1}}\right) .
\end{aligned}
$$

Using the above notions equation (5.9) can be written as

$$
\begin{equation*}
\sum_{j=-n}^{n}\left(q_{1}^{j+7} \mathcal{A}+12 \mu q_{2}^{2} q_{1}^{j+5} \mathcal{A}+2 q_{1}^{j+3} \mathcal{C}+4 q_{2}^{2} q_{1}^{j+1} \mathcal{B}+q_{2}^{8} q_{1}^{j-1} \mathcal{A}\right)\left[f_{j}\right]=0 \tag{5.10}
\end{equation*}
$$

with $f_{j} \in \mathbb{C}\left[q_{2}, p_{1}, P\right]$. Moreover $\bar{F}\left(q_{1}, q_{2}, p_{1}, P\right)$ is a first integral of system (5.7) if and only if the coefficients of q_{1}^{j-1} in equation (5.10) are

$$
\begin{equation*}
\mathcal{A}\left[f_{j-8}\right]+12 \mu q_{2}^{2} \mathcal{A}\left[f_{j-6}\right]+2 \mathcal{C}\left[f_{j-4}\right]+4 q_{2}^{2} \mathcal{B}\left[f_{j-2}\right]+q_{2}^{8} \mathcal{A}\left[f_{j}\right]=0, \tag{5.11}
\end{equation*}
$$

where $j=-n, \ldots, n+8$ and $f_{j}=0$ if $j<-n$ or $j>n$. Therefore system (5.6) has a polynomial first integral if and only if there exist $2 n+1$ polynomials f_{j} such that equations (5.11) hold. The existence of such polynomials are given by the following two lemmas.

Lemma 1. If $\bar{F}\left(q_{1}, q_{2}, p_{1}, P\right)$ is a first integral of system (5.7), then $f_{j}\left(q_{2}, p_{1}, P\right)=0$ for $j=$ $1, \ldots, n$.

Proof. For $j=n+8$ equation (5.11) becomes $\mathcal{A}\left[f_{n}\right]=0$. The solution of $\mathcal{A}\left[f_{n}\right]=0$ is $f_{n}=$ $\alpha\left(p_{1}, P\right) /\left(P-q_{2} p_{1}\right)^{n}$, where $\alpha\left(p_{1}, P\right)$ is a function in the variables p_{1} and P. So $f_{n}=0$ due to the fact that $f_{n} \in \mathbb{C}\left[q_{2}, p_{1}, P\right]$. If $n=1$ we are done.

When $n \geq 2$, taking $j=n+8, n+7$, we have $\mathcal{A}\left[f_{n}\right]=0$ and $\mathcal{A}\left[f_{n-1}\right]=0$. By the same reason as above, $f_{n}=f_{n-1}=0$. If $n=2$, then the lemma holds.

When $n \geq 3$, taking $j=n+8, n+7, n+6$, we get, respectively, $\mathcal{A}\left[f_{n}\right]=0, \mathcal{A}\left[f_{n-1}\right]=0$ and $\mathcal{A}\left[f_{n-2}\right]+12 \mu q_{2}^{2} \mathcal{A}\left[f_{n}\right]=0$. This implies that $\mathcal{A}\left[f_{n-2}\right]=0$. Using similar arguments we obtain $f_{n}=f_{n-1}=f_{n-2}=0$. If $n=3$, the proof is finished.

Consider $n \geq 4$. Substituting $j=n+8, n+7, n+6, n+5$ into equation (5.11), we get, respectively, $\mathcal{A}\left[f_{n}\right]=0, \mathcal{A}\left[f_{n-1}\right]=0, \mathcal{A}\left[f_{n-2}\right]+12 \mu q_{2}^{2} \mathcal{A}\left[f_{n}\right]=0$ and $\mathcal{A}\left[f_{n-3}\right]+12 \mu q_{2}^{2} \mathcal{A}\left[f_{n-1}\right]=0$. Using similar arguments to the case $n \geq 3$, it is easy to prove that $f_{n}=f_{n-1}=f_{n-2}=f_{n-3}=0$. If $n=4$, the lemma is proved.

When $n \geq 5$, we analyze respectively $j=n+8, n+7, n+6, n+5, n+4$ in equation (5.11). Using similar arguments as in the previous cases, one can get that $f_{n}=f_{n-1}=f_{n-2}=f_{n-3}=f_{n-4}=0$. If $n=5$ the lemma is confirmed.

Next we prove this lemma by induction when $n \geq 6$. Assume that $f_{n}=f_{n-1}=\cdots=f_{i+1}=0$, where $i \geq 1$. Now we consider equation (5.11) for $j=i+8$, that is,

$$
\begin{equation*}
\mathcal{A}\left[f_{i}\right]+12 \mu q_{2}^{2} \mathcal{A}\left[f_{i+2}\right]+2 \mathcal{C}\left[f_{i+4}\right]+4 q_{2}^{2} \mathcal{B}\left[f_{i+6}\right]+q_{2}^{8} \mathcal{A}\left[f_{i+8}\right]=0 . \tag{5.12}
\end{equation*}
$$

By the induction hypothesis we have $\mathcal{A}\left[f_{i+2}\right]=\mathcal{A}\left[f_{i+8}\right]=\mathcal{C}\left[f_{i+4}\right]=\mathcal{B}\left[f_{i+6}\right]=0$. Thus equation (5.12) reduces to $\mathcal{A}\left[f_{i}\right]=0$. From the above analysis we know that the only polynomial solution of differential equation $\mathcal{A}\left[f_{i}\right]=0$ is $f_{i}=0$. This ends the proof.

Lemma 2. If $\bar{F}\left(q_{1}, q_{2}, p_{1}, P\right)$ is a first integral of system (5.7), then $f_{j}\left(q_{2}, p_{1}, P\right)=0$ for $j=$ $-n,-n+1, \ldots,-1$, and $f_{0}\left(q_{2}, p_{1}, P\right)$ is a constant.

Proof. We consider equation (5.11) for $j=-n,-n+1,-n+2$, that is, $q_{2}^{8} \mathcal{A}\left[f_{-n}\right]=0, q_{2}^{8} \mathcal{A}\left[f_{-n+1}\right]=$ 0 and $4 q_{2}^{2} \mathcal{B}\left[f_{-n}\right]+q_{2}^{8} \mathcal{A}\left[f_{-n+2}\right]=0$. So $\mathcal{A}\left[f_{-n}\right]=\mathcal{A}\left[f_{-n+1}\right]=0$. The polynomial solutions of the differential equations $\mathcal{A}\left[f_{-n}\right]=0$ and $\mathcal{A}\left[f_{-n+1}\right]=0$ are respectively

$$
\begin{equation*}
f_{-n}=\alpha_{-n}\left(P-q_{2} p_{1}\right)^{n} \quad \text { and } \quad f_{-n+1}=\alpha_{-n+1}\left(P-q_{2} p_{1}\right)^{n-1} \tag{5.13}
\end{equation*}
$$

where $\alpha_{-n}=\alpha_{-n}\left(p_{1}, P\right)$ and $\alpha_{-n+1}=\alpha_{-n+1}\left(p_{1}, P\right)$ are polynomials in the variables p_{1} and P.
From equations $4 q_{2}^{2} \mathcal{B}\left[f_{-n}\right]+q_{2}^{8} \mathcal{A}\left[f_{-n+2}\right]=0$ and (5.13), we obtain

$$
\begin{equation*}
f_{-n+2}=\left(\alpha_{-n+2}+\beta_{-n+2}\right)\left(P-q_{2} p_{1}\right)^{n-2} \tag{5.14}
\end{equation*}
$$

where $\alpha_{-n+2}=\alpha_{-n+2}\left(p_{1}, P\right)$ is an integration constant, $\beta_{-n+2}=\frac{1}{15 q_{2}^{5}} \tilde{\beta}_{-n+2}$, and

$$
\begin{equation*}
\tilde{\beta}_{-n+2}=15 n q_{2} \alpha_{-n}+5(1-3 \mu)\left(3 P-4 p_{1} q_{2}\right) q_{2} \frac{\partial \alpha_{-n}}{\partial P}+9 \mu\left(5 p_{1} q_{2}-4 P\right) \frac{\partial \alpha_{-n}}{\partial p_{1}} \tag{5.15}
\end{equation*}
$$

Since α_{-n} is a polynomial, we claim that β_{-n+2} is also a polynomial. Assume that β_{-n+2} is not a polynomial. Then $\beta_{-n+2}\left(P-q_{2} p_{1}\right)^{n-2}$ is a rational function with denominator $15 q_{2}^{5}$. Since f_{-n+2} must be a polynomial, we have that $\alpha_{-n+2}\left(P-q_{2} p_{1}\right)^{n-2}$ is also a rational function with denominator $15 q_{2}^{5}$. This contradicts the fact that α_{-n+2} is independent of the variable q_{2}. This means that β_{-n+2} is a polynomial if and only if $\tilde{\beta}_{-n+2}$ is divisible by q_{2}^{5}. Thus $\tilde{\beta}_{-n+2}=0$. Evaluating (5.15) on $q_{2}=0$, we have $\partial \alpha_{-n} / \partial p_{1}=0$ due to the fact that $9 \mu \neq 0$. After division by $5 q_{2}$ in equation (5.15), we obtain

$$
\begin{equation*}
3 n \alpha_{-n}+(1-3 \mu)\left(3 P-4 p_{1} q_{2}\right) \frac{\partial \alpha_{-n}}{\partial P}=0 \tag{5.16}
\end{equation*}
$$

Substituting $q_{2}=3 P / 4 p_{1}$ into (5.16), we get $\alpha_{-n}=0$. Consequently $f_{-n}=0$ and $f_{-n+2}=$ $\alpha_{-n+2}\left(P-q_{2} p_{1}\right)^{n-2}$.

For $j=-n+3$ equation (5.11) becomes $4 q_{2}^{2} \mathcal{B}\left[f_{-n+1}\right]+q_{2}^{8} \mathcal{A}\left[f_{-n+3}\right]=0$. In the same way as f_{-n+2}, we get

$$
\begin{equation*}
f_{-n+3}=\left(\alpha_{-n+3}+\beta_{-n+3}\right)\left(P-q_{2} p_{1}\right)^{n-3} \tag{5.17}
\end{equation*}
$$

where $\alpha_{-n+3}=\alpha_{-n+3}\left(p_{1}, P\right)$ is an integration constant, $\beta_{-n+3}=\frac{1}{15 q_{2}^{5}} \tilde{\beta}_{-n+3}$, and

$$
\begin{equation*}
\tilde{\beta}_{-n+3}=15 q_{2} \alpha_{-n+1}(n-1)+5(1-3 \mu)\left(3 P-4 p_{1} q_{2}\right) q_{2} \frac{\partial \alpha_{-n+1}}{\partial P}+9 \mu\left(5 p_{1} q_{2}-4 P\right) \frac{\partial \alpha_{-n+1}}{\partial p_{1}} \tag{5.18}
\end{equation*}
$$

By the same arguments as above one can get that $\alpha_{-n+1}=0$ and $\beta_{-n+3}=0$. Therefore $f_{-n+1}=0$ and $f_{-n+3}=\alpha_{-n+3}\left(P-q_{2} p_{1}\right)^{n-3}$.

Using exactly the same steps as in the previous cases, we can prove that $f_{-n+3}=\cdots=f_{-3}=0$, $f_{-2}=\alpha_{-2}\left(P-q_{2} p_{1}\right)^{2}$ and $f_{-1}=\alpha_{-1}\left(P-q_{2} p_{1}\right)$, where $\alpha_{-2}=\alpha_{-2}\left(p_{1}, P\right)$ and $\alpha_{-1}=\alpha_{-1}\left(p_{1}, P\right)$ are polynomials in the variables p_{1} and P.

From Lemma 1 we know that $f_{j}=0$ for $j \geq 1$. For $j=8$ equation (5.11) becomes $\mathcal{A}\left[f_{0}\right]=0$, that is $\partial f_{0}\left(q_{2}, p_{1}, P\right) / \partial q_{2}=0$. This implies that f_{0} does not depend on q_{2}.

Finally we prove that $f_{-1}=f_{-2}=0$ and $f_{0}=$ constant.
Consider equation (5.11) for $j=0$, that is

$$
\begin{equation*}
\mathcal{B}\left[f_{-2}\right]=\mathcal{B}\left[\alpha_{-2}\left(P-q_{2} p_{1}\right)^{2}\right]=0 \tag{5.19}
\end{equation*}
$$

The general solution of the linear partial differential equation (5.19) is

$$
\alpha_{-2}\left(p_{1}, P\right)=\frac{1}{9 \mu^{2}\left(P-p_{1} q_{2}\right)^{2}} \varphi\left(P-p_{1} q_{2}+\frac{p_{1} q_{2}}{3 \mu}\right)
$$

where φ is a function in the variable $P-p_{1} q_{2}+\frac{p_{1} q_{2}}{3 \mu}$. Since α_{-2} does not depend on q_{2} and $\frac{1}{3 \mu} \neq 0$, we have $\alpha_{-2}=0$. Consequently $f_{-2}=0$.

Substituting $j=1$ into (5.11) we have $\mathcal{B}\left[f_{-1}\right]=\mathcal{B}\left[\alpha_{-1}\left(P-q_{2} p_{1}\right)\right]=0$. The general solution of this linear partial differential equation is

$$
\alpha_{-1}\left(p_{1}, P\right)=\frac{1}{3 \mu\left(P-p_{1} q_{2}\right)} \psi\left(P-p_{1} q_{2}+\frac{p_{1} q_{2}}{3 \mu}\right) .
$$

By the same reasons as above we get $\alpha_{-1}=0$.
From Lemma 1 and $f_{-6}=f_{-4}=f_{-2}=0$, we obtain that

$$
\begin{align*}
& (3 \mu-1) q_{2} \frac{\partial f_{0}}{\partial P}+3 \mu \frac{\partial f_{0}}{\partial p_{1}}=0 \quad \text { for } j=2 \text { in equation (5.11) } \\
& (1-3 \mu) q_{2} \frac{\partial f_{0}}{\partial P}+\frac{\partial f_{0}}{\partial p_{1}}=0 \quad \text { for } j=4 \text { in equation (5.11) } \tag{5.20}
\end{align*}
$$

System (5.20) is linear in the unknowns $q_{2} \partial f_{0} / \partial P$ and $\partial f_{0} / \partial p_{1}$. Its coefficient matrix is $9 \mu^{2}-1 \neq 0$ due to the fact that $\mu \in\{-5 / 3,-2 / 3\}$. Thus $\partial f_{0} / \partial P=\partial f_{0} / \partial p_{1}=0$ that is $f_{0}=$ constant.

This completes the proof of the lemma.
Proposition 3. The Hamiltonian system (1.1) with the potential (5.4) does not admit an additional polynomial first integral.

Proof. From Lemmas 1 and 2 the proposition follows.
This completes the proof of Theorem 1.

References

[1] T. Bountis, H. Segur, F. Vivaldi, Integrable Hamiltonian systems and the Painlevé property, Phys. Rev. A (3), 25 (1982), 1257-1264.
[2] Y. F. Chang, M. Tabor, J. Weiss, Analytic structure of the Hénon-Heiles Hamiltonian in integrable and nonintegrable regimes, J. Math. Phys., 23 (1982), 531-538.
[3] A. Cima, J. Llibre, Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. Appl., 147 (1990), 420-448.
[4] G. Duval, A. J. Maciejewski, Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials, Ann. Inst. Fourier (Grenoble), 59 (2009), 2839-2890.
[5] G. Duval, A. J. Maciejewski, Integrability of Hamiltonian systems with homogeneous potentials of degrees ± 2. An application of higher order variational equations, Discrete Contin. Dyn. Syst., 34 (2014), 4589-4615.
[6] G. Duval, A. J. Maciejewski, Integrability of potentials of degree $k \neq \pm 2$. Second order variational equations between Kolchin solvability and Abelianity, Discrete Contin. Dyn. Syst., 35 (2015), 1969-2009.
[7] A. Goriely, Integrability and nonintegrability of dynamical systems, vol. 19 of Advanced Series in Nonlinear Dynamics, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
[8] B. Grammaticos, B. Dorizzi, A. Ramani, Integrability of Hamiltonians with third- and fourth-degree polynomial potentials, J. Math. Phys., 24 (1983), 2289-2295.
[9] L. S. Hall, A theory of exact and approximate configurational invariants, Phys. D, 8 (1983), 90-116.
[10] J. Hietarinta, Direct methods for the search of the second invariant, Phys. Rep., 147 (1987), 87-154.
[11] J. Llibre, A. Mahdi, C. Valls, Polynomial integrability of the Hamiltonian systems with homogeneous potential of degree -3, Phys. D, 240 (2011), 1928-1935.
[12] J. Llibre, A. Mahdi, C. Valls, Analytic integrability of Hamiltonian systems with a homogeneous polynomial potential of degree 4, J. Math. Phys., 52 (2011), 012702, 9.
[13] J. Llibre, A. Mahdi, C. Valls, Polynomial integrability of the Hamiltonian systems with homogeneous potential of degree -2, Phys. Lett. A, 375 (2011), 1845-1849.
[14] J. Llibre, C. Valls, Darboux integrability of 2-dimensional Hamiltonian systems with homogenous potentials of degree 3, J. Math. Phys., 55 (2014), 033507, 12.
[15] J. Llibre, C. Valls, On the integrability of Hamiltonian systems with d degrees of freedom and homogenous polynomial potential of degree n, Commun. Contemp. Math., 20 (2018), 1750045, 9.
[16] A. J. Maciejewski, M. Przybylska, All meromorphically integrable 2D Hamiltonian systems with homogeneous potential of degree 3, Phys. Lett. A, 327 (2004), 461-473.
[17] A. J. Maciejewski, M. Przybylska, Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential, J. Math. Phys., 46 (2005), 062901, 33.
[18] J. J. Morales Ruiz, Differential Galois theory and non-integrability of Hamiltonian systems, vol. 179 of Progress in Mathematics, Birkhäuser Verlag, Basel, 1999.
[19] A. Ramani, B. Dorizzi, B. Grammaticos, Painlevé conjecture revisited, Phys. Rev. Lett., 49 (1982), 1539-1541.
[20] H. Yoshida, A criterion for the nonexistence of an additional integral in Hamiltonian systems with a homogeneous potential, Phys. D, 29 (1987), 128-142.
[21] H. Yoshida, A new necessary condition for the integrability of Hamiltonian systems with a two-dimensional homogeneous potential, Phys. D, 128 (1999), 53-69.
[22] S. L. Ziglin, Bifurcation of solutions and the nonexistence of first integrals in Hamiltonian mechanics. I, Funktsional. Anal. i Prilozhen., 16 (1982), 30-41, 96.
[23] S. L. Ziglin, Bifurcation of solutions and the nonexistence of first integrals in Hamiltonian mechanics. II, Funktsional. Anal. i Prilozhen., 17 (1983), 8-23.

[^0]: *Corresponding author (Yuzhou Tian). The first author is partially supported by the Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación grants M TM2016-77278-P (FEDER), the Agència de Gestió d'Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017-777911. The second author is partially supported by the National Natural Science Foundation of China (No. 11971495 and No. 11801582), China Scholarship Council (No. 201906380022) and Natural Science Foundation of Guangdong Province (No. 2019A1515011239).

