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Abstract We characterize the meromorphic Liouville integrability of the Hamiltonian systems
with Hamiltonian H =

(
p21 + p22

)
/2+V (q1, q2), being V (q1, q2) a homogeneous potential of degree

−4, with the exception of the potential V8 = 1/
(
q41 + 6µq21q

2
2 + q42

)
when µ ∈ {−5/3,−2/3}. For

this potential we only can prove that it has no polynomial first integral.
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1 Introduction and main results

Hamiltonian systems play an important role in the theory of the dynamical systems due to the fact
that these systems occur frequently in mathematical physics, particularly in mechanics, engineering
and other fields. In order to describe global information on the Hamiltonian systems is good to
find sufficient number of first integrals. The fact that a Hamiltonian system has some additional
first integral independent with its Hamiltonian is a rare phenomenon which lead to a difficult
problem, how to determine whether a given Hamiltonian system has additional independent first
integrals.

In this work we consider the Hamiltonian systems of two degrees of freedom

q̇i = pi, ṗi = −∂V
∂qi

, i = 1, 2, (1.1)

with the Hamiltonian

H =
1

2

2∑

i=1

pi + V (q) , (1.2)

where V (q) = V (q1, q2) ∈ C [q1, q2] is a homogeneous polynomial potential of degree k ∈ Z.
Let A = A (q,p) and B = B (q,p) be two functions with q = (q1, q2) and p = (p1, p2). Their

Poisson bracket is defined as

{A,B} =
2∑

i=1

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
. (1.3)

∗Corresponding author (Yuzhou Tian). The first author is partially supported by the Ministerio de Ciencia,
Innovación y Universidades, Agencia Estatal de Investigación grants M TM2016-77278-P (FEDER), the Agència
de Gestió d’Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant
MSCA-RISE-2017-777911. The second author is partially supported by the National Natural Science Foundation
of China (No. 11971495 and No. 11801582), China Scholarship Council (No. 201906380022) and Natural Science
Foundation of Guangdong Province (No. 2019A1515011239).

1

This is a preprint of: “Meromorphic integrability of the Hamiltonian systems with homogeneous
potentials of degree -4”, Jaume Llibre, Yuzhou Tian, Discrete Contin. Dyn. Syst. Ser. B, 1–12,
2021.
DOI: [10.3934/dcdsb.2021228]

10.3934/dcdsb.2021228


The functions A and B are in involution if {A,B} = 0. A non-constant function I = I (q,p) is
called a first integral of the Hamiltonian system (1.1) if I is in involution with the Hamiltonian
function H, i.e. {H, I} = 0. Since the Poisson bracket is antisymmetric, it is obvious that H itself
is always a first integral. The functions H and I are functionally independent if their gradients
are linearly independent for all points of C4 except perhaps in a zero Lebesgue measure set. The
Hamiltonian system (1.1) is completely or Liouville integrable if it has two functionally independent
first integrals H and I.

During the past four decades, there have had an extensive study on the integrability of the
Hamiltonian systems (1.1), as it is shown in the papers [1, 2, 4-6, 8, 9, 14, 15, 19]. The funda-
mental tools to investigate the integrability problem for system (1.1) are Painlevé test [7] and
direct methods [10]. In [22, 23] Ziglin proved a relation between the integrability of Hamiltonian
systems and the monodromy group of variational equations along a particular solution, and gave
the necessary conditions of integrability for complex Hamiltonian systems. Yoshida proved some
criteria for the nonexistence of an additional first integral in Hamiltonian systems with homoge-
neous potentials, see [20, 21]. Using the differential Galois group Morales and Ramis [18] obtained
necessary conditions for the existence of an additional meromorphic first integral of Hamiltonian
systems (1.1) with homogeneous potentials.

Recently Maciejewski and Przybylska [16] completely solved the meromorphic integrability
problem of Hamiltonian systems (1.1) with homogeneous polynomial potentials of degree 3. Ma-
ciejewski et al. [17] and Llibre et al. [12] characterized all integrable Hamiltonian systems (1.1)
with homogeneous polynomial potentials of degree 4. The integrability of Hamiltonian systems
(1.1) with homogeneous potentials of degrees 2, 1, 0,−1 or −2 were characterized in [13]. We note
that Hamiltonian systems (1.1) with homogeneous potentials of degrees 2, 1, 0 or −1 has always
a polynomial first integral independent with the Hamiltonian. The polynomial integrability of
Hamiltonian systems (1.1) with homogeneous potentials of degree −3 have been classified in [11].

The objective of this paper is to study the integrability of the Hamiltonian system (1.1) with
homogeneous potentials of degree −4, i.e. with

V = V (q1, q2) =
1

aq41 + bq31q2 + cq21q
2
2 + dq1q32 + eq42

=
1

Q (q1, q2)
, (1.4)

where Q (q1, q2) 6≡ 0.
Our main results are the following.

Proposition 1. After a linear change of variables and a rescaling, the potential (1.4) can be
written in one of the following forms:

V0 = ± 1
q41
; V1 = 1

4q31q2
; V2 = ± 1

6p21p
2
2
; V3 = ± 1

(q21+q22)
2 ; V4 = ± 1

q22(6q21−q22)
; V5 = ± 1

q22(6q21+q22)
;

V6 = 1
q41+6µq21q

2
2−q42

; V7 = − 1
q41+6µq21q

2
2+q

4
2
with µ > −1

3 and µ 6= 1
3 ; V8 = 1

q41+6µq21q
2
2+q

4
2
with µ 6= ±1

3 .

Proposition 1 is proved in Section 4.

Theorem 1. Hamiltonian system (1.1) with the potential:

(a) V0 is completely integrable with the additional polynomial first integral p2.

(b) V3 is completely integrable with the additional polynomial first integral q2p1 − q1p2.

(c) Vi for i = 1, 2, 4, 5, 6, 7 does not admit an additional meromorphic first integral.

(d) V8 does not admit an additional meromorphic first integral if µ 6∈
{
−5

3 ,−2
3

}
. If µ ∈

{
−5

3 ,−2
3

}

then V8 does not admit an additional polynomial first integral.

The proof of Theorem 1 is given in Section 5.
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2 Darboux point

The point d = (d1, d2) ∈ C2\ {0} is called a Darboux point of system (1.1) if it satisfies the gradient
equation

V ′ (d) = γd, (2.1)

where V ′ (d) is the gradient of V (d) and γ ∈ C\ {0}. If d is a Darboux point, then the point
d̃ = ωd, where ω ∈ C\ {0} satisfies V ′

(
d̃
)

= ωk−2γd̃ = γ̃d̃, and consequently d̃ is also a Darboux
point. Thus these Darboux points form an equivalence class. We can view a Darboux point d as
a point in a projective space d = [d1 : d2] ∈ CP1, for more details see [17].

Given a Darboux point d we consider the Hessian matrix V ′′ (q) evaluated at the Darboux
point d, that is,

V ′′ (d) =




∂2 V
∂q21

(d) ∂2 V
∂q1∂q2

(d)

∂2 V
∂q2∂q1

(d) ∂2 V
∂q22

(d)


 . (2.2)

Since the potential V is a homogeneous function of degree k, the number k − 1 is always an
eigenvalue for any Darboux point d. The eigenvalues of the Hessian matrix V ′′ (d) are denoted
by {k − 1, λ}. We say that λ is the non-trivial eigenvalue.

Consider the following potential

V (q1, q2) =
1

a0qm1 + a1q
m−1
1 q2 + · · ·+ am−1q1q

m−1
2 + amqm2

(2.3)

with m ≥ 2. Let z = q2/q1. The potential (2.3) can be rewrite as

V =
1

qm1 v (z)
,

where v (z) = a0 + a1z+ · · ·+ amz
m. In order to calculate the Darboux points and the non-trivial

eigenvalue λ associated to potential (2.3), we define the polynomials

h (z) = mv (z)− zv′ (z) , g (z) =
(
1 + z2

)
v′ (z)−mzv (z) , (2.4)

where v′ (z) denotes the derivative of v (z) with respect to z.
The next result is due to Llibre et al., see Proposition 6 of [11].

Proposition 2. Assume that g 6≡ 0. The Darboux points d = [1 : z∗] associated with potential
(2.3) are given by the zeros of g (z) = 0 for which h (z) 6= 0. Moreover the non-trivial eigenvalue
of V ′′ (d) is given by λ (z∗) = g′ (z∗) /h (z∗) + 1.

3 Morales-Ramis theory

The necessary condition for the complete meromorphic integrability of Hamiltonian systems (1.1)
with homogeneous potentials V was given by Morales and Ramis, see page 100 of [18].

Theorem 2 (Morales-Ramis). Assume that the Hamiltonian system defined by the Hamiltonian
(1.2) with a homogeneous potential V of degree k ∈ Z \ {0} is completely integrable with meromor-
phic first integrals, then the non-trivial eigenvalues λ associated to its Darboux points must satisfy
the conditions of Table 1, where p is an integer.
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Table 1: The Morales-Ramis table.

Degree Eigenvalue λ Degree Eigenvalue λ

k p+ p (p− 1) k2 −3 25
24 − 1

24

(
12
5 + 6p

)2

2 arbitrary 3 − 1
24 + 1

24 (2 + 6p)2

−2 arbitrary 3 − 1
24 + 1

24

(
3
2 + 6p

)2

−5 49
40 − 1

40

(
10
3 + 10p

)2
3 − 1

24 + 1
24

(
6
5 + 6p

)2

−5 49
40 − 1

40 (4 + 10p)2 3 − 1
24 + 1

24

(
12
5 + 6p

)2

−4 9
8 − 1

8

(
4
3 + 4p

)2
4 −1

8 + 1
8

(
4
3 + 4p

)2

−3 25
24 − 1

24 (2 + 6p)2 5 − 9
40 + 1

40

(
10
3 + 10p

)2

−3 25
24 − 1

24

(
3
2 + 6p

)2
5 − 9

40 + 1
40 (4 + 10p)2

−3 25
24 − 1

24

(
6
5 + 6p

)2
k 1

2

(
k−1
k + p (p+ 1) k

)

4 Homogeneous potentials of degree −4
To prove Proposition 1, we need the following result which was given in Theorem 2.6 of Cima and
Llibre in [3].

Theorem 3. For each real fourth-order binary form Q (q1, q2) there exists some σ ∈ GL (2,R)
which transforms Q (q1, q2) in one and only one of the following canonical forms:

(I) Q = q41 + 6µq21q
2
2 + q42 with µ < −1

3 ;

(II) Q = α
(
q41 + 6µq21q

2
2 + q42

)
with µ > −1

3 and µ 6= 1
3 ;

(III) Q = q41 + 6µq21q
2
2 − q42;

(IV) Q = αq22
(
6q21 + q22

)
;

(V) Q = αq22
(
6q21 − q22

)
;

(VI) Q = α
(
q21 + q22

)2;

(VII) Q = 6αp21p
2
2;

(VIII) Q = 4q31q2;

(IX) Q = αq41;

(X) Q = 0;

where α = ±1 and GL (2,R) is the linear group.

Proof of Proposition 1. It follows immediately from Theorem 3 and the fact that the linear
changes of variables are canonical changes in the theory of Hamiltonian systems.

5 Proof of Theorem 1

Potentials V0 and V3. It is immediate to check that the Hamiltonian system (1.1) with the
potentials V0 and V3 have polynomial first integral I = p2 and I = q2p1 − q1p2, respectively. So
statements (a) and (b) hold.

4



By Theorem 2 we know that if potential (1.4) is integrable, then its eigenvalue λ must be one
of Table 1. For convenience, we define the following sets

Z1
−4 =

{
9

8
− 1

8

(
4

3
+ 4p

)2

: p ∈ Z

}
,

Z2
−4 = {p− 2(p− 1)p : p ∈ Z} ,

Z3
−4 =

{
1

2

(
5

4
− 4p(p+ 1)

)
: p ∈ Z

}
.

Potential V1. Using Proposition 2 we obtain the Darboux points z∗ = ±1/
√

3 and the
corresponding non-trivial eigenvalue λ = −1. It is easy to check that −1 6∈

{
Z1
−4 ∪ Z2

−4 ∪ Z3
−4
}
.

By Theorem 2 V1 is not integrable.
Potential V2. By Proposition 2 the potential V2 has the Darboux points z∗ = ±1. The

corresponding non-trivial eigenvalue is λ = −1. Since −1 6∈
{
Z1
−4 ∪ Z2

−4 ∪ Z3
−4
}
, by Theorem 2

the Hamiltonian system (1.1) with the potential V2 is not integrable.
Potential V4. Analogously the potential V4 has the Darboux points z∗ = ±

√
3/2 with non-

trivial eigenvalue λ = −5/3. It is not difficult to check that −5/3 6∈
{
Z1
−4 ∪ Z2

−4 ∪ Z3
−4
}
. By

Theorem 2 V4 is not integrable.
Potential V5. The potential V5 has the Darboux points z∗ = ±

√
6/2. The corresponding

non-trivial eigenvalue is λ = −1/3. Since −1/3 6∈
{
Z1
−4 ∪ Z2

−4 ∪ Z3
−4
}
, the Hamiltonian system

(1.1) with the potential V5 is not integrable.
Potential V6. Using the notations of Proposition 2, we get g (z∗) = 4

(
3µ− 1− (3µ+ 1)z2∗

)
z∗

and h (z∗) = 12z2∗µ+ 4.
If µ = −1/3, then this potential has Darboux points z∗ = 0 with non-trivial eigenvalue

λ = −1 6∈
{
Z1
−4 ∪ Z2

−4 ∪ Z3
−4
}
. Therefore the potential V6 for µ = −1/3 is not integrable.

If µ 6= −1/3, it has 3 Darboux points of the form [1 : z∗]

z∗,1 = 0 and z∗,2 = ±
√

3µ− 1

3µ+ 1
,

and 2 Darboux points of the form [0 : z] z = ± 3
√

2. The corresponding non-trivial eigenvalues are
±3µ and 4/

(
1 + 9µ2

)
−1. If potential V6 is integrable, then eigenvalues±3µ ∈

{
Z1
−4 ∪ Z2

−4 ∪ Z3
−4
}
.

So we need to analyse nine possible cases, that is, 3µ ∈ Zj−4 and −3µ ∈ Zk−4 for j, k = 1, 2, 3.
The integer of Table 1 corresponding to the case 3µ ∈ Zj−4 (respectively −3µ ∈ Zk−4) is denoted
by p0 (respectively p). All the possible values of integers p0 and p are shown in Table 2, where
η =

√
3 (3− 8µ) and ξ =

√
3 (3 + 8µ) satisfy η2 + ξ2 = 18.

Table 2: Integers p0 and p.

Eigenvalue 3µ Integer p0 Eigenvalue −3µ Integer p

3µ ∈ Z1
−4

1
12 (−4± 3η) −3µ ∈ Z1

−4
1
12 (−4± 3ξ)

3µ ∈ Z2
−4

1
4 (3± η) −3µ ∈ Z2

−4
1
4 (3± ξ)

3µ ∈ Z3
−4

1
4 (−2± η) −3µ ∈ Z3

−4
1
4 (−2± ξ)

Case 3µ ∈ Z1
−4 and −3µ ∈ Z1

−4. Since p0, p ∈ Z we have (3η, 3ξ) ∈ N× N. From the equation
η2 + ξ2 = 18, it follows that (η, ξ) = (3, 3). Thus µ = 0.

Case 3µ ∈ Z1
−4 and −3µ ∈ Z2

−4. Similarly (3η, ξ) ∈ N × N. Using the equation η2 + ξ2 = 18
we obtain (η, ξ) = (3, 3). So µ = 0.

The remaining cases can be analyzed in a similar way. We summarize all the possible values
for η, ξ and µ in Table 3. Consequently if the potential V6 is completely integrable, then µ = 0.
For µ = 0 the non-trivial eigenvalue 4/

(
1 + 9µ2

)
− 1 becomes 3 6∈

{
Z1
−4 ∪ Z2

−4 ∪ Z3
−4
}
. So the

Hamiltonian system (1.1) with the potential V6 is not integrable.
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Table 3: The values of η, ξ and µ.

Condition (η, ξ) µ

(3η, 3ξ) ∈ N× N (3, 3) 0

(3η, ξ) ∈ N× N (3, 3) 0

(η, 3ξ) ∈ N× N (3, 3) 0

(η, ξ) ∈ N× N (3, 3) 0

Potential V7. From Proposition 2 it follows that the Darboux points of the form [1 : z∗]
are given by the zeros of g (z∗) = 4(3µ − 1)z∗

(
z2∗ − 1

)
for which h (z∗) = −4

(
3µz2∗ + 1

)
6= 0.

We have that the Darboux points [1 : z∗] are z∗,1 = 0 and z∗,2 = ±1, and the Darboux points
of the form [0 : z] are z = ± 3

√
2. The corresponding non-trivial eigenvalues are λ1 = 3µ and

λ2 = −1 + 4/ (1 + 3µ). The necessary conditions for the complete meromorphic integrability of
potential V7 are λ1,2 ∈

{
Z1
−4 ∪ Z2

−4 ∪ Z3
−4
}
. We need to consider nine possible cases, that is,

λ1 ∈ Zj−4 and λ2 ∈ Zk−4 for j, k = 1, 2, 3. For each case there exist two integers p0 and p such
that λ1 ∈ Zj−4 and λ2 ∈ Zk−4. All the possible values of the integers p0 and p are given in Table 4,
where η =

√
3 (3− 8µ) and ζ =

√
17− 32/ (1 + 3µ) satisfy η2ζ2 − 17ζ2 − 17η2 + 33 = 0. Recall

that µ > −1/3 and µ 6= 1/3. Thus η ∈ [0, 1) ∪
(
1,
√

17
]
and ζ ∈ [0, 1) ∪

(
1,
√

17
]
.

Table 4: Integers p0 and p.

Eigenvalue λ1 Integer p0 Eigenvalue λ2 Integer p

λ1 ∈ Z1
−4

1
12 (−4± 3η) λ2 ∈ Z1

−4
1
12 (−4± 3ζ)

λ1 ∈ Z2
−4

1
4 (3± η) λ2 ∈ Z2

−4
1
4 (3± ζ)

λ1 ∈ Z3
−4

1
4 (−2± η) λ2 ∈ Z3

−4
1
4 (−2± ζ)

For λ1,2 ∈ Z1
−4, we have (3η, 3ζ) ∈ N×N due to the fact that p0 and p are integers. Combining

with the conditions η ∈ [0, 1) ∪
(
1,
√

17
]
, ζ ∈ [0, 1) ∪

(
1,
√

17
]
and η2ζ2 − 17ζ2 − 17η2 + 33 = 0,

we conclude that η and ζ do not exist. The analysis of other cases are similar. We list all the
possible values of η, ξ and ζ in Table 5. So λ1 6∈

{
Z1
−4 ∪ Z2

−4 ∪ Z3
−4
}
or λ2 6∈

{
Z1
−4 ∪ Z2

−4 ∪ Z3
−4
}
.

Therefore the Hamiltonian system (1.1) with the potential V7 is not integrable.
In summary statement (c) of Theorem 1 is proved.

Table 5: The values of η, ζ and µ.

Condition (η, ζ) µ

(3η, 3ζ) ∈ N× N ∅ ∅
(3η, ζ) ∈ N× N ∅ ∅
(η, 3ζ) ∈ N× N ∅ ∅
(η, ξ) ∈ N× N ∅ ∅

Potential V8. Applying Proposition 2 the Darboux points of the form [1 : z∗] are given by the
zeros of g (z∗) = 4(1− 3µ)z∗

(
z2∗ − 1

)
for which h (z∗) = 4

(
3µz2∗ + 1

)
6= 0. The Darboux points of

the form [1 : z∗] and [0 : z] are respectively z∗,1 = 0 and z∗,2 = ±1, and z = ±i 3
√

2 with i =
√
−1.

The corresponding non-trivial eigenvalues are λ1 = 3µ and λ2 = −1 + 4/ (1 + 3µ). By the same
reasons as above one can get Table 4. Next we will divide the proof into two cases:

Case (i) µ > −1
3 and µ 6= 1

3 .
Case (ii) µ < −1

3 .
The Case (i) is the same as the potential V7. Thus statement (d) holds for Case (i).
Now we consider Case (ii). Since µ < −1

3 , η =
√

3 (3− 8µ) and ζ =
√

17− 32/ (1 + 3µ), we
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get that η >
√

17, ζ >
√

17 and

ζ =

√
256

η2 − 17
+ 17. (5.1)

Since p must be an integer we have Table 6. Let η̃ = 3η and ζ̃ = 3ζ. Then equation (5.1) becomes

ζ̃ = 3

√
2304

η̃2 − 153
+ 17, (5.2)

with η̃ > 3
√

17 and ζ̃ > 3
√

17. If (3η, 3ζ) ∈ N× N, then
(
η̃, ζ̃
)
∈ N× N with η̃ ≥ 13 and ζ̃ ≥ 13.

Furthermore, 13 ≤ ζ̃ ≤ 38 due to the fact that equation (5.2) is decreasing with η̃. For each value
of ζ̃ = 13, 14, . . . , 38, equation (5.2) provides a value of η̃. We get the first row of Table 6. For the
second row of Table 6, equation (5.1) can be rewrite as

ζ =

√
2304

η̃2 − 153
+ 17, (5.3)

with η̃ > 3
√

17 and ζ >
√

17. If (η̃, ζ) ∈ N × N, then η̃ ≥ 13 and ζ ≥ 5. Since equation (5.3) is
decreasing with η̃, we have 5 ≤ ζ ≤ 12. The second row of Table 6 holds. The remaining rows of
Table 6 are obtained in a similar way.

Table 6: The values of η, ζ and µ.

Condition (η, ζ) µ

(3η, 3ζ) ∈ N× N (5, 7) or (7, 5) −2
3 or −5

3

(3η, ζ) ∈ N× N (5, 7) or (7, 5) −2
3 or −5

3

(η, 3ζ) ∈ N× N (5, 7) or (7, 5) −2
3 or −5

3

(η, ξ) ∈ N× N (5, 7) or (7, 5) −2
3 or −5

3

For µ = −2/3 the non-trivial eigenvalues are λ1 = −2 and λ2 = −5. For µ = −5/3, the
non-trivial eigenvalues are λ1 = −5 and λ2 = −2. Obviously −2 ∈ Z2

−4 (p = 2) and −5 ∈ Z2
−4

(p = −1). For µ = −2/3 or −5/3, we cannot use Theorem 2 to decide whether or not the
Hamiltonian system is meromorphically integrable. Next we show that V8 does not admit an
additional polynomial first integral when µ ∈ {−5/3,−2/3}.

Consider the following potential

V =
1

q41 + 6µq21q
2
2 + q42

, (5.4)

with µ ∈ {−5/3,−2/3}. The corresponding Hamiltonian system (1.1) is

q̇1 = p1, q̇2 = p2, ṗ1 =
4q1
(
q21 + 3µq22

)
(
q41 + 6µq21q

2
2 + q42

)2 , ṗ2 =
4q2
(
3µq21 + q22

)
(
q41 + 6µq21q

2
2 + q42

)2 . (5.5)

After a rescaling of the time variable dt =
(
q41 + 6µq21q

2
2 + q42

)2
ds, system (5.5) becomes

q̇1 = p1
(
q41 + 6µq21q

2
2 + q42

)2
, q̇2 = p2

(
q41 + 6µq21q

2
2 + q42

)2
,

ṗ1 = 4q1
(
q21 + 3µq22

)
, ṗ2 = 4q2

(
3µq21 + q22

)
.

(5.6)

Doing the transformation (q1, q2, p1, p2) 7→ (q1, q2, p1, P ) with P = q2p1− q1p2, system (5.6) writes

q̇1 = p1
(
q41 + 6µq21q

2
2 + q42

)2
, q̇2 =

q2p1 − P
q1

(
q41 + 6µq21q

2
2 + q42

)2
,

ṗ1 = 4q1
(
q21 + 3µq22

)
, Ṗ = 4 (1− 3µ) q1q2 (q1 + q2) (q1 − q2) .

(5.7)
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Suppose that system (5.6) has a polynomial first integral F (q1, q2, p1, p2) ∈ C [q1, q2, p1, p2]. In
the new variables (q1, q2, p1, P ), it can be written as

F̄ (q1, q2, p1, P ) = F

(
q1, q2, p1,

q2p1 − P
q1

)
=

n∑

j=−n
fj (q2, p1, P ) qj1, (5.8)

where fj (q2, p1, P ) ∈ C [q2, p1, P ]. Since F̄ (q1, q2, p1, P ) is a first integral of system (5.7), we have

q̇1
∂F̄

∂q1
+ q̇2

∂F̄

∂q2
+ ṗ1

∂F̄

∂p1
+ Ṗ

∂F̄

∂P
= 0. (5.9)

For clarity we introduce the following differential operators acting on fj (q2, p1, P ) ∈ C [q2, p1, P ]
:

A [fj ] := jp1fj + (q2p1 − P )
∂fj
∂q2

,

B [fj ] := 3µq42A [fj ]− (1− 3µ) q2
∂fj
∂P

+ 3µ
∂fj
∂p1

,

C [fj ] :=
(
18µ2 + 1

)
q41A [fj ] + 2

(
(1− 3µ) q2

∂fj
∂P

+
∂fj
∂p1

)
.

Using the above notions equation (5.9) can be written as

n∑

j=−n

(
qj+7
1 A+ 12µq22q

j+5
1 A+ 2qj+3

1 C + 4q22q
j+1
1 B + q82q

j−1
1 A

)
[fj ] = 0, (5.10)

with fj ∈ C [q2, p1, P ]. Moreover F̄ (q1, q2, p1, P ) is a first integral of system (5.7) if and only if
the coefficients of qj−11 in equation (5.10) are

A [fj−8] + 12µq22A [fj−6] + 2C [fj−4] + 4q22B [fj−2] + q82A [fj ] = 0, (5.11)

where j = −n, . . . , n+ 8 and fj = 0 if j < −n or j > n. Therefore system (5.6) has a polynomial
first integral if and only if there exist 2n+ 1 polynomials fj such that equations (5.11) hold. The
existence of such polynomials are given by the following two lemmas.

Lemma 1. If F̄ (q1, q2, p1, P ) is a first integral of system (5.7), then fj (q2, p1, P ) = 0 for j =
1, . . . , n.

Proof. For j = n + 8 equation (5.11) becomes A [fn] = 0. The solution of A [fn] = 0 is fn =
α (p1, P ) / (P − q2p1)n, where α (p1, P ) is a function in the variables p1 and P . So fn = 0 due to
the fact that fn ∈ C [q2, p1, P ]. If n = 1 we are done.

When n ≥ 2, taking j = n+8, n+7, we have A [fn] = 0 and A [fn−1] = 0. By the same reason
as above, fn = fn−1 = 0. If n = 2, then the lemma holds.

When n ≥ 3, taking j = n+ 8, n+ 7, n+ 6, we get, respectively, A [fn] = 0, A [fn−1] = 0 and
A [fn−2] + 12µq22A [fn] = 0. This implies that A [fn−2] = 0. Using similar arguments we obtain
fn = fn−1 = fn−2 = 0. If n = 3, the proof is finished.

Consider n ≥ 4. Substituting j = n + 8, n + 7, n + 6, n + 5 into equation (5.11), we get,
respectively, A [fn] = 0, A [fn−1] = 0, A [fn−2]+12µq22A [fn] = 0 and A [fn−3]+12µq22A [fn−1] = 0.
Using similar arguments to the case n ≥ 3, it is easy to prove that fn = fn−1 = fn−2 = fn−3 = 0.
If n = 4, the lemma is proved.

When n ≥ 5, we analyze respectively j = n+8, n+7, n+6, n+5, n+4 in equation (5.11). Using
similar arguments as in the previous cases, one can get that fn = fn−1 = fn−2 = fn−3 = fn−4 = 0.
If n = 5 the lemma is confirmed.

Next we prove this lemma by induction when n ≥ 6. Assume that fn = fn−1 = · · · = fi+1 = 0,
where i ≥ 1. Now we consider equation (5.11) for j = i+ 8, that is,

A [fi] + 12µq22A [fi+2] + 2C [fi+4] + 4q22B [fi+6] + q82A [fi+8] = 0. (5.12)
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By the induction hypothesis we have A [fi+2] = A [fi+8] = C [fi+4] = B [fi+6] = 0. Thus equation
(5.12) reduces to A [fi] = 0. From the above analysis we know that the only polynomial solution
of differential equation A [fi] = 0 is fi = 0. This ends the proof.

Lemma 2. If F̄ (q1, q2, p1, P ) is a first integral of system (5.7), then fj (q2, p1, P ) = 0 for j =
−n,−n+ 1, . . . ,−1, and f0 (q2, p1, P ) is a constant.

Proof. We consider equation (5.11) for j = −n,−n+1,−n+2, that is, q82A [f−n] = 0, q82A [f−n+1] =
0 and 4q22B [f−n] + q82A [f−n+2] = 0. So A [f−n] = A [f−n+1] = 0. The polynomial solutions of the
differential equations A [f−n] = 0 and A [f−n+1] = 0 are respectively

f−n = α−n (P − q2p1)n and f−n+1 = α−n+1 (P − q2p1)n−1 , (5.13)

where α−n = α−n (p1, P ) and α−n+1 = α−n+1 (p1, P ) are polynomials in the variables p1 and P .
From equations 4q22B [f−n] + q82A [f−n+2] = 0 and (5.13), we obtain

f−n+2 = (α−n+2 + β−n+2) (P − q2p1)n−2 , (5.14)

where α−n+2 = α−n+2 (p1, P ) is an integration constant, β−n+2 = 1
15q52

β̃−n+2, and

β̃−n+2 = 15nq2α−n + 5(1− 3µ) (3P − 4p1q2) q2
∂α−n
∂P

+ 9µ (5p1q2 − 4P )
∂α−n
∂p1

. (5.15)

Since α−n is a polynomial, we claim that β−n+2 is also a polynomial. Assume that β−n+2 is not
a polynomial. Then β−n+2 (P − q2p1)n−2 is a rational function with denominator 15q52. Since
f−n+2 must be a polynomial, we have that α−n+2 (P − q2p1)n−2 is also a rational function with
denominator 15q52. This contradicts the fact that α−n+2 is independent of the variable q2. This
means that β−n+2 is a polynomial if and only if β̃−n+2 is divisible by q52. Thus β̃−n+2 = 0.
Evaluating (5.15) on q2 = 0, we have ∂α−n/∂p1 = 0 due to the fact that 9µ 6= 0. After division
by 5q2 in equation (5.15), we obtain

3nα−n + (1− 3µ) (3P − 4p1q2)
∂α−n
∂P

= 0. (5.16)

Substituting q2 = 3P/4p1 into (5.16), we get α−n = 0. Consequently f−n = 0 and f−n+2 =
α−n+2 (P − q2p1)n−2.

For j = −n+ 3 equation (5.11) becomes 4q22B [f−n+1] + q82A [f−n+3] = 0. In the same way as
f−n+2, we get

f−n+3 = (α−n+3 + β−n+3) (P − q2p1)n−3 , (5.17)

where α−n+3 = α−n+3 (p1, P ) is an integration constant, β−n+3 = 1
15q52

β̃−n+3, and

β̃−n+3 = 15q2α−n+1 (n− 1) + 5(1− 3µ) (3P − 4p1q2) q2
∂α−n+1

∂P
+ 9µ (5p1q2 − 4P )

∂α−n+1

∂p1
.

(5.18)

By the same arguments as above one can get that α−n+1 = 0 and β−n+3 = 0. Therefore
f−n+1 = 0 and f−n+3 = α−n+3 (P − q2p1)n−3.

Using exactly the same steps as in the previous cases, we can prove that f−n+3 = · · · = f−3 = 0,
f−2 = α−2 (P − q2p1)2 and f−1 = α−1 (P − q2p1), where α−2 = α−2 (p1, P ) and α−1 = α−1 (p1, P )
are polynomials in the variables p1 and P .

From Lemma 1 we know that fj = 0 for j ≥ 1. For j = 8 equation (5.11) becomes A [f0] = 0,
that is ∂f0 (q2, p1, P ) /∂q2 = 0. This implies that f0 does not depend on q2.

Finally we prove that f−1 = f−2 = 0 and f0 = constant.
Consider equation (5.11) for j = 0, that is

B [f−2] = B
[
α−2 (P − q2p1)2

]
= 0. (5.19)
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The general solution of the linear partial differential equation (5.19) is

α−2 (p1, P ) =
1

9µ2 (P − p1q2)2
ϕ

(
P − p1q2 +

p1q2
3µ

)
,

where ϕ is a function in the variable P −p1q2 + p1q2
3µ . Since α−2 does not depend on q2 and 1

3µ 6= 0,
we have α−2 = 0. Consequently f−2 = 0.

Substituting j = 1 into (5.11) we have B [f−1] = B [α−1 (P − q2p1)] = 0. The general solution
of this linear partial differential equation is

α−1 (p1, P ) =
1

3µ (P − p1q2)
ψ

(
P − p1q2 +

p1q2
3µ

)
.

By the same reasons as above we get α−1 = 0.
From Lemma 1 and f−6 = f−4 = f−2 = 0, we obtain that

(3µ− 1) q2
∂f0
∂P

+ 3µ
∂f0
∂p1

= 0 for j = 2 in equation (5.11);

(1− 3µ) q2
∂f0
∂P

+
∂f0
∂p1

= 0 for j = 4 in equation (5.11).
(5.20)

System (5.20) is linear in the unknowns q2∂f0/∂P and ∂f0/∂p1. Its coefficient matrix is 9µ2−1 6= 0
due to the fact that µ ∈ {−5/3,−2/3}. Thus ∂f0/∂P = ∂f0/∂p1 = 0 that is f0 = constant.

This completes the proof of the lemma.

Proposition 3. The Hamiltonian system (1.1) with the potential (5.4) does not admit an addi-
tional polynomial first integral.

Proof. From Lemmas 1 and 2 the proposition follows.

This completes the proof of Theorem 1.
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