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QUADRATIC SYSTEMS WITH AN INVARIANT ALGEBRAIC CURVE
OF DEGREE 3 AND A DARBOUX INVARIANT

JAUME LLIBRE, REGILENE OLIVEIRA AND CAMILA RODRIGUES

ABSTRACT. The planar quadratic systems having a Darboux invariant defined by invari-
ant straight lines of total multiplicity two or by an invariant conic have been studied in
[13] and [14], respectively. Here we shall present the normal forms of the planar qua-
dratic systems having an invariant cubic. Moreover we classify the phase portraits in
the Poincare disc of all planar quadratic polynomial differential systems with invariant
cubic curve and having a Darboux invariant defined by it.

1. INTRODUCTION AND STATEMENTS OF THE RESULTS

Even after hundreds of studies on the topology of real planar quadratic vector fields the
complete characterization of their phase portraits is a quite complex task. This family of
systems depends on twelve parameters but, after affine transformations and time rescaling,
we arrive at families with five parameters, which is still a big number of parameters. Many
subclasses have been considered.

Denote by R[z,y| the ring of the real polynomials in the variables 2 and y. Consider
the differential system in R? given by

(1) i‘IP(IL‘,y), y:Q(iE,y),
where P, @ € R[z,y]. Here the dot denotes derivative with respect to the time ¢ and the
degree of system (1) is m = max{deg P,deg Q}.

When m = 2 we say that system (1) is a quadratic polynomial differential system or
simply a quadratic system. More than one thousand papers have been published about
quadratic systems, see for instance [15] for a bibliographical survey. The quadratic sys-
tems appear in the modeling of many natural phenomena described in different branches
of science, in biological and physical applications. Besides the applications the quadratic
systems became a matter of interest for the mathematicians. Considering algebraic in-
variant curves, some authors have published on the subject, for example, [3] and [12]. In
the first one the authors studied cubic systems with invariant straight lines of total multi-
plicity eight that have three distinct infinite singularities. The second paper is dedicated
to study the normal forms and global phase portraits of quadratic and cubic integrable
systems when they have two nonconcentric circles as invariant algebraic curves.

In this paper we assume that the polynomials P and ) are coprime, otherwise system
(1) can be reduced to a linear or constant system doing a rescaling of the time variable.

The first objective of this paper is to characterize all quadratic systems having invariant
cubics. Then using the normal forms obtained, we investigate which systems have a
Darboux invariant of the form e® fl)‘1 2’\2 f3Ag if the cubic is the product of three straight
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lines f; = 0 for ¢ = 1,2, 3, of the form eStfl’\1 2’\2 if the cubic is the product of one straight

line f; = 0 and an irreducible conic fo = 0, and of the form e*¢ fl)‘1 if fi = 01is an irreducible
cubic.

The paper is organized as follows. In Section 2 we present our main results. They are
divided in two subsections. In section 3 we present definitions and results that will be used
for proving our main results. Finally in Sections 4, 5 and 6 we prove the main results.

2. STATEMENT OF THE MAIN RESULTS

The objective of this section is to present the main results of this investigation. Since
the cubic curves can be classified as reducible and irreducible curves (according to the
polynomial defining the curve admits fatorization or not), we split the obtained results in
two subsections. In the first one we consider planar quadratic systems having irreducible
cubics and in the second one, the reducible ones.

Theorem A. Fach quadratic system admitting an irreducible invariant cubic after an
affine change of coordinates and a rescaling of the time variable can be written as one of
the following systems.

(i) @ =2(az + by + dzy + cx?),
¥ = 3(ay + bx? + cxy + dy?),

(ii) @ = 2(ax + by + (3b — 2¢)xy + ax?),
= 2bx + 2ay + 2cx? + 3axy + (9b — 6¢)y?,

(#ii) i = 2(ax — by + (3b + 2¢)xy — ax?),
§ = 2bx + 2ay + 2cx?® — 3azy + (9b + 6¢)y?,

() & =2y(a+ bx),
Y =ar —2(ar + a + br)x + (3a + br + b)x? + 3by?,

(v) @ =2y(b+cz),
§=b+2(br —c)x + (3b — er)z? + 3ey?.
Theorem B. Fach quadratic system admitting an irreducible invariant cubic having a

Darboux invariant can be written after an affine change of coordinates and a rescaling of
the time variable as

. !
(2) P=zty,  g=gy+at

In this case y*> = 3 is the invariant algebraic curve and the Darbouz invariant is given by
e %t (y? — a3). The global phase portrait of such system is given in Figure 1.

FIGURE 1. Phase portrait of system (2).
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Theorems A and B are proved in section 4.

2.1. Reducible invariant cubics. Each reducible cubic can be written as the product
of two polynomials one of degree two and the other of degree one (i.e, a conic and a
straight line respectively). The conics can be classified in ellipses (E), complex ellipses
(CE), hyperbolas (H), parabolas (P), two real straight lines intersecting in a point , two
real parallel straight lines (PL), one double invariant real straight line (DL), two complex
straight lines intersecting in a real point (p), and two complex parallel straight lines (CL).
So the normal forms of the reducible cubics, except to an affine transformation, are

(E) (2? +y )(ax + by +¢) =0,
(CE) (:E +y + 1)(ax + by +¢) =0,
(H) (22 y —1)(az + by +c¢) =0,
(P) (y —=z*)(az +by +¢c) =0,
LV) xy(ax +by+c) =0,
L) («? —1)(ax+by+c) =0,
L) 2(ax+by+c) =0,
L) («? +1)(ax+by+c) =0,
(p) (22 + y?)(az + by +c) = 0.

We shall say that a quadratic system is of type (E) if it has a real ellipse and a straight
line as invariant irreducible algebraic curves; of type (CE) if it has a complex ellipse and
a straight line as invariant irreducible algebraic curves, and respectively with all the nine
types of conics described above.

(
(P
(D
(C

The first result of this paper classifies the quadratic systems having a reducible invariant
cubic.

Theorem C. If a quadratic system (1) has a reducible invariant cubic then it can be

written, after an affine change of coordinates, into one of the following forms

(CE) z= —(:1:2+y2+1) — 201 y(y + ax + ¢),
y=a(z?+y*+1)+ 20 2(y + az + ¢),

(B1) &=—(22+19?—-1)—201y(y + ax + ¢),
v =a(@®+y*— 1)+ 2a12(y + az + ¢),

(B.2) = (p/2)(a®+y* —1) —y(Bey — a2z + ),
Y= (y+c)(aey + facx + az), with ag(c+ 1) =0,

(H1) &= (81/2)(a* —y* = 1)+ Bay(y +¢),
y = 62 y(y + C)?

(H2) &= (z+c)(aex+ vy + a),
g=—(m/2)@* —y* — 1) +z(rez+ a2y +cy2), with az(c+1) =0,

(H3) i=(A/2)(a* —y*—1) —yla—cB+z(B — ca) + y(y — ca)),
y=(A/2)(2? —y* - 1) —z(a — B+ Bz + y(y — ca)) + ca(y* + 1), with c(y+ B) =0,

(H4) &= (A/2)(2* - y* = 1) +y(aa — BvVd + z(af — av/d) + By),
)= (—Aa/2)(2® —y? — 1) + x(ac — BVd + aBx + By) — ad(y? + 1), with d = a® — 1,
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(H5) i=—(22—y*—1)+2y(y +azx +c),
v =a(z?—y?> - 1)+ 2a12(y + ax + ¢), with ¢ # a® — 1,

(P.l) ;t:x(a2+/32x+72y),
g =y — %) + 2002 + 2y(f2  + 12 y),

(P2) =iy —2?) + y(B2 + 721) + (a2 + 120)x + cfa,
y = 2(y + c)(az + B2z + 12y), with cas = 0,

(P3) i=—(y—2%) —aly+ar+c),
v =a(y —2?) — 2az(y + azx + ¢, with ¢ # a®/4,

(LV1) t=z(a+ry+px),
y=yla+(r—q+pB)y+qx),

(LV2) t=z(p+qx+ry),
y=1y(y + c),with ¢c(c+ 1) = 0.
(LV3) &=—-z(y+aly+az+c)),
y=ylaz+ By +az+c)), with ac # 0,

(RPL) &=2a2—1,
y=yla+px+yy),

(DL) & =22,
y=yla+ Bz +vy),

(CPL) & =2a%+1,
y=yla+Bz+y),

(p1) &= (8/2)(* +y*) - B3y® + z(az + 1Y),
y=1y(laz+ 3z +v3y),

(p2)  @=-(*+y’)+(Br—ay)(y+ar+o),
v =a(z?+y?) + (By+ax)(y+ar + c), with c # 0,

where a,c, A, p,q,r,a, B, a1, a9, B1, B2,71 and o are the parameters of the system.

Theorem D. The global phase portrait in the Poincaré disc of each quadratic differential
system admitting a reducible invariant cubic f(z,y) = 0 and having a Darbouz invariant
of the form e=% f(x,y) is topologically equivalent to one of the phase portraits presented in
Figures 2-7. Their normal forms according to Theorem C'is labelled in the corresponding

figure.

Theorem E. Systems of type (CE), (E.1),(H.1),(H.5),(P.3) do not admit Darbouz in-
variants of the form e=5 f(x,y).
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HL.3.8 HL.3.9

FIGURE 2. Phase portraits of systems of type (E) and (H) when they have
a Darboux invariant.

3. PRELIMINARY AND BASIC RESULTS

The objective of this section is introduce some definitions and results which shall be
used in next sections for the study of the Darboux invariants and to obtain the global
phase portrait of the systems of Theorems B and C.

3.1. Invariants. A nonconstant C' function H : U = R, defined in the open and dense
set U C R? is a first integral of system (1) on U if H(x(t),y(t)) is constant for all of the
values of ¢ for which (z(t), y(t)) is a solution of system (1) contained in U. In other words
H is a first integral of system (1) if and only if

0H 0H
3 pP— — =0
for all (z,y) € U.
An invariant of system (1) on the open subset U of R? is a nonconstant C! function
I in the variables z,y and t such that I(xz(t),y(t),t) is constant on all solution curves
(x(t),y(t)) of system (1) contained in U, i.e.
oI oI or

(4) 5Pt 5,9 5 =0

for all (z,y) € U. In short, I is a first integral of system (1) depending on the time .
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FIGURE 3. Phase portraits of systems of type (P) when they have a Dar-
boux invariant.



QUADRATIC SYSTEMS AND DARBOUX INVARIANTS 7

9
&9
&
S5

PL.1.25 PL.1.26 PL.1.27 PL.1.28

©
S
O
w

PL.1.29 PL.1.30 PL.21 PL.2.2

D
D
©
D

PL.2.3 PL.2.4 PL.2.5 PL.2.6

B
®

PL.2.7 PL.2.10

FIGURE 4. Phase portraits of systems of type (P) when they have a Dar-
boux invariant.

On the other hand given f € C[z,y] we say that the curve f(z,y) = 0 is an invariant
algebraic curve of system (1) if there exists K € Clx, y] such that

of | o9t
or y
The polynomial K is called the cofactor of the invariant algebraic curve f = 0. When
K =0, f is a polynomial first integral. Note that if a real polynomial differential system

has a complex invariant algebraic curve then it has also its conjugate. It is important
to consider the complex invariant algebraic curves of the real systems because sometimes

(5) P~ +Q<- = Kf.
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FIGURE 5. Phase portraits of systems of type (LV) when they have a
Darboux invariant.
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FIGURE 6. Phase portraits of systems of type (RPL) and (DL) when they
have a Darboux invariant.

these force the real integrability of the system, for more details see Chapter 8 of [9], or
the subsection 3.2.

Let f,g € C[x,y] and assume that f and g are relatively prime in the ring C[z,y], or
that ¢ = 1. Then the function exp(f/g) is called a exponential factor of system (1) if for
some polynomial L € C[z,y| of degree at most m — 1 we have

o pOOPUILD)  GIODUII) _ 1 ey
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FIGURE 7. Phase portraits of systems of type (CPL) and (p) when they
have a Darboux invariant.

As previously we say that L is the cofactor of the exponential factor exp (f/g). We
observe that in the definition of exponential factor exp(f/g) if f,g € C[z,y] then the
exponential factor is a complex function. Again when we look for a complex exponential
factor of a real polynomial system we are thinking the real polynomial system as a complex
polynomial system.

3.2. Darboux invariants. An invariant [ is called a Darbouzr invariant if it can be
written into the form

(7) I(@,y,t) = [ fr Ff o Ffest,
where f; = 0 are invariant algebraic curves of system (1) for ¢ = 1,...p, and F} are
exponential factors of system (1) for j =1,...,¢, A\j,n; € C and s € R\ {0}.

Observe that if among the invariant algebraic curves a complex conjugate pair f =
Re(f) +Im(f)i = 0 and f = Re(f) — Im(f)i = 0 occurs, then the Darboux invariant has
a factor of the form f*f*, which is the real multi-valued function

(Re(£))? + ()"

So if system (1) is real then the Darboux invariant is also real, independently of the fact
of having complex invariant curves or complex exponential factors.
The next result is proved in Proposition 8.4 of [9].

e—QIm()\) arctan(Im(f)/Re(f)) )

Proposition 1. Suppose that f € Clz,y] and let f = f{" ... fI'" be its factorization into
irreducible factors over Clz,y]. Then for a polynomial differential system (1), f =0 is an
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invariant algebraic curve with cofactor ky if and only if f; = 0 is an invariant algebraic
curve for each i = 1,...,7 with cofactor ky,. Moreover ky = niky + ...+ n.ky, .

The next result, proved in [6], explain how to obtain a Darboux invariant using the
algebraic invariant curves of a polynomial differential system.

Proposition 2. Suppose that a polynomial system (1) of degree m admits p invariant
algebraic curves f; = 0 with cofactors k; for i =1,...,p, q exponential factors exp(g;/h;)
with cofactors L;j for j =1,...,q, then, if there exist \; and pu; € C not all zero such that

(8) Z )\ik@' + Z /Lij = =8,

for some s € R\{0}, then substituting f{\i by |filM if i € R, the real (multi-valued)

function
231 Hq
A A g1 g s
R <exp<hl)> ...(exp<hz>> et

is a Darbouz invariant of system (1).

The search of first integrals is a classic tool in order to describe the phase portraits
of a 2-dimensional differential system. As usual the phase portrait of a system is the
decomposition of the domain of definition of this system as union of all its orbits.

It is well known that the existence of a first integral or an a invariant for a planar
differential system allow to draw its phase portrait. Here we investigate the existence of
invariants of the form f(z,y)e®, called Darboux invariants, see section 3.2 for details.
Such invariants describe the asymptotic behavior of the solutions of the system.

Indeed let ¢, (t) be the solution of system (1) passing through the point p € R?, defined
on its maximal interval (a,,w,) such that ¢,(0) = p. If w, = co we define the w-limit set
of p as

w(p) = {qg € R*: 3{t,,} with t,, = co and ¢,(t,) = ¢ when n = oo}.

In the same way, if oy, = —oo we define the a-limit set of p as
alp) = {qg € R? : 3{t,,} with t, = —occ and ¢, (t,) = ¢ when n = co}.

For more details on the w— and a-limit sets see for instance section 1.4 of [9].

The existence of a Darboux invariant of system (1) provides information about the w—
and a-limit sets of all orbits of system (1). More precisely, we have the following result,
where the definition of Poincaré compactification and Poincaré disc is given in subsection
3.3. Its proof can be found in [13].

Proposition 3. Let I(z,y,t) = f(z,y)e® be a Darbour invariant of system (1). Let
p € R? and ¢,(t) the solution of system (1) with maximal interval (ay,wp) such that

¢p<0) =D
(1) If wp = oo then w(p)C {f(x,y) = 0} US,
(2) If ap = —00 then a(p)C {f(x,y) =0} USL.
Here S' denotes the infinity of the Poincaré disc.
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3.3. Poincaré compactification. LetX = P(x, y)% + Q(xz, y)a% be the planar polyno-
mial vector field of degree m associated to the polynomial differential system (1). The
Poincaré compactified vector field w(X) corresponding to X is an analytic vector field
induced on S? as follows (for more details, see [9]).

Let S* = {y = (y1,92,y3) € R% y? +y3 + y3 = 1} and T,S* be the tangent plane
to S? at point y. We identify R? with T(O’OJ)SQ and we consider the central projection
f: T(Oym)SQ = S%. The map f defines two copies of X on S?, one in the southern
hemisphere and the other in the northern hemisphere. Denote by X’ the vector field
D(f o X) defined on S?\ S!, where St = {y € S?; y3 = 0} is identified with the infinity of
R2.

For extending X" to a vector field on S?, including S', X must satisfy convenient condi-
tions. Since the degree of X is m, w(&X') is the unique analytic extension of ygn_lzl” to S2.
On S?\ St there is two symmetric copies of X, and once we know the behavior of 7(X)
near S!, we know the behavior of X' in a neighborhood of the infinity. The Poincaré com-
pactification has the property that S! is invariant under the flow of m(X). The projection
of the closed northern hemisphere of S? on y3 = 0 under (y1,v2,%3) — (y1,%2) is called
the Poincaré disc, and its boundary is S'.

Two polynomial vector fields X and ) on R? are topologically equivalent if there exists
a homeomorphism on S? preserving the infinity S' carrying orbits of the flow induced by
7(&X) into orbits of the flow induced by 7 ()) preserving or not the orientation of all the
orbits.

As §? is a differentiable manifold, in order to compute the explicit expression of 7(X),
we consider six local charts U; = {y € S%; 3 > 0} and V; = {y € S?; y; < 0}, where
i = 1,2,3, and the diffeomorphisms F; : U; = R? and G; : V; = R?, for i = 1,2,3,
which are the inverses of the central projections from the tangent planes at the points
(1,0,0), (—1,0,0), (0,1,0), (0,—1,0), (0,0,1) and (0,0,—1), respectively. We denote by
z = (u,v) the value of F;(y) and G;(y), for any i = 1,2,3, therefore z means different
things depending on the local charts where we are working. So after some computations
m(X) is given by:

() VTA(2) (Q (i :) e (i :j) —wP (11) Z)) in U3,
(10) VM A(z) (P (Z i) —uQ (Z i) ,—1Q <Z i)) in U,

(11) A(z)(P(u,v), Q(u,v)) in Us,
)

where A(z) = (u? + v + 1)~(m=D/2_ The expressions for V;’s are the same as that for
Uy;’s but multiplied by the factor (—1)™~1. In these coordinates v = 0 always denotes the
points of the infinity S'.

3.4. Irreducible invariant cubics. The next results characterize all irreducible cubics,
their proofs can be found in [2].

Proposition 4 (Theorem 8.3 in [2]). A cubic is non—singular and irreducible and has a
flex (a generalized inflection point) if and only if it can be transformed with affine trans-
formations into either

y? =a(x—1)(z—7) with r > 1,
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or
y? = z(2x? + sz + 1) with —2 < s < 2.

Proposition 5 (Theorem 8.4 in [2]). A cubic is singular and irreducible if and only if it
can be transformed with affine transformations into one of the forms
y? = a3, y? =a2%(x +1), y? = 2% (x —1).
Moreover in [2] it is proved that every non-singular and irreducible curve has a flex. So
we have the complete characterization of the irreducible cubics.

3.5. Reducible invariant cubics.

Proposition 6. A real quadratic system having an invariant conic after an affine change
of coordinates can be written in one of the following forms

(real ellipse) b= (A/2)(2? + 9> - 1) +2y(p+qx + 1Y),
g =(B/2)(@* +y* —1) = 2z(p+qz+ry),
(complez ellipse) i=(A/2)(2* + 1y + 1) +2y(p+qz +ry),
§=(B/2)(2* +y* +1) - 22(p +qz +ry),
(hyperbola) &= (A/2)(@* —y* —1) —2y(p+qz + 1Y),
j=-(B/2)(@? —y* - 1) - 2(p+qz +ry),
(parabola) i=Aly—2*) - (p+qx+ry),
y=Bly—2")—2z(p+qz+ry)
(Lotka-Volterra) =z +qr+ry)
y=yp2+q@z+ry)),
(two parallel real lines) T=x%-1
Y= Q(l',y),
(double line) i = x?
Y= Q(x,y),
(two parallel complex lines) & =az%+1
Y= Q(x,y),

(two non-parallel complex lines) &= (A/2)(x? +y?) + (C/2)x +2y(p +qx + 1Y),
= (B/2)(=* +y*) + (C/2)y — 2x(p+ gz + 7).

Here Q(x,y) denotes an arbitrary polynomial of degree 2.

The proof of the previous result can be found in [4], except to the normal form of the
system with a parabola that is proved in [11]. The next result is due to Christopher,
Llibre, Pantazi, Zhang and Zholadek, see [5, 7, 17]. An algebraic proof of it also can be
found in [7].

Theorem 7. Let f; =0 fori =1,...,q be q irreducible algebraic curves in C?, and let

q

k= Z degf;. We assume
i=1
(i) there are no points at which f; and its first derivatives all vanish,

(ii) the highest order terms of f; have no repeated factors,

(iii) mo more than two curves meet at any point in the finite plane and are not tangent
at these points,
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(iv) no two curves have a common factor in their highest order terms, then any poly-
nomial vector field X of degree m tangent to all f; = 0 is of the form describe
bellow.

(a) If m > k — 1 then

q q q
a2 o (Ta) o IT 5 )
i=1 i=1 \j=1,j%i
where Xy, = (=0f;/0y,0fi/0x) is a Hamiltonian vector field, the h; are poly-
nomials of degree < m —k+ 1 and Y is a polynomial vector field of degree
<m-—k.
(b) If m =k —1 then

q
(13) X = Zai H fi | X5
=1 \j=lj#i
where a; € C. In this case a Darboux first integral exists.
(¢) If m < k—1 then X =0.

Theorem 8 (Lemma 7 of [7]). Assume that f = 0 and g = 0 are different irreducible
invariant algebraic curves of system (1) of degree m, and that they satisfy conditions (i)
and (iii) of Theorem 7. If ged(fy, fy) = 1 and gcd(gs,9y) = 1, then system (1) has the
normal form

(14) &= Afg—hifyg—hafgy Y= Bfg+hifeg+ hafge,
where A, B and hj are polynomials, for i =1,2.

4. PROOF OF THEOREMS A AND B
Here we denote
P(x,y) = aoo + any + aozy® + aro® + anzy + agr’,
Q(x,y) = boo + bory + bozy® + biox + buiwy + baoa®.

4.1. Proof of Theorem A. If a quadratic system (1) has a singular irreducible invariant
cubic f(z,y) = 0 by Proposition 5 the function f can be written as f(z,y) = y> — 23 or
flx,y) =vy? —2*(x+1) or f(z,y) =y*>—2%(x—1). The curve f(z,y) = y*> — 2> = 01is an
invariant cubic for system (1) if and only if equation (5) is satisfied. The solution of this
equation in terms of the parameters of the system is

apo = ap2 = boo = b1o =0, bo1 =3a10/2, bo2 =3a11/2, bi1 =3a20/2, b = 3a01/2.

So the cofactor of f is K = 3(a19 + ag0x + a11y). Doing a190 = a, azg = b, ap1 = ¢, a11 =d
and a rescaling of the time we obtain system (i) of Theorem A.

When f(z,y) = y?> — 2%(x + 1) we obtain the normal forms given in (ii) and (iii) of the
theorem following similar steps.

Now if a quadratic system (1) has an invariant non—singular irreducible cubic f(z,y) = 0
then by Proposition 4 we can write f(x,y) = y*> —2z(x — 1)(z —r) with r > 1 or f(z,y) =
y? —x(2? + sz +1) with —2 < s < 2. In the first case solving equation (5) we obtain three
solution but fixing » > 1 only one solution can hold agg = ag2 = a19 = agg = bp1 = b11 =
0, boo = ap17/2, boz = 3a11/2, bio = —ap1(r + 1) — ayir, beo = (3ao1 + a11r + a11)/2. It
corresponds to system (iv) of Theorem A.
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For f(z,y) = y? — x(x® 4+ sz + 1) we obtain only one solution corresponding to system
(v) of the theorem. [

Using the normal forms described in Theorem A we investigate when these systems
admit a Darboux invariant of the form e f(z,y).

4.2. Proof of Theorem B. First of all is easy to see that the cofactor K of f in systems
(71) — (v) of Theorem A has no constant terms. Then equation (8) becomes AK + s =0
which never holds if s € R\ {0} and A € C\ {0}. Therefore we conclude that systems
(1) — (v) do not admit a Darboux invariant of such form.

Now considering system (i) of Theorem A we have f(z,y) = y?> — 23 = 0 as invariant
curve with cofactor K = 6(a + cx + dy). In this case the solution of equation (8) is given
by {c=0, d=0, s = —6a)}. Taking A = —s/(6a) we obtain the system

i=2(ax+by),  §=3(ay+ bz,

with Darboux invariant e=%%(y? — 23).

The normal form described in Theorem 13 is obtaineBd doing the following change of
coordinates and rescaling of the time x = % , Y = Q%Y, t= % .

Now it remains to study the phase portrait of system (2). This system has two singular
points, namely z; = (0,0) yperbolic unstable node, and zo = (3/2,—3/2) a hyperbolic
saddle. Applying the Poincaré compactification in the local chart U; and on the line v =0
the compactified system has no singular points. However in the local chart U, the origin
(0,0) is a nilpotent singularity. With the notation of Theorem 3.5 of [9] the compactified
system has F'(u) = —u® — (3/2)u® and G(u) = —4u? — (7/2)u®. Hence the origin of U, is
a nilpotent stable node. By the previous statements it follows that the phase portrait of
system (2) is the one described in Figure 1. [}

5. PROOF OF THEOREM C

The proof is done according to the conic that appears in the expression of the reducible
cubic.

5.1. Systems of type (F). If system (1) has an invariant cubic of the form f(z,y) =
fi(z,y) fa(x,y) with fi = 22 +y?> — 1 and fo = ax + by + ¢, then applying a rotation we
can assume b = 1. Therefore it follows from Proposition 1 that f; is an invariant curve
with cofactor k; = a; + B;x + v;y, j = 1,2. Consider two cases: a = 0 and a # 0.
If a = 0 then using equation (5) we have Q = kafo and P = (ky f1 —2ykafa2)/(2z). As P
is a polynomial the parameters of the system must satisfy on the of following conditions
s1={c=-1, a1 =0, 71 = 22, 72 = aa},
so={c=1,a1 =0, 71 =209, 72 = —a2},
s3={a1=0,7 =0, v =0}.
Moreover the solutions s; and s, provide equivalent systems, and we can summarize the
solutions s; and s3 writing the system

&= (B1/2)(@* +y* = 1) —y(Bry — a2z + cBa),
(15) .

§= (y+o)(aoy+ frcr+ar),
with ag(c+ 1) = 0. This is exactly system (£.1) of Theorem C.

When a # 0 we check when the hypotheses of Theorem 7 are satisfied. Clearly f; and fo
satisfies (i), (i) and (iv). Condition (744) is not satisfied when c? = a? 4+ 1 because the line
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f2 =0 is tangent to the real ellipse fi = 0. Indeed if the straight line fo =y+ax+c=0
is tangent to the real ellipse f; = 22 +52? —1 = 0 at the point (g, yo), then their gradients
are parallel in such point, what means that xo — ayo = 0. Replacing yo = xo/a in the
ellipse we conclude that zg = +a/va? + 1. From fy = 0 we get ¢ = Fv/a? + 1. Therefore
the condition for the tangency is ¢> = a® + 1. In this case applying a rotation we can get
fo =y — 1. Again we are in system (15) with ¢ = —1.

Now assuming ¢ # a? + 1 it follows from Theorem 7 that our system is given by

(16) & = —an(a?+9? —1) —2a1y(y+ax+c), 9= aaz(z®+y*—1)+2012(y+az+c),

where a1, as € C and a, ¢ € R. As we are looking for a real system, then oy, as € R,
and doing a rescaling of the time we can assume ay = 1. Note that system (16) is exactly
system (E.2) of Theorem C.

5.2. Systems of type (C'E). In this case we can follow the same steps applied previously.
If system (1) has an invariant cubic of the form f = fifo with fi = 22 + y? + 1 and
fo = ax + by + ¢ we suppose, without loss of generality, b = 1. Since the coefficients a, b
and c are real numbers the straight line fo = 0 cannot be tangent to the complex ellipse
f1 =0. So we get

(17) & = —ag(ax® +y*+1) 201 y(y+az+c), §=aaz(@®+y*+1)+2a; 2(y+azx+c),

where o, ag € C and a, ¢ € R. Applying a rescaling we have g = 1 in (17), and we get
the normal form for the systems of type (CE).

5.3. Systems of type (H). Let fi = 22 —y?—1 and fo = ax+by+c be two real algebraic
invariant curves of system (1), so a® + b? # 0. Proceeding as before if a = 0 then we can
assume b = 1 and the system can be written in the form

(18) i =(51/2)(@" =y’ = D)+ Bayly+c), §=Payly+o)
with (162 # 0. This is system (H.1) of Theorem C.

If a # 0 and b = 0 we take a = 1 and system (1) satisfies P = kofs and 2yQ =
2zP — k1 f1, where kj = o + Bjx + 5y, for j = 1,2. Since @ is a polynomial in the
parameters of the system it must satisfy one of the following conditions

s1={c=—1,a1 =0, f1 = 202, B2 = az},
se={c=1,a1 =0, f1 = —2az, B = —as},
s3={a1 =0, a2 =0, f1 =0, B2 = 0}.

Applying the change of coordinates x = —X,y = Y we conclude that case s; and s
provide equivalent systems. Moreover we can summarize solutions s; and s3 in the unique
system

(19) &= (z+c)(aez+7y+a), §=—(1/2)@"—y*—1)+z(2z+a2y+cy),

with ag(c+ 1) = 0. System (19) corresponds to system (H.2) of Theorem C.

If ab # 0 we assume b = 1 and consider three cases, according to the conditions of
Theorem 7. Note that condition (i) of Theorem 7 holds because Vfi(z,y) = (2x,—2y)
and V fa(x,y) = (a, 1), where V indicates the gradient. Condition (i¢) also holds. However
condition (iv) is not verified when a? — 1 = 0. Indeed in this case f1 = (z +y)(z —y) — 1
and fo = (y = ) + ¢. Condition (iii) does not hold when c? = a? — 1 since the straight
line fo =y + ax + ¢ = 0 is tangent to the hyperbola. The proof of this last statement can
be done analogously as for the systems of type (E). Hence when a? —1 =0 or ¢> = a% — 1
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Theorem 7 does not hold and we split the study of systems of type (H) for ab # 0 in three
cases: a? —1=0,c2=a?—1and (a®> - 1)(c2 —a®+1) £0.

For the first two cases we apply Propositions 1 and 6 to conclude that f; is an algebraic
invariant curve of a quadratic system (1) and it can be written as

(20) & = (A/2)(2*—y*—1)—2y(p+qa+ry), §=—(B/2)(a*—y’—1)—2z(p+qa+ry),
where A, B,p,q,7 € R. Fixing the cofactor of fo = 0 as ks = a+ Sz + vy , where
a, 3,7 € R and using system (20) we solve (5). First considering a = —1 (the case a = 1
is analogous except by a reflection) equation (5) has two possible solutions
s1={B=-A4,c=0,p=0a/2,q=0/2,r=~/2},
sg={B=—-A+42ca,p=(ac—B)/2,q= (8 —ca)/2,r=—(8+ca)/2, v = —F}.
Using the two above solutions we get the system
#= (A/2)@° —y> = 1) —yla— B+ x(B — ca) + y(y — ca)),
g= (A/2)(@* —y* = 1) — (e — B+ Ba +y(y - ca)) + caly® + 1),
with ¢(y + 8) = 0. This is system (H.3) of Theorem C.

Now considering ¢ = a®? — 1 we investigate the conditions that must be satisfied by
the parameters of system (20) in order that fo = y + az &+ v/a? — 1 be an invariant curve.
Without loss of generality we can assume ¢ = va? — 1. Equation (5) has one solution,
namely

B =aA— 2()4\/&729 = (5\/&— CLO()/2,T = _5/27(] = (Oé\/a_ aﬁ)/Q,'Y = aﬁ - a\/&,
where d = a® — 1. Replacing it in (20) we get
&= (4/2)(a® —y* = 1) +ylaa — BVd + x(af — aV/d) + By),
g= (—4a/2)(a® —y* — 1) +a(aa — BVd +abz + By) — aVd(y> + 1),
where d = a? — 1, and this systems corresponds to system (H.4) of Theorem C.

Finally if (a? — 1)(c? — a® 4+ 1) # 0 applying Theorem 7 we obtain the system
i= —ag(x? —y*— 1)+ 201y(y + azx + ¢),
= aas(z®—y*—1)+20z(y +ax +c),
which is system (H.5) of Theorem C.

(21)

(22)

5.4. Systems of type (P). Let f = (y — 2%)(az + by + ¢) = 0 be an invariant cubic of
system (1). When b = 0 we can assume f = x(y — 22). Indeed if b = 0 we take a = 1
and do the change of coordinates v = X — ¢, y =Y — 2cX + ¢?. Using that fo =2 =0 is
an invariant straight line we have P = ko fy with ko = as 4+ B2z + 2y, and a quadratic
system (1) can be written as

(23) t=xz(ag+ Por+7y), ¥=oai(y—x%) + 202> +2y(Baz + 12y).

If b # 0 and a = 0 we can take b = 1 and proceed as in systems of type (H) and (E), then
we get the system

(24) & = —Bi(y —2°) +y(B2 + 12x) + (a2 + y20)z + B2, § = 2(y + ) (a2 + Boz + Y2y),
with cas = 0. Observe that when ¢ = 0 the invariant line is y = 0 and when as = 0 it is
y+c=0.

If ab # 0 and fo = y + ax + a?/4, fo = 0 is tangent to the parabola. In this case we

can assume fo = y + ax + a?/4 (the other case is a reflection). Applying the change of
coordinates z = —X —a/2 and y = Y +aX + a*/4 the cubic f = (y — 2?)(y + az + a*/4)
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becomes f = (Y — X?)Y, which already has been studied above. Indeed it corresponds to
system (23) with ¢ = 0.

Otherwise there is no tangency between the straight line and the parabola, and we
apply Theorem 7 to get the differential system

(25) i=—(y—2?)—aly+ar+c), y=aly—z*)—2az(y+az+c).

Systems (23), (24) and (25) correspond to systems (P.1), (P.2) and (P.3) of Theorem C,
respectively.

5.5. Systems of type (LV). In this case f = zy (ax+by-+c) = 0 is the invariant curve
and except by a rotation we can assume b = 1. We consider different cases according to
ac = 0 or ac # 0. Note that if ¢ = 0 hypothesis (ii7) of Theorem 7 is not valid, whereas
a = 0 breaks the hypothesis (iv).

When ¢ = 0 and a # 0, doing the change of coordinates x = —3%/;2, y = V/aX the cubic
becomes F' = XY (Y — X). So using Proposition 6 the differential system can be written
as

(26) t=z(pr+qaz+ry) y=yp2+aer+ry).

If (26) has f3 = y — x as an invariant curve with cofactor k = a+ 5z + vy, then equation

(5) must be satisfied. Solving it we get
si={p=a,nrn=0-@+r,q=8p=ay=F—qg+nr}

Replacing in (26) and writing ¢ = g2, r = 71 we obtain system (LV.1) of Theorem C.
Now if ¢ = a = 0 then fo =y = 0 is a double line, and it is not difficult to see that we
can write the system as

(27) i=z(p+qz+ry), y=y

Finally, when a = 0 and ¢ # 0, doing the change of coordinates x = X/c?, y = cY — ¢
the cubic f = 0 becomes FF = XY (Y — 1). So without loss of generality we can work
with f3 = y — 1. Again the idea is to write the system as in (26), and see what are the
conditions in order that f3 = 0 to be an invariant curve for such system. Solving equation
(5) and replacing the solutions in (26) we get

(28) t=x(ptqr+ry), y=yly—1).

Systems (27) and (28) can be summarized as

t=x(p+qr+ry), y=yly+c),

with ¢ = 0 or ¢ = —1. This is exactly system (LV.2) of Theorem C.

In the last case, ac # 0 the invariant cubic is f = zy(y + ax + ¢) = 0 and by the
geometry to the curves we can assume a < 0 and ¢ < 0. Applying Theorem 7 we get the
system

i=-—mx(yt+ar+c)—aszry, y=aryly+axr+c)t+aazxy.

Note that we can take g = 1. Doing o = a3, f = a1 we obtain system (LV.3) of Theorem
C.
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5.6. Systems of type (RPL). Here the invariant cubic is f = fifofs = 0 where f1 =
x+1, fo=x—1and f3 =ax+by+c. When b= 0 we apply Proposition 6 (case (RPL)),
then it is easy to see that the corresponding normal form has one additional invariant
curve f3 = 0 as invariant straight line if and only if it is a multiple of f; or f. However
we cannot consider any of these cases because if the system has fo as an invariant double
straight line for example, then there would be a change of coordinates so that the system
would be written as
$‘:(!IJ*1)($+1)2, :Q:Q(:L’,y),

then having degree 3 instead of 2.

When b # 0 we can fix b = 1. In this case the cubic f = (2% — 1)(y + ax + ¢) = 0 can
be reduced to F = y(z? — 1) by change of coordinates x = X,y =Y —a X — c. If the
quadratic differential system (1) has the invariant curve f = y(z? — 1) = 0, then f; = 0
and fo = 0 are invariant curves and by Proposition 6 such system can be written as

(29) jj:LL‘2—1, y:Q(may)7
where Q(z,y) is an arbitrary polynomial of degree 2. Imposing that f3 = y = 0 is an
additional invariant curve with cofactor k3 = a4+ Sz + vy, the above system must satisfy

Q(z,y) = y(a + Bx + vy). This expression justify the normal form given in (RPL) of
Theorem C.

5.7. Systems of type (DL). These systems have a double straight line as invariant curve
which can be taken as f; = . We write fo = ax + by + ¢ and use the normal form of a
system having f = fifo = 0 as an invariant cubic. For such normal form, if b6 = 0 then
f2 = 0 is an invariant straight line if and only if ¢ = 0 but in this case the system cannot
have a triple invariant straight line.

If b # 0 we can take b = 1 and f = 2?(y + az + ¢). Doing the change r = X,y =
Y —a X — c the function f can be written as F = X2Y. Hence it is enough to consider
f2 = y. By Proposition 6 a quadratic system (1) can be written as

j:l:xQ? y.:Q(x7y)7
where Q(x,y) is an arbitrary polynomial of degree 2. Imposing that fo = 0 is an additional

invariant curve with cofactor ks = a+ 3 z+~y, we conclude that Q(x,y) = y(a+5z+vy).
This expression justify the normal form given in (DL) of Theorem C.

5.8. Systems of type (CPL). The proof for this case is analogous to the case (DL) so
we will omit some details. In short the cubic is given by f = fi fofs = 0 where f| =z 41,
fo=xz—1iand fs =ax + by + c. In order to f3 = 0 to be an invariant curve with b =0
it is necessary that ¢ = +i. So b # 0 and we assume b = 1. This reduce f to the cubic
F = y(2% + 1) and then we get the normal form (CPL) described in Theorem C.

5.9. Systems of type (p). In this case the cubic is given by f = (z2+y?)(az+by-+c) =0
and except by a rotation we can assume b = 1. When ¢ = 0 the three curves intersect at
the same point and the conditions of Theorem 7 are not satisfied. But if ¢ = 0 doing the
change of coordinates

X aY aX Y

- + ) = + )

Ve Vesy T ey ey
the cubic f = (22 4+ 3?)(y + ax) = 0 is reduced to f = Y(X? + Y?). Now using that
system (1) has f3 = y = 0 as a third invariant curve it follows that Q(z,y) = k3 f3 where
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ks = as + B3 x + 3y is the cofactor of f3. Moreover f1fo = 0 is also an invariant curve
then we must have

20P(z,y) + 2yQ(x,y) = k(z,y)(2* +y°),
with k(z,y) = a+ Bz + vy being the sum of the cofactors of fi and fo. So a quadratic
system (1) can be written as

&= (8/2)(@" + ) = By +w(as+1y), §=ylaz+ Pz +wy),

which is exactly system (p.1) of Theorem C.

When ¢ # 0 we apply Theorem 7 and conclude that a quadratic system (1) can be
written as
= —az(z? +y?) — (a0 + a1)y —i(ae — a1)z)(y + az + c),
¥ =aaz(x® + %) + (o + a1)x — i(ag — a1)y)(y + ax + ¢),
with a1, a2 and a3 € C. Writing o; = m; + in; with m;,n; € R and using that such
system have real parameters we conclude that mgy = my, no = —ny and n3 = 0. Replacing
this conditions in (30) we get the system
(31)
@ = —mz(2®+y?)+2(n1 x—my y)(y+aztc), 7= ams(z*+y?)+2(m1 z4+n1 y)(y+aztc).

(30)

Note that if mg = 0 then the system has a common factor, so we can take ms = 2.
Applying a rescaling of the time and writing @ = my, 8 = n; we obtain system (p.2) of
Theorem C.

It follows from the previous study the proof of Theorem C.

6. PROOF OoF THEOREMS D AND E

In this section we investigate the conditions in order that a given quadratic system with
an algebraic invariant cubic has a Darboux invariant. Moreover, using the obtained normal
forms in Theorem C we study the phase portrait in the Poincaré disc of such systems.

Proposition 9 (E). Fach real planar quadratic differential system with a real ellipse
and a straight line having a Darbouz invariant can be written, after an affine change of
coordinates, as system (E.2) with ¢ = —1, ag # 0. Moreover, such system has the Darboux
mvariant

_1
L(t,wy) = e (y— 1) (2” +y° = 1) %2,
and, these systems have only two non equivalent phase portraits, see phase portraits EL.2.1
and EL.2.2 of Figure 2.

Proof. If follows from the reducible cubic classification that we can fix f; = 22 +3>—-1=0
as the real ellipse and by Theorem C there are only two families of systems having f; =0
and a straight line as invariant curves (E.1) and (E.2). We shall prove later that (E.1)
does not admit a Darboux invariant. Now we study system (F.2). By Proposition 2
system (E.2) has a Darboux invariant if there exist A1, A2 € R not both equal to zero such
that (8) holds with s € R\ {0} and k1, k2 being the cofactors of fi =0 and fo =y+c¢=0,
respectively. But for system (E.2) we must have ag = 0 or ¢ = —1. If ap = 0 the cofactors
are k1 = f1x and ky = [y x and the equation A\iky + A2ks + s = 0 has no solution for
s # 0. Hence if ag = 0 system (E.2) has no Darboux invariant.

If as # 0 and ¢ = —1 then the cofactors are k1 = f1 z+ 2oy and ks = as+ fox+ oy
and the unique solution of (8), with s # 0 is

(32) B1 =202, s = —agh2, A1 = —Aa2/2.
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Taking A\; = 1/a9 and replacing (32) in system (E.2) we obtain the system
(33) t=Pa(y—1)+z(Brr+a2y), §=(y—1)(a2+pB2z+azy),

which has the Darboux invariant

1
L(toy) = e (y =1V (2? 447 1) .

In order to study the global phase portrait of system (E.2) we start considering its finite
singularities. Note that (33) has at most three finite singularities, namely z; = (0, 1),

2_

zog = (—1/P2, 1) and z3 = (— 522%1’ g%ﬁ) The eigenvalues associated to z; are 2 and 1,
2 2

if By # 0, the eigenvalues associated to zo are —1 and 1 and the eigenvalues of z3 are —1

and —2. So for B2 # 0 z1, z2 and 23 are an unstable node, a saddle and a stable node,

respectively. When 82 = 0 we have only z; and z3 as finite singularities.

In the local chart U; the compactified system is

(34) 0= —v(By + Bou? — Bouv +v), = —v(B2 + fouv + u — fav?),

so v = 0 is a common factor, this means that v = 0 is a line of singular points. Eliminating
the common factor v, system (34) has no singular points if 55 # 0. Otherwise u; = (0,0)
is a singular point with eigenvalues —1 and 1 which implies that the origin is a hyperbolic
saddle besides the line of singular points.
In the local chart Us the compactified system is written as
0 =v(B + fou® +uv — fov), 0 =v(v—1)(Bou+v+1).

Eliminating the common factor v the origin is not a singular point of the compactified
system.

Note that if f2 = 0 there are an additional invariant straight line given by y + 1 = 0.
From the study of the finite and infinite behavior of system (E.2) we conclude that such
system has two non—equivalent phase portraits when ¢ = —1: phase portrait EL.2.1, if
B2 # 0 and phase portrait EL.2.2, if 85 = 0. See Figure 2. ([

Proposition 10 (H). Each real planar quadratic differential system with a hyperbola
and a straight line having a Darbouz invariant can be written, after an affine change of
coordinates, as

(i) system (H.2) with aa # 0 and ¢ = —1. Its Darbouz invariant is
Lt,z,y) = e 2t (2? —y? = 1)"V2 (2 —1).
ii) system (H.3) with Ao # 0, ¢ =0 and = —~. Its Darbouz invariant is
Lit,z,y) = e (2 — y? = 1) (y —2)".
(iii) system (H.3) with a #0 and B =~ = 0. Its Darboux invariant is
Lt z,y) = e (y —x+c) L.
(iv) system (H.4) with o # 0 and A = 2/3. Its Darbouzx invariant is
Is(t,z,y) = e a2 — o — 1)V 2 (y + ax — Va2 - 1).

Moreover the are 13 non-equivalent phase portrait in the Poincaré disc of these systems.
They are in Figure 2 HL.2.1-HL.2.3, HL.3.1-HL.3.13.
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Proof. Fixing f; = 22 — y?> — 1 = 0, Proposition 2 says that system (H.2) has a Darboux
invariant if equation (8) holds for Aj, A2 not both zero, where s € R\ {0}, and ki, ks are
cofactors of f; =0 and fo = x+ ¢ = 0, respectively. Moreover ¢ = —1 or ag = 0 in system
(H.2). For ag = 0 we have k1 = 1y and ko = 2y and the equation A\1k; + Aeko + s =0
has no solution with s # 0. So in this case system (H.2) has no Darboux invariant. If
a# 0and ¢ = —1 then k; = 2a9x + 71y and k2 = ag + agx + 2y and (8) has a unique
solution
s = —an2, 71 =272, \1 = —A2/2.

The proof of (i) follows taking Ay = 1 and replacing 71 = 272 in system (H.2), from that
we have the system

(35) @=(r-1)(etarzt+ry), §=-7(" -y’ —1)+a(—r+rz+ay),
having the Darboux invariant
Lt w,y) = e (@” —y* — 1)z - 1).

To prove (ii) and (iii) we study system (H.3) where we consider two cases: ¢ = 0 and
g = —~. It is easy to see that if ¢ = 0 (H.3) has a Darboux invariant when « # 0 and
B = —~. In this case we have the differential system
(3

6) & = (A/2)(«” —y" = 1) —yla—yz+7y), §=(A/2)(@"—y*—1) —z(a—yz+7y),
having the Darboux invariant
Ltw,y) = e 4@ =y = 1) (y —2)™,

If B = —v system (H.3) has a Darboux invariant only when v = 0 and « # 0. In this case
the system is

(37)

&= (A2) @y’ —1)—ay(l-cz—cy), §=(A/2)@"~y*~1)—az(l-cy)+caly’+1),

and it has the Darboux invariant

Ltz,y) =e(y—a+c) "

The study of (iv) follows from system (H.4) where the invariant line is fo = y + ax —
va? —1=0. In this case the unique solution of equation (8) is

(38) s = —Oé)\g, A= 2ﬁ, )\1 = —)\2/2.
So taking Ao = 1 we obtain the Darboux invariant
Lt,x,y) = e (@ —y* = 1)y + az — Va? - 1).

We start the study of the phase portraits of system (35). Since as # 0 we can take
a2 = 1 and the transformation x = X,y = —Y takes the system with parameter v, to the
system with parameter —y». So we may also assume 2 > 0.

Considering the finite singularities, if 75 ¢ {0,1} system (35) has three finite singu-
3+1 272

2_1 9 2_1
associated to z; are 2 and 1, if 82 # 0, the eigenvalues assZ)ZCiatedvﬁo zo are —1 and 1 and
the eigenvalues of z3 are —1 and —2. So for vo & {0,1} 21, 22 and z3 are respectively, an
unstable node, a saddle and a stable node. When (35 = 0 we have only z; and z3 as finite
singularities.

In the local chart U; the compactified system is

(39) 0 =v(—y2 +Yu? +uv+y2v), @ =0 —1)(yu+v+ 1),

larities, namely z; = (0, 1), 22 = (1,—1/72) and 23 = . The eigenvalues
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so v is a common factor, this means that v = 0 is a line of singular points. Eliminating the

common factor v, system (39) has no singular points if v # 1. Otherwise u; = (—1,0) is

a singular point with eigenvalues —2 and —1, which implies that u; is a hyperbolic stable

node. Moreover if 79 = 0 there an additional invariant straight line given by « + 1 = 0.
In the local chart Us the compactified system is written as

0= —v(y2 — u? + yuv+v), ©=—v(ys + 120> — Youv + u).

So after eliminating the common factor v the origin is a singular point of the compactified
system if and only if 45 = 0. In this case (0,0) is a hyperbolic saddle.

It is easy to see that if v € (0, 1) the singulatities z; and z3 are in distinct branches of
the hyperbola, and if 72 € (1,400) they are in the same branch as shows Figure 8.

FIGURE 8. Possible phase portraits of sytem (35) when v ¢ {0, 1}.

From Theorem 1.43 of [9] (Markus-Neumann-Peixoto Theorem) we conclude that these
two phase portraits are topologically equivalent. By continuity and the study done previ-
ously we conclude that system of type (H.2) having a Darboux invariant can have three
non-equivalent phase portrait. The case o # 0,1 corresponds to HL.2.1 in Figure 2 and
when 9 = 1 or 79 = 0 we have the phase portraits HL.2.2 and HL.2.3 of Figure 2,
respectivelly.

Now we study the global phase portrait of system (H.3). Remember that the parameters
of (H.3) must satisfies c¢(y+3) = 0. We start considering ¢ = 0, then the differential system
is

(40) &= (A/2)(@* —y* = 1) —yla—yz+yy), §=(A/2)@*—y*—1)—az(a—yz+7y),

that has fi = 2> —y%?—1 =0 and f» = y —x = 0 as invariant algebraic curves. Since a # 0
we can take o = 1 and the transformation z = — X,y = —Y allows to assume A > 0.

If v # 0 then z; = (—A4/2,—-A4/2) and 22 = ((v* + 1)/(27), (7* — 1)/(27)) are the two
finite singular points. If v = 0 exists only one finite singular point.

The eigenvalues associated to z; are —1 and 1 so z; is a saddle. The eigenvalues
associated to zo are A/ and —1, so 29 is a stable node if v < 0, and a saddle if v > 0.
Moreover z; is on the straight line and z; is on the hyperbola.

In the local chart U, we have the system

= (1/2)(u—1)(Av? — (A+ 27)u? + 2uv + 2v + A + 27),
0= (1/2)v(Av? — (A + 2y)u? + 2yu + 2uv + A),
and the origin is a singular point only when A + 2y = 0 but in this case the line v = 0 is
filled up of singular points.
In the local chart U; we have system
= (1/2)(u— 1)((A+ 2y)u® + Av? + 2uv + 2v — A — 2),
0= (1/2)v((A + 27y)u? + Av? + 2uv — 2yu — A),
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which has the infinity filled up by singularities when A + 2y = 0, otherwise, there are two
singularities u; = (—1,0) and ug = (1,0).

Assuming A + 27y # 0. The point u; has eigenvalues 2y and 2(A + 2v), and g is
linearly zero because the Jacobian matrix of the linear part of the system evaluated in
ug is null. To decide the local behavior of us we must do blow up. From now on we fix
lh=n, lo =A+27.

After translate the singular point ue to the origin, making the change of coordinates
u = U,v = UW and rescaling the common factor U we get the differential system

U= (1/2)UAUW? + (A+29)U + 2UW +4W +2A +47), W = -W(W 4 ).

Note that such system have two singularities when Ijlo # 0, namely, U; = (0,0) and
Uy = (0, —7); one singular point when [; = 0 and Iy # 0, namely U; = Us. The eigenvalues
of Uy are —y and A+ 27, whereas the eigenvalues of Uy are A and . From the combination
of the signs of I; and lo, as described in Figure 9, we get the possible local behavior of Uy
and Us.

(1) _lyg >0

(1) 1 >0 (2) h<o >0 (B h=0
2>y <0

(3.1)

lo >0

F1GURE 9. The possible combination of signs of /1 and 5 describe the cases
to be considered for system (H.3) when ¢ = 0.

Applying the blow down we get all possible phase portraits for system (H.3) when ¢ = 0.
Note that each one is realizable, indeed, the phase portrait HL.3.2 corresponds to subcase
(1.1) which is realizable with A = 4 and v = —1; HL.3.3 corresponds to subcase (1.2)
which is realizable with A = 1 and v = —1. Notice that if - # 0 there is a third invariant
straight line, given by f3 = v(x —y) — 1 = 0 so HL.3.3 is the only possible phase portrait
for subcase (1.2). The phase portraits HL.3.4 and HL.3.5 correspond, respectively, to
subcases (2.1) and (3.1). The phase portrait HL.3.4 is realizable with A =1 and v = 1,
and HL.3.5 is realizable with A =1 and v = 0.

It remains to consider the case ls = 0. With this condition the infinity is filled up of
singular points. After eliminating the common factor v we have only one singular point
at the local chart U;. The eigenvalues associated to this point are 2 and 1, so this is a
unstable node. By continuity the only possible phase portrait in this case is HL.3.1 of
Figure 2, which is realizable with A =2 and v = —1.

Now considering system (H.3) with 8+ v = 0 we have seen above that the system has
a Darboux invariant when 5 = = 0 and « # 0. Under these conditions the differential
system is
&= (A/2)(a? —y? 1) —ay(l - cx - cy),
g=(A/2)(2* —y? = 1) + ca(y® + 1) — az(l — cy).

Such system has f; = 22 —y?—1=0and fo = y — x +c = 0 as algebraic invariant curves.
If ¢ = 0 then we get system (40) when v = 0, so we can take ¢ # 0 here. Moreover, doing
the transformation x = —X, y = —Y in the algebraic cubic we can assume ¢ > 0. Finally,
since « is different from zero we can take o =1 in (41).

System (41) has two finite singular points, namely z; = ((2¢ — A)/2, —A/2) and 29 =
(2 +1)/(2¢),(1 — c*)/(2¢)). Defining l; = — Ac—1,lp = A—cand I3 = A — 2c, we

(41)
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FIGURE 10. On the left the local phase portrait after blow up. Here they
are indexed according to the signs of {; and l3. On the right the local
behavior at origin after the Blow down for system (H.3).

have z; coalesces with zo if and only if [y = 0. Moreover the eigenvalues associated to z;
are [; and 1, and the eigenvalues associated to zo are —I; and 1. So we conclude that z;
is a unstable node and zs is a saddle if I; > 0; z; is a saddle and z2, an unstable node, if
[1 <0 and, if Iy =0, 21 = 2z is a saddle-node.
In the local chart Uy the system becomes

(42)

= (1/2)((A — 2c)u? — Au® + Auv? — Au — Av? + 2cu + 2¢v? + 2u?v — 2v + A),

v = (1/2)v((A - 2c)u? + Av? — 2cu + 2uv — A),

which has three singularities u; = (—1,0) and us = (1,0) and u3 = (5252, 0), if A # 2c.
Note that when I3 = 0 the point usz does not exist and w1 = ug when Il = 0. The
eigenvalues associated to u; are 2ls and 0, the point us has both eigenvalues equal to —2c¢,
and ug has eigenvalues 0 and 2cly/l3. It is not difficult to see that when Iy # 0, u; and ug



26 JAUME LLIBRE, REGILENE OLIVEIRA AND CAMILA RODRIGUES

are saddle-nodes. In the local chart Uy the origin (0,0) is a singular point if and only if
I3 =0.

Assuming [ly # 0 and considering all possible combinations of the sign of /1,ls and I3
we observe that there are some impossible combinations, for instance when ls < 0 we have
I3 < 0. In Figure 11 we describe the possible combinations and introduce a label for each
one.

21 [3> 0
oy l2>0 <‘L“l;> I3<0
Is=0
WV h>0 L pco i (2) hi<o
(22)
<0 " 1.0

FIGURE 11. The possible combinations of signs of I1,ls and l3 for system
(H.3) when ¢ # 0.

The case (2.2.1) presents a unique phase portrait, HL.3.6 of Figure 2 and it is realizable
with A =1/2 and ¢ = 1.

In case (2.1.1) we have three possibilities for the finite saddle separatrix w-limit set: we
can have a connection of separatrix as in HL.3.7; the separatrix can go to the stable node,
generating a phase portrait equivalent to HL.3.6, or the separatrix can go to the parabolic
sector of the saddle node ug which corresponds to HL.3.8. Moreover HL.3.8 is realizable
with A = 2 and ¢ = 1/2, and as we see above, HL.3.6 is realizable with A = 1/2 and ¢ = 1.
Since HL.3.6 and HL.3.8 are realizable then by continuity of the parameters we conclude
that HL.3.7 is also realizable.

The analysis of case (2.1.2) can be done as the case (2.1.1) and it has the phase portraits
equivalent to them.

The possible phase portraits of (2.1.3) are also equivalent to the phase portraits of
(2.1.1). Also the case (1.1.1) has a phase portrait equivalent to (2.2.1).

When [y = 0 it follows that [1,l3 < 0 and in the local chart U; the singular point u; = ug
is non—elementary. After translate this singular point to the origin, making the change of
coordinates u = U, v = UW and rescaling the common factor U we get

U= (U/2)(AUW? — AU +2UW —4W +24), W =W (W — A).

This system has two singularities U; = (0,0) and Uy = (0, A) being both saddles. Figure
12 shows the blow down.

=
blow down
< > U > > U U
—jhf _\\ r 7
FIGURE 12. The local phase portrait of system (42) when I3 = 0. On the

left the local phase portrait after blow up. On the right the local behavior
at the origin after blow down.

Y Multiplying by U




QUADRATIC SYSTEMS AND DARBOUX INVARIANTS 27

To obtain the phase portrait for system (41) with Iy = 0 we note that there is more
two invariant straight lines, given by f3 = x+y =0 and fy = Ax + Ay — 1. The finite
saddle z; is on f3 = 0 and the finite node is on the intersection of fo = 0 and fy = 0 so by
continuity there is only one phase portrait, which is topologically equivalent to HL.3.3.

Finally it remains to study the case I; = 0. Here I3 < 0 and I3 < 0 so the only possibility
is the phase portrait HL.3.9 of Figure 2, which is realizable with A =0 and ¢ = 1.

To conclude the proof of Proposition 10 it remains to study the global phase portrait of
system (H.4) when A = 28 and a # 0. In this case we assume o = 1, so (H.4) is written

as
i = fa? + (af — Va? —L)zy + (a — Va2 — 1)y - B,
v = (af — Va2 —1)y* + By + (a — Va2 — 18)z + (aB — VaZ — 1).

Denoting 6 = af—+v/a? — 1 and n = a—+/a? — 13 there are at most three finite singularities
21 = (=8/m, B/m), 22 = (90— B)/ (B2 — 62), (61 — B)/ (8% — 62)) and 25 = (8 + o) /(8* -
62), —(B+6n)/(B*—62)). We observe that such singular points never coalesce but if n = 0,
21 does not exist and if 32 — 62 = 0 the same happens with 25 or z3. With respect to the
localization of these points, 23 is the intersection of the hyperbola and the straight line, z;
is on the straight line and z, is on the hyperbola. Moreover is not difficult to check that
21, 72 and z3 are hyperbolic points, being z; a saddle, z2 a stable node and z3 an unstable
node.

Concerning to the behavior at infinity, in the local chart U; the compactified system is
given by

o= v(n —nu* + Buv + ov), ©=—v(B — Fv? + nuv + du),

so v is a common factor what means that v = 0 is a line of singular points. Eliminating
this common line it remains singularities if and only if 7 = 0 or 42 — 62 = 0. When = 0
the point u; = (—a,0) is a saddle. When 6 = 8 the point ug = (—1,0) is a node with
eigenvalues n and 27. Finally if § = —/ then the point uz = (1,0) has eigenvalues —n and
—2n so it is a node.

In the local chart U; the system becomes

= —v(—n+ v +nu? + dww), =06+ Bu+ nuv + 5v?).

So eliminating the common factor v the origin is not a singular point.

By the previous study and continuity of the solutions we conclude that there exist three
possible phase portraits and they are topologically equivalent to the ones obtained from
system (H.2) and described in Figure 2. Indeed when 7, 32 — §% # 0 we have the phase

portrait HL.2.1, when % — §%2 = 0 we have HL.2.2, and the case = 0 corresponds to
phase portrait HL.2.3. O

Before to study the systems of type (P), we present two lemmas that will help to show
the realization or not of the phase portraits that follow.

Lemma 11. On any straight line which is not composed of orbits the total number of
contact points is at most two for any quadratic system. If there are two such points p;
and pa, then the orbits intersecting the segment copy cross in the same sense as the orbits
intersecting paoo, and the opposite sense to the path intersecting pips.

Lemma 12. The straight line connecting one finite singular point and a pair of infinite
singular points in a quadratic system is either formed by trajectories or a line with exactly
one contact point. If this contact point is the finite singular point, the flow goes in different
directions on each half straight line.
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The proof of Lemma 11 can be founded in [8]. Lemma 12 in the case that the pair of
infinite singular points are saddles was proved in [16]. When such a pair are saddle-nodes,
the proof appeared in [1].

Proposition 13 (P). Fach real planar quadratic differential system with a parabola and
a straight line having a Darbouz invariant can be written, after an affine change of coor-
dinates, as

(i) (P.1) with an — 2a # 0 and Darbouz invariant
Ig(t, x,y) = el@17202)t(y _ 42)7152,
(i) (P.2) with as(f1 — P2) # 0, ¢ = 0 and Darboux invariant
Ii(t,z,y) = 22O (y — g%)P2y =P
(iii) (P.2) with cy2 # 0, B1 = P2, ag = 0 and Darboux invariant
Ig(t,w,y) = e7*P(y — 2®)(y + )7

Moreover there are 41 non-equivalent phase portrait in the Poincaré disc for these
systems. They are in Figures 3 and 4.

Proof. We fix the invariant parabola as f; = y — 22 = 0. Here we describe in details
the proof of the existence of a Darboux invariant for system (P.2), the other cases are
analogous. System (P.2) is given by

=Py — 2%) + y(Ba + y2z) + (a2 + Y20)z +cf2, U =2(y+ c)(az + Bax + Y2y),

where cay = 0. If ¢ = 0 then the additional invariant line is written as fo =y = 0 and if
ag =0, such lineis fo =y +c=0.

System (P.2) has a Darboux invariant if there exist Aj, A2 not all zero satisfying equation
(8) with s € R\ {0}, and k1, k2 being the cofactors of f; = 0 and fo = 0, respectively. For
c=0, k1 =2(az+ 1z +y2y) and k2 = 2(ag + P2 x + 2 y). Equation (8), with s # 0 has
the solution

(43) 5= —2a3(A1 + X2), B2 = —B1A1/ A2, 72 = 0,
Taking Ay = B2 and A9 = —f; the solution can be rewritten as
(44) s = —202(B2 — B1), \1 = P2, Ao = =1, 72 =0,

and the Darboux invariant is
Lt z,y) = 62a2(31—52)t(y _ x2)52y_61.

In this case we assume 2 — 31 # 0 otherwise system (P.2) has a common factor. Moreover
if g = ¢ =0 (P.2) does not admit a Darboux invariant.

When ag = 0 then fs = y + ¢ and the cofactors of f; = 0 and fy = 0 are, respectively,
k1 = 2(eye + B1z + 12y) and ko = 2(B2x + v2y). In this case equation (8) has only one
solution

5 = —2cy21, B2 = P1, A2 = —A1.

So taking A\; = 1 we get the Darboux invariant

Litz,y) =e P (y—a2?)(y+c) "
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From now on we study the possible global phase portraits for systems (P) when they
have a Darboux invariant. We start studying system (P.1). Remember that such system
is given by

i =a(ar+Prrt+yey),  §=anly —a?) + 20007 + 2y(Bax + 2 y).
We consider two cases: 72 # 0 and 9 = 0. If 79 # 0 we assume 9 = 1. In this last case
system (P.1) have at most four singular points, given by
21 = (070)7 29 = (0, 7041/2),

— (B2 + \/BE — 4a2) /2, (B3 — 202 + B2/ B3 — 4a2)/2)
zi= (— (B2 — /B3 — 4a2)/2, (B2 — 2a2 — B2/ B3 — 4az) /2

Observe that unless of the change © = —X, y = Y we can assume [2 > 0. Let I; = ag,
lo = o, I3 = ﬂ% — 4oy — ,62\/5% — 4o and Iy = a1 — 2a be. It follows from Proposition
13 (i) la # 0. Moreover

e 21 has eigenvalues /1 and lo;

® 25 has eigenvalues —I; and —l4;

[ )

23 has eigenvalues Iy and (33 — 4as + B2/ B3 — das)/2;

e 24 has eigenvalues I3 and 4,

z3

so 12 4+ 12 # 0 and the topological type of the finite singular points can be studied using
the Hartman-Grobman Theorem and Theorem 2.19 of [9].
With respect to the position of the finite singularities, z1 is on the intersection of the
parabola and the straight line, z5 is on the straight line, and z3, z4 are on the parabola.
In the local chart Uy system (P.1) is written as

i =u® + Bou + (o — ag)uw + 200 — ar, 0 = —v(ev +u + [B2),

which has at most two singular points when v = 0, namely
uy = (—B2 — \/53 +4(1 —202)/2,0), uz = (P2 + \/522 + 4 — 2a2)/2, 0).

The eigenvalues associated to uy are —y/f3 +4ly and —(B2 — /B35 + 4l4)/2 while the
eigenvalues associated to ug are \/f33 + 41y and —(Ba + /35 + 4l4) /2.

Since we are assuming £ > 0 it follows that when B% + 414 > 0 the point us is a saddle
and it is not difficult to see that if I4 > 0, then u; is a saddle, and if Iy < 0, u; is a
stable node. When 522 4+ 4l4 = 0 uy and ueo coalesce and we conclude that this point is a
saddle-node, using Theorem 2.19 [9]. When ﬁ% + 414 < 0 there is no infinite points in the
local chart Uj.

In the local chart Us the origin (0,0) is a stable node.

Observe that Iy, 12, 13,14, 33 — 4ap and (5 + 41y are bifurcation surfaces, i.e. where
topological changes in the global phase portrait of (P.1) can happen. To draw all non-
equivalent phase portraits of system (P.1) we split the study in three cases: 82 —4ay > 0,
B2 —4az = 0 and 2 — 4ag < 0.

Choosing a representative of each region defined by such surfaces we have a configuration
of finite and infinite points. Considering the behavior of the separatrices of these systems
we obtain all possible phase portraits when B% — 4ag > 0, thus we obtain the 40 phase
portraits described in Figures 13 and 14 and the phase portraits 41 — 50 of Figure 18. We
study all these cases bellow.

Among the phase portraits 1 — 18 of Figure 13, we claim that 1 and 3, as well as 7 to 18,
are not realizable. Indeed these 18 phase portraits, 1 —3 present the possible combinations
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FIGURE 13. Phase portraits of system (P.1) when v5 = 1 and 55 — 4ag > 0.

when the singular points in the local chart U; are both saddles. In the finite part we have
z1 and z3 unstable nodes, 25 is a stable node and z4 is a saddle. So we have ly,l5,l4 > 0
and I3 < 0. In phase portrait 1 of Figure 13, consider the straight line joining the finite
singular point z3 to the infinity singular point u; as shows Figure 15. We can see that
near the singular point z3 but on opposite sides, the vector field has the same direction,
which contradicts Lemma 12. So the phase portrait 1 of Figure 13 is not realizable. With
the same argument the portrait 3 of Figure 13 is also not realizable. So phase portrait 2
of Figure 13 is the only realizable and corresponds to phase portrait PL.1.1 of Figure 3.
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FIGURE 14. Phase portraits of system (P.1) when v, = 1 and 33 — 4ag > 0.

&

FicURE 15. The straight line joining the finite singular point 23 to the
infinity singular point w1 in phase portrait 1 of Figure 13.
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Considering the phase portraits 4 — 18 of Figure 13 we shall prove that 7 — 18 are not
realizable. First consider the phase portrait 7 and the straight line joining the middle
point between the infinity singular points u; and ue and the middle point between the
finite singular points z3 and z4 as shows Figure 16. By Lemma 11 this line should have at
most two points of contact with the vector field, which does not occur. In Figure 16 we can
see at least four contact points, represented by the smaller points that are not singularities
of the system. This fact guarantees that the w—limit set of ug is the finite point z4 on the
parabola. So phase portraits 7 — 18 are not realizable using similar arguments. So among
the phase portraits 4 — 18 only 4,5 and 6 are realizable, which correspond, respectively to
phase portraits PL.1.2, PL.1.3 and PL.1.4 of Figure 3. The values of the parameters that
realize these systems can be found in Table 2.

FIGURE 16. The straight line joining the middle point between the infinity
singular points u; and us and the middle point between the finite singular
points z3 and z4 in phase portrait 7 of Figure 13.

The phase portraits 19 — 20 in Figure 13 and 21 — 26 in Figure 14 are topologically
equivalent to one of the phase portraits 1 —18 in Figure 13 so they can be realizable or not,
depends on their configuration. In Table 1 we present the relation among the equivalent
phase portraits of system (P.1) when ¢ # 0. In the case where they are topologically
equivalent to a realizable phase portrait, we need not consider the study again. However
if they are topologically equivalent to a phase portrait which was not realizable, we need
to study it.

Considering the same straight line used to prove the non-realization of phase portraits
7 — 18 of Figure 13 we apply Lemma 11 to conclude that 21,22,25 and 26 of Figure 14
are not realizable.

The phase portraits 27 — 31 in Figure 14 present all the possibilities when there are four
finite singular points and one infinite singular point on the local chart U;. Phase portraits
27, 28 and 29 are realizable and correspond to phase portraits PL.1.5, PL.1.6 and PL.1.7
of Figure 3. The values of the parameters that realize these systems can be found in Table
2. Moreover 30 and 31 are topologically equivalent to one of these three phase portraits.

Finally if there are four finite singular points and the local chart U; has no singular point
we get the phase portraits 32 — 36 in Figure 14. For phase portraits 32 and 33 of Figure
14 we consider the straight line z = z} where the finite singualarity z4 is 24 = (2}, 27),
and apply Lemma 12 to see that they are not realizable (see Figure 17).

Moreover the phase portraits 35 and 36 are topologically equivalent to the phase portrait
34 which is the only realizable phase portrait for this case and it is represented by PL.1.8
in Figure 3. The values of the parameters that realize this system can be found in Table
2.

For 522 — 4as > 0 we consider the cases with three finite singular points. When z; = 2o
the origin is a saddle-node and there are ten possible phase portraits, namely 37 — 40
in Figure 14 and 41 — 46 in Figure 18. But since the nodal sector of the saddle node
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Phase portrait | Topologicaly equivalent to
19 2
20 6
21 12
22 9
23 2
24 6
25 12
26 9
30 29
31 29
35 34
36 34
60 50

TABLE 1. Table of relations among all the possible phase portraits of sys-
tem (P.1) when ¢ # 0.

FIGURE 17. The straight line z = 2z} = —(B82 — /3 — 4a2)/2 in phase
portrait 32 of Figure 14.

must have its orbits tangent to its separatrix, the phase portraits 37 and 38 in Figure
14 are not realizable. In other words the separatrices of the saddle-node z; must be on
the invariant parabola. With the same argument the phase portraits 41,42,45 and 46 of
Figure 18 also are not realizable. So when z; = z5 the realizable phase portraits are 39, 40,
43 and 44 of Figure 18, corresponding to PL.1.9, PL.1.10, PL.1.11 and PL.1.12, in Figure
3, respectively. The values of the parameters that realize these systems can be found in
Table 2.

When there are three finite singularities with z; = z4 then by continuity we have the
phase portraits 47,48,49 and 50 of Figure 18. All these for phase portraits are realizable
and correspond, to PL.1.13, PL.1.14, PL.1.15 and PL.1.16 in Figure 3, respectively. The
values of the parameters that realize these systems can be found in Table 2

For 33 — 4ap = 0 there is another case with three finite singularities that correspond
to the case z3 = z4. Here we can have ten phase portraits, given by 51 — 60 in Figure 18.
The phase portraits 51,52 and 55 are realizable and corresponds, respectively, to PL.1.17,
PL.1.18 and PL.1.19 in Figure 3. The values of the parameters that realize these systems
can be found in Table 2. The phase portraits 53 and 54 are not realizable. The ideia again
is to use Lemma 12 with the straight line joining the origin of the local chart Us to the
singular point us of the local chart U;. By Figure 19 and this lemma the phase portraits
53 and 54 are not realizable.
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FIGURE 18. Phase portraits 41 — 50 corresponds to phase portraits of sys-
tem (P.1) when v, = 1 and 82 — 4ag > 0;

Phase portraits 51 —60 corresponds to phase portraits of system (P.1) when
2 =1 and B§—4a2 = 0.

Considering the phase portraits 56 and 57 we will show that they are not realizable. Take
the straight line passing through the origin of the local chart U; and the infinite singular
point u; = uy (see Figure 20). The contact points on this straight line contradicts Lemma
12 so the phase portraits 56 and 57 are not realizable. About the phase portraits 58 and
59, considering the straight line passing through the points 2z; and z3 we have Figure 21
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FI1GURE 19. The straight line connecting the origin of the local chart Us
with the singular poin us of the local chart U; in phase portrait 53 of Figure
18.

that is a contradiction with Lemma 11. So they are not realizable. The phase portrait 60
is topologically equivalent to 50 of Figure 18.

F1GURE 20. The straight line connecting the origin of the local chart Us
with the singular poin u; = uo of the local chart U in phase portrait 56 of
Figure 18.

F1GURE 21. The straight line passing through the points z; and z3 in phase
portrait 58 of Figure 18.

If 23 = z4 and z1 = z2 we have the phase portraits 61,62 and 63 of Figure 22. But using
the straight line joining z; and z3 as done in Figure 21 and applying Lemma 11 we see
that 61 and 62 are not realizable. The phase portrait 63 is realizable and corresponds to
PL.1.20 in Figure 3. The values of the parameters that realize this system can be found
in Table 2.

For 32 — 4ag < 0 the points 23 and z4 are complex. The possible phase portraits are
described by 64 — 72 of Figure 22. The phase portraits 64,65,68 and 71 are realizable
and corresponds, respectively, to PL.1.21, PL.1.22, PL..1.23 and PL.1.24 of Figure 3. The
values of the parameters that realize these systems can be found in Table 2. To prove
that the phase portraits 66,67,69 and 70 are not realizable, it is enough to consider the
straight line passing through the origin of the local chart Us and the infinity singularity
uy = ug of the local chart U; (see Figure 23). This straight line generates a contradition
with Lemma 12 so the phase portraits 66,67,69 and 70 are not realizable.
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FIGURE 22. Phase portraits 61 — 63 corresponds to phase portraits of sys-
tem (P.1) when v, = 1 and 85 — 4ag = 0;

Phase portraits 64— 72 corresponds to phase portraits of system (P.1) when
v9 =1 and 55—4a2 < 0.

F1GURE 23. The straight line connecting the origin of the local chart Us
with the singular poin u; = wug in the local chart U; in phase portrait 66 of
Figure 22.

To end the case 72 = 1 we consider the case where there is only one finite singular
point. Using Theorem 2.19 of [9] we can see that the point is a saddle, which generates
phase portrait 72 of Figure 22 which corresponds to phase portrait PL.1.25 of Figure 4.
The values of the parameters that realize this system can be found in Table 2.

Now we consider the case 72 = 0. The system is

(45) & =z(az + P2 1), y=ai(y— :172) + 2z(ox + P2 y).

When a; = 0 such system has a common factor so assume «; = 1. By the change
x=—X,y =Y it is enough to consider the case 83 > 0.
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Assuming 2 > 0. In the finite part the points z; = (0,0) and 2z = (—ag/ﬂz, (042/52)2)
are the singular points and the system has an additional invariant straight line, given by
fs = x+ ag/f2 = 0. Defining I; = ag and Iy = 1 — 2a9 the eigenvalues associated to
z1 are 1 and [;, while the eigenvalues associated to zo are —I; and lo. We assume ls # 0
(otherwise such system has a common factor and it is equivalent to a linear system).

In the local chart U; the unique singular point is u; = (I3/f2, 0) and it is a saddle. In
the local chart Us the compactified system is

o= u((1 = 2a2)u? + (g — 1)v — fou), v =v((1 = 2a2)u? — 2Bou — v).

The origin (0,0) is a linearly zero singularity. Doing the blow up u = UV, v = V and
rescaling by V we get the system

U=Ulag +BU), V=V(1-20U*V)—=28U—1).

When V' = 0 the singularities are w; = (0,0) and wp = (—az/52,0). The eigenvalues
associated to u; are —1 e [y while the eigenvalues of us are —I; e —ls. The blowing down
process is described in Figure 24 (1)-(4) according to the signs of I; and .

When By = 0 the point z; is the unique finite singular point, being a saddle or an
unstable node depending on the sign of [;. In the local chart U; there is no singular point
and the origin (0,0) of Us is linearly zero. To study such point we apply blow ups, in
Figure 24 is described the blowing down (5) and (6).

Summarizing the study done previously we get the local behaviour at origin of Us:

(1) B2 >0, 13 > 0 and ls > 0: the origin of Uy has two elliptic sectors;

2) B2 > 0,11 > 0 and Il < 0: the origin of U, has two hyperbolic sectors;
3) B2 > 0,13 <0 and ls > 0: the origin of U, has two elliptic sectors;

4) P2 > 0,13 =0 and Iz > 0: the origin of Us has two elliptic sectors.

5) B2 = 0,13 > 0: the origin of Us has two hyperbolic sectors;

6) B2 = 0,01 <0: the origin of Us has two elliptic sectors;

By continuity and the above analysis we conclude that the case (3) is topologically
equivalent to case (1) and the cases (1),(2),(4),(5) and (6) correspond, respectively, to
the phase portraits PL.1.26, PL.1.27, PL.1.28, PL.1.29 e PL.1.30 of Figure 4. Table 4 has
the values of the parameters that realizes the phase portraits of system (P.1)

System (P.2) with ¢ # 0 has a Darboux invariant if 2 # 0, and it can be written as

i =B (z®+c)+rr(y+ec), Y =2(y+c)(frr+1y).

Note that if 81 = 0 such system has a common factor so we can assume 5; = 1. Applying
the change of coordinates x = — X,y = Y and rescaling the time we can assume v, > 0.

If ¢ < 0 the system has three finite singular points z; = (—1/72,1/73), 22 = (—v/—¢, —¢)
and 23 = (v/—c, —c). Otherwise, only z;.

Defining I; = ¢ # 0 and Iy = 1 + c~3 the eigenvalues associated to z; are 27,/ and
l2/72, the eigenvalues associated to 29 are —2y/—c and —2(vy2 ¢ + v/—c); the eigenvalues
associated to z3 are 2/—c and —2(y2 ¢ — /—¢). So when ¢ < 0 the point 23 exists and it
is an unstable node.

In the local chart U; we have two singular points u; = (0,0) being a hyperbolic saddle
and ug = (—1/72,0) being a saddle-node. In the local chart Us the origin is a stable node.

When I3 = 0 then z; = z3 is a semi-hyperbolic node and the infinity part does not
change. Note that z; is a saddle-node in this case. So by continuity and the reasoning
above, if ¢ > 0 we have phase portrait PL.2.1 of Figure 4 which is realizable with ¢ = v, =
1. When ¢ < 0 and [y # 0 the system has two possible phase portraits, also described
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Y2 | B2 | aq
PL1.1 |1 111/8 1
PL1.2 |1 111/16 | 1/16
PL.1.3 by continuity
PL14 |1 1]1/16 | 1/150
PL15|1 [1/2|3/64| 1/32
PL.1.6 by continuity
PL.1.7 |1 11]-3/8 -1
PL.18 |1 1]3/16 | 1/16
PL19 |1 1]1/16 0
PL.1.10 | 1 1]-1 0
PL.1.11 |1 1]1/18 0
PL.1.12 | 1 11]3/16 0
PL.1.13 | 1 110 1
PL.1.14 | 1 110 -1/8
PL.1.15| 1 1]0 -1/4
PL.1.16 | 1 110 -1
PL.1.17 |1 1]1/4 1
PL.1.18 | 1 1]1/4 3/8
PL.1.19 | 1 1]1/4 1/4
PL.1.20 | 1 1]1/4 0
PL.1.21 |1 112 5
PL.1.22 |1 314 6
PL.1.23 | 1 1]9/8 2
PL.1.24 |1 112 13/4
PL.1.25| 1 112 0
PL.1.26 | O 1]1/4 1
PL.1.27 | 0 11]3/2 1
PL.1.28 | 0 110 1
PL.1.29 | 0 0|1 1
PL.1.30 | 0 0|-1 1

TABLE 2. Table of values for the parameters of system (P.1).
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in Figure 4: PL.2.2 (realizable with ¢ = —1/2 and 72 = 1) and PL.2.3 (realizable with
c=—2and 7 =1).

Finally if ¢ < 0 and lo = 0, we see that the line y + ¢ = 0 is one of the separatix of
the saddle-node. So the only possible phase picture is PL.2.4 (realizable with ¢ = —1 and
Y2 = 1)

Phase portraits of systems (P.2) when ¢ = 0 and they have a Darboux invari-
ant. The differential system is

i=-Pi(y —2°)+ Poy + oz, ) =2y(B2x + a2).

Since ag # 0 we take ag = 1. Moreover doing the change of coordinates © = — X,y =Y
we can assume (9 > 0. The system has at most three finite singular points, namely,
21 = (0,0) and 2z = (—1/B1,0) and z3 = (—1/B2,1/33). The point 2; has eigenvalues
2 and 1, so it is an unstable node. On the other hand the topological type of zo and zj3
depends on the numbers I} = 81 and ls = f1 — B2 # 0. Indeed the point zo has eigenvalues
—1 and 2l3/1; and z3 has the eigenvalues —1 and —2l3/1;.

In the local chart U; the system has u; = (0,0) as a singularity with eigenvalues —Iy
and —I3, where I3 = 51 — 20,.

In the local chart Uy the compactified system has the origin as a nilpotent singularity.
This mean that the linear part of the system, evaluated in (0,0), is not null but their
eigenvalues are both equal to zero. To classify this type of singular point we use Theorem
3.5 of [9]. This result use two functions, F'(u) = apu™ +o(uM) and G (u) = byu™ 4+-o(u?),
defined from the differential system. In short the caracterization is done using a,s, by and
the natural numbers M, N.

For the compactified system in the local chart Uy these functions are
_2(B2—3Bs) | Blz o _ 2Bals

213
U+ = u, F(u) = ud + =3t

G P
() Iy 2 12 13

So when I3 > 0 the origin (0,0) is a saddle as in (b) of Figure 25. If I3 < 0 the origins
consists of one hyperbolic and one elliptic sector as in (a) of Figure 25. By continuity, when

l; > 0 and I3 > 0 we have the phase portrait PL.2.5 of Figure 4 (realizable with 5 = 4
and B2 = 1). If I3 < 0 we have the phase portraits PL.2.6 (realizable with 5; = 3/2 and
P2 = 1) and PL.2.7 (realizable with 5 = 1/2 and 2 = 1) of Figure 4. Now if I; < 0 the
only possibility is I3 < 0 and we have the phase portrait PL.2.8 (realizable with g; = —1
and (2 = 1) of Figure 4.

If {1 = 0 the point z3 goes to the infinity and collide with u; becoming a saddle-node.
Moreover {1 = 0 implies I3 < 0, so the origin of Uy has a hyperbolic and one elliptic sector.
This case corresponds to phase portrait PL.2.9 of Figure 4, realizable with 8; = 0 and
B2 = 1.

If B2 = 0 the point z3 goes to the infinity and collide with the origin of Us becoming
(0,0) a nilpotente saddle-node as (¢) or (d) in Figure 25. Moreover the only possible phase
portrait is given by PL.2.10 of Figure 4, realizable with 8; = 1 and (3 = 0).

Finally when I3 = 0 then the infinity if filled of singular points, without special singu-
larities and the corresponding phase portrait is PL.2.11 of Figure 4 (realizable with $; = 2
and o = 1).

Proposition 14 (LV). Each real polynomial differential system having two real lines that
intersect at a single point and a third straight line having a Darboux invariant can be
written, after an affine change of coordinates, as
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(i) (LV.1) with a(q — B) # and Darbouz invariant
Iy(t,m,y) = e a=A)t B ph=atr(y _ g)=(B+r)
(ii) (LV.2) with ¢ =q =0, p # 0 and Darbouz invariant
Io(t,z,y) = e Ploy™,
(iii) (LV.2) with ¢ = —1 and Darbouz invariant
In(ta,y) =e'yy-17",
(iv) (LV.3) with o« = —(B+ 1), ¢B # 0 and Darbouz invariant
Lp(ta,y) =e Py (y+az+eo) "

Moreover there are 27 non-equivalent phase portraits in the Poincaré disc. They are in
Figure 5.

Proof of Proposition 14 (LV). Let fi = x = 0, fo = y = 0 be the two real straight
lines intersecting in a point. Considering system (LV.1) the third line is f3 = y — x
and the cofactors associated to fi, fo and f3 are, respectivelly, k1 = o+ ry + Bz, ko =
a+yB—q+r)+qrand ks = o+ y(B — g+ 1)+ Bzx. One solution for equation
Aki1 + Xoko +s5=0is
_ BAM B+ alg—B)M
)\2 - 7 ., )\3 - = y § = )
B—q+r B—q+r B—q+r

Taking A\; = 8 — ¢ + r we obtain the Darboux invariant

L(t,z,y) = @At yB gB=atr(y — g)=(B+7),

Now we analize system (LV.2) that has f3 = y+c as the third invariant straigh line(remember
that ¢ =0 or ¢ = —1). Here the cofactors are ky = p+ qr +ry, ko =y + c and ks = y. If
¢ = 0 then equation (8) has only one the solution

q=0, 3 =—rA1 — Ao, s = —DA1.
Taking A\; = 1 we get the Darboux invariant
Li(t,xz,y) = e Play™".
Otherwise if ¢ = —1 then the more general solution is
A1 =0, A3 = —Xg, s = Aa.
Taking Ao = 1 we obtain the Darboux invariant
Lt,z,y) = e'yly —1)~".

The last case to be considered is system (LV.3) that has f3 =y + axz + ¢ =0 as the third
straight line. The cofactors are k; = —a(y +ax+c¢) —y, ke = By + az + ¢) + ax and
ks = By — aax. Solving equation (8) we get the solution

a=—(B+1), A2 =X — A, s = —c(M1 + B(A1 + \2)).
Taking A\; = 0 and Ay = 1 then we obtain the Darboux invariant

Lit,z,y)=ePly(y+az+c)™
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Phase portrait of systems (LV.1) when they have a Darboux invariant. Re-
member that if system (LV.1) has a Darboux invariant then 5 — ¢ # 0 and o # 0 so we
can take o = 1 getting
(46) t=x(1+px+ry), g=yl+qr+B-qg+7r)y).

Define Iy = (8 —¢)/(B —q+7),la = (8—q)/B and I3 = (8 — q)/(8 + 7). The finite part
presents at most four singularities

e z; = (0,0) with eigenvalues both equal to 1;

e 2= (0,—1/(8 — q+r)) with eigenvalues —1 and Iy;

e z3 = (—1/3,0) with eigenvalues —1 and ly;

o zy=(—1/(B+r), —1/(B +r)) with eigenvalues —1 and —I3.

In the local chart U; the compactified system has two singular points, being u; = (0,0)
with eigenvalues —f and —(8 — ¢) and uz = (1,0) with eigenvalues 8 — ¢ and —(8 + r).
Moreover in the local chart U; the origin (0, 0) is a singular point with eigenvalues —(8—q)
and —(8—q+r). Thus when one of the finite singularities goes to infinity, it collides with
u1, Uz, or the origin of the local chart Us.

When [q,lo and I3 are non-zero, the combinations between their signs generate the
possible phase portraits of system (46). There are exactally three possible phase portraits,
all of them described in Figure 5: LVL.1.1, realizable for § = 1,q = r = 0; LVL.1.2,
realizable for § = 1,q = r = —2; LVL.1.3, realizable for § =1,q = —r = 3/4.

Now we consider the case § = —r # 0. Here only the point z4 goes to the infinity and
collides with us making it a semi hyperbolic saddle-node. There are two possible phase
portraits, given by LVL.1.4 of Figure 5 (realizable with 8 = 1,¢ = r = —1) and LVL.1.5
of Figure 5 (realizable with 8 = 2,q = 1,7 = —2). The cases where z or z3 goes to the
infinity generate phase portraits equivalent to the previous ones.

Finally when two finite singular points go to the infinity (for example when § = —r
and ¢ = 0), then there is only one phase portrait, given by LVL.1.6 of Figure 5. This last
phase portrait is realizable for  =1,¢ =0 and r = —1.

Phase portraits of systems (LV.2) when they have a Darboux invariant. First
we consider the case ¢ = —1, when the system is given by

t=z(ptqr+ry), y=yly—1).
If ¢ # 0 unless of the change x = X/q we can assume ¢ = 1. Considering ¢ = 1 and
defining I; = p, lo = —(p + r) and I3 = r — 1 the system has at most four finite singular
points, namely
z1 = (0,0) with eigenvalues —1 and Iy;
z9 = (0,1) with eigenvalues 1 and —ly;
z3 = (—p,0) with eigenvalues —1 and —Iy;
z4 = (—p —r,1) with eigenvalues 1 and ls.

In the local chart U, the origin (0,0) is a singularity with eigenvalues —1 and 3. In the
local chart Uy the sytem has two singularities if I3 # 0: u; = (0,0) being a hyperbolic
unstable node and ug = (1/l3,0) with eigenvalues 1 and 1/l3. Hence if I3 = 0 the point
ug collides with the origin of Us; making it a semi-hyperbolic singularity of type saddle
node. By continuity and using all the possible combinations of the signs of /1,1l and I3
when ¢ = 1 and I3 # 0 we obtain the phase portraits LVL.2.1- LVL.2.7 of Figure 5. When
I3 = 0, i.e., r = 1 has three possible phase portraits: LVL.2.8, LVL.2.9 and LVL.2.10 of
Figure 5. The values of the parameters that realize these systems can be found in Table 3.
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Now it remains to study the case ¢ = 0. Note that since the system cannot have commom
factors it follows that [y and [y are different from zero. When ¢ = 0 both the finite part
and the analyzes in the local chart Us remain almost the same. The only difference in the
finite part is that the singularities z3 and z4 go to infinity. However in the local chart U;
the compactified system is

u=—u((r—1u+ (p+1)v), 0= —v(pv + ru).

So the origin is a linearly zero singular point if I3 # 0 and we apply the blow up doing the
change of coordinates u = U,v = UW. The new system is

U=-U(p+D)W4+r—1), W=UWW —-1).

After eliminating the common factor U it remains two singular points on U = 0: u; = (0,0)
with eigenvalues —1 and —l3, and uz = (0,1) with eigenvalues 1 and ly. Hence they are
hyperbolic points and doing the blow down the origin of Us has (for I3 # 0)

e two elliptic sectors if @y is a saddle and w3 is a unstable node. This case corresponds
to phase portrait LVL.2.11 of Figure 5;

e two elliptic sectors if @y is a stable node and w5 is a saddle. This case corresponds
to phase portrait LVL.2.12 of Figure 5;

e two parabolic sectors if 7 and uy are both saddles and there is a saddle and a
node as singular finite points. This case corresponds to phase portrait LVL.2.13
of Figure 5;

e two parabolic sectors if w7 and uwy are both saddles and there are two nodes as
singular finite points. This case corresponds to phase portrait LVL.2.14 of Figure
5;

e six parabolic sectors if uy and Wy are both saddles and there are two nodes as
singular finite points. This case corresponds to phase portrait LVL.2.15 of Figure
5.

The last possibility when ¢ = —1 is ¢ = 0 and I3 = 0. But when this happens the system
has the infinity line v = 0 filled up of singular points. After eliminating the common
factor v, in the local chart Uy the point u; = (0,0) is a singular point, with eigenvalues
—I1 and lo. In the local chart Uy, After eliminating the common factor v, the origin is a
singularity. By continuity the possible phase portraits are LVL.16 and LVL.2.17 of Figure
5. In Table 3 we put the values of the parameters that realizes each one of the phase
portraits described in Figure 5.
Finally when ¢ = 0 we get the differential system

(47) i:.TQ, y:y(p—i—rm),

with p # 0. So we can take p = 1 and the system becomes a particular case of system
(DL) of Theorem C. The global phase portraits of this system will be done in the proof
of Proposition 16 and the correponding phase portraits of system (47) are described by
DL.1, DL.2 and DL.3 of Figure 6.

Phase portraits of systems (LV.3) when they have a Darboux invariant. When
(LV.3) has a Darboux invariant the parameter o must be equal to —(f + 1) so the differ-
ential system is

t=z(ax+ply+ax+c)+c), y=ylax+ py+ax+c)).

In the finite part there are three singular points, namely z; = (0,0), zo = (0, —¢) and
z3 = (—c¢/a,0) (remember that ac # 0). Defining l; = c¢f # 0 and Iy = c(f+1) # 0,
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q|r p
IVL21 | 1]-1 | 1/2
LVL22 |12 1
LVL23 |1]|-1 2
LVL24 |1]|-1 1
LVL.25 |12 -2
IVL26 |1]1/2]-1/2
LVL.2.7 |1 0
LVL28 |11 1
IVL29 |1]|1 |-1/2
LVL210 1|1 -1
LVL.2.11 |0 | -2 1
LVL.2.12 |0 | 2 1
LVL.2.13 0|0 1
LVL.2.14 |0 | 2 -1
LVL.2.15 | 0 | 3/4 | -1/4
LVL.2.16 |0 | 1 1
LVL.217 0|1 -1/2

TABLE 3. Table of values for the parameters of system (LV.2) when ¢ = —1.

then the eigenvalues of the z; are [y and ly; the eigenvalues of zo are ¢ and —ly, and the
eigenvalues associated to z3 are —c and —Is.
In the local chart U; the compactified system becomes

U= —cuv, 0= —v(cv+ B(u+cv+a)+a).
Hence the line v = 0 is filled of singular points after eliminating the common factor v
there are no singular points. The same happens in the local chart Us. So by continuity

the only possible phase portrait is LVL.3.1 of Figure 5, which is realizable for § = 1 and
a=c=—1.

Proposition 15 (RPL). Fach real planar quadratic differential system with two parallel
real straight lines and a third straight line having o Darboux invariant can be written, after
an affine change of coordinates, as system (RPL) and it has the Darboux invariant

Iiz(t,2,y) = (@ + 1)@ —1)7"
Moreover there are 17 non-equivalent phase portraits in the Poincaré disc for this system.

They are described in Figure 6.

Proof. Let fi = x+1 =0, fo =2z —1 =0 and f3 = y = 0 be the three invariant
straight lines. The cofactors of f1, fo and f3 are, respectivelly, ky =z — 1, ko =z + 1, k3 =
a+px+vy. With these cofactors equation (8) with s € R\ {0} has two solutions, namely
s1={7=0,s=2\+ (8- a)A3, A2 = —(\1 + BA3)}
So = {S = 2A1, AQ = —)\1, )\3 = O}
Since the second solution sy is more general we conclude that every quadratic system that
has two real parallel straight lines and a third real straight line as invariant straight lines
also has a Darboux invariant. Taking A\; = 1 we get the invariant

Lig(t,z,y) = ez + 1) (z — 1)71.
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Phase portraits of systems (RPL). Remember that the system is
g=2"—-1,  g=yla+Br+yy).

When 7 # 0 we can take v = 1 (indeed, just do the change x = X,y = Y/v). So the system
can present at most four finite singularities, namely, z; = (—1,0), 20 = (—1,8 — ), 23 =
(1,0) and z4 = (1,—f8 — ). Define I} = a — 3 and lo = a + . The eigenvalues associated
to z1 are —2 and [; while the eigenvalues associated to zo are —2 and —I;. Moreover
z1 = 2o when I; = 0. Analogously the eigenvalues of z3 are 2 and [, while the eigenvalues
associated to z4 are 2 and —lo, with z3 = 24 when I3 = 0. So in the finite part the system
can have two, three or four singulaties, depending on the values of [ and Is.

In the local chart U; the compactified system has at most two singularities on the
infinity line: u; = (0,0) and ug = (1 —f3,0). Defining I3 = 5 — 1 we see that u; = uy when
I3 = 0 and the topological type of these singularities depends on the sign of I3. Indeed the
eigenvalues associated to uy are —1 and [3 while the associated to ue are —1 and —lI3.

In the local chart U, we just need to check if the origin (0,0) is a singularity, which is
true. It is a node, with the two eigenvalues equal to —1.

So considering v # 0 and combining all the possibilities of the signs of I1,ly and I3 we
obtain the phase portraits RPL.1-RPL.10 of Figure 6. In Table 3 we put the values of the
parameters that realizes each one of the phase portraits described in Figure 6.

If v = 0 then 29 and z4 goes to the infinity and the compactified system in the local
chart Uy becomes

o= (1-pB)u? — auv — v, 0 = —v(fu+ av).
Note that when I3 = 0(8 = 1) the line v = 0 is filled up of singular points, and when I3 # 0
the origin (0,0) is a linearly zero singularity. Considering this case first and applying the
blow up uw=U,v = UW and dividing by U we get the system

(48) U=-UB+W2+aW -1), W=WW -1)(W+1).

When U = 0 the singularities of (48) are w3 = (0, —1) with eigenvalues 2 and /1, uz = (0, 0)
with eigenvalues —1 and —I3, and uz = (0, 1) with eigenvalues 2 and —Is.

After blow-down we get the local phase portraits of the origin of Us which depend on
the signs of [1,lo and [3. Doing all the combinations the origin of Uy consists of:

e two elliptic sectors and parabolic sectors, see phase portraits RPL.11 and RPL.12
of Figure 6;

e two hyperbolic sectors and parabolic sectors, see phase portraits RPL.13 and
RPL.14 of Figure 6;

e six hyperbolic sectors, see phase portrait RPL.15 of Figure 6.

Finally if we consider 8§ = 1 and after eliminating the common factor v the origin of the
local chart Us is either a hyperbolic node or a hyperbolic saddle, described respectively
by the phase portraits RPL.16 and RPL.17 of Figure 6. The Table 4 has the values of the
parameters that realizes the phase portraits of Figure 6.

Proposition 16 (DL). Each real planar quadratic differential system with a double real
straight line and a third straight line having a Darboux invariant can be written, after an
affine change of coordinates, as system (DL), with v = 0 and a # 0, and the Darbouz
mvariant 18

Il4(t7 z, y) = eiaty xiﬁ'
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a Bl
RPL.1|[-5/4| 1/4 |1
RPL.2 |0 11
RPL.3 | -3 21
RPL.4 | -2 11
RPL.5 | 0 11
RPL.6 |-1/2] 1/2 |1
RPL.7 [ 1/2 [-1/2 1
RPL.8 | -2 21
RPL.9 | -1 11
RPL.10 | 0 01
RPL.11 | -3 210
RPL.12[ 0 ‘110
RPL.13 -1 0]0
RPL.14 | -1 210
RPL.15|-1/4| 3/4[0
RPL.16 | -2 1[0
RPL.17 [0 1[0

TABLE 4. Table of values for the parameters of system (RPL).

Moreover there are 8 non-equivalent phase portraits in the Poincaré disc for this systems.
They are described in Figure 6.

Proof. Let fi = x = 0 be the double real invariant straight line. By the proof of Proposi-
tion 6 we know that the second invariant straight line is fo = y = 0. The cofactors of f;
and fy are, respectivelly, k1 = z,ky = a + Sz + vy. Equation (8) with s € R\ {0} has
only one solution v =0, s = —aXe, Ay = —fAa.

Taking Ao = 1 and using this solution we get

i=2", y=yla+tpuz),
with Darboux invariant Ir(t,z,y) = ety 5. d

Phase portraits of systems (DL) when v =0 and « # 0. Since a # 0 we can take
a = 1. The origin of the system is the only finite singularity, which is a saddle-node. For
the infinity singularities we assume first that § — 1 # 0. In the local chart Uy the origin is
a saddle if 8 — 1 > 0, and a stable node if 5 —1 < 0. In the chart Us the system becomes

iw=—u((B—Nu+v), ©—v(fu+twv),

and the origin is a linearly zero singularity. Applying the blow up u = U, v =UW we get
the system
U=-UXB—-1+W), W=-UW,

which after eliminating the common factor U has the origin as only singular point. If
B — 1 > 0 the origin is a hyperbolic stable node and if 5 — 1 < 0 the origin is a saddle.

After blow down we get the local phase portraits of the origin of Us which depend on
B. When 8 — 1 > 0 the origin has two elliptic sectors and parabolic sectors, see phase
portrait DL.1 of Figure 6. If 5 —1 < 0 then there are two hyperbolic sectors and parabolic
ones, see phase portrait DL.2 of Figure 6.
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When g = 1 the infinity is filled up of singular points and the origin in the local chart
U, is a hyperbolic stable node. The phase portrait of this case can be found and it is
described by DL.3 of Figure 6.

Proposition 17 (CPL). Each real planar quadratic differential system with two parallel
complex straight line and a third straight line having a Darboux invariant can be written,
after an affine change of coordinates, as system (CPL). A Darboux invariant is given by

1-15(1:’ z, 3/) — etem‘ctan(l/m)

Moreover there are 6 non-equivalent phase portraits in the Poincaré disc for this system.
They are described in Figure 7.

Proof. Let fi =x+1i =0, fo =2 —1i =0 be the two complex parallel straight lines. By
the proof of Proposition 6 we know that the third invariant straight line is f3 = y = 0.
The cofactors of f1, fo and f3 are, respectivelly, k1 = x — i, ko =z 4+ i, ks=a+ Bz +vy.
The equation (8) with s € R\ {0} has two solutions, namely

s1={y=0,s=1i(2\1 + (B + ia)A3), Ao = —BA3 — A1}
s9 = {s =2iA1, \a = —)\1, A3 = 0}.

Using s2 (which is more general) we conclude that all systems with two parallel com-
plex straight lines and a real straight line as invariants curves have a Darboux invariant.
Moreover taking \; = —i/2 we get

Lt,z,y) = e (x — )% (x +14)"2

Using the polar form of the complex numbers it follows that (z — i)¥/%(x 4+ i)~%/? =
earetan(1/7) go the Darboux invariant is Ir(t,z,y) = e?otan(l/z)+t O

Phase portraits of systems (CPL). In [10] the authors already study the quadratic
systems with f = 22 + 1 = 0 as invariant curve, given by

=241, §=Q(y),

with @ an arbitrary polynomial of degree 2. In our case we have Q(z,y) = y(a+Sz+~vy).
So the system studied here is a subcase of systems (V1) of the article [10]. In that article
the study of those systems is divided in six cases and since we have the invariant straigh
line y = 0 there are seven possible phase portraits. The case (VI.1) provides the phase
portraits 1 and 2 of [10](Fig. 1), i.e. the phase portraits CPL.1 and CPL.2 of Figure 7,
the case (V1.2) gives the phase portrait 6 of [10](Fig. 1), i.e. the phase portrait CPL.3 of
Figure 7; the case (VI.4) generates the phase portraits 16 and 17 of [10](Fig. 1), i.e. the
phase portraits CPL.4 and CPL.5 of Figure 7; the case (V1.5) gives the phase portrait 20
of [10](Fig. 1), i.e. the phase portrait CPL.6 of Figure 7. Finally the case (VI1.6) provides
the phase portrait 21 of [10](Fig. 1), i.e. the phase portrait CPL.7 of Figure 7.

Proposition 18 (p). Fach real planar quadratic differential system with two complex
straight lines that intersects in a real point and a third straight line having a Darbouz can
be written, after an affine change of coordinates, as

(i) (p.1) with as(B8 —283) # 0 and Darboux invariant
Lig(t, x,y) = e®3(B=20)t —2yzarctan(y/z) (1,2 4 4 2)03 =5
(i) (p.2) with ¢ # 0, a« = —1 and Darbouz invariant

Li7(t,x,y) =€ arctan(y/z)—ct
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Moreover there are 5 non-equivalent phase portraits in the Poincaré disc for this system.
They are described in Figure 7.

Proof. Let fi = x+ iy =0 and fo = z — iy = 0 be the two complex straight lines that
intersect at a real point. We have two systems, (p.1), with f3 = y, and (p.2) with f3 =
y + ax + c¢. We shall do the calculations for (p.1), and for system (p.2) the computations
are analogous.

Consider system (p.1) the cofactors of fi, fo and f3 are, respecively,

k1= (1/2)(Bx+ 2y3y + 2a3 —i(B — 2/3)y),
(49) ka=(1/2)(Bx+2y3y + 23 + (8 — 263)y),
ks =as+ B3z +y39.

Solving equation (8) the most general solution is

A =B3+iy3, A= B3—iv3, Az=—8, s=a3(8—28).
Hence assuming ag(f — 203) # 0 system (p.1) of Theorem C has the Darboux invariant
(50) Iy(t,,y) = ety =0 (o — iy) B0 (g 4 iy) Pt s,

Using the polar form of the complex numbers it follows that (z —4)"/?(z —iy)® =3 (x +
iy)Pstine = e—2ysarctan(y/z) (32 1 2)63 and we get the Darboux invariant

116(t,$,y) — ea3(372,33)t 672*y3 arctan(y/x) ($2 + y2)B3 y—ﬂ

For system (p.2) the third invariant straight line is f3 = y + ax + ¢ with ¢ # 0. In
this case the system has a Darboux invariant if and only if & = —1, and with the same
reasoning applied above we get the invariant

117(157 z, y) — e arctan(y/x)fct‘

Phase portraits of systems (p.1) when they have a Darboux invariant. Since
ag # 0 we can take a3 = 1. Systems (p.1) have at most two finite singularities, namely
z1 = (0,0) and 29 = (—2/3,0). When g = 0 the point 2z goes to infinity. The point z;
is an unstable node and the eigenvalues associated to z9 are —1 and (8 — 283)/5. So the
point zo is either a stable node or a saddle.

In the local chart Uy the origin is not a singularity for the compactfied system. In the
local chart U; the system compactified has only one infinity singularity u; = (0,0) with
eigenvalues —f/2 and — (5 — 203)/2.

Then if 5(8—203) > 0, 23 is a saddle and u; is a stable node and the only phase portrait
is p.1.1 of Figure 7, realizable for § =1, 3 = 1 and 83 = —1/2. If 8(8 — 283) < 0, 22 is
a stable node and uy is a saddle and the corresponding phase portrait of this case is p.1.2
of Figure 7, realizable for 8 = 1, v3 = 1 and 3 = 3/2. Finally if 8 = 0 then 29 goes to
the infinity and uy becomes a semi hyperbolic saddle-node generating the phase portrait
p-1.3 of Figure 7, which is realizable for 5 =0, v3 = 1 and 83 = 2.

Phase portraits of systems (p.2) when they have a Darboux invariant. In the
local chart U; system (p.2) becomes

o= —cv(u® + 1), 0 = —v(af + au + cuv + fev + fu — 1).

So the line v = 0 is filled up of singular points. The same happens in the local chart
Us. In the finite part the point (0,0) is the only singularity, with complex eigenvalues.
So the origin can be a node or a center. Both cases are described, respectively, by the
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phase portraits p.2.1 ,realizable with a = § = 1 and ¢ = 2, and p.2.2, realizable with
a=1, =0 and c =2, of Figure 7. O

By the end we prove Theorem E. This result is about the differential systems having
an invariant cubic but that do not have a Darboux invariant.

Proof of Theorem E. First we consider systems of type (C'E), i.e, the ones which has an
invariant cubic of the form f = f1fo = 0 where f; = 2> + 3> + 1 and fo =az + by +c.
By Theorem C these systems can be written as

i=—(2>4+ > +1) =20 y(y + az + ¢), g =a(2®+y*+1) + 201 2(y + az + ¢),

with f; = 224+y%+1 and f = y+ax+c. The cofactors of f and fo are k1 (z,y) = 2(ay-+x)
and ka(x,y) = —2a1(ay — x), respectively. So the cofactors have no constant terms, i.e,
k1(0,0) = k2(0,0) = 0. The consequence of this is that equation (8) has no solution
considering s # 0. Hence these systems do not have a Darboux invariant of the form

est f1>\1 f2>\2 )
The proofs for other systems are very similar. In fact it suffices to observe that the
cofactors of the invariant curves never have a constant term. U
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