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PHASE PORTRAITS OF A FAMILY OF KOLMOGOROV
SYSTEMS DEPENDING ON SIX PARAMETERS

ERIKA DIZ-PITA', JAUME LLIBRE? AND M. VICTORIA OTERO-ESPINAR!

ABsTrRACT. Consider a general 3-dimensional Lotka-Volterra system with a
rational first integral of degree two of the form H = xy7zF. The restriction
of this Lotka-Volterra system to each surface H(z,y,z) = h varying h € R
provide Kolmogorov systems. With the additional assumption that they have a
Darboux invariant of the form xzfy™e5t they reduce to the Kolmogorov systems
T=x (ao —u(ciz + coz? + cgz)) s
z=2z(co+c1z + c22® + c32) .
In this paper we classify the phase portraits in the Poincaré disc of all these
Kolmogorov systems which depend on six parameters.

1. INTRODUCTION

The Lotka-Volterra systems have been used for modelling many natural phe-
nomena, such as the time evolution of conflicting species in biology [20], chemical
reactions, plasma physics [15] or hydrodynamics [6], just as other problems from
social science and economics.

These systems, which are polynomial differential equations of degree two, were
initially proposed, independently, by Alfred J. Lotka in 1925 and Vito Volterra in
1926, both in the context of competing species. Later on Lotka-Volterra systems
were generalized and considered in arbitrary dimension, i.e.

n
r; =x; | a0 + E Qij T , 1= 17 ey N
Jj=1

Consequently the applications of these systems started to multiply. Moreover Kol-
mogorov in [14] extended the Lotka-Volterra systems as follows

:éi:x,-Pi(xl,...,xn), i:l,...,n,

where P; are polynomials of degre at most m. These kind of systems are now
known as Kolmogorov systems. They have in particular all the applications of the
Lotka-Volterra systems as for instance in the study of the black holes in cosmology,
see [1].

The global qualitative dynamics of the Lotka-Volterra systems in dimension
two has been completely studied in [24], where all possible phase portraits on the
Poincaré disc have been classified.
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There are few results about the global dynamics of the Lotka-Volterra systems in
dimension three. Our objective is to study the phase portraits of the 3-dimensional
Lotka-Volterra systems

T = z(ap + a1 + agy + azz),
(1.1) y = y(bg + bz + bay + b32),
Z2=2z(co + 12 + coy + c32),

which have a rational first integral of degree two of the form z’y’z*. We have used
the Darboux theory of integrability to obtain a characterization of these systems.
As a result, we have reduced the initial problem to a problem in dimension two,
the study of the global dynamics of two families of Kolmogorov systems. In this
paper we focus on the first family, which is

(1.2) &= x(ap + a1 + ax2* + azz),

' 3= z(co + 12 + 22 + ¢32),

Kolmogorov systems (1.2) depend on eight parameters, this is a big number in
order to classify all their distinct topological phase portraits. Then we require that
Kolmogorov systems (1.2) have a Darboux invariant of the form 2°y™e*!, then these
systems are reduced to study the Kolmogorov systems
(1.3) i =z (ao — plarz + 922 + 032)) ,

' 2=z(co+clx+02,z2+<:3z),

which now depend on six parameters. For these Kolmogorov systems we give the
topological classification of all their phase portraits in the Poincaré disc. Roughly
speaking the Poincaré disc is the closed unit disc centered at the origin of R2. Its
interior is identified with R? and the circle of its boundary is identified with the
infinity of R2. In the plane R? we can go or come from the infinity in as many
directions as points have the circle. The polynomial differential systems can be
extended to the closed Poincaré disc, i.e. they can be extended to infinity and in
this way we can study their dynamics in a neighborhood of infinity. This extension
is called the Poincaré compactification, for more details see subsection 2.1. Thus
our main result is the following.

Theorem 1.1. Kolmogorov systems (1.3) have 102 topologically distinct phase por-
traits in the Poincaré disc under condition (Hs) given in Figure 16.

The condition (Ha) is
{CQ # 07a0 > Oacl > 0763 > Oaa() + copt 7é 0,0,061/1, 7é 07,U,§£ 71}

We will see that we can assume condition (Hz) because Kolmogorov systems (1.3)
can be reduced to satisfy such condition either using symmetries, or eliminating
known phase portraits, or eliminating phase portraits with infinitely many finite or
infinite singular points.

Other papers where some topological phase portraits have been classified in the
Poincaré disc are, for instance, [4, 13, 17].

In Section 3 using the Darboux theory of integrability we explain the reduction
from the Lotka-Volterra system (1.1) to the Kolmogorov systems (1.3). In Section
4 we give some properties of the system obtained. In Section 5 we study the local
phase portrait of the finite singular points, and in Section 6 we do the same with
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the infinite singular points, applying the blow-up technique. Finally in Section 7
we prove Theorem 1.1.

2. PRELIMINARIES

2.1. Poincaré compactification. In order to study the behavior of the trajecto-
ries of our polynomial differential systems near the infinity we will use the Poincaré
compactification. We provide a short summary about this method, more details
can be found in Chapter 5 of [9].

Let X = (P(z,y),Q(z,y)) be a polynomial vector field of degree d defined in
R2. Consider the Poincaré sphere S* = {y € R® : yf + y3 + y3 = 1} and its tangent
plane at the point (0,0,1) which is identified with R2.

We consider the central projections f7: R2 — S? and f~: R? — S2. By defini-
tion, f*(x) is the intersection of the straight line passing through the point z and
the origin with the northern hemisphere of S2, and respectively for f~ () with the
southern hemisphere. The differential DfT and respectively Df~ send the vector
field X into a vector field X on S?\S!. Note that the points at infinity of R? are in
bijective correspondence with the points of the equator S* of S2.

The vector field X can be extended analytically to a vector field on S? multiplying
X by y§. We denothe this vector field by p(X), and it is called the Poincaré
compactification of the vector field X on R2.

For studying the dynamics of X in the neighborhood of the infinity, we must
study the dynamics of p(X) near S'. The sphere S? is a 2-dimensional manifold so
we need to know the expressions of the vector field p(X) in the local charts (U;, ¢;)
and (V;,v;), where U; = {y € S?:y; >0}, V; = {y €S? 1 y; <0}, ¢ : U; — R?
and ¢; : V; — R® for i = 1,2,3 with ¢i(y) = —i(y) = (Ym/Yi> yn/yi) for m <n
and m,n # i.

In the local chart (Uy, ¢1) the expression of p(X) is

(2.1) i = v? [—up<1,“> +Q<17“>] 7 @:_Udﬂp(l,“)_
v v v v v v

In the local chart (Us, ¢2) the expression of p(X) is

(2.2) i = v [P (izf) —uQ (ij)} : @z—vd+1P<i,Z>,

and in the local chart (Us, ¢3) the expression of p(X) is
(2.3) = P(u,v), v = Q(u,v).

In the charts (V;,4;), with ¢ = 1,2, 3, the expression for p(X) is the same as in
the charts (U, ¢;) multiplied by (—1)?~1.

The equator S! is invariant by the vector field p(X) and all the singular points
of p(X) which lie in this equator are called the infinite singular points of X. If
y € S! is an infinite singular point, then —y is also an infinite singular point and
they have the same (respectively opposite) stability if the degree of vector field is
odd (respectively even).

The image of the closed northern hemisphere of S? onto the plane y3 = 0 under
the orthogonal projection 7 is called the Poincaré disc D?. Since the orbits of p(X)
on S? are symmetric with respect to the origin of R3, we only need to consider the
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flow of p(X) in the closed northern hemisphere, and we can project the phase por-
trait of p(X) on the northern hemisphere onto the Poincaré disc. We shall present
the phase portraits of the polynomial differential systems (1.3) in the Poincaré disc.

2.2. Topological equivalence between two polynomial vector fields. Two
polynomial vector fields X; and X5 on R? are topologically equivalent if there exists
a homeomorphism on the Poincaré disc which preserves the infinity S' and sends
the trajectories of the flow of m(p(X1)) to the trajectories of the flow of m(p(Xs)),
preserving or reversing the orientation of all the orbits.

A separatriz of the Poincaré compactification m(p(X)) is an orbit at the infinity
St, or a finite singular point, or a limit cycle, or an orbit on the boundary of a
hyperbolic sector at a finite or an infinite singular point. The set of all separatrices
of m(p(X)) is closed and we denote it by X x.

An open connected component of D*\Xx is a canonical region of w(p(X)). The
separatriz configuration of w(p(X)) is the union of an orbit of each canonical region
with the set Y x, and it is denoted by E/X. We denote by S (respectively R) the
number of separatrices (respectively canonical regions) of a vector field 7(p(X)).

We say that two separatrix configurations Elxl and Z/XQ are topologically equi-

’

valent if there is a homeomorphism / : D? — D? such that h(XY,) = X, .

The following theorem of Markus [21], Neumann [22] and Peixoto [23] allows to
investigate only the separatrix configuration of a polynomial differential system in
order to determine its phase portrait in the Poincaré disc.

Theorem 2.1. The phase portraits in the Poincaré disc of two compactified polyno-
mial vector fields w(p(X1)) and w(p(X2)) with finitely many separatrices are topo-
logically equivalent if and only if their separatriz configurations Elxl and Elxz are
topologically equivalent.

2.3. Blow-up technique. There exist classification theorems for hyperbolic and
semi-hyperbolic singular points, and also for nilpotent singular points which can
be found in Chapter 2 and 3 of [9]. The centers are more difficult to study, see for
instance Chapter 4 of [9]. Whereas to study a singular point for which the Jacobian
matrix is identically zero, the only possibility is studying each singular point case
by case. The main technique to perform the desingularization of a linearly zero
singular point is the blow-up technique. We give a short summary about this
method, more details can be found in [2].

Roughly speaking the idea behind the blow up technique is to explode, through
a change of variables that is not a diffeomorphism, the singularity to a line. Then,
for studying the original singular point, one studies the new singular points that
appear on this line, and this is simpler. If some of these new singular points are
linearly zero, the process is repeated. Dumortier proved that this iterative process
of desingularization is finite, see [§].

Consider a real planar polynomial differential system of the form

= P(z,y) = Pn(z,y)+ ...,
y:Q(x,y) :Q7n(x7y)+"-7

where P and @) are coprime polynomials, P, and @.,, are homogeneous polynomials
of degree m € N and the dots mean higher order terms in x and y. Note that we
are assuming that the origin is a singular point because m > 0. We define the

(2.4)
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characteristic polynomial of (2.4) as

(2'5) ‘7:($7y) = '%'Qm(xvy) —me(x,y),

and we say that the origin is a nondicritical singular point if F # 0 and a dicritical
singular point if 7 = 0. In this last case P, = W,,,_1 and Q,, = yW,,_1, where
Win—1 # 0 is a homogeneous polynomial of degree m — 1. If y — vz is a factor of
Wn—1 and v = tan6*, 8* € [0, 27), then 0* is a singular direction.

The homogeneous directional blow up in the vertical direction is the mapping
(z,y) — (z,2) = (x,y/x), where z is a new variable. This map transforms the
origin of (2.4) into the line = 0, which is called the ezceptional divisor. The
expression of system (2.4) after the blow up in the vertical direction is

Q(z,xz) — zP(z,x2)

(2.6) &= P(z,z2), 2= ,
x

that is always well-defined since we are assuming that the origin is a singularity.
After the blow up, we cancel an appearing common factor 2™~ ! (2™ if F = 0).
Moreover, the mapping swaps the second and the third quadrants in the vertical
directional blow up. Propositions 2.1 and 2.2 of [2] provide the relationship between
the original singular point of system (2.4) and the new singularities of system (2.6).
For additional details see [3].

Finally, to study the behavior of the solutions around the origin of system (2.4), it
is necessary to study the singular points of system (2.6) on the exceptional divisor.
They correspond to either characteristic directions in the nondicritical case, or
singular directions in the dicritical case. It may happen that some of these singular
points are linearly zero, in which case we have to repeat the process. As we said
before, it is proved in [8] that this chain of blow ups is finite.

2.4. Indices of planar singular points. Given an isolated singularity ¢ of a
vector field X, defined on an open subset of R? or S?, we define the index of ¢ by
means of the Poincaré Index Formula. We assume that ¢ has the finite sectorial
decomposition property. Let e, h and p denote the number of elliptic, hyperbolic
and parabolic sectors of ¢, respectively, and suppose that e + h + p > 0. Then the
index of ¢ is ig =1+ (e — h)/2, and it is always an integer.

We recall that the Poincaré compactification of a vector field in R? introduced
in Subsection 2.1 is a tangent vector field on the sphere S?, so the next result will
be very useful in our study.

Theorem 2.2 (Poincaré-Hopf Theorem). For every tangent vector field on S? with
a finite number of singular points, the sum of their indices is 2.

2.5. Invariants and Application of the Darboux Theory. The Darboux Theo-
ry of Integrability provides a link between the integrability of polynomial vector
fields and the number of invariant algebraic curves that they have. The basic re-
sults on dimension two can be found in Chapter 8 of [9], and these results have
been extended to R™ and C” in [16, 18, 19].
We consider a real polynomial differential system in dimension three, that is a

system of the form )

dz/dt = & = P(z,y, z),
(2.7) dy/dt =y = Q(x,y,2),

dz/dt = 2 = R(z,y, 2),
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where P, and R are polynomials in the variables xz,y and z. We denote by
m = max{deg P,deg Q, deg R} the degree of the polynomial system, and we always
assume that the polynomials P, ) and R are relatively prime in the ring of the real
polynomials in the variables x,y and z.

Theorem 2.3 (Darboux Integrability Theorem). Suppose that a polynomial system
(2.7) of degree m admits p irreducible invariant algebraic surfaces f; = 0 with
cofactors K; fori=1,...,p. Then the next statements hold.

(a) There exist A\; € C not all zero such that Y 0| N K; = 0 if and only if the

function ffl ;"’ is a first integral of system (2.7).

(b) There exist \; € C not all zero such that >°%_, \;K; = —s for some s € R\ {0}

if and only if the function fl)‘1 ...fzﬁ\”exp(st) 18 a Darboux invariant of system
(2.7).

3. REDUCTION OF THE LOTKA-VOLTERRA SYSTEMS IN R3 TO THE
KOLMOGOROV SYSTEMS IN R?

As we said our objective is to study the global dynamics of the Lotka-Volterra
systems (1.1) in dimension three, which have a rational first integral of degree
two of the form 2°y7z*. The Darboux theory of integrability allow us to obtain a
characterization of these systems.

We consider the irreducible invariant algebraic surfaces fi(z,y,z) = = = 0,
falz,y,2) =y =0 and f3(x,y,2z) = 2 = 0 of system (1.1), with cofactors Ky, Ko
and K3, respectively. As K is the cofactor of f; we have that

_ pofi ofi ofi
Xfl_P@:z: 8y+R82

Then for the invariant algebraic surfaces considered we get the cofactors K; =
aog + a1x + asy + asz, Ko = by + b1x + boy + bsz and K3 = ¢g + c1x + oy + c32,
respectively.

Applying Theorem 2.3, since we assume that z*1y*22*s is a first integral of
system (1.1), we get that there exist A\; € C, with ¢ € {1,2,3}, not all zero, such
that Z?Zl A K; = 0. Apart from the trivial solution {A; = 0, A2 = 0, A3 = 0}, there
are the following three solutions of this equation:

+Q = Kif;.

51:{6():07 61:0, C2:O, 63:0, )\2:0, )\1:0}7

522{60:_%7 blz_c1/\37 bg:—CQ/\S, b3:_C3/\3 A :0}7 and

AQ AQ AQ >\2 ’
{ —b())\Q — CO>\3 _bl)\2 — 61)\3 —bg)\z — 62)\3 —bg)\z — 63)\3 }
S3=1qao = = az = a3 = ——— ¢,

PR PYR PYR A
which give rise to three families of Lotka-Volterra polynomial differential systems
of degree two in R3, with a first integral of the form z*1y*22%s.

If we consider the family given by solution S7, as the parameters ¢;, ¢ =0, ..., 3,
are zero, we have that 2 = 0 and the Lotka-Volterra system is reduced to:
=z (ag+ a1z + axy + azz ),
Y=y (bo+ b1z + bay + b3z ),
z2=0.
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As 2 =0, z is constant and this system has H = z as a first integral. Note that if
we consider the first integral H = 2*1y*22%3 and apply the conditions given by S,
it is Ay = Ay = 0, we obtain H = 23, with A3 = 2 for getting the degree two, but in
this case we will consider the simplest first integral. In each invariant plane with z
constant, we have a Lotka-Volterra polinomial differential system in R2. The phase
portrait of these systems has been studied in [24], so we are not going to deal with
this case.

In this paper we study the family given by the solution Ss. This solution provides
the values of parameters b; as a function of the parameters \s, A3 and ¢;, with
i=0,..,3, so we can replace them in the expression of y obtaining

. _Co)\s _ Cl)\3x . C2A3 . 63)\3Z
YTY TN TN NN )

If we denote A = —\3/ )2, then the original Lotka-Volterra system becomes

& =x(ap + a1z + asy + azz),
7 = Ay(co + 12 + oy + c32),

2= z(co + c1x + c2y + c32).

Given that A\, = 0, the first integral H = 9223 is reduced to H = y*22*3, but
if this is a first integral, also H = (gﬁzz)‘-")_%2 = y‘l,fi% =y A =2 yisa
first integral. If we want H to be rational of degree two, we must take A = 2. In
each level H = 1/h, with h # 0, we will have 1/h = 22y, so y = hz? and then, for
each h, the initial Lotka-Volterra system on dimension three reduces to the system
on dimension two

i = 2(ag + a1 + agh2® + asz),
5= 2(co + 1@ + c2h2® + c32).

We must study the phase portrait of the systems of this family, but it is equivalent
to study the phase portraits of the family of Kolmogorov systems in dimension two
(3.1) i =x(ag + a1x + as2® + asz),

. 5= 2(co + 17 + c22° + c32).

In the particular cases in which H is zero or infinity, the differential system on
dimension three is reduced to a Lotka-Volterra system on dimension two, having in
each case z = 0 and y = 0, respectively. We recall that these systems had already
been studied in [24].

Systems (3.1) depend on eight parameters and the classification of all their dis-
tinct topological phase protraits is huge. For this reason we study the subclass
of them having a Darboux invariant of the form z*12*2¢%!. By statement (b) of
Theorem 2.3 the expression A1 K, + A2 K, + s must be zero, where K, and K, are
the cofactors of the invariant planes x = 0 and z = 0, respectively. Note that s and
A? + A2 cannot be zero. We obtain the cofactors K, = ag + a1z + az2? + a3z and
K. = co + c1z + 22 + c32z and then, solving the equation A\ K, + MoK, + 5 = 0,
we get the following two non-trivial solutions

~ C1)\2 02>\2 CS)\Q
S1=48=—agA\1 —CcgAa, a1 = ————, ag = ————, a3 = — , and
1 { 0A1 — CoA2, a1 N N 3 " }
5'2:{8:700)\27 C1 :O, 02:0, 63:0, )\1 :0}




8 E. DIZ-PITA, J. LLIBRE AND M.V. OTERO-ESPINAR

So we have two subsystems from the initial system (3.1). According to the condi-
tions given by solution Sy the first subsystem is

) C1A2 Coda2 o9 C3X2
g=zag— x— 22— z),

A A1 A1
2=z (co + x4+ 2?4+ 032) .
If we denote Aa/A\; = p and A\; = A, then this subsystem becomes

(32) i = (ap — plarz + ca2% + c32)),
’ ézz(co—i—clx—l—cQzQ—l—c;;z),
and its Darboux invariant is z*z et (ao+com) - Byt if this is a Daboux invariant,
also it is zztet@tcon)  Note that in order that we have a Darboux invariant
ag + cop cannot be zero. }

If we consider now the solution Sy we get the subsystem

rT=x (ao + a1z + az2® + agz) ,
zZ = coZ,

which is equivalent to the previous one, taking ;1 = 0 and interchanging the variables
x and z, so it is sufficient to study the Kolmogorov systems (3.2) depending on six
parameters.

4. PROPERTIES OF SYSTEM (1.3)

In this section we state some results that will be used on the classification in
order to reduce the number of phase portraits appearing. Note that if c; = 0, then
the system (1.3) is a Lotka-Volterra system in dimension 2. A global topological
classification of these systems has been completed in [24], so we limit our study to
the case ¢o # 0.

We recall that for obtaining system (1.3) we have supposed that system (3.1)
has the Darboux invariant I = zzte~t(@0+cor) 5o it is required that ag + cou # 0.

Proposition 4.1. Consider system (1.3) and suppose that (Z(t), 2(t)) is a solution
of this system. If we change c1 by —c1 (respectively c3 by —cs ), then (—%(t), 2(t))
(respectively (&(t), —Z(t))) is other solution of the obtained system.

Remark 4.2. By Proposition 4.1 we can limit our study to Kolmogorov systems
(1.3) with ¢1 and c3 non-negatives. In the cases with these parameters negatives,
we will obtain phase portraits symmetric to the ones obtained in the positive cases,
with respect to the z-axis when we change the sign of c1, and with respect to the
x-axis when we change the sign of c3.

Corollary 4.3. Consider system (1.3) and suppose (Z(t),2(t)) is a solution. If
c1 = 0 (respectively c3 = 0), then (—Z(t), 2(t)) (respectively (Z(t),—Z(t))) is also a
solution.

Remark 4.4. Corollary 4.3 simplifies the study of the cases with ¢c; =0 or c3 =0,
because it proves that the phase portraits have to be symmetric with respect to the
z-axis and x-axis respectively, and this fact will be useful in obtaining the global
phase portraits from the local results.

Proposition 4.5. Let (&(t),2(t)) be a solution of system (1.3). In the next cases
we obtain another system with solution (—%(—t), —Z(—t)).
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(1) If ag, co and co are not zero, and we change the sign of all of them.
(2) If ap = 0 and we change the sign of co and c2, which are not zero.
(8) If co =0 and we change the sign of ag and ce, which are not zero.

Remark 4.6. In order to classify all the phase portraits of the Kolmogorov systems
(1.3), according with the previous results, it is sufficient to consider ag > 0. And
when ag = 0 we will consider also ¢y > 0.

Remark 4.7. In short, according with the previous results and considerations, from
now on it will be sufficient to study the Kolmogorov systems (1.3) with the their
parameters satisfying

(H) ={ca #0,a0 > 0,¢1 > 0,¢5 > 0,a9 + cop # 0} .

Theorem 4.8. For system (1.3) the next statements hold.

(1) If c1 # 0, then on any straight line z = cte # 0, there exists only one
contact point.

(2) If c1 = 0, then there exist two invariant straight lines z = (\/c3 — 4coca —
3)/(2¢2) and z = —(\/c2 — dcoca +¢3)/(2¢a) if & > 4egea, and one invari-
ant straight line z = —c3/(2¢2) if c§ = 4cgco. There are not contact points
on any other straight line z = cte # 0.

Proof. First we suppose c¢; # 0 and consider a straight line z = zg # 0. Then the
contact points on this straight line are those on which Z = 0 and, as zg # 0, the
only possible contact point is the one that satisfies co + c12 + c228 + 320 = 0, i.e.
the point such that its first coordinate is z = 7(0228 + c320 +¢o)/ca.

We consider now the case with ¢; = 0. Then looking for the points on the
straight line z = zy # 0 satisfying Z = 0, we obtain that they must verify the
condition ¢ + c223 + c329 = 0, and solving this equation we get that either there
are no contact points, or a full straight line of contact points , or two straight line
of contact points, depending on the solutions zy of that equation. [

5. LOCAL STUDY OF FINITE SINGULAR POINTS

System (1.3) has the following finite singularities:
e Py =(0,0),

Rc — 3 Rc .
o P = (0, 63) and P, = <07 +03> if cg > 4dcges,
262 202

c3 )\ .
o P3 = (O, 2;) if cg = 4cgeo,

2
o P = (‘m,o) if cyp # 0.
C1b

We use the notation R. = \/c3 — 4coco in order to simplify the expressions which
will appear. Moreover if ag = 0 and ¢y = 0, all the points on the z-axis are singular
points, and the system can be reduced to a Lotka-Volterra system in dimension 2.
Therefore from now on we will consider the hypothesis

(Hi) = {c2 #0,a0 > 0,¢1 > 0,c3 20,a0+cw7ﬁ0,a3+(cm)2#0}-
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Assuming (H;) there are 6 different cases according to the finite singular points
existing for system (1.3), which are given in Table 1. Then we study the possible
local phase portraits in each one of the finite singular points under the hypothesis
(Hi).

‘ Case Conditions Finite singular points ‘
1 c3 > 4cgeg, e # 0. Py, P, Py, Py.
2 C% > 4cegea, c1pp =0, ag 7é 0. Py, P, Ps.
3 C§:4CQCQ, CML#O. PQ, Pg, P4.
4 03246062, ClNZOa a07é0. PQ, Pg.
5 C% < 4cpea, C1lb 7'é 0. Py, P,.
6 e <dcoea, c1p =0, a9 #0. Fy.

TABLE 1. The different cases for the finite singular points.

The origin is always an isolated singular point for system (1.3), and we have the
next classification for its phase portraits: if agcy # 0 the singularity is hyperbolic
and two cases are possible, the origin is a saddle point if ¢y < 0, and it is an unstable
node if ¢y > 0. If ag # 0 and ¢y = 0 the singularity is semi-hyperbolic and it has
two possibilities: if c3 # 0 then the origin is a saddle-node, if c3 = 0 and ¢y < 0 it
is a topological saddle, and if ¢3 = 0 and ¢y > 0 it is a topological unstable node.
Finally if ap = 0 the origin is a semi-hyperbolic saddle-node.

When P; is a singular point of system (1.3), it can present different phase por-
traits. If cg # 0 then P; is hyperbolic and it can present the following phase
portraits: if ca(ag + cop)(Re — ¢3) < 0 then Py is a saddle, if ag + cop < 0 and
c2(Re — ¢3) < 0 it is a stable node, and finally if ag + copr > 0 and co(R. — c3) > 0
it is an unstable node. The singular point P; collides with the origin if ¢; = 0.

When P, is a singular point of system (1.3), it can present three different phase
portraits: if ca(ag + cop) < 0 then P is a saddle, if ag + cop < 0 and co < 0 then
it is a stable node, and if ag + cop > 0 and ¢ > 0 it is an unstable node.

When Pj is a singularity of system (1.3) it is a semi-hyperbolic saddle-node if
c3 # 0, and it collides with the origin if c3 = 0.

When Py is a singularity of system (1.3) it is hyperbolic if ag # 0 and can
present two different phase portraits: if (ag + cop)pr > 0 then Py is a saddle, and if
u(ag + cop) < 0 it is an stable node. If ag = 0 the singularity Py collides with the
origin.

Lemma 5.1. Asumming hypothesis (Hy) there are 50 different cases according to
the local phase portrait of the finite singular points of system (1.3), which are given
in Tables 2 - 7.

Proof. We have to analyse cases 1 to 6 in Table 1 and determine the local phase
portraits of the singular points existing in each one of them, according to their
individual classification. We start with the first one, in which the conditions, ¢§ >
4dcgey and cipp # 0 hold. The singular points are Py, Py, P, and Py;. We shall
consider three subcases: ag = 0, ¢cg = 0 and agcy # 0.

Consider case ¢y = 0 in which the origin is a saddle-node and P; collides with
the origin. Since ¢y = 0 and ag > 0, the singular point P, is a saddle if ¢3 < 0, and
an unstable node if co > 0. In these two cases P, can be either a saddle if p > 0,
or a stable node if g < 0. This leads to cases 1.1 to 1.4 in Table 2.
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We continue with the case ag = 0 in which Fj is again a saddle-node, but in
this case it coincides with P;. Suppose that P; is an unstable node, then we have
cop > 0 and co(R. — c3) > 0. By Remark 4.6 we will only consider the case ¢y > 0.
Then if ¢ > 0 and R. — c3 > 0 taking into account the expression of R. and
squaring both terms, we get that ¢3 — 4coca > 3, so coca < 0, which leads to a
contradiction. The same occurs if we suppose co < 0. Therefore P; cannot be an
unstable node. If P; is a saddle, then P, can be a saddle or an unstable node, but
not a stable node, which is only possible if ¢y < 0, by an analogous reasoning to
the previous one. If P is a stable node then cop < 0, so P» can be a saddle or
stable node, but not an unstable node because it requires that cop > 0. This leads
to cases 1.5 to 1.8.

The last case is agcg # 0 in which the origin is a hyperbolic singular point. We
start when Py is a saddle, then ¢y < 0. First we consider that P; is also a saddle,
and so ca(ag + cop)(Re — ¢3) < 0. If Py is a saddle then ca(ap + cop) < 0, and we
get R. — c3 > 0. From this we deduce like in previous cases that coco < 0, but we
are supposing ¢y < 0 and so ¢3 > 0 and ag + copp < 0. From the last inequality
ap < —copt, and so p has to be positive. In short pu(ag+ cop) < 0, and consequently
P4 can only be a stable node. If Py and P; are saddles, but P» is a stable node,
reasoning in an analogous way we get that P, is again a stable node. This leads to
cases 1.9 and 1.10. Note that if Py and P; are saddles it is impossible for P, to be
an unstable node. In that case we would have that ¢y < 0, c2 > 0, ag+copr > 0 and
R.—c3 < 0. From this last inequality we get that cogco > 0, which is a contradiction.
We consider now the cases where P, is a saddle and P; an unstable node, in which
the conditions ¢y < 0, ag + copr > 0 and ca(R. — ¢3) > 0 hold. It is obvious that P,
cannot be a stable node because it requires that ag + cou < 0, so Ps is a saddle if
co < 0 and an unstable node if ¢o > 0. In both cases P, can be either a saddle if
u > 0, or a stable node if ; < 0. This leads to cases 1.11 to 1.14. Note that the
case with Py a saddle and P; a stable node is not possible, because we would have
co <0, ag + cop < 0 and ca(Re — ¢3) < 0. If o > 0 then R, — ¢3 < 0, whence we
deduce cycy > 0 and get a contradiction. The same argument is valid if ¢ < 0.
With analogous reasoning as in the case where Py is an unstable node we get the
subcases 1.15 to 1.20.

Now we study case 2 of Table 1, in which cg > 4eocea, c1pp = 0 and ag # 0. We
shall consider three cases: ¢ < 0, ¢g > 0 and ¢y = 0.

We start with case ¢y < 0 in which Py is a saddle. If P, is a saddle, then P, can
be a saddle or a stable node. If P, is an unstable node, then we have the conditions
co(ag+ cop)(Re — e3) < 0, ca > 0 and ag + cop > 0, so R. — ¢3 < 0, and we deduce
coc2 > 0 which is a contradiction. P; cannot be a stable node, because in that case
we would have the conditions ¢y < 0, ag + cop < 0 and c2(R. — ¢3) < 0 which lead
to a contradiction in the following way: if c; > 0 then R. — c3 < 0 and squaring
we deduce coco > 0 which is not possible because ¢y < 0 and we are supposing
c2 > 0. An analogous reasoning works in the case co < 0. If P; is an unstable node
then P, can be either a saddle or an unstable node, but not a stable node because
it requires ag + copt to be negative, but we already know that this expression is
positive because it is a condition in order that P; be an unstable node. This leads
to cases 2.1 to 2.4 of Table 3.

We continue with the case ¢y > 0, in which P, is an unstable node. If P; is a
saddle, then P, can be a saddle or an unstable node. If P, is a stable node then we
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have the conditions ¢y > 0, c2(ag + cop)(Re — ¢3) < 0, ag + cop < 0 and ¢z < 0.
Thus we have R.—c3 < 0 and squaring we obtain cgco > 0 which is a contradiction.
This leads to cases 2.5 and 2.6. If P; is a stable node it can be proved similarly to
previous cases, that P» cannot be an unstable node. This leads to cases 2.7 and 2.8.
P; cannot be an unstable node, because in that case we would have the conditions
co > 0, ap + cop > 0 and ca(R. — ¢3) > 0 which lead to a contradiction in the
following way: if co > 0 then R.—c3 > 0, and squaring we deduce coco < 0 which is
not possible because ¢y > 0 and we are supposing co > 0. An analogous reasoning
works in the case ¢y < 0.

Al last we have the case ¢y = 0. Necessarily c3 # 0 so the origin is a saddle-node.
Also we have that P; coincides with the origin. For the singular point P, we have
that it is a saddle if ¢ < 0, and an unstable node if ¢5 > 0. This leads to cases 2.9
and 2.10.

We study case 3 of Table 1 in which c% = 4cgeg and c1pp # 0. Then ¢ = 0 if
and only if ¢ = 0. We consider ag > 0 and ¢y < 0, then the origin is a saddle and
P; a saddle-node (as c¢3 # 0). The singular point Py is either a saddle or a stable
node, depending on the sign of p(ag + cop). The same is valid in the case ag > 0
and ¢y < 0, except for the origin which is now an unstable node. We get the cases
3.1 to 3.4 of Table 4. We continue with the case in which ag = 0 and so P, is a
saddle-node, P, coincides with Py and Pj is a saddle-node. This correspond with
case 3.5. At last we have the condition ¢y = 0, under which P5 coincides with Fy.
If ¢ < 0 then it is a topological saddle, and if ¢ > 0 it is a topological unstable
node. In any case P, can be either a saddle or a stable node. This leads to cases
3.6 to 3.9.

Now we address the case 4 of Table 1 in which ¢ = 4cgea, cip = 0 and ag # 0.
The origin is a saddle if ¢y < 0, and an unstable node if ¢ > 0. If ¢g = 0 then
c3 = 0, so we distinguish two semi-hyperbolic possibilities for the origin: if co < 0
it is a topological saddle, and if co > 0 it is a topological unstable node. The
classification of Ps is totally determined by the one of Py, because it only depends
on whether c3 is zero or not. We get cases 4.1 to 4.4.

In case 5 of Table 1 the conditions c% < 4cpee and c1p # 0 hold. The singular
points are Py and P;. From condition ¢3 < 4coca we get that cg # 0. If ag = 0 then
the origin is a saddle-node and P, coincides with the origin. If ag # 0 then both
singular points are hyperbolic, and it leads to cases 5.2 to 5.5.

Finally in case 6 of Table 1 we have the conditions c% < 4cpca, cpp = 0 and
ap # 0. The unique singular point is the origin and as ¢y cannot be zero, it is either
a saddle or an unstable node. (I
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Case 1: ¢2 > 4cpce, e i # 0.
| Sub. Conditions Classification
1.1 ap>0,c0=0,u>0,c2 <0. Py = P saddle-node, P» saddle,
P, saddle.
1.2 ap>0,c0=0,u>0,c2>0. Py = Py saddle-node,
P, unstable node, P saddle.
1.3 ap >0,c0=0, p <0, c2<0. Py = P; saddle-node, P> saddle,
P, stable node.
14 ap>0,c0=0,u<0,c2>0. Py = Py saddle-node,
P> unstable node, P4 stable node.
1.5 ap=0,c0>0,cou<0, Re —c3 > 0. Py = Py saddle-node, P; saddle,
P> saddle.
1.6 apo=0,¢c0 >0, Re —c3 <0, u >0, Py= P, saddle-node, P; saddle,
c2 > 0. P> unstable node.
1.7 ap=0,¢c0 >0, 0 <0, Re —c3 <0, Po= P, saddle-node,
c2 > 0. P, stable node, P, saddle.
1.8 ap=0,¢c0>0, u<0,c2<0, Py = Py saddle-node,
R, —c3 > 0. P stable node, P stable node.
1.9 ap>0,c <0, u>0, (ap+ cop) <0, Py saddle, P, saddle, P> saddle,
co >0, Re —c3 > 0. Py stable node.
1.10 ap>0,¢c0<0,c2<0, u>0, Py saddle, P, saddle,
ao + copp < 0, Re —c3 < 0. P> stable node, P4 stable node.
111 ap>0,c0<0,c2 <0, >0, Py saddle, P; unstable node,
ao + copp > 0, (Re — c3) < 0. P; saddle, P; saddle.
1.12 a9 >0,¢c0<0,c2<0, u<0, Py saddle, P1 unstable node,
ao + copp > 0, (Re — ¢3) < 0. Ps saddle, Py stable node.
1.13 ap > 0,c0 <0, u>0, ap+ cop > 0, Pp saddle, P; unstable node,
c2 >0, Rc—c3 > 0. P> unstable node, P4 saddle.
1.14 a0 > 0,c0 <0, u <0, ap+ cop > 0, P saddle, P; unstable node,
c2 >0, R —c3 > 0. P> unstable node, P, stable node.
1.15 ap >0, co > 0, p(ao + cop) > 0, Py unstable node, P, saddle,
Cz(ao + COM) <0, R.—c3>0. P, saddle, Py saddle.
1.16  ap >0, co > 0, p(ao + cop) < 0, Py unstable node, P; saddle,
c2(ao + cop) < 0, Re — cs > 0. Ps saddle, P4 stable node.
1.17 ap > 0,¢co >0, u >0, Re —c3 < 0, Pp unstable node, P; saddle,
ap + cop > 0, c2 > 0. P, unstable node, P saddle.
1.18 a9 > 0,¢co >0, u <0, Re — c3 < 0, Pp unstable node, P; saddle,
ap + cop > 0, c2 > 0. P> unstable node, P, stable node.
1.19 ao > 0,¢c0 >0, u <0, ap+ cop <0, Py unstable node, P stable node,
R:.—c3<0,c2>0. P> saddle, P, saddle.
1.20 ap > 0,¢c0 >0, p <0, ap + copp < 0, Py unstable node, P; stable node,
c2 <0, Rc —c3 > 0. P> stable node, P4 saddle.

TABLE 2. Classification in case 1 of Table 1 according with the
local phase portraits of finite singular points.
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Case 2: c¢2 > 4coce, cipp = 0, ag > 0.

| Sub. | Conditions Classification
2.1 co <0, ca(ap + cop) <0, Re —c3 > 0. Py saddle, Py saddle, P> saddle.
22 |co <0, Re —c3 <0, ap + cop < 0, Py saddle, P; saddle,
co < 0. P> stable node.
23 |co <0, a0+ cop >0, Re —c3 < 0, Py saddle, P; unstable node,
co < 0. P5 saddle.
24 | co<0,a0+copu>0,c2>0, Py saddle, P; unstable node,
Re.—c3>0. P> unstable node.
2.5 | co >0, ca(ap + cop) <0, Re —c3 >0. Py unstable node, P; saddle,
P> saddle.
26 |co >0, Re —c3 <0, ap + cop > 0, Po unstable node, P; saddle,
co > 0. P> unstable node.
2.7 |co >0, a0 +cop < 0, Re —c3 < 0, Po unstable node, P; stable node,
co > 0. P5 saddle.
2.8 | ¢co>0,a0+cop<0,c2 <0, Py unstable node, P; stable node,
R, —c3 > 0. P> stable node.
2.9 | co=0,a0>0,c <0. Py = Py saddle-node, P> saddle.
2.10 co = 0, ag > 0, Cco > 0. Po = P1 saddle—node,
P> unstable node.

TABLE 3. Classification in case 2 of Table 1 according with the
local phase portraits of finite singular points.

Case 3: cg = 4cpca, 1 £ 0.

‘ Sub. ‘ Conditions Classification

3.1 ap >0, co <0, u(ag + cop) > 0. Py saddle, Ps; saddle-node,
P, saddle.

3.2 | ap >0, co <0, u(ao + cop) < 0. Py saddle, Ps; saddle-node,
P, stable node.

3.3 | a0 >0, co >0, u(ao + cop) > 0. Py unstable node, Ps; saddle-node,
P, saddle.

3.4 | ap >0, co >0, u(ao + cop) < 0. Py unstable node, Ps; saddle-node,
Py stable node.

3.5 | ap =0, co>0. Py = P, saddle-node,
P53 saddle-node.

3.6 | co=0,a0>0,c2<0, u>0. Py, = P; topological saddle,
Py saddle.

3.7 | co=0,a0>0,c2<0, u<0. Py = P; topological saddle,
P, stable node.

3.8 | co=0,a0>0,c2>0, u>0. Py = P; topological unstable node,
Py saddle.

39 | cw=0,a0>0,c2>0,u<0. Py = Ps topological unstable node,
P, stable node.

TABLE 4. Classification in case 3 of Table 1 according with the
local phase portraits of finite singular points.
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Case 4: 2 = 4cpcz, c1pp =0, ag > 0.

| Sub. Conditions Classification
41 ¢c9<O. Py saddle, P; saddle-node.
4.2  co > 0. Py unstable node, Ps saddle-node.
43 ¢ =0,c<0. Py = Ps topological saddle.
44 ¢ =0,c2>0. Py = Ps topological unstable node.

TABLE 5. Classification in case 4 of Table 1 according with the
local phase portraits of finite singular points.

Case 5: ¢2 < 4cpeca, e i # 0.
‘ Sub. Conditions Classification

5.1 ao=0. Py = Py saddle-node.

5.2  ao>0,c <0, ulao +cop) > 0. Py saddle, Py saddle.

5.3 a0 >0,co <0, ulao+ cop) < 0. Py saddle, P4 stable node.

5.4  ao>0,co >0, ulao+ cop) > 0. Py unstable node, Py saddle.

5.5 ao>0,co >0, ulao+ cop) < 0. Py unstable node, Py stable node.
TABLE 6. Classification in case 5 of Table 1 according with the
local phase portraits of finite singular points.

Case 6: ¢2 < 4cpcz, cipp =0, ag > 0.

‘ Sub. Conditions Classification
6.1 o <O. P, saddle.
6.2 ¢co>0. P, unstable node.

TABLE 7. Classification in case 6 of Table 1 according with the
local phase portraits of finite singular points.

6. LOCAL STUDY OF INFINITE SINGULAR POINTS

In order to study the behavior of the trajectories of system (1.3) near infinity
we consider its Poincaré compactification. For the moment we assume the same
hypothesis (H7) than in previous sections. According to equations (2.1) and (2.2),
we get the compactification in the local charts Uy and Us respectively. From Section
2 it is enough to study the singular points over v = 0 in the chart U; and the origin
of the chart Us.

In chart U; system (1.3) writes
6.1) 0= ca(p+ D + es(p+ 1w + (co — ag)uv? + 1 (u+ 1uw,

’ V= cwuzv + 03uuv2 — a0v3 + cl;wz.

Taking v = 0 we get 4 |,—o= ca(p + 1)u? and © |,—o= 0. Therefore if y = —1 all
points at infinity are singular points, and we will not deal with this situation in this
paper. In other case, if 4 # —1 the only singular point is the origin of Uy, which
we denote by Op. The linear part of system (6.1) at the origin is identically zero,
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so we must use the blow-up technique to study it, leading to the following result

which is proved in Subsections 6.1 and 6.2. From now on we include the condition
1 # —1 in our hypothesis, so we will work under the conditions

(Hz) ={ca #0,a0 >0,c1 >0,¢3 > 0,a0 + copp # 0,apc1pp # 0, o # —1}.

Lemma 6.1. Asumming hypothesis (Hs) the origin of the chart Uy is an infinite
singular point of system (1.3), and it has 47 distinct local phase portraits described
in Figure 1.
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FIGURE 1. Local phase portraits of the infinite singular point O;.

For system (6.1), if ¢; # 0 the characteristic polynomial is F = —cjuv? # 0, so
the origin is a nondicrital singular point. If ¢; = 0 the characteristic polynomial is
F = —c3u?v — coudv — couv®, which cannot be identically zero because ¢z # 0. We
will study this two cases separately.

6.1. Case ¢; non-zero. Consider ¢; # 0. We introduce the new variable w; by
means of the variable change uw; = v, and get the system

i = (co — ap)uPw? + c3(p + Dudwy + co(p+ 1) + e1 (u+ 1w,

wy = —couzw? — 03u2wf — 02u2w1 — cluw%.

(6.2)
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Now we cancel the common factor u, getting the system

63 T ao)u?w? + es(p + Duwy + ea(p + )u? + e1 (1 + 1wy,
’ wy = —couw:{’ — cww% — couwy — clwf,

for which the only singular point on the exceptional divisor is the origin, and it is
linearly zero, so we have to repeat the process. Now the characteristic polynomial
is F = —ca(p + 2)u?wy — c1(p + 2)uw?, so the origin is a nondicritical singular
point if p # —2, and it is dicritical if g = —2. In both cases we introduce the new
variable wo doing the change uws = wy, obtaining the system

0= (co — ag)uws + c3(p + DuPwy + co(p + 1)u? + ey (u+ 1)utws,

3

(6.4) : 3 2, 2 2
wa = (ap — 2co)uwy — cz(p + 2)u“w; — c1(p + 2)uws — ca(p + 2)uws.

In the nondicritical case we have to cancel the common factor u obtaining

(6.5) 0= (co — ap)udws + cz(p + Duwy + co(pu + 1w+ ¢y (u + 1)uws,
wo = (ag — 2c0)u*w3 — c3(p + 2)uwi — 1 (1 + 2)w3 — co(p + 2)ws.
But in the dicritical case, when = —2, we must cancel the common factor u? from
system (6.4), and we obtain the system

it = (co — ap)u*w3 — cauwy — ¢y — ciws,

6.6
(6.6) wy = (ag — 2co)uaws.

6.1.1. Nondicritical case. In this case it is necessary to study the singular points of
system (6.5) on the exceptional divisor. The origin is always a singular point, and
we denote it by Qo. As p+ 2 # 0 there is another singular point, @1 = (0, —cz2/c1)
and we determine their local phase portraits.

The origin Q) is always hyperbolic. It is a saddle if u € (—o0, —2) U (=1, +00),
a stable node if ¢ > 0 and p € (—2,—1), and an unstable node if ¢; < 0 and
we (=2,-1).

The singular point @ is semi-hyperbolic. If ca(ag + cop) > 0 then Qq is a
topological saddle, if co(p+2) > 0 and (11 +2)(ag + cop) < 0 then it is a topological
unstable node, and if ca(p 4+ 2) < 0 and (p + 2)(ag + cop) > 0 it is a topological
stable node. These conditions come together in the next 7 subcases.

(1) If p € (—o0,—2)U(—1,400) and cz(ag+cop) > 0, then Q) is a saddle and ()1 a
topological saddle. In order to determine the phase portrait around the ws-axis
for system (6.5), we must fix the sign of ¢o, which determines the position of
the singular point ()1, and also the sign of u 4 1, which determines the sense
of the flow along the z-axis. Thus we deal with the following subcases.

Subcase (1.1). Let u < —2 (so u+1 < 0) and ¢ > 0. Then the singular point
Q)1 is on the negative part of the ws-axis and the expression @ |,,—0= ca(+1)u
determines the sense of the flow, so the phase portrait is the one in Figure 2(a).

To return to system (6.4) we multiply by u, thus the orbits in the second
and third quadrants change their orientation. Moreover all the points on the
way-axis become singular points. The resultant phase portrait is given in Figure
2(b).

When going back to the (u,w;)-plane the second and the third quadrants
swap from the (u,ws)-plane, and the exceptional divisor shrinks to a point,
and hence the orbits are slightly modified. Attending to the expresions of
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U |, —0= ca(p+1)u? and w1 |,—o= —c1w?, we know the sense of the flow along
the axes. Following the results mentioned in Subsection 2.3, the separatrix of
the singular point Q1 = (0, —ca/¢1) in the (u, w2 )-plane, becomes the separatrix
with slope —ca/c¢1 in the (u,w;)-plane. We get the phase portrait given in
Figure 2(c), and multiplying again by u, the one given in Figure 2(d).

e L 5@/( N

==

(b) (c) (d)

Y
A
|

(a

FIGURE 2. Desingularization of the origin of system (6.1) with
¢1 # 0. Nondicritical case (1.1).

Finally we must go back to the (u,v)-plane, swapping the second and the
third quadrants and contracting the exceptional divisor to the origin. The orbits
tending to the origin in forward or backward time, became orbits tending to the
origin in forward or backward time with slope zero, i.e. tangent to the u-axis.
According to the expressions 1 |,—o= c¢1uv? — agv® and 4 |y—o= co(u + 1)u3,
which determine the sense of the flow along the axes, we get the local phase
portrait at the origin for system (6.1) given in Figure 1(L1).

Subcase (1.2). If we maintain ;4 < —2 but take ¢ < 0, the reasoning is
essentially similar to the one we have given in the previous case, and we obtain
the phase portrait (L2) of Figure 1.

Subcase (1.3). Let p > —1 and ¢ > 0. This determines the position of
the singular point ()1 and the sense of the flow along the axes, so around the
wo-axis we obtain the phase portrait given in Figure 3(a).

As in the previous subcase we multiply by u obtaining the phase portrait
given in Figure 3(b), as the orbits in the second and third quadrants change
their orientation and all the point in the ws-axis become singular points.

In order to undo the variable change we analyze the sense of the flow along
the axes according to the expression 1 |, —o= co(pt + 1)u?, which determines
that the flow goes in the positive sense of the u-axis, and w; |,—0= —clw% which
determines that the flow goes in the negative sense of the wj-axis. Moreover
we swap the second and third quadrants, and press the exceptional divisor into
the origin, modifying the orbits. We obtain the phase portrait given in Figure
3(c). Multiplying again by u we obtain the phase portrait 3(d).

Now we have to undo de second variable change. We note that @ |,—o=
ca(p+1)u?, so the flow gets away from the origin along the u-axis, nevertheless
the sense of the flow along the v-axis is not determined by 9 |,—o= ¢ pv? —agv?,
it depends on the constant p. If p > 0 the flow goes in the positive sense of
the v-axis, if © < 0 in the opposite sense and, if ¢ = 0 the flow goes to the
origin. Thus we must distinguish three subcases and in each of them, modifying
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the orbits properly, we obtain, respectively, the phase portraits given in Figure
1(L3), (L4) and (L5).

Subcase (1.4). Let g > —1 and ¢z < 0. By a similar reasoning to the
previous one, we obtain the phase portraits (L6) and (L7) of Figure 1.

(b) (©) (d)

FIGURE 3. Desingularization of the origin of system (6.1) with
¢1 # 0. Nondicritical case (1.3).

(2) If p € (=00, —2)U(—1,400), ca(pp+2) > 0 and (u+ 2)(ao + cop) < 0, then Qp

is a saddle and ()1 a topological unstable node. We must distinguish two cases
according with the sign of cs.

Subcase (2.1). We consider ¢y < 0so u < —2 and ag+cop > 0. The singular
point 7 is on the positive wq-axis and it is an unstable node, so the sense of
the flow along the axes is determined, and we obtain the phase portrait given
in Figure 4(a). Multiplying by u we obtain Figure 4(b).

We see that for system (6.3) the flow goes in the negative sense along the
wy-axis and in the positive sense along the u-axis, according to the expressions
U |wy—0= ca(p + 1)u? and w; |,—o= —ciw?. We undo the variable change
modifying the orbits properly, and we note that it must exist an hyperbolic
or elliptic sector in both first and third quadrants, thus it can appear the
configuration given in Figure 4(c) or the one given in Figure 5(a). From the
first of them multiplying by u we obtain 4(d), and if we undo the variable
change in a similarly way than in the previous cases, we get the phase portrait
in Figure 1(L8).

If we consider hyperbolic sectors we continue undoing the blow up from
Figure 5(a), obtaining successively the phase portraits 5(b) and 5(c). However
in our study we have proved, by means of the index theory, that only the case
with elliptic sectors is feasible in the global phase portraits obtained. More
detailed explanations will be given in Section 7 but, roughly speaking we know
that the index of the vector field on the sphere must be 2, and this index is
the sum of the indices of all singularities, which depend on the sectors that
they have, so if the index is 2 considering two elliptic sectors in a particular
singular point, it cannot be 2 if we change those sectors for hyperbolic ones.
In conclusion the only phase portrait that will appear in this case is (L8) of
Figure 1.
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FIGURE 4. Desingularization of the origin of system (6.1) with
¢1 # 0. Nondicritical case (2.1).

I\

() (d) (b)

FIGURE 5. Desingularization of the origin of system (6.1) with
¢1 # 0. Alternative to nondicritical case (2.1).

From now on we will omit the reasonings about how to undo the variable
changes for obtaining the final phase portrait, because they are similar to the
ones of the previous cases. The results obtained are the following.

Subcase (2.2). Let ¢ > 0 so p > —1 and ag + copp < 0. We obtain the

phase portraits (L9) and (L10) of Figure 1. In (L9) it is possible to consider
hyperbolic sectors instead of the elliptic ones, but applying index theory to
the global phase portraits obtained in our study, we note that only the phase
portrait with elliptic sectors is feasible.
If p € (—00,—2) U (—1,400), ca(p+2) < 0 and (p + 2)(ag + cop) > 0, then
Qo is a saddle and @)y a topological stable node. If ¢; > 0 we obtain the phase
portrait (L11) of Figure 1, and if ¢o < 0 we obtain the phase portraits (L12),
(L13) and (L14) of Figure 1. In (L11) and (L12) it would be possible that the
elliptic sectors appearing were hyperbolic sectors, but again we have proved
that only the elliptic option is feasible according to the index theory.

If co > 0, p € (—2,—1) and ag + copr > 0, then Qg is a stable node and Q1 a
topological saddle. We obtain the phase portrait (L15) of Figure 1.

If e >0, p € (—2,—1) and ap + cop < 0, then Qp is a stable node and @Q; a
topological unstable node. We obtain the phase portrait (L11) of Figure 1.

If cg < 0, p € (—2,—1) and ag + cop < 0, then Qo is an unstable node and @
a topological saddle. We obtain the phase portrait (L16) of Figure 1.

If co <0, p€(—2,—1) and ag + cop > 0, then Qp is an unstable node and @
a topological stable node. We obtain the phase portrait (L8) of Figure 1.
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6.1.2. Dicritical case. Now we must study the singular points on the exceptional
divisor of system (6.6). In this case there is only one singular point, R = (0, —cz/c1)
which is non-degenerated. We shall distinguish several subcases.

o If 2 < —4co(ag—2cp) and cacg < 0, then P is a stable focus. We shall distinguish
two cases depending on the sign of the parameter ¢y, because it determines if the
singular point is on the positive or negative u-axis. We consider ¢y > 0. In Figure
6 the blowing-down process is represented. The phase portrait around the u-axis
is the one given in Figure 6(a), multiplying by u? we obtain (b), undoing the
second variable change we obtain (c), multiplying by « we get (d) and finally,
undoing the first variable change we get the phase portrait (L11) of Figure 1.
Taking ¢ < 0 and by the same method we obtain the phase portrait (L8) of
Figure 1.

e

<ie

® ®

Sis

(a) (b) (c) (d)

FIGURE 6. Desingularization of the origin of system (6.1) with
¢1 # 0. Dicritical case (1), c2 > 0.

From now on we omit explanations in cases in which similar arguments are
valid, and same results are obtained. In order to simplify the notation we define

b= \/C% + 402(0,0 — 260).

o If c% < —4co(apg—2¢p) and caes3 > 0, then P is an unstable focus. The reasoning is
analogous to the one of the previous case and we obtain the same phase portraits:
(L11) if ¢o > 0, and (L8) if ¢5 < 0.

o If ¢2 = —4ca(ap —2cp) and cacg < 0 or if €2 > —4ea(ag — 2¢p), c2(c3 — B) < 0 and
ca(cs + B) < 0, then P is a stable node. If ¢3 = —4ea(ag — 2¢9) and cacz > 0 or
if ¢3 > —4ca(ag — 2¢p), ca(cs — B) > 0 and ca(cz + 8) > 0, then P is an unstable
node. In both cases the phase portrait obtained is again (L11) if ¢; > 0, and
(LS) if ¢ < 0.

e If ¢ = 0 and ca(ag — 2¢g) < 0 then P is a linear center. In this case the singular
point P could be a center or a focus, but the final phase portrait obtained when
P is a center is the same as the one we obtained previously for the case with a
focus, so the result is (L11) if ¢; > 0, and (L8) if ¢3 < 0.

o If 3 > —4ca(ap —2co) and (c3 — B)(cs+3) < 0, or if 3 = 0 and ca(ag — 2¢o) > 0,
then P is a saddle. The blowing-down considering co > 0 is represented in Figure
7. The final result is (L17) of Figure 1. If we take ca < 0 we obtain the phase
portrait (L18).
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< P =

System (6.6) System (6.4) System (6.3) System (6.2)

FIGURE 7. Desingularization of the origin of system (6.1) with
¢1 # 0. Dicritical case (5), c2 > 0.

6.2. Case ¢; zero. We consider system (6.1) and do the same variable change
that we did in the case with ¢; # 0, the result is obviously system (6.2) but taking
c1 =0, ie.

0= (co — ag)udw? + cz(p + Dudwy + ca(p+ 1)u?,

3 2

(6.7) ) ) ) )
w1 = —CU "Wy — C3U Wy — C2U Wy

In this case we can cancel a common factor u? getting the system

(6.8) i = (co — ap)uw? + c3(p + Duwy + co(p + 1)u,
’ wy = —cowzf’ - 03wf — Ccowy,

for which we must study the singular points on the exceptional divisor, i.e. on the
straight line v = 0.

The origin Sy = (0,0) is always a singular point. The other singular points on
this line are those for which w; is a solution of cow? + czwy + ¢z = 0. If ¢y # 0
and ¢3 > 4coep then Sy = (0, —(R. + ¢3)/(2¢0)) and Sy = (0, (R. — ¢3)/(2¢0)) are
singular points. If co # 0 and ¢2 = 4coep, then Sz = (0, —c3/2c) is a singular
point, and finally, if ¢y and ¢3 are non-zero, Sy = (0, —ca/c3) is a singular point.

‘ Case Conditions Singular points ‘
A Co = 0, C3z = 0. SO-
B Co = 0, C3 75 0. So, S4.

C Co 7& 0, Cg < dcpes.  Sp.

D Co 7& O7 C% = 46062. So, Sg.

E Co 75 0, Cg > dcoea. Sp, S1, Ss.
TABLE 8. Cases with the singular points on the exceptional divisor
of system (6.8).

In summary we shall study the five cases given in Table 8. For doing this we
study separately the local phase portrait of each singular point assuming in each
case the necessary hypothesis for its existence.

The singular points Sy, S1 and S are hyperbolic. Sy is a saddle if p > —1, a
stable node if ¢ > 0 and p < —1, and an unstable node if co < O and pp < —1. Sy isa
saddle if co(ag+cop) < 0, a stable node if ¢g > 0 and (ap+cop) > 0, and an unstable
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node if ¢y < 0 and (ag+cop) < 0. Ss is a saddle if co(ag+cop)(Re—c3) < 0, a stable
node if ¢o(R. —¢3) > 0 and (ag + cope) > 0, and an unstable node if ¢o(R. —¢3) < 0
and (ag + cop) < 0.

The singular point S5 is a semi-hyperbolic saddle-node and finally, S4 is a hy-
perbolic saddle if ¢, > 0, and a hyperbolic stable node if ¢5 < 0.

Using these informations we study the next cases from the five given in Table 8.

First of all we study case (A) in which the only singular point is the origin, so
we have the next three possibilities.

If ¢ = c3 =0 and p > —1, then Sy is a saddle. In order to determine the
phase portrait around the wi-axis for system 6.8, we must fix the sign of ¢o, which
determines the sense of the flow along the axes. Considering co > 0 we get the phase
portrait given in Figure (1)(L19), and with ¢ < 0 we obtain the phase portrait
(L20).

If cog=c3 =0, p < —1and ¢y > 0, then Sy is a stable node, and we obtain the
phase portrait (L21) of Figure (1).

Ifco=c3=0, u < —1and co <0, then Sy is an unstable node, and we get the
phase portrait (L22) of Figure (1).

In case (B), fixed the phase portrait of Sy, only two phase portraits will be
possible for the origin, as the sign of ¢ is determined, and so we get the four
following cases.

Ifcg =0,c3#0, u>—1and cy >0, then Sy and S, are both saddle points and
from the blowing-down we obtain the phase portrait (L23) of Figure (1).

Ifcg=0,c3 #0, u > —1and ¢ <0, then Sy is a saddle and Sy a stable node.
We obtain the phase portrait (L24) of Figure (1).

Ifcg=0,c3 #0, u < —1and ¢ > 0, then Sy is a stable node and S4 a saddle.
We obtain the phase portrait (L25) of Figure (1).

If g =0,c3 #0, u < —1and cy < 0, then Sy is an unstable node and Sy a
stable node. We obtain the phase portrait (L26) of Figure (1).

Again in case (C) the only singular point is the origin so we distinguish three
cases, and obtain the same local phase portrait that in case (A), but under different
conditions. If ¢y # 0, c2 < 4cgez and p > —1, then S is a saddle. Attending to
the sign of ¢y, which determines the sense of the flow on the axes, we consider the
following cases: if ¢ > 0 we obtain the phase portrait (L19) of Figure (1), and if
¢z < 0 we obtain the phase portrait (L20) of Figure (1).

If co # 0, c3 < 4egea, 1 < —1 and ¢y > 0, then Sy is a stable node. We obtain
the phase portrait (L21) of Figure (1).

If cg # 0, ¢ < 4coea, 1 < —1 and ¢z < 0, then Sy is an unstable node. We
obtain the phase portrait (L22) of Figure (1).

In case (D) apart from the origin, there exists the singular point S5, which is
always a saddle node, so again we get only three cases.

If co # 0, ¢3 = 4coez and g > —1, then Sy is a saddle and S3 a saddle-node.
We must distinguish four subcases according to the signs of ¢o and ag + cop, which
determine the position of the saddle-node S3 and its sectors.

If ¢g > 0 and ag + cope > 0 we obtain the phase portrait (L27) of Figure (1), if
co > 0 and ag + cop < 0 we get the phase portrait (L28) of Figure (1), if ¢g < 0
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and ag + cop > 0 we have the phase portrait (L29), and if ¢y < 0 and ag + cop < 0
the phase portrait (L30).

If cg # 0, ¢ = 4coca, p < —1 and co > 0, then Sy is a stable node and S
a saddle-node. We distinguish two subcases setting the sign of ag + cou which
determines the position of the sectors of the saddle-node S3. If ag + copp > 0 we
obtain the phase portrait (L31) of Figure (1), and if ap + cop < 0 we obtain the
phase portrait (L32) of Figure (1).

If g # 0, cg = 4cpco, p < —1 and co < 0, then Sy is an unstable node and S3
a saddle-node. The only possibility is that ag 4+ cope > 0, and we obtain the phase
portrait (L33) of Figure (1).

In case (E) there exist three singular points, with three possible phase portraits
for each of them, however, many of the combinations are not possible, and only 13
cases will be feasible.

First, due to the conditions which define the local phase portrait in each singular
point, it is obvious that if S is a stable node, then S5 cannot be an unstable node,
and if 57 is an unstable node, So cannot be a stable node, due to the sign of ag+copu.

If Sy and S5 were stable nodes and S; a saddle, the conditions ¢y > 0, R.—c3 < 0,
and ¢y < 0 will hold. Squaring both terms in the condition R. < c3 we obtain
c% — 4degen < c%, and then cocy > 0, which is a contradiction. The same reasoning
is valid in the next two cases.

If Sy and S are unstable nodes and S; a saddle, then the conditions ¢y < 0,
R. —c3 < 0 and ¢y > 0 hold, and if Sy is an unstable node, S; a stable node and
S a saddle, then the same three conditions hold.

If Sy, S1 and Sy are stable nodes, the conditions c¢o > 0, R. — c3 > 0 and
co > 0 hold. Now we take condition R. < c3 and squaring both terms we obtain
c3 — 4cpey < 3, and then cocg > 0, which is a contradiction.

If Sy is a stable node and S; an unstable node, the conditions u < —1, ¢g < 0
and ag + cop < 0 hold. Then according to the signs of ¢y and g which are fixed,
ap < —cop < 0 which contradicts the hypothesis (Hz). The same reasoning is valid
if Sp and S; are unstable nodes, because the same conditions hold. Now we will
study the feasible cases.

(E1) If ¢g # 0, ¢ > 4coca, p > —1, colag + cop)(2coca — c3 — c3R.) > 0 and
colag + cop)(Re — ¢3)(2coca — 3 + c3R.) > 0, then Sy, S; and Sy are
saddles. We must distinguish two subcases depending on the position of
the singular points S; and S5 on the wi-axis. First if S is on the negative
wy-axis and S5 on the positive wi-axis, that corresponds with conditions
co > 0, R. —c3 > 0 and ¢o < 0, we obtain the phase portrait (L34) of
Figure 1. Note that if R. —c3 > 0, the singular points S; and S, are one on
the positive part of the axis and the other on the negative part, but in any
case the absolute value of the second coordinate of S; is greater or equal
than the absolute value of the second coordinate of S, and this determines
the relation between the slopes of orbits in the phase portraits. Conversely
if we have S7 on the positive wi-axis and S on the negative one, i.e. under
the conditions ¢y < 0, R, —c3 > 0 and ¢y > 0, we obtain the phase portrait
(L35) of Figure (1).

(E2) If g # 0, ¢2 > dcoea, p > —1, colag + cop)(2coca — 2 — c3R.) > 0,
co(Re — ¢3) > 0 and (ag + cop)(2coca — ¢ + c3R.) < 0, then Sy and Sy
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(E10)
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are saddles and S5 is a stable node. If ¢g > 0 then R. — ¢3 > 0 and so
cg — 4coeg > c% and cgce < 0. If ag + cop > 0 then 2¢cpcy — cg —c3R. >0
which is not possible because 2¢gco < 0 and we subtract two positive terms.
Conversely if ag + cop < 0 then 2coco — cg < c3R. and 2c¢cqco — cg > —c3R,,
so |2coc2 — c3| < c3Re. Squaring we get 4c3c < 0 which is not possible.
If ¢g < 0 then R. — c3 < 0 and we deduce co < 0. If ag 4+ cop < O then
2coc2 — 3 — c3Re > 0, but ¢ — 2cpea > 3 — 4egea > 050 2¢9ca — ¢ < 0
and subtracting c3R. > 0 the result cannot be positive. In conclusion we
deduce that ¢y, co < 0 and ag+cop > 0. Hence we have —(R.+c3)/(2¢o) >
(Re — ¢3)/(2¢9) > 0. This determines the only possible position of the
singular points which are both in the positive wj-axis. Undoing the blow
up we obtain the phase portrait (L36) of Figure 1.

If co # 0, ¢2 > 4coea, p > —1, colag + cop)(2coca —2 —c3Re) > 0, co(Re —
c3) < 0 and (ag + cop)(2coca — 3 + c3R.) > 0, then Sy and S; are saddles
and S5 is an unstable node. Therefore we deduce that 0 > (R.—c3)/(2¢o) >
—(R. + ¢3)/(2¢cp), so both singular points are on the negative w axis, Sy
under S;. We obtain the phase portrait (L37) of Figure (1).

If co # 0, c2 > 4coea, > —1, co > 0, (ag + cop)(2coca — ¢ — c3R.) < 0
and co(R, — ¢3)(ap + cop)(2coca — ¢ + c3R.) > 0, then Sy and Sy are
saddles and S; is a stable node. Then we deduce that —(R. + ¢3)/(2¢o) <
(Re —c3)/(co) < 0, so both singular points are on the negative wy axis, Sy
under S;. We obtain the phase portrait (L38) of Figure (1).

If co #0, 3 > 4degez, > —1, ¢g > 0, (ap + cop)(2coca — ¢ — c3R.) < 0,
co(Re — ¢3) > 0 and (ag + cou)(2coca — c3+) < 0, then Sy is a saddle and
S1 and Sy are stable nodes. We obtain the phase portrait (L45) of Figure
(1).

If co # 0, c2 > dcoea, > —1, co < 0, (ag + cop)(2coca — ¢ — c3R.) > 0
and (ag + cop)(Re — ¢3)(2coca — 3 + c3R.) < 0, then Sy and Sy are saddles
and 57 is an unstable node. Hence we deduce that 0 < (R. — ¢3)/(2¢0) <
—(R. + ¢3)/(2¢p), so both singular points are on the positive w; axis, So
under S;. We obtain the phase portrait (L47) of Figure (1).

If co # 0, 3 > degea, > —1, ¢ < 0, (ap + cop)(2coca — ¢ — c3R.) > 0,
R.—c3 > 0 and (ag + cop)(2coca — ¢ + c3R.) > 0, then Sy is a saddle
and S7 and Sy are unstable nodes. We obtain the phase portrait (L46) of
Figure (1).

If cg # 0, ¢3 > degeg, c2 > 0, < —1, co(ag + cop)(2coca — 3 — c3R.) > 0
and co(ag + cop)(Re — ¢3)(2coca — 3 + c3R.) > 0, then Sy is a stable node
and S and S are saddles. We obtain the phase portrait (L39) of Figure
(1).

If co # 0, ¢§ > dcoea, 2 > 0, < —1, colag + cop)(2coca — 3 — c3Re) > 0,
co(Re — ¢3) < 0 and (ag + cop)(2coca — c2 + c3R.) > 0, then S is a stable
node, S; is a saddle and S5 is an unstable node. We obtain the phase
portrait (L40) of Figure (1).

If cg # 0, 3 > 4coea, c2 > 0, 1 < —1, ¢o > 0, (ag+cop)(2coca —c2—c3R.) <
0 and (ag + cop)(Re — ¢3)(2coca — ¢ +c3R.) > 0, then Sy and Sy are stable
nodes and S5 is a saddle. We obtain the phase portrait (L41) of Figure (1).
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(E11) If ¢g # 0, ¢3 > dcgea, 2 < 0, p < —1, co(ag + cop)(2coca — 3 — c3R.) > 0
and co(ag + cop)(Re — ¢3)(2coca — 2 + c3R.) > 0, then Sy is an unstable
node and S; and S are saddles. We obtain the phase portrait (L42) of
Figure (1).

(E12) If g # 0, ¢2 > degea, c2 < 0, u < —1, colag + cop)(2coca — ¢3 — c3R.) > 0,
co(Re—c3) > 0 and (ag+cop)(2coc2 —c3+c3R.) < 0, then Sy is an unstable
node, S7 is a saddle and S5 is a stable node. We obtain the phase portrait
(L43) of Figure (1).

(E13) Ifcg # 0, ¢3 > 4coca, c2 < 0, u < —1, ¢o > 0, (ap+cop)(2coca—c3—c3Re) <
0, Re —c3 > 0, (ag + cop)(2coca — c3 + c3R.) < 0, then Sy is an unstable
node and S; and S are stable nodes. We obtain the phase portrait (L44)
of Figure (1).

Note that in the phase portraits (L22), (L30), (L33), (L43), (L46) and (L47) of
Figure 1 it is possible to consider hyperbolic sectors instead of the elliptic ones,
but we have only represented the elliptic cases by the same reason given before, i.e.
because applying the index theory to the phase portraits in the sphere S? described
in Section 7, we proved that they are the only feasible.

Completed the study in the local chart U;, we address the study of the origin of
chart Us which turned out to be much simpler. The system has the expression

0= —c1(p+ Du?v + (a0 — co)uwv? — e3(p + Vuv — co(p + 1)u,

0= —cruv? — cpv® — e3v? — cou.

(6.9)

Lemma 6.2. The origin of chart Us is always a hyperbolic infinite singular point
of system (1.3). It is a saddle if p < —1, a stable node if co > 0 and p > —1, and
an unstable node if co < 0 and p > —1.

7. GLOBAL PHASE PORTRAITS

In order to prove the global result stated in Theorem 1.1, we will bring together
the local information obtained in the previous sections. We start our classification
from the cases in Tables 2 to 7. In some of them the conditions determine only one
local phase portrait in each one of the infinite singular points but, in many others
we shall distinguish several possibilities. In some cases the local information gives
rise to only one phase portrait, this occurs when the sepatrices can be connected in
only one way, but in others several global possibilities appear, and we shall prove
which of them are feasible.

In Table 9 we give, for each case in the Tables 2 to 7, the local phase portrait of
the infinite singularities Oy and Oz (in most cases this depends on the parameters),
and also we give the global phase portrait on the Poincaré disc obtained. And now
we detail the reasonings in some cases, although they will not be showed in all cases
to avoid repetitions.

Case 1.1. The infinite singular point O has the local phase portrait (L.12) given
in Figure 1, and Os is an unstable node. As we said in Section 6, the elliptic sectors
appearing in phase portrait (L12) could be hyperbolic sectors if we attend only to
local results, but now having all the global information we can prove that they are
elliptic by using the index theory. By Theorem 2.2 the sum of the indices of all
the singular points on the Poincaré sphere has to be 2. To compute this sum we
must consider that the finite singular points on the Poincaré disc appear twice on
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the sphere (on the northern hemisphere and on the southern hemisphere). Thus if
we denote by indr the sum of the indices of the finite singular points, and by ind;
the sum of the indices of the infinite singular points, the equality 2indp + ind; = 2
must be satisfied.

In this particular case the finite singular points are a saddle-node whose index
is 0, and two saddles whose index is —1, so indrp = —2. We deduce that ind; must
be 6. The infinite singular points are O; and O,, the origins of the local charts U
and Us, and the origins of the symmetric local charts V; and V5, which have the
same index. Since O is a node, and so it has index 1, we get that the sum of the
indices of Oy and its symmetric must be 4, i.e. the index of Oy has to be 2. From
the Poincaré formula for the index given in subsection 2.4 we get

e—h

S tl=2=e-h=2

Hence only the case with tho elliptic sectors on the local phase portait (L12) is
possible, because if we had two hyperbolic sectors instead of the elliptic ones, the
index of Oy would be zero.

We recall that by an analogous application of the index theory in the corre-
sponding cases, it can be concluded that elliptic sectors appearing in the local
phase portraits (L8), (L9), (L11), (L22), (L30), (L33), (L43), (L46) and (L47) of
O, are indeed elliptic rather than hyperbolic.

In this case 1.1 there is only one possible phase portrait on the Poincaré disc,
the one given in Figure (16) (G1).

Case 1.6. In this case O; has the local phase portrait (L3) and O is a stable
node. From the local results we can obtain three possible global phase portraits
given in Figure 8.

Subcase 1 Subcase 2 Subcase 3

FiGURE 8. Possible global phase portraits in case 1.6.

By Theorem 4.8 on the straight lines z = zy # 0 cannot be more than one contact
point, but as it is shown in Figure 9, if subcases 1 and 2 are feasible, there exist
straight lines z = zq, with —(R. +¢3)/(2¢2) < 29 < (R.— ¢3)/(2¢2), on which there
exist two contact points, so we deduce that the only possible global phase portrait
is the subcase 3, i.e. (G10) of Figure 16.
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S

Subcase 1 Subcase 2

FIGURE 9. Straight lines with two contact points on the two first
subcases of 1.6

Case 1.10. In this case O; has the local phase portrait (L6) and O is an
unstable node. From the local results we can obtain three possible global phase
portraits, but in two of them shown in Figure 10 we can find straight lines z = 25 # 0
with (R.—c3)/(2¢2) < 20 < —(Rc+c¢3)/(2¢2), on which there are two contact points,
so according to Theorem 4.8 they are not possible. Then the only possibility is the
phase portrait (G20) of Figure 16.

P ®

Subcase 1 Subcase 2

FIGURE 10. Straight lines with two contact points on two subcases
of 1.10.

Case 2.2. In this case O; has the local phase portrait (L47) and O; is an
unstable node. From the local results and by Theorem 4.3 the phase portrait is
symmetric, we obtain three possible global phase portraits, the ones given of Figure

BhT

Subcase 1 Subcase 2 Subcase 3

FIGURE 11. Possible global phase portraits in case (2.2).



30 E. DIZ-PITA, J. LLIBRE AND M.V. OTERO-ESPINAR

By Theorem 4.8 we know that, under the conditions of this case, two invariant
straight lines z = +(R. —c3)/(2¢2) must exist, and it is only possible in the subcase
1, which provides the phase portrait (G42) of Figure 16.

Case 2.6. Here we distinguish three subcases and, in two of them, three global
phase portraits appear, but in each case we use different arguments to prove wich
of the options is realizable. If ;1 = 0, then O; has the local phase portrait (L5)
and O, is a stable node. We obtain three phase portraits, but we conclude that
two of them are not feasible because we can find staight lines z = zy # 0 with two
contact points, as it is shown in Figure 12. Therefore there is only one global phase
portrait, the (G50) of Figure 16.

& @

Subcase 1 Subcase 2

FIGURE 12. Straight lines with two contact points on two subcases.

If 4 = 0 and g > —1, then O; has the local phase portrait (L38) and Oj is
a stable node. We obtain three possible global phase portraits, the ones given in
Figure 13. By Theorem 4.8 we know that, under the conditions of this case, two
invariant straight lines z = +(R, — ¢3)/(2¢2) must exist, and it is only possible in
the subcase 3, which provides the phase portrait (G51) of Figure 16.

STACA

Subcase 1 Subcase 2 Subcase 3

FI1GURE 13. Possible global phase portraits in case 2.6 with ¢; =0
and p > —1.

If ¢; =0 and u < —1, then O; has the local phase portrait (L41) and O is a
saddle. In this case we obtain only one phase portrait (G52) of Figure 16.

Case 3.2. Here we distinguish three subcases and in two of them there is only
one possible global phase portait. More precisely, if 4 < —1 then O; has the
local phase portrait (L8), Os is a saddle and the global phase portrait is (G64). If
i € (—1,0) then O; has the local phase portrait (L13), Oz is an unstable node and
we obtain the phase portrait (G65).
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If 1+ > 0 then O; has the local phase portrait (L6) and Oz is an unstable node,
but in this case we get three phase portraits, the ones given in Figure 14. By
Theorem 4.8, there must exist a contact point on each straight line z = zg, but if
in subcases 1 and 2 we take a straight line z = 2y with zg > —c3/(2¢2), there are
not contact points on it, so those subcases are not feasible. The only possibility is
the subcase 3, which provides the phase portrait (G63) of Figure 16.

Subcase 1 Subcase 2 Subcase 3

FI1GURE 14. Possible global phase portraits in case 3.2 with p > 0.

Case 4.2. Here we distinguish five different subcases. First if ¢; =0, p < —1
and ag + cop > 0, then O; has the local phase portrait (L31) and O is a saddle.
In this case we obtain the global phase portrait (G90).

If c; =0, p < —1 and ag + copr < 0, then O; has the local phase portrait (L32)
and O, is a saddle. By Corollary 4.3 the phase portrait must be symmetric so we
obtain three possibilities, given in Figure 15. We further know that there must
exist an invariant straight line z = —c3/2c¢s, so we can deduce that subcase 2 is not
feasible because that invariant straight line does not exist. As we also know that
this invariant straight line is a separatrix in the local phase portrait of O, the one
appearing in (L32), the subcase 3 is not feasible, because there would exist another
separatrix over the invariant straight line that does not appear on (L32). So finally
the only possible phase portrait is (G91).

The same happens in the next cases in which we initially obtain three possibilities
but we can discard two of them with the same arguments, so finally we get the next
results. If = 0, then O; has the local phase portrait (L5) and O3 is a stable node
and we obtain the global phase portrait (G87). If ¢; =0, u > —1 and ag + cou > 0,
then O; has the local phase portrait (L27), O is a stable node, and we obtain the
phase portrait (G88). Finally if ¢; = 0, 4 > —1 and ag + copr < 0, then O; has
the local phase portrait (L28), O is a stable node, and the global phase portait is
(G89).
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Subcase 1 Subcase 2 Subcase 3

FI1GURE 15. Possible global phase portraits in case 4.2 with ¢; = 0,
@< —1and ag + cop < 0.

The same methods that we have used in the previous cases for determine which of
the global phase portraits are realizable, must be used in some other cases, namely,
1.17, 1.18 with p > —2, 1.19, 2.7, 3.3, 3.4 with p > —2, 3.5 with p > 0, and finally
4.1 with ¢ =0, p > —1 and ag + copu < 0.
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’ Case ‘ Conditions ‘ O ‘ O2 ‘ Global ‘
1.1 L12 | Unstable node G1
1.2 L3 Stable node G2
1.3 n<—1 L8 Saddle G3

’ w € (—1,0) | L13 | Unstable node G4
<=2 L1 Saddle G5

14 we (=1,0) | L4 Saddle G7
’ uwe (—2,—1) | L15 Saddle G7
w=-2 Li7 Saddle G8

1.5 L12 | Unstable node G9
1.6 L3 Stable node G10
17 we (—1,0) | L10| Stable node G11
’ n<—1 L11 Saddle G12
n< =2 L2 Saddle G13

18 w€ (=1,0) | L7 | Unstable node | G14
© [we(=2,-1) L6 Saddle G15
pw=-2 L18 Saddle G16

1.9 L9 Stable node G19
1.10 L6 | Unstable node | G20
1.11 L12 | Unstable node | GI17
112 uw<—1 L8 Saddle G21
' € (—1,0) | L13 | Unstable node | G22
1.13 L3 Stable node G18
< =2 L1 Saddle G23

114 LHKE (—1,0) | L4 | Stable node G24
' uwe (—=2,—-1) | L15 Saddle G25
w=-2 L17 Saddle G26

1.15 L12 | Unstable node | G27
116 n<—1 L8 Saddle G35
' w€ (—1,0) | L13 | Unstable node | G36
1.17 L3 Stable node G28
<=2 L1 Saddle G37

118 pe(—1,0) | L4 | Stable node G38
’ uwe (—2,—1) | L15 Saddle G39
n=-2 Li17 Saddle G40

1.19 we (=1,0) | L10 Saddle G29
' < -1 L11 Saddle G30
n< =2 L2 Saddle G31

1920 LHE (—1,0) | L7 | Unstable node | G32
’ uwe (—2,—1) | L16 Saddle G33
w=-2 L18 Saddle G34

2.1 L46 | Stable node G41
2.2 L47 | Unstable node | G42

33
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| Case | Conditions [ O | [ | Global |
03 o :%,_,uo> — iil’é Unstable node G43
c1 =0, p<—1]|L43 Saddle G44
n=20 L5 Stable node G45
2.4 c1=0,u>-1]|L35 Stable node G46
c1 =0, p<—1]|L39 Saddle G47
05 o :%,_uo> — E}é Unstable node G48
c1=0,p<—-1]L44 Saddle G49
w=0 L5 Stable node G50
2.6 c1=0,u>—-1]|L38 Stable node G51
c1=0,p<—1]|L41 Saddle GbH2
97 w>-—1 L37 Stable node GbH3
’ < -1 L40 Saddle GbH4
98 pw>—1 L34 Unstable node G55
' < -1 L42 Saddle G56
20 o :/é’_‘uo> — E;i Unstable node G57
c1=0,p<—1]|L26 Saddle GH8
w=0 L5 Stable node G5H9
210 | =0, up>—-1]|L23 Stable node G60
c1 =0, p<—1]L25 Saddle G61
3.1 L12 Unstable node G62
w>0 L6 Unstable node G63
3.2 < -1 L8 Stable node G64
ue (—1,0) L13 Unstable node G65
w>0 L3 Stable node G66
3.3 uw<—1 L11 Stable node G68
ue (—1,0) L10 Stable node G67
w< =2 L1 Saddle G69
3.4 we (—1,0) L4 Stable node G70
' we (—2,—1) | L15 Saddle G71
pw=-2 Li7 Saddle GT72
n>0 L3 Stable node G7
3.5 we (—1,0) | LI1O Stable node GT74
n<—1 L11 Saddle GT75
3.6 L12 Unstable node G76
37 w< -1 L8 Saddle G77
' we (—1,0) |L13 Unstable node G78
3.8 L3 Stable node G79
nw<—2 L1 Saddle G80
39 we (—1,0) L4 Stable node G81
' nwe(=2,-1) | L15 Saddle G82
0= -2 L17 Saddle G83
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Case ‘ Conditions ‘ 01 ‘ O- ‘ Global ‘
nw=20 L14

» =0, 1> 1, agFeop >0 129 Unstable node G84
’ c1=0,u>—1,a0+ cop <0 | L30 Unstable node G&5
c1=0,p< -1 L33 Saddle G86
w=0 L5 Stable node G87
c1 =0, u>—-1,a9+cop >0 | L27 Stable node G88
4.2 c1=0,pu>—-1, a0+ copu<0|L28 Stable node G&9
c1=0,u<—1,a9+cop >0 | L31 Saddle G90
c1=0,p<—1,a9+copu <0 |L32 Saddle GI1
43 o :%,710> — E;é Unstable node G92
c1=0,p< -1 L22 Saddle G93
w=0 L5 Stable node G94
4.4 c1=0,u>-1 L19 Stable node G95
c1=0,p< -1 L21 Saddle G96
w>0 L3 Stable node GI7
5.1 u e (—1,0) L10 Stable node G98
pw< -1 L11 Saddle G99
5.2 L12 Unstable node G76
w>0 L6 Unstable node G100
5.3 w<—1 L8 Saddle G77
we (—1,0) L13 Unstable node GT78
w>0 L3 Stable node GT79
54 u e (—1,0) L10 Stable node G101
w<—1 L11 Saddle G102
w< =2 L1 Saddle G80
55 we (—1,0) L4 Stable node G81
' we (—2,—1) L15 Saddle G8&2
w= -2 L17 Saddle G83
6.1 o :%’_’uo> — Iﬂ;é Unstable node G92
c1=0,p< -1 L22 Saddle G93
nw=20 L5 Stable node G94
6.2 c1=0,u>-1 L19 Stable node G95
c1=0,p< -1 L21 Saddle G96

TABLE 9. Classification of global phase portrais of system (1.3).
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FIGURE 16. Global phase portraits of system (1.3) in the Poincaré disc.
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Remark 7.1. Global phase portraits (G43), (G48), (G57), (G84) and (G92) can
appear both under condition ¢y = 0 or under c¢; # 0 so, as we are interested in the
topological classification we represent only the non-symmetric case respect to z-axis,
but also the symmetric is possible. The same situation occurs with the global phase
portraits (G9), (G13)-(G16), (G18), (G19), (G23)-(G27), (G31)-(G36), (G41),
(G45)-(G49), (G55), (G56), (G76)-(G83), (GI2)-(G102), which can appear under
the condition c3 = 0 or c3 # 0 so they can present the symmetric or the non-
symmetric form respect to x-axis, altought we only represent one of them because
we are only interested on the topological classification.
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