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Abstract. The goal of this paper is to present a methodology
for the computation of invariant tori in Hamiltonian systems com-
bining flow map methods, parameterization methods, and sym-
plectic geometry. While flow map methods reduce the dimension
of the tori to be computed by one (avoiding Poincaré maps), pa-
rameterization methods reduce the cost of a single step of the de-
rived Newton-like method to be proportional to the cost of a FFT.
Symplectic properties lead to some magic cancellations that make
the methods work. The multiple shooting version of the methods
are applied to the computation of invariant tori and their invari-
ant bundles around librational equilibrium points of the Restricted
Three Body Problem. The invariant bundles are the first order ap-
proximations of the corresponding invariant manifolds, commonly
known as the whiskers, which are very important in the dynami-
cal organization and have important applications in space mission
design.

Keywords. Invariant tori; parameterization method; KAM the-
ory; RTBP; Lissajous orbits.

1. Introduction

Hamiltonian systems are frequently found in physical and engineer-
ing applications, from where challenging problems continuously emerge,
of both theoretical and practical nature. The developement of efficient
methods for computing invariant tori carrying quasi-periodic motion is
a driving force in the applications of Hamiltonian systems (see e.g. [52]
for early references), in areas such as plasma physics, semiclassical
quantum theory, accelerator theory, magnetohydrodynamics, oceanog-
raphy and, of course, celestial mechanics. While Lagrangian (maximal
dimensional) invariant tori are important in stability studies, partially

A.H. is supported by the grants PGC2018-100699-B-I00 (MCIU-AEI-FEDER,
UE), 2017 SGR 1374 (AGAUR), MSCA 734557 (EU Horizon 2020), and MDM-
2014-0445 (MINECO), and by the NSF under Grant No. 1440140 to found his
residence at MSRI in Berkeley, California, during the Fall 2018 semester.
J.M. Mondelo has been supported by the MINECO-AEI grants MTM2014-52209-
C2-1-P, MTM2016-80117-P, MTM2017-86795-C3-1-P.
We would also like to acknowledge the work of the free software community in
providing all the software tools we have used, which are listed at the beginning of
Section 4.

1

This is a preprint of: “Flow map parameterization methods for invariant tori in Hamiltonian
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hyperbolic invariant tori are also important in studies of diffusion and
chaos in Hamiltonian systems. An important problem in astrodynam-
ics is the design of station keeping orbits lying on partially hyperbolic
invariant tori around collinear libration points in RTBP approxima-
tions, for which the stable manifolds are sort of entry lanes, and the
unstable manifolds are the exit lanes (see [21] for a survey of early li-
bration points missions, and the web pages of space agencies for many
newer ones). This will be the guiding problem of this paper to fix a
framework.

To date, one of the most succesful approaches to compute invari-
ant tori falls in the category of numerical Fourier methods, in which
parameterizations of tori are given by (truncated) Fourier expansions,
and the arising discretized invariance equations (using e.g. colloca-
tion) are solved by numerical methods such as Newton’s method (see
e.g. [15, 35, 14, 47, 1] for several variants of this approach in dif-
ferents contexts). In spite of the relatively simple formulation of the
approach, the main practical drawback is what we refer to as the large
matrix problem [31]: the computational bottleneck produced in solv-
ing the large dimension of the systems of equations at each iteration
step, whose time cost is O(N3) and the memory cost is O(N2), where
N is the number of Fourier coefficients of the approximations. We
emphasize that the number of Fourier coefficients has to do with the
dimension of the tori to be computed and their regularity. Remarkably,
the numerical Fourier method introduced in [27] mitigates the curse of
dimensionality by reducing the dimension of the tori by 1, in looking
for invariant tori for time-T flow maps (where 1/T is one of the fre-
quencies of the motion on the torus) instead of looking for invariant tori
for Poincaré maps. As of now, it is a well-stablished method that has
proven to be among the most adequate in computing partially hyper-
bolic invariant tori around collinear points in the RTBP, by reducing
the problem to computing invariant curves of time-T flow maps (see [3]
for a review). As we see, avoiding the large matrix problem is already
important for models such as the RTBP, but is crucial when facing the
computation of higher dimensional tori either in higher dimensional
problems (e.g. non restricted problems), or in the non-autonomous
(periodic and quasi-periodic) improvements of RTBP (such as the el-
liptic case, the bicircular case, de quasi-bicircular case, or other models
that come from three or more body problems). As of now, this still has
not been attempted in a systematic manner.

The object of this paper is twofold. First, to overcome the large
matrix problem in [27] and second, but not less important, to establish
a mathematical framework for the analysis of the derived algorithms.
This will be performed by changing the discretization strategy and
linking the approach to the so called parameterization method for in-
variant manifolds, a general strategy for proving existence of invariant
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manifolds in a constructive way, so that the methods of proof lead
to algorithms of computation, and can be applied to many different
contexts (see [5, 6, 7] for the foundational papers for invariant mani-
folds attached to fixed points and [29] for a review). More specifically,
the algorithms presented here are inspired by non-perturbative KAM
strategies [17, 18, 24, 37, 42] and by symplectic geometry [28, 29], that
are applied to look for invariant tori of flow maps in the spirit of the
methodology introduced in [27]. The algorithms consist in performing
Newton-like steps on the invariance equations at the functional level
(rather than directly at the numerical level). To do so, the geometrical
and dynamical properties of the problem lead to the construction of
a frame especially chosen in order to make block triangular the lin-
earized invariance equations. Using FFT to switch the representations
of invariant tori from samples to Fourier coefficients and vice-versa
makes the time cost of each step O(N logN) and the memory cost
O(N), where N is the number of either Fourier coefficients or samples
used to represent the tori. This is a significant improvement of these
functional Fourier methods with respect numerical Fourier methods
mentioned above. See [29] for some benchmarks comparing parame-
terization method-like methodologies in the context of invariant tori
in skew-product systems [32, 31, 33], and also [9, 12, 36, 39] for other
contexts.

We will present several algorithms of computation and continuation
of invariant tori, including the isoenergetic case (i.e. invariant tori at a
fixed energy level). For the sake of simplicity, we will focus on partially
hyperbolic invariant tori of dimension n − 1 of n degrees of freedom
Hamiltonians, but many of the ideas can be extrapolated to other cases
(including Lagrangian tori and partially elliptic invariant tori), even to
non-autonomous Hamiltonian systems (e.g. using the common trick of
adding extra degrees of freedom). The methods we present not only
compute the invariant torus, but also the invariant stable, unstable and
center bundles at the same time. The stable and unstable bundles are
the first order approximations of the corresponding stable and unsta-
ble invariant manifolds, commonly known as the whiskers. The center
bundle provides the tangent directions to the normally hyperbolic in-
variant cylinder containing the family of tori being computed. We will
come to the a priori unexpected realization that, when invariant tori
and invariant bundles are computed at the same time, the algorithms
are much more efficient than it they are designed for computing invari-
ant tori only. This is another improvement of the standard approach,
in which the stable and unstable bundles are computed after the torus
is computed [27, 40], and avoids additional O(N3) time and O(N2)
memory costs. The algorithms implement multiple shooting, in order
to cope with the instability that comes from the hyperbolic part. In
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summary, the computational bottleneck of the flow map parameter-
ization methods presented in this paper is no longer the solution of
the invariance equations but the (unavoidable) numerical integration
needed in order to evaluate the flow maps. This is a task that can be
performed easily in parallel.

Last but not least, the convergence of the algorithms presented
here could be proved using KAM methods, under appropriate non-
degeneracy conditions that we make explicit (related to well-known
Kolmogorov and isoenergetic conditions) and smallness of the error of
the approximate solutions. We do not pursue this analysis here. We
refer to [18, 24, 42, 28, 8, 13, 29] for proofs of several KAM results in
a posteriori format, based on the parameterization method. See also
[22] for a methodology to perform computer-assisted-proofs based on
a posteriori format KAM theorems. Following the standard practice
in numerical analysis, we have tested the algorithms with well-known
computations, as the ones appearing in [27]. We will see that, already
in this case, the algorithms are much faster and let one reach unex-
plored regions and compute tori that are about to break.

Summary of the paper. Section 2 provides some geometrical back-
ground and introduces notation for the invariance equations to be
solved and the parameterizations to be computed. Section 3 progres-
sively introduces the necessary algorithms for the solution of multiple
cohomological equations and the computation of frames, in order to
perform Newton steps and finally continuation ones. The section ends
with important comments on an actual implementation. Section 4 is
devoted to the application of the algorithms to the computation of
the family of partially hyperbolic KAM tori born from the equilibrium
point L1 of the Earth-Moon RTBP. A performance comparison is made
with previous large-matrix methodology. Some dynamical and geomet-
ric observables are introduced and graphically represented, in order to
discuss global properties of the family. The graphical evolution of a
few specific sub-families of tori is also shown in order to illustrate the
interaction with other families of objects of the center manifold of L1.
Section 5 presents some conclusions. The paper is ended with two ap-
pendices. Appendix A deals with the equivalence of the Poincaré map
and the flow map methods, and Appendix B provides the proofs of
some cancellations (coming from geometrical properties) that are cru-
cial for the design of the algorithms, as well as for eventual proofs of
their convergence using KAM methods.

2. Setting

2.1. Notations. In this paper we assume that all objects are real an-
alytic.
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Let T` = R`/[0, 1]` be the standard `-torus. With a slight abuse
of notation, we identify a function ξ : T` → R with a funcion ξ :
R` → R that is 1-periodic in each of its variables, the components of
θ = (θ1, . . . , θ`). The average of ξ is

〈ξ〉 :=

∫

T`

ξ(θ)dθ.

We denote the Fourier coefficients of ξ as {ξ̂k}k∈Z` , which are given by

ξ̂k =

∫

T`

ξ(θ)e−i2πkθdθ.

Then

ξ(θ) =
∑

k∈Z`

ξ̂ke
i2πkθ,

where kθ :=
∑`

i=1 kiθi and i denotes the imaginary unit. The Fourier

coefficients go to zero exponentially fast when |k| := ∑`
i=1 |ki| goes to

infinity.

2.2. Symplectic structures and Hamiltonian systems. We as-
sume we are given an open set U ⊂ R2n endowed with an exact symplec-
tic structure whose matrix representation is an antisymmetric matrix
map Ω : U → R2n×2n, which is invertible, and it is given by

Ω(z) = Da(z)> −Da(z),

where a : U → Rn, for which the transpose a(z)> is the matrix repre-
sentation of the action form at the point z ∈ U . The matrix map Ω
induces a symplectic product at each z ∈ U . For the sake of simplicity,
we will also assume we are given an almost complex structure compat-
ible with the symplectic structure, meaning a map J : U → R2n×2n

that is involutive (J(z)2 = −I2n), symplectic (J(z)>Ω(z)J(z) = Ω(z))
and such that the matrix map G : U → R2n×2n defined by G(z) =
−Ω(z)J(z) induces an scalar product at each z ∈ U .

The prototypical example is the standard symplectic structure, given
by

Ω0(z) =

(
On −In
In On

)
,

where In is the n×n identity matrix, and On is the n×n zero matrix.
In this case,

a0(z) = 1
2

(
On In
−In On

)
z, J0(z) =

(
On −In
In On

)
, G0(z) =

(
In On

On In

)
.

Given a function H : U → R, we obtain an autonomous Hamiltonian
system with n degrees of freedom,

(1) ż = XH(z) := Ω(z)−1DH(z)>.
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We will denote by ϕ : D ⊂ R×U → U the Hamiltonian flow associated
to the Hamiltonian vector field XH . We will often use the notation
ϕt = ϕ(t; ·). For t fixed, the time-t map ϕt is exact symplectic (in the
appropriate domains), meaning that is symplectic, that is

Dϕt(z)>Ω(ϕt(z))Dϕt(z) = Ω(z),

and, moreover,

a(ϕt(z))>Dϕt(z)− a(z)> = Dpt(z)

for a certain primitive function pt : U → R, which in fact is given by

pt(z) =

∫ t

0

(
a(ϕs(z))>XH(ϕs(z))−H(ϕs(z))

)
ds.

The exactness property leads to crucial cancellations that enable the
existence of invariant tori. Moreover, it is well-known that invariant tori
carrying quasi-periodic dynamics have the special geometrical property
of being isotropic.

2.3. Isotropic tori and Calabi vectors. Given a parameterization
K : Tm → U of an m-dimensional torus K, we define its Calabi vector
C(K) as

(2) C(K)> =

∫

Tm

a(K(θ))>DK(θ) dθ,

where we emphasize the dependence on K. Its components are the
Calabi invariants,

(3) Ci(K) =

∫

Tm

a(K(θ))> ∂K
∂θi

(θ) dθ,

for i = 1, . . . ,m. The corresponding radii of K are ri(K) =
√
|Ci(K)|

π
,

for i = 1, . . . ,m, which measure the widths of the torus K (w.r.t. the
parameterization K). Notice that Calabi invariants (and the radii) are
invariant under the flow of a Hamiltonian vector field XH , as we prove
in the following lines:

C(ϕt(K(θ)))> =

∫

Tm

a(ϕt(K(θ)))>D(ϕt(K(θ))) dθ

=

∫

Tm

a(ϕt(K(θ)))>Dϕt(K(θ))DK(θ) dθ

=

∫

Tm

a(K(θ))>DK(θ) dθ +

∫

Tm

Dpt(K(θ))DK(θ) dθ

= C(K)>,

where pt is the primitive function of ϕt, and we apply that pt ◦ K is
1-periodic in all its variables, so its differential has zero average.
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Remark 2.3.1. Given a torus automorphism A : Tm → Tm, where
A ∈ GLm(Z) (i.e. A ∈ Zm×m, detA = ±1), the reparametrization
K ◦ A : Tm → U of K has Calabi vector C(K ◦ A) = A>C(K).

In the previous constructs we have only used the symplectic proper-
ties of phase space, but not the possible geometrical properties of the
tori. The torus K is isotropic if its parameterization satisfies

DK(θ)>Ω(K(θ))DK(θ) = 0,

for any θ ∈ Tm. In such a case, we may define, for i = 1, . . . ,m,

(4) Ci(K) =

∫ 1

0

a(K(θ))> ∂K
∂θi

(θ) dθi

by taking any fixed (θ1, . . . , θi−1, θi+1, . . . , θm) (hence, giving a genera-
tor of the torus). It is not difficult to check that the definition does not
depend on such a choice (just compute the derivatives with respect to
θj with j 6= i) and, hence, equals the definition given in (3).

Remark 2.3.2. In the numerical computation of invariant tori it is use-
ful to monitor these geometrical quantities in order to detect shrinking
of the tori. These are geometrical observables we use along the com-
putations.

2.4. Invariance equations for invariant tori. A parameterization
K̂ : Td −→ U of an invariant d-dimensional torus K̂ with frequency
vector ω̂ ∈ Rd satisfies the invariance equation

(5) ϕt
(
K̂(θ̂)

)
= K̂(θ̂ + tω̂),

for all θ̂ ∈ Td and t ∈ R. The infinitesimal version of (5) is

(6) XH(K̂(θ̂)) = DK̂(θ̂)ω̂.

The frequency vector ω̂ is assumed to be (at least) non-resonant or

ergodic, that is, k̂ · ω̂ 6= 0 for any k̂ ∈ Zd \ {0}. It is well-known that

the Hamiltonian H is constant on an invariant torus: H(K̂(θ̂)) = h for

all θ̂ ∈ Td, for a certain energy h.

Remark 2.4.1. Equation (6) determines K̂ up to a phase: if K̂(θ̂) is a

solution, then, for any α̂ ∈ Rd, K̂α̂(θ̂) := K̂(θ̂+α̂) is also a solution, that

parameterizes the same torus K̂. We then have d degrees of freedom in
the determinacy of the parameterization K̂.

Remark 2.4.2. The frequency vector of K̂ is defined up to a unimodular
matrix Â ∈ Zd×d (with determinant ±1), so that to the reparameteri-

zation K̂ ◦ Â : Td → U corresponds the frequency vector Â−1ω̂.

In order to reduce the dimension of the parameterization to be com-
puted, and also to avoid the use of Poincaré map, we borrow a trick
from [27]. By writing ω̂ = 1

T
(ω, 1), where ω ∈ Rd−1 and T ∈ R,
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one looks instead for a parameterization K : Td−1 → U of a (d − 1)-

dimensional torus K inside the starting one K̂ satisfying

(7) ϕT
(
K(θ)

)
= K(θ + ω).

We will refer to T as the period or flying time of the torus K inside
K̂, and ω as its rotation vector. From K satisfying (7) we recover the

parameterization K̂ satisfying (6) via the flow through

(8) K̂(θ̂) = ϕθdT
(
K(θ − θdω)

)
,

where θ̂ = (θ, θd) ∈ Td−1×T. From K̂ we get a K just defining K(θ) =

K̂(θ, 0). The rotation vector ω ∈ Rd−1 is non-resonant, meaning that
k · ω /∈ Z, for any k ∈ Zd−1 \ {0}. Notice that H(K(θ)) = h for all
θ ∈ Td−1.

Remark 2.4.3. Equation (7) determines K up to a phase: if K(θ) is
a solution, then, for any α ∈ Rd−1, K(θ + α) is also a solution that

parameterizes the same torus K inside K̂. But Equation (7) determines

K up to a time translation of K inside K̂: if K(θ) is a solution then, for
any ᾱ ∈ R, ϕᾱ(K(θ)) is also a solution. We then again have d degrees
of freedom in the determinacy of the parameterization K.

Remark 2.4.4. The rotation vector of K is defined up to a unimod-
ular matrix A ∈ Z(d−1)×(d−1), in such a way that the rotation vector
corresponding to the reparameterization K ◦ A : Td−1 → U is A−1ω.

In the problem of existence (and computation) of invariant tori K
with rotation vector ω one may consider two different cases:

• isochronous case: T is fixed, and the torus K and the energy h
are the unknows;
• isoenergetic case: h is fixed, and the torus K and the flying

time T are the unknowns.

In summary, the equations to face are:

ϕT
(
K(θ)

)
−K(θ + ω) = 0,(9) ∫

Td−1

H(K(θ)) dθ − h = 0,(10)

in which we fix either T or h accordingly. Notice that this formulation
also makes natural to consider either T or h as continuation parameters.

Remark 2.4.5. As it is very well-known, using Poincaré map is another
way of reducing the dimension of the problem. Both the Poincaré
map and the time-T flow map approaches are equivalent (see Appen-
dix A). From the theoretical point of view, the time-T approach has
the advantage that one deals with exact symplectic mapings in both
the isochronous and isoenergetic cases, while in the Poincaré map ap-
proach one produces symplectic mappings once one reduces also to a
fixed energy level (so one works in the isoenergetic case). From the
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numerical point of view, both approaches of course involve numerical
integration, but computing Poincaré maps and their differentials is a
bit more time consuming task (both in terms of coding and execution)
than computing time-T flows and their differentials. Moreover, since
we are planning to perform multiple shooting methods, the use of mul-
tiple Poincaré maps can increase the difficulty of appropriately locating
them and the complexity of the algorithms.

2.5. Partially hyperbolic invariant tori of dimension n − 1. In
this paper, we focus in algorithms for computing partially hyperbolic
invariant tori of dimension n−1, i.e. d = n−1, that is, with stable and
unstable bundles of rank 1. The algorithms we present are very easy to
adapt to Lagrangian tori, that is d = n, and other lower dimensional
partially hyperbolic tori, that is d < n. Invariant tori with elliptic di-
rections could be also considered, with the aid of parameters. The case
we consider appears very often in applications, as the one presented in
this paper. In Section 4 we compute partially hyperbolic invariant tori
around the Lagrangian points of the Restricted Three Body Problem,
that is n = 3, d = 2.

Hence, assume that d = n− 1. A bundle Ŵ of rank 1 (with base K̂)

parameterized by a map Ŵ : Tn−1 → R2n satisfying the equation

(11) Dϕt
(
K̂(θ̂)

)
Ŵ (θ̂) = etχŴ (θ̂ + tω̂),

with χ ∈ R, is invariant under the linearized flow of XH . If χ < 0
then Ŵ = Ŵs is the stable bundle, and if χ > 0 then Ŵ = Ŵu is the
unstable bundle.

In order to decrease the dimension by one, we proceed again by
considering time-T maps. With ω̂ = 1

T
(ω, 1), we look for a parame-

terization W : Tn−2 → R2n of a line bundle W of the torus K such
that

(12) DϕT
(
K(θ)

)
W (θ) = eTχ W (θ + ω).

Again, we recover Ŵ by taking

Ŵ (θ̂) = e−θdTχDϕθdT
(
K(θ − θdω)

)
W (θ − θdω),

where θ̂ = (θ, θd).

Remark 2.5.1. Notice that with this formulation we assume that the
line bundle Ŵ is trivial (and oriented). Non-oriented line bundles can
fit this formulation through the double-covering trick (see e.g. [33]).

3. Multiple shooting algorithms

As we have seen in previous section, the equations to solve involve
numerical integration of orbits from points on tori up to a certain T .
Since T cannot be chosen to be small, dynamical instability can make
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the numerical solution of (9), (10) and (12) difficult. In our expe-
rience, with values of eTχ of the order of thousands we are not able
to observe quadratic convergence of Newton iterates. Also, continua-
tion steps become very small. The effects of dynamical instability can
be avoided by reducing integration time through the use of multiple
shooting. Multiple shooting is classically introduced in the numerical
solution of boundary value problems for ordinary differential equations
(see e.g. [50]), but it can also be used in the computation of general
invariant objects.

3.1. Multiple shooting invariance equations. Instead of looking
for a parameterization K0 of a single (n − 2)-dimensional torus K0

inside the (n − 1)-dimensional torus K̂, we look for parameterizations
{Ki}m−1

i=0 of m tori, Ki : Tn−2 → R2n satisfying the equations

(13) ϕT/m
(
Ki(θ)

)
−Ki+1(θ + ω

m
) = 0,

for i = 0, . . . ,m − 1. In the above equation, and in the following, we
assume the i subindex (here in Ki) is defined modulo m. In particular,
Km = K0. Note that, if {Ki}m−1

i=0 is solution of (13), any Ki is solution
of (9). In the following, we will refer to {Ki}m−1

i=0 as a multiple torus,
and similar notations will be used for other multiple objects (bundles,
frames, etc.)

There are several ways to explicit the energy level of the torus K̂,
and the one we consider here is that of the average of the energy on
the first torus of the chain:

(14)

∫

Tn−2

H(K0(θ)) dθ − h = 0.

We will also use multiple shooting for computing the invariant bundle
Ŵ , and thus look for λ and a multiple bundle {Wi}m−1

i=0 , where Wi :
Tn−2 → R2n, satisfying

(15) DϕT/m
(
Ki(θ)

)
Wi(θ)− λWi+1(θ + ω

m
) = 0,

for i = 0, . . . ,m − 1. Again, if {Wi}m−1
i=0 is solution of (15), any Wi is

solution of (12), with eTχ = λm.
Following the philosophy of the parameterization method, we will

look for adapted frames in which Newton’s method for the invariant
equations (13) and (15) can be performed through a sequence of co-
homological equations that are diagonal in Fourier space. In this way,
the large matrix systems that appear when doing direct Fourier dis-
cretization of invariance equations are avoided, and all the computa-
tional effort goes in the numerical integrations necessary to perform
the change to the frame and to obtain the new equations, and in the
transformations from Fourier space to grid space and vice versa, which
are done through FFT.
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3.2. Multiple cohomological equations. As we have just mentioned,
the use of adapted frames is in the basis of our algorithms, but also is
in the core of KAM theory. This section is devoted to their application
to the analysis of multiple cohomological equations.

In the following, we will fix a non-resonant rotation vector ω ∈ R`.
(In the context of this paper, ` = d− 1 = n− 2.)

3.2.1. Small divisors equations. The first equation we consider is the
following small divisors cohomological equation,

(16) ξ(θ)− ξ(θ + ω) = η(θ),

where η : T` → R is given and ξ : T` → R is to be found. A necessary
condition to solve this equation is that the average of the right hand
side is zero: 〈η〉 = 0. The solution of (16) is (formally) straightorward
in terms of Fourier coefficients: if

(17) ξ(θ) =
∑

k∈Z`

ξ̂ke
i2πkθ, η(θ) =

∑

k∈Z`

η̂ke
i2πkθ,

then the solutions of (16) are (formally) given by

ξ̂0 ∈ R arbitrary, ξ̂k =
η̂k

1− ei2πkω for k 6= 0.

Note that the divisors 1− ei2πkω become arbitrarily small. For analytic
η, the convergence of the series ξ is ensured by stronger non-resonance
properties of rotation vector ω, such as the so-called Diophantine con-
dition: from now on, we assume there exist γ > 0, τ ≥ d such that
|kω − q| ≥ γ|k|−τ1 for all k ∈ Z` \ {0}, q ∈ Z. We will denote by Rη(θ)
the only ξ(θ) solution of

(18) ξ(θ)− ξ(θ + ω) = η(θ)− 〈η〉,
with zero average.

The multiple version of the small divisors cohomological equation
(16) is: given functions {ηi}m−1

i=0 , ηi : T` → R, we want to find functions
{ξi}m−1

i=0 , ξi : T` → R, satisfying

(19) ξi(θ)− ξi+1(θ + ω
m

) = ηi(θ), i = 0 . . . ,m− 1.

As already mentioned, we assume the subindex i to be defined modulo
m, so that, in particular ξm = ξ0. A telescopic sum turns (19) into a
small divisors cohomological equation:

(20)
m−1∑

i=0

ηi(θ + i
m
ω) = ξ0(θ)− ξ0(θ + ω).

Hence, the necessary condition to solve the multiple equation is the
average condition

〈η〉 :=
1

m

m−1∑

i=0

〈ηi〉 = 0.
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Here, and in the following we will use the notation 〈g〉 for the mean of
the averages of a set of functions {gi}m−1

i=0 . Notice that any solution of
(20) is given by

(21) ξ0(θ) = ξ̂0,0 +
m−1∑

i=0

Rηi(θ + i
m
ω).

Once the average ξ̂0,0 = 〈ξ0〉 is fixed, the remaining ξi can be deter-
mined from (19) by the relations

ξi(θ + 1
m
ω) = ξi−1(θ)− ηi−1(θ), i = 1 . . . ,m− 1.

Roundoff propagation is reduced by computing every ξi independently
from

m−1∑

i=0

ηj+i(θ + i
m
ω) = ξj(θ)− ξj(θ + ω).

Then,

ξj(θ) = ξ̂j,0 +
m−1∑

i=0

Rηj+i(θ + i
m
ω),

with ξ̂j,0 = ξ̂j−1,0 − η̂j−1,0. The number of translations to be done to
η0, . . . , ηm−1 (and thus the coding and run-time overhead of this second
approach) is reduced by using

(22) ξj(θ + j
m
ω) = ξ̂j,0 +

m−1∑

i=0

Rηj+i(θ + j+i
m
ω),

instead. Anyway, the overhead of this second approach is negligible
against the cost of numerical integration (an orbit per Fourier coeffi-
cient, as we will see).

3.2.2. Non-small divisors equations. The other kind of equation we will
consider is a non-small divisors cohomological equation,

(23) λξ(θ)− µξ(θ + ω) = η(θ),

where λ, µ ∈ R, |λ| 6= |µ|, η : T` → R are given and ξ : T` → R is
to be found. Its formal solution is straightforward in terms of Fourier
coefficients: using the notation of (17), for all k ∈ Z,

ξ̂k =
η̂k

λ− µei2πkω .

The multiple version of the non-small divisors cohomological equation
(23) is: given λ, µ ∈ R, |λ| 6= |µ|, {ηi}m−1

i=0 , ηi : T` → R, find {ξi}m−1
i=0

satisfying

(24) λξi(θ)− µξi+1

(
θ + ω

m

)
= ηi(θ)
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for i = 0, . . . ,m−1. As before, and also to reduce roundoff propagation,
a telescopic sum turns (24) into a non-small divisors cohomological
equation for each ξj:

λmξj(θ)− µmξj(θ + ω) =
m−1∑

i=0

µiλm−1−iηj+i(θ + i
m
ω).

These m independent equations (that can be solved in parallel) are all
of the same type as (23). Also as before, the number of translations to
be done to η0, . . . , ηm−1 is reduced by subtituting θ by θ + j

m
ω in the

previous equation.

3.3. Computation of adapted frames. In the spirit of the parame-
terization method, for a multiple torus {Ki}m−1

i=0 and a multiple bundle
{Wi}m−1

i=0 , we look for a multiple frame {Pi}m−1
i=0 , Pi : Tn−2 → R2n×2n,

such that

(25) Pi+1(θ + ω
m

)−1DϕT/m
(
Ki(θ)

)
Pi(θ) =

(
Λ Si(θ)

Λ−>

)
,

for i = 0, . . . ,m− 1, with

(26) Λ =

(
In−1 0

0 λ

)
, Si(θ) =

(
S1
i (θ) 0
0 0

)

where In−1 is the (n−1)×(n−1) identity matrix, S1
i (θ) is a symmetric

(n − 1) × (n − 1) matrix (referred to as torsion matrix), and each
0 (and empty block) stands for a zero matrix of the corresponding
dimensions. We will see this is possible if {Ki}m−1

i=0 and {Wi}m−1
i=0 are

solutions of equations (13) and (15), respectively. In our algorithm, the
key point is that (25) is approximately true if {Ki}m−1

i=0 and {Wi}m−1
i=0

are approximate solutions.
First, we define the multiple subframe {Li}m−1

i=0 , Li : Tn−2 → R2n×n,
by

(27) Li(θ) =
(
DKi(θ) XH(Ki(θ)) Wi(θ)

)
,

By differentiating (13) with respect to θ, we obtain

(28) DϕT/m
(
Ki(θ)

)
DKi(θ) = DKi+1(θ + ω

m
).

By differentiating ϕT/m
(
ϕt(Ki(θ)

)
= ϕt

(
Ki+1(θ + ω

m
)
)

with respect to
t and taking t = 0,

(29) DϕT/m
(
Ki(θ)

)
XH

(
Ki(θ)

)
= XH

(
Ki+1(θ + ω

m
)
)
.

From (28), (29), (15), and the definition of Li(θ) in equation (27), we
have

(30) DϕT/m
(
Ki(θ)

)
Li(θ) = Li+1(θ + ω

m
)Λ.
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It is well-know that symplecticity properties imply that each sub-
frame Li(θ) is Lagrangian, meaning that

(31) Li(θ)
>Ω(Ki(θ))Li(θ) = 0.

Remark 3.3.1. We emphasize conditions (30) and (31) also work for
matrices of the form

L′i(θ) = Li(θ)

(
A 0
0 b

)
,

where A ∈ R(n−1)×(n−1) and b ∈ R are constant and invertible. In par-
ticular, one can scale frames in order to mitigate possible degeneracies.

The goal is now completing each Lagrangian subframe Li to a sym-
plectic frame Pi, by juxtaposing a complementary Lagrangian frame
Ni. There are several ways to do so (see [29]). Here, with the aid of
the compatible almost complex structure J , we define

(32) N̂i(θ) = J
(
Ki(θ)

)
Li(θ)Gi(θ)

−1, Gi(θ) = Li(θ)
>G(Ki(θ))Li(θ).

Now, the matrix

(33) P̂i(θ) =
(
Li(θ) N̂i(θ)

)
,

is symplectic, that is to say

P̂i(θ)
>Ω(Ki(θ))P̂i(θ) = Ω0.

Hence,

(34) P̂i+1(θ + ω
m

)−1DϕT/m(Ki(θ))P̂i(θ) =

(
Λ Ŝi(θ)

On Λ−>

)

is symplectic (with respect to Ω0), where Ŝi(θ) is a n× n matrix given
by

(35) Ŝi(θ) = N̂i+1(θ + ω
m

)>Ω(Ki+1(θ + ω
m

))DϕT/m(Ki(θ))N̂i(θ).

From symplecticity, it follows that Ŝi(θ)Λ> = ΛŜi(θ)>,
In order to have (25), we perform a new change of frame by consid-

ering, for i = 0, . . . ,m− 1, matrices

(36) Qi(θ) =

(
In Bi(θ)

In

)
,

with Bi(θ)
> = Bi(θ), so that they are symplectic. Then,

Qi(θ)
−1 =

(
In −Bi(θ)

In

)
.

For the new frame

(37) Pi(θ) = P̂i(θ)Qi(θ),
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we have

Pi+1(θ + ω
m

)−1DϕT/m(Ki(θ))Pi(θ) =

(
Λ Si(θ)

Λ−>

)
,

with

(38) Si(θ) = ΛBi(θ) + Ŝi(θ)−Bi+1(θ + ω
m

)Λ−>.

By splitting the matrix Ŝi(θ), in blocks of sizes (n − 1) × (n − 1),
(n− 1)× 1, 1× (n− 2) and 1× 1, as in

(39) Ŝi(θ) =

(
Ŝ1
i (θ) Ŝ2

i (θ)

Ŝ3
i (θ) Ŝ4

i (θ)

)
,

and using analogous splittings for Si(θ) and Bi(θ), formula (38) reads

S1
i (θ) = Ŝ1

i (θ) + B1
i (θ)−B1

i+1(θ + ω
m

),(40)

S2
i (θ) = Ŝ2

i (θ) + B2
i (θ)−B2

i+1(θ + ω
m

)λ−1,(41)

S3
i (θ) = Ŝ3

i (θ) + λB3
i (θ)−B3

i+1(θ + ω
m

),(42)

S4
i (θ) = Ŝ4

i (θ) + λB4
i (θ)−B4

i+1(θ + ω
m

)λ−1.(43)

We then take B1
i (θ) = In−1 for each i = 0, . . . ,m− 1, so that S1

i (θ) =

Ŝ1
i (θ), and look for B3

i (θ)
> = B2

i (θ), B
4
i (θ) so that S3

i (θ)
> = S2

i (θ)λ =
0 and S4

i (θ) = 0. In summary, we need to find {B2
i (θ)}m−1

i=0 and
{B4

i (θ)}m−1
i=0 such that

B2
i (θ)−B2

i+1(θ + ω
m

)λ−1 = −Ŝ2
i (θ), i = 0, . . . ,m− 1,(44)

λB4
i (θ)−B4

i+1(θ + ω
m

)λ−1 = −Ŝ4
i (θ), i = 0, . . . ,m− 1.(45)

The solution of these multiple shooting cohomological equations has
been discussed in Section 3.2.

All the previous developments are summarized in the algorithm that
follows.

Algorithm 3.3.2. Given {Ki}m−1
i=0 , {Wi}m−1

i=0 satisfying (13), (15), com-
pute the multiple frame {Pi}m−1

i=0 and the corresponding reduced expres-
sion of {DϕT/m ◦Ki}m−1

i=0 , as given by (25), by following these steps:

(1) Compute {Li}m−1
i=0 from (27).

(2) Compute {N̂i}m−1
i=0 from (32), in order to get {P̂i}m−1

i=0 from (33).

(3) Compute {Ŝi}m−1
i=0 from (35), and obtain {S1

i }m−1
i=0 as {Ŝ1

i }m−1
i=0 ,

according to the matrix splitting in (39).
(4) Compute {B2

i }m−1
i=0 from (44), and {B3

i }m−1
i=0 from B3

i = (B2
i )
>.

(5) Compute {B4
i }m−1

i=0 from (45).
(6) Define {B1

i }m−1
i=0 as B1

i = In−1 for i = 0 . . .m− 1.
(7) Compute {Pi}m−1

i=0 from (37), with {Qi}m−1
i=0 given by (36).

Remark 3.3.3. Observe that step 3 is the only one that requires numer-
ical integration. The other operations are diagonal either in Fourier
space or in grid space.



16 ALEX HARO AND J.M. MONDELO

Remark 3.3.4. We can extend the arguments and reduce the torsion
matrices {S1

i }m−1
i=0 to constant coefficients by considering multiple small

divisors cohomological equations (40). To do so, we define

S1
0 = 〈S1〉 =

1

m

m−1∑

i=0

〈Ŝ1
i (θ)〉(46)

and solve

B1
i (θ)−B1

i+1(θ + ω
m

) = S1
0 − Ŝ1

i (θ) i = 0, . . . ,m− 1.(47)

as we discussed in Section 3.2. With the choice, the torsion matrices are
S1
i (θ) = S1

0 , for all i = 0, . . . ,m− 1. Hence, step (6) of Algorithm 3.3.2
can be replaced by

(6’) Compute {B1
i }m−1

i=0 from (47), with S1
i = S1

0 given from (46).

3.4. Description of a Newton step. The goal of this subsection is
to develop the formulation necessary to perform Newton steps in the
(multiple shooting) invariance equations for the tori, (13), the energy
level, (14), and the bundles, (15). This will be done by solving the lin-
earization of these equations around a known approximation expressed
in the frame (37). We will consider isochronous and isoenergetic cases.

3.4.1. A Newton step on the torus. Let us consider a multiple torus
{Ki}m−1

i=0 , a multiple bundle {Wi}m−1
i=0 and λ 6= 0 satisfying equations

(13), (14) and (15) approximately, for a given T (and fixed ω). Let
{Ei}m−1

i=0 be the error in the invariant equations, so , Ei : Tn−2 → R2n

is defined by

(48) Ei(θ) := ϕT/m
(
Ki(θ)

)
−Ki+1(θ + ω

m
),

for i = 0, . . . ,m− 1. We also consider the energy error for a given h:

Eh = 〈H(K0)〉 − h.
We plan to give rather explicit formulas for the corrections of tori,
{∆Ki}m−1

i=0 , and also of the energy, ∆h, and the flying time ∆T , in the
isochronous case (for which ∆T = 0) and the isoenergetic case (for
which ∆h = 0).

With {Pi}m−1
i=0 the frame defined in (37), we write the correction of

the tori in the form ∆Ki(θ) = Pi(θ)ξi(θ). Expanding by Taylor up to
first order the invariance equation

ϕ(T+∆T )/m

(
Ki(θ) + Pi(θ)ξi(θ)

)

−Ki+1(θ + ω
m

)− Pi+1(θ + ω
m

)ξi+1(θ + ω
m

) = 0

around the approximated tori and flying time, and neglectic second
order error terms, we get the equation for one step of Newton’s method:

DϕT/m
(
Ki(θ)

)
Pi(θ)ξi(θ)

−Pi+1

(
θ + ω

m

)
ξi+1

(
θ + ω

m

)
+XH

(
Ki+1

(
θ + ω

m

))
∆τ = −Ei(θ),
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where ∆τ = ∆T
m

.
Multiplying the previous equations by Pi+1(θ + ω

m
)−1, if the frame

{Pi}m−1
i=0 satisfied (25) exactly, we would obtain

(49)

(
Λ Si(θ)
0 Λ−>

)
ξi(θ)− ξi+1(θ + ω

m
) + e∆τ = ηi(θ)

with Λ, Si(θ) defined as in (26),

(50) ηi(θ) = −Pi+1(θ + ω
m

)−1Ei(θ),

and

ξi(θ) =




ξ1
i (θ)
ξ2
i (θ)
ξ3
i (θ)
ξ4
i (θ)


 , e =




en−1

0
0
0


 , ηi(θ) =




η1
i (θ)
η2
i (θ)
η3
i (θ)
η4
i (θ)


 ,

being en−1 = (0, . . . , 1)> ∈ Rn−1. Notice we implicitly consider ξi, ηi :
Tn−2 → Rn−1 ×R×Rn−1 ×R and enumerate the corresponding block
components accordingly. Actually, since {Ki}m−1

i=0 , {Wi}m−1
i=0 satisfy

equations (13), (15) approximately, the frame also satisfies (25) ap-
proximately, so we would need to add an error term to the matrix in
(49). This error term can be disregarded, because when multiplied by
ξi(θ) becomes of second order. Taking this into accout, we can rewrite
(49) as a system of equations in order to obtain

ξ1
i (θ) + S1

i (θ)ξ
3
i (θ)− ξ1

i+1(θ + ω
m

) + en−1∆τ = η1
i (θ),(51)

λξ2
i (θ)− ξ2

i+1(θ + ω
m

) = η2
i (θ),(52)

ξ3
i (θ)− ξ3

i+1(θ + ω
m

) = η3
i (θ),(53)

λ−1ξ4
i (θ)− ξ4

i+1(θ + ω
m

) = η4
i (θ),(54)

for i = 0, . . . ,m− 1.
Equations (52), (54) can be solved as multiple non-small divisors

cohomological equations of the type (24). Equation (53) is a multiple
small divisors cohomological equation of the type (19). Solving it as
such implies assuming that

〈η3〉 = 0.

In Appendix B we prove that exact symplectic properties of the flow
imply that 〈η3〉 is in fact quadratically small, so the previous assump-
tion is coherent with a Newton step. We denote {ξ̄3

i }m−1
i=0 to be the

solution of (53) with 〈ξ̄3
0〉 = 0 and define

ξ3
i (θ) = ξ3

0,0 + ξ̄3
i (θ),

for i = 0, . . . ,m − 1 with ξ3
0,0 free. Notice that {ξ3

i }m−1
i=0 is a solution

of (53) for any ξ3
0,0, which will be fixed later. Substituting {ξ3

i }m−1
i=0 in

(51), we obtain

(55) ξ1
i (θ)− ξ1

i+1(θ + ω
m

) = η1
i (θ)− S1

i (θ)ξ̄
3
i (θ)− S1

i (θ)ξ
3
0,0 − en−1∆τ .
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For this last equation to be solved as a multiple shooting small divisors
cohomological equation (19), we need the sum of averages of the right
hand sides to be zero, which gives

m−1∑

i=0

〈S1
i 〉ξ3

0,0 +men−1∆τ =
m−1∑

i=0

〈η1
i − S1

i ξ̄
3
i 〉,

which is a linear system for ξ3
0,0 and ∆τ equivalent to

〈S1〉ξ3
0,0 + en−1∆τ = 〈η1 − S1ξ̄3〉.

Now, considering the error in energy as Eh =
∫
Tn−2 H(K0(θ))dθ− h,

by substitution of the corrected first torus and energy in (14) and
linearization, it follows that

〈DH(K0(θ))P0(θ)ξ0(θ)−∆h〉 = −Eh.
Moreover, by using that the frame P0(θ) is approximately symplectic,

DH(K0(θ))P0(θ) = −XH(K0(θ))>Ω(K0(θ))P0(θ) '
(
0>n−1 0 e>n−1 0

)
.

Hence, neglecting second order error terms we get

(56) e>n−1ξ
3
0,0 −∆h = −Eh.

By collecting the linear equations for ξ3
0,0, ∆τ and ∆h we get the (n−

1)× n system

(
〈S1〉 en−1 0
e>n−1 0 −1

)

ξ3

0,0

∆τ
∆h


 =

(
〈η1 − S1ξ̄3〉
−Eh

)

It suffices system matrix has rank n− 1 to get one-parameter families
of solutions. We consider two cases:

• Isochronous case: ∆τ = 0, and ∆h = Eh + e>n−1ξ
3
0,0, where ξ3

0,0

solves linear equation

(57) 〈S1〉ξ3
0,0 = 〈η1 − S1ξ̄3〉

provided that
det〈S1〉 6= 0.

This is the isochronous twist condition, which corresponds to
Kolmogorov condition. (In practice, the energy equation is not
considered, so ∆h is not computed.)
• Isoenergetic case: ∆h = 0, and ξ3

0,0,∆τ solve the linear equation

(58)

(
〈S1〉 en−1

e>n−1 0

)(
ξ3

0,0

∆τ

)
=

(
〈η1 − S1ξ̄3〉
−Eh

)
,

provided that

det

(
〈S1〉 en−1

e>n−1 0

)
6= 0.

This is the isoenergetic twist condition.
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Once one computes ξ3
0,0, {ξi3}m−1

i=0 is fully determined and one can
solve (55). The general solution is

(59) ξ1
i (θ) = ξ1

0,0 + ξ̄1
i (θ),

for i = 0, . . . ,m − 1, where ξ1
0,0 is free and {ξ̄1

i }m−1
i=0 is the solution of

(55) with 〈ξ̄1
0〉 = 0. The freedom to choose ξ1

0,0 has to do with the phase
and time underterminacy of the parameterization of the first (and then
all) tori (see Remark 2.4.3). A simple choice is ξ1

0,0 = 0.
All the process described is summarized in the algorithm that follows.

Algorithm 3.4.1. (Newton step on a multiple torus, isochronous or
isoenergetic case) Let {Ki}m−1

i=0 , {Wi}m−1
i=0 , λ satisfy equations (13), (14),

(15) approximately. Obtain the corrected tori and, in the isoenergetic
case, also the corrected flying time by following these steps:

(1) Compute {Pi}m−1
i=0 , {S1

i }m−1
i=0 , following Algorithm 3.3.2.

(2) Compute the multiple error {Ei}m−1
i=0 from (48).

(3) Compute the right-hand side of the cohomological equations
{ηi}m−1

i=0 from (50).
(4) Solve (52), (54) as non-small divisors multiple cohomological

equations, in order to obtain {ξ2
i }m−1

i=0 , {ξ4
i }m−1

i=0 .
(5) Solve (53) as small divisors multiple cohomological equation, in

order to obtain its zero-average solution {ξ̄3
i }m−1

i=0 .
(6) In the isochronous (resp. isoenergetic) case, compute 〈S1〉 and

the right-hand side of the linear system (57) (resp. (58)) and
solve it in order to obtain ξ3

0,0 (resp. ξ3
0,0,∆τ).

(7) Solve (51) as small divisors multiple cohomological equation
in order to obtain {ξ̄1

i }m−1
i=0 , and obtain {ξ1

i }m−1
i=0 from (59) by

choosing ξ1
0,0 = 0.

(8) Compute the corrected tori as {Ki(θ) + Pi(θ)ξi(θ)}m−1
i=0 . In the

isoenergetic case, obtain also the corrected flying time as T +
m∆τ .

3.4.2. A Newton step on the bundle. Consider again parameterizations
{Ki}m−1

i=0 of (n−2)-dimensional tori inside a larger (n−1)-dimensional
torus, and associated parameterizations {Wi}m−1

i=0 of (n−2)-dimensional
bundles inside the bundle of the larger torus, that satisfy equations
(13) and (15) approximately. (In the implementation, the Ki’s are the
ones we have improved in the previous step.) Denote the error in the
invariant equations of the Wi as

(60) EW
i (θ) := DϕT/m

(
Ki(θ)

)
Wi(θ)− λWi+1(θ + ω

m
),

for i = 0, . . . ,m − 1. Recalling the frame {Pi}m−1
i=0 defined in (37),

we would like to find corrections Pi(θ)ξi(θ) of the bundles Wi(θ) and
a correction ∆λ for the eigenvalue λ such that the corrected bundles
Wi(θ) + Pi(θ)ξi(θ) and corrected eigenvalue λ + δ make (15) vanish
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at first order. The invariance equation on the corrected bundles and
eigenvalue is

DϕT/m
(
Ki(θ)

)(
W i(θ) + Pi(θ)ξi(θ)

)

− (λ+ ∆λ)
(
Wi+1(θ + ω

m
) + Pi+1(θ + ω

m
)ξi+1(θ + ω

m
)
)

= 0.

Expanding the parentheses and neglecting errors of second order, as
the ones with a factor ∆λ ξi+1(θ + ω

m
), the previous equation becomes

DϕT/m
(
Ki(θ)

)
Pi(θ)ξi(θ)

− λPi+1(θ + ω
m

)ξi+1(θ + ω
m

)−∆λ Wi+1(θ + ω
m

) = −EW
i (θ).

Multiplying by Pi+1(θ + ω
m

)−1, using (25) and neglecting second order
error terms, we obtain

(61)

(
Λ Si(θ)
0 Λ−>

)
ξi(θ)− λξi+1(θ + ω

m
)− e∆λ = ηi(θ),

with Λ, Si(θ) defined as in (26),

(62) ηi(θ) = −Pi+1(θ + ω
m

)−1EW
i (θ),

and

ξi(θ) =




ξ1
i (θ)
ξ2
i (θ)
ξ3
i (θ)
ξ4
i (θ)


 , e =




0
1
0
0


 , ηi(θ) =




η1
i (θ)
η2
i (θ)
η3
i (θ)
η4
i (θ)


 .

As before, we implicitly consider ξi, ηi : Tn−2 → Rn−1×R×Rn−1×R and
enumerate the corresponding block components accordingly. Rewriting
(61) as a system of equations, we obtain

ξ1
i (θ) + S1

i (θ)ξ
3
i (θ)− λξ1

i+1(θ + ω
m

) = η1
i (θ),(63)

λξ2
i (θ)− λξ2

i+1(θ + ω
m

)−∆λ = η2
i (θ),(64)

ξ3
i (θ)− λξ3

i+1(θ + ω
m

) = η3
i (θ),(65)

λ−1ξ4
i (θ)− λξ4

i+1(θ + ω
m

) = η4
i (θ),(66)

for i = 0, . . . ,m − 1. Equations (65) and (66) can be solved as multi-
ple non-small divisors cohomological equations of the form (24). Once
ξ3
i (θ) is known, (63) is also solved as multiple non-small divisors co-

homological equation. For (64) to be solved as multiple small divisors
cohomological equation of the form (19), we need that

m−1∑

i=0

〈η2
i (θ) + ∆λ〉 = 0,

which is achieved by taking ∆λ = −〈η2〉. In doing so, 〈ξ2
0〉 remains

free. In this case, the freedom to choose this average is related to
the underdeterminacy of selecting the lengths of {Wi}m−1

i=0 (as, say,
the undeterminacy of selecting the lenght of an eigenvector of a given
eigenvalue of a matrix). A simple choice is to take 〈ξ2

0〉 = 0.
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The previous steps are summarized in algorithm that follows.

Algorithm 3.4.2. (Newton step on a multiple bundle) Let {Ki}m−1
i=0 ,

{Wi}m−1
i=0 , λ satisfy equations (13), (14), (15) approximately. Obtain

the corrected bundle and eigenvalue by following these steps:

(1) Compute {Pi}m−1
i=0 , {S1

i }m−1
i=0 , following Algorithm 3.3.2.

(2) Compute the multiple error {EW
i }m−1

i=0 from (60).
(3) Compute the right-hand side of the cohomological equations
{ηi}m−1

i=0 from (62).
(4) Solve (65), (66), (63) for {ξ3

i }m−1
i=0 , {ξ4

i }m−1
i=0 , {ξ1

i }m−1
i=0 , respec-

tively, as multiple non-small divisors cohomological equations.
(5) Take ∆λ = −〈η2〉.
(6) Take {ξ2

i }m−1
i=0 as the solution with 〈ξ2

0〉 = 0 of (64) as small
divisors multiple cohomological equation.

(7) Compute the corrected multiple bundle as {Wi(θ)+Pi(θ)ξi(θ)}m−1
i=0

and the corrected eigenvalue as λ+ ∆λ.

3.5. Algorithms for continuation. In this section we explain a me-
thodology to continue invariant tori with respect to parameters. We
will first consider continuation with respect to time T (the flying time,
related with one of the frequencies of the torus) and with respect to the
energy h. The methodology can easily be adapted for continuation of
external parameters (appearing on the Hamiltonian). In fact, we will
only present an algorithm to compute the tangent of the continuation
curve with respect to the continuation parameter. This provides a first
order aproximation for the seed for the new value, as it is common
practice in numerical continuation (see e.g. [2]).

Note that both approaches produce the same family of invariant tori,
this is, the one that corresponds to the fixed value of the rotation vector
ω. The difference is that the first approach is better to aim to a torus
with a specific value of return time T , whereas the second is better
to aim to a specific energy h. Aiming to a specific energy is useful
to produce isoenergetic Poincaré sections, which is a common way to
represent the center manifold of the collinear points of the RTBP (see
e.g. [41, 26, 27]). In this respect, we also consider at the end of this
section the continuation of the objects with respect to the rotation
vector ω, in the isoenergetic case. Notice that in this case the family
of objects is parameterized by a Cantor set of parameters, the rotation
vector, and the derivatives to be computed are in Whitney sense.

3.5.1. Continuation with respect to T . In order to be able to perform
continuation with respect to T , our goal now is to compute the deriva-
tives with respect to T of the parameterizations of tori and bundles
that solve equations (13) and (15). Assume that these equations define
implicitly {Ki}m−1

i=0 , {Wi}m−1
i=0 as functions of T . In order not to burden

the notation, we do not write the dependence on T of Ki, Wi, λ, but
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we denote by ∂TKi(θ), ∂TWi(θ), ∂Tλ their corresponding derivatives
with respect to T .

By differentiating (13) with respect to T we obtain

DϕT/m
(
Ki(θ)

)
∂TKi(θ)

− ∂TKi+1(θ + ω
m

) + 1
m
XH

(
Ki+1(θ + ω

m
)
)

= 0.

Considering the derivatives ∂TKi(θ) in the frame, this is, assuming
∂TKi(θ) = Pi(θ)ξi(θ), the previous equation is rewritten as

DϕT/m
(
Ki(θ)

)
Pi(θ)ξi(θ)

− Pi+1(θ + ω
m

)ξi+1(θ + ω
m

) = − 1
m
XH

(
Ki+1(θ + ω

m
)
)
.

Multiplying by Pi+1(θ+ ω
m

)−1, we obtain equation (49) but without the
e∆τ term and with a different definition for ηi, namely

ηi(θ) = − 1
m
Pi+1(θ + ω

m
)−1XH

(
Ki+1(θ + ω

m
)
)

= − 1
m




en−1

0
0n−1

0


 ,

for i = 0, . . . ,m− 1. It can be solved as described in subsection 3.4.1,
under isochronous nondegeneracy condition.

By differentiating (15) with respect to T , we obtain
(

∂
∂T

(
DϕT/m

(
Ki(θ)

)))
Wi(θ) + DϕT/m

(
Ki(θ)

)
∂TWi(θ)

− (∂Tλ)Wi+1(θ + ω
m

)− λ ∂TWi+1(θ + ω
m

) = 0.

The above expression is rewritten as

DϕT/m
(
Ki(θ)

)
∂TWi(θ)

− λ ∂TWi+1(θ + ω
m

)− ∂Tλ Wi+1(θ + ω
m

) = −EW
i (θ)

with

EW
i (θ) =

(
∂
∂T

(
DϕT/m

(
Ki(θ)

)))
Wi(θ)

= λ
m

DXH

(
Ki+1(θ + ω

m
)
)
Wi+1(θ + ω

m
)

+ D2ϕT/m
(
Ki(θ)

)[
Wi(θ), ∂TKi(θ)

]
.

(67)

Here D2ϕT
(
Ki(θ)

)[
·, ·
]

is the bilinear form given by the second dif-
ferential of ϕT evaluated at Ki(θ). These equations are of the same
type we have considered in Section 3.4.2, by taking frames and writing
∂TWi(θ) = Pi(θ)ξi(θ), ∂Tλ = ∆λ.

The steps to follow in order to solve the two systems of multiple
cohomological equations from which {∂TKi}m−1

i=0 , {∂TWi}m−1
i=0 , ∂Tλ can

be obtained are summarized in the algorithm that follows. In order not
to burden the notation, {ξi}m−1

i=0 is used to denote the solution of both
systems.



COMPUTATION OF INVARIANT TORI 23

Algorithm 3.5.1. (Continuation step with respect to T ) Let {Ki}m−1
i=0 ,

{Wi}m−1
i=0 , λ be implicit functions of T through equations (13), (14),

(15). Find {∂TKi}m−1
i=0 , {∂TWi}m−1

i=0 , ∂Tλ through the following steps:

(1) Compute {Pi}m−1
i=0 , {S1

i }m−1
i=0 , following Algorithm 3.3.2.

(2) Take ξ2
i (θ) = ξ4

i (θ) = 0, i = 0, . . . ,m− 1.
(3) Compute 〈S1〉 and ξ3

0,0 = − 1
m
〈S1〉−1en−1.

(4) Find {ξ1
i }m−1

i=0 as the solution with 〈ξ1
0〉 = 0 of the small divisors

multiple cohomological equation

ξ1
i (θ)− ξ1

i+1(θ + ω
m

) = − 1
m
en−1 − S1

i (θ)ξ
3
0,0.

(5) Obtain {∂TKi}m−1
i=0 as ∂TKi(θ) = Pi(θ)ξi(θ).

(6) Compute {EW
i }m−1

i=0 from (67).
(7) Compute {ηi}m−1

i=0 from (62).
(8) Solve (65), (66), (63) for {ξ3

i }m−1
i=0 , {ξ4

i }m−1
i=0 , {ξ1

i }m−1
i=0 , respec-

tively, as multiple non-small divisors cohomological equations.
(9) Take ∂Tλ = −〈η2〉.

(10) Take {ξ2
i }m−1

i=0 as the solution with 〈ξ2
0〉 = 0 of (64) as small

divisors multiple cohomological equation.
(11) Compute {∂TWi}m−1

i=0 as ∂TWi(θ) = Pi(θ)ξi(θ).

Remark 3.5.2. Step (2) of Algorithm 3.5.1 (see also later Algorithm 3.5.3
and Algorithm 3.5.4), set to zero the components of the derivatives of
the parameterizations of the tori in the hyperbolic directions. This is
geometrically very natural, since partially hyperbolic tori are presented
in families (for instance contained in a center manifold of an equilib-
rium point, or in a normally hyperbolic cylinder), and the derivatives
are tangent to such families (and that invariant objects).

3.5.2. Continuation with respect to h. In this section we will consider
the continuation of invariant tori with respect to the energy h, so we
have to compute the derivatives with respect to h of the parameteriza-
tions of tori, bundles and flying time T that solve equations (13), (14),
(15). Assume that these equations define implicitly T , {Ki(θ)}m−1

i=0 ,
{Wi(θ)}m−1

i=0 and λ as functions of h. We will follow the same criterion
in the notation as in the previous section, omiting explicitly the depen-
dence on h of these objects, but we denote by ∂hT , ∂hKi(θ), ∂hWi(θ),
∂hλ their corresponding derivatives with respect to h.

By differentiating (13) and (14) with respect to h we obtain

DϕT/m
(
Ki(θ)

)
∂hKi(θ)

− ∂hKi+1(θ + ω
m

) + 1
m
XH

(
Ki+1(θ + ω

m
)
)
∂hT = 0

and

〈DH(K0(θ))∂hK0(θ)〉 − 1 = 0.
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Considering the derivatives ∂hKi(θ) in the frame, this is, assuming
∂hKi(θ) = Pi(θ)ξi(θ), and denoting ∂hτ = 1

m
∂hT , the previous equa-

tions are rewritten as

DϕT/m
(
Ki(θ)

)
Pi(θ)ξi(θ)

− Pi+1(θ + ω
m

)ξi+1(θ + ω
m

) +XH

(
Ki+1(θ + ω

m
)
)
∂hτ = 0.

and
〈DH(K0(θ))P0(θ)ξ0(θ)− 1〉 = 0.

Multiplying by Pi+1(θ+ ω
m

)−1, we obtain equation (49) with ∆τ = ∂hτ
and ηi = 0. We also obtain equation (56) but with 1 in place of ∆h and
0 in place of Eh, that is e>n−1ξ

3
0,0 = 1. This can be solved as described

in subsection 3.4.1, under isoenergetic nondegeneracy condition.
By differentiating (15) with respect to h, we obtain

DϕT/m
(
Ki(θ)

)
∂hWi(θ)

− λ ∂hWi+1(θ + ω
m

)− ∂hλ Wi+1(θ + ω
m

) = −EW
i (θ)

with

EW
i (θ) =

(
∂
∂h

(
DϕT/m

(
Ki(θ)

)))
Wi(θ)

= λ
m

DXH

(
Ki+1(θ + ω

m
)
)
Wi+1(θ + ω

m
)∂hT

+ D2ϕT/m
(
Ki(θ)

)[
Wi(θ), ∂hKi(θ)

]
(68)

These equations are of the same type we have considered in Sec-
tion 3.4.2, by taking frames and writing ∂hWi(θ) = Pi(θ)ξi(θ), ∂hλ =
∆λ.

The steps to follow in order to solve the two systems of multiple
cohomological equations from which {∂hKi}m−1

i=0 , ∂hT , {∂hWi}m−1
i=0 , ∂hλ

can be obtained are summarized in the algorithm that follows. As in
Section 3.5.1, we use {ξi}m−1

i=0 to denote the solution of both systems.

Algorithm 3.5.3. (Continuation step with respect to h) Let {Ki}m−1
i=0 ,

T , {Wi}m−1
i=0 , λ be implicit functions of h through equations (13), (14),

(15). Find {∂hKi}m−1
i=0 , ∂hT , {∂hWi}m−1

i=0 , ∂hλ through the following
steps:

(1) Compute {Pi}m−1
i=0 , {S1

i }m−1
i=0 , following Algorithm 3.3.2.

(2) Set ξ2
i (θ) = ξ4

i (θ) = 0 and ξ3
i (θ) = ξ3

0,0 for i = 0, . . . ,m − 1,
where (

ξ3
0,0

∂hτ

)
=

(
〈S1〉 en−1

e>n−1 0

)−1(
0n−1

1

)

(3) Take {ξ1
i }m−1

i=0 as the solution of

ξ1
i (θ)− ξ1

i+1(θ + ω
m

) = −en−1∂hτ − S1
i (θ)ξ

3
0,0,

with 〈ξ1
0〉 = 0, and set ∂hT = m ∂hτ .

(4) Obtain {∂hKi}m−1
i=0 as ∂hKi(θ) = Pi(θ)ξi(θ).

(5) Compute {EW
i }m−1

i=0 from (68).
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(6) Compute {ηi}m−1
i=0 from (62).

(7) Solve (65), (66), (63) for {ξ3
i }m−1

i=0 , {ξ4
i }m−1

i=0 , {ξ1
i }m−1

i=0 , respec-
tively, as multiple non-small divisors cohomological equations.

(8) Take ∂hλ = −〈η2〉.
(9) Take {ξ2

i }m−1
i=0 as the solution with 〈ξ2

0〉 = 0 of (64) as small
divisors multiple cohomological equation.

(10) Compute {∂hWi}m−1
i=0 as ∂hWi(θ) = Pi(θ)ξi(θ).

3.5.3. Continuation with respect to ω, in the isoenergetic case. Another
natural continuation problem is, given a certain energy level h, continue
the invariant tori on such an energy level and their invariant bundles
with respect to the frequencies. Assume that equations (13), (14),
(15) define implicitly T , {Ki(θ)}m−1

i=0 , {Wi(θ)}m−1
i=0 and λ as functions

of ω. We will again omit explicitly the dependence on the rotation
vector ω of these objects, but we denote by ∂ωT , ∂ωKi(θ), ∂ωWi(θ), ∂ωλ
their corresponding derivatives with respect to ω. Since the domain of
the rotation vector is a Cantor set, these derivatives are understood
formally (in fact, these are derivatives in the sense of Whitney, but we
will avoid technicalities here).

By differentiating (13) and (14) with respect to ω we obtain

DϕT/m
(
Ki(θ)

)
∂ωKi(θ)

− ∂ωKi+1(θ + ω
m

) + 1
m
XH

(
Ki+1(θ + ω

m
)
)
∂ωT = 1

m
DKi+1(θ + ω

m
)

and

〈DH(K0(θ))∂ωK0(θ)〉 = 0.

Considering ∂ωKi(θ) = Pi(θ)ξi(θ), denoting ∂ωτ = 1
m
∂ωT , and mul-

tiplying by Pi+1(θ + ω
m

)−1, we obtain equation (49) with ∆τ = ∂ωτ
and

ηi(θ) = 1
m

(
In−2

O

)
.

Moreover, equation (56) reads e>n−1ξ
3
0,0 = 0. This can be solved as

described in subsection 3.4.1, under isoenergetic nondegeneracy condi-
tion.

By differentiating (15) with respect to ω, we obtain

DϕT/m
(
Ki(θ)

)
∂ωWi(θ)

− λ ∂ωWi+1(θ + ω
m

)− ∂ωλ Wi+1(θ + ω
m

) = −EW
i (θ)

with

EW
i (θ) =

(
∂
∂ω

(
DϕT/m

(
Ki(θ)

)))
Wi(θ)

= λ
m

DXH

(
Ki+1(θ + ω

m
)
)
Wi+1(θ + ω

m
)∂ωT

+ D2ϕT/m
(
Ki(θ)

)[
Wi(θ), ∂ωKi(θ)

]

− λ
m

DWi+1(θ + ω
m

).

(69)
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These equations are of the same type we have considered in Section 3.4.2,
by taking frames and writing ∂ωWi(θ) = Pi(θ)ξi(θ), ∂ωλ = ∆λ.

Similarly as we proceed in previous sections, we present in an al-
gorithm the steps to solve the two systems of multiple cohomological
equations to compute {∂ωKi}m−1

i=0 , ∂ωT , {∂ωWi}m−1
i=0 , ∂ωλ. Notice that

these are equations for the partial derivatives with respect to the com-
ponents of ω, that we formulate in paralell.

Algorithm 3.5.4. (Continuation step with respect to ω, for energy h
fixed) Let {Ki}m−1

i=0 , T , {Wi}m−1
i=0 , λ be implicit functions of h through

equations (13), (14), (15). Find {∂ωKi}m−1
i=0 , ∂ωT , {∂hWi}m−1

i=0 , ∂ωλ
through the following steps:

(1) Compute {Pi}m−1
i=0 , {S1

i }m−1
i=0 , following Algorithm 3.3.2.

(2) Set ξ2
i (θ) = ξ4

i (θ) = 0 and ξ3
i (θ) = ξ3

0,0 for i = 0, . . . ,m − 1,
where

(
ξ3

0,0

∂ωτ

)
=

(
〈S1〉 en−1

e>n−1 0

)−1



1
m
In−2

0
0




(3) Take {ξ1
i }m−1

i=0 as the solution of

ξ1
i (θ)− ξ1

i+1(θ + ω
m

) = 1
m

(
In−2

0

)
− en−1∂ωτ − S1

i (θ)ξ
3
0,0,

with 〈ξ1
0〉 = 0, and set ∂ωT = m ∂ωτ .

(4) Obtain {∂ωKi}m−1
i=0 as ∂ωKi(θ) = Pi(θ)ξi(θ).

(5) Compute {EW
i }m−1

i=0 from (69).
(6) Compute {ηi}m−1

i=0 from (62).
(7) Solve (65), (66), (63) for {ξ3

i }m−1
i=0 , {ξ4

i }m−1
i=0 , {ξ1

i }m−1
i=0 , respec-

tively, as multiple non-small divisors cohomological equations.
(8) Take ∂ωλ = −〈η2〉.
(9) Take {ξ2

i }m−1
i=0 as the solution with 〈ξ2

0〉 = 0 of (64) as small
divisors multiple cohomological equation.

(10) Compute {∂ωWi}m−1
i=0 as ∂ωWi(θ) = Pi(θ)ξi(θ).

Remark 3.5.5. In the implementation of the continuation with respect
to rotation vector, one have to select continuation steps for which the
rotation vectors are Diophantine. In practice, since in the computer
the rotation vectors are rational, these has to be selected as resonant
but of very high order. The continuation can run into troubles when
finding strong resonances, since these are more difficult to jump.

3.6. Some comments about the implementation. As it is com-
mon in implementation of the parameterization method in KAM-like
contexts (see [29] for an overview), the implementation of all the previ-
ous algorithms relies on two numerical representations of all the func-
tions ζ : Td → R involved. In the grid representation, the function
is represented as a set of its values in a uniform grid of Td. In the
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Fourier representation, the function is represented as a set of approx-
imate Fourier coefficients. Through the Discrete Fourier Transform
(DFT), that provides approximations of the Fourier coefficients, one
representation can be converted into the other. For an easier exposi-
tion, we will assume d = 1 in this section (which is the case in all the
numerical exploration of Section 4). All the arguments generalize to
d > 1, although an actual implementation is subtle (see [29] for com-
ments). For detailed expositions on the DFT and its applications, see
e.g. [25, 4, 46].

Let ζ : T→ R be a function. Choose N > 0. Its grid representation
is given by {ζj}N−1

j=0 , with ζj = ζ(j/N). Its Fourier representation
is given by a finite set of (complex) approximate Fourier coefficients,

{ζ̃k}[N/2]
k=0 , where [·] denotes integer part. The two representations are

related by the DFT,

ζ̃k =
1

N

N−1∑

j=0

ζje
−i2πk j

N .

The DFT is a linear, one-to-one map between {ζj}N−1
j=0 and {ζ̃k}N−1

k=0 .
Namely, the expression for the inverse DFT is

ζj =
N−1∑

k=0

ζ̃ke
i2πk j

N .

The DFT and its inverse are efficiently evaluated through a family
of algorithms known as Fast Fourier Transform (FFT), which allow

computing {ζ̃k}N−1
k=0 from {ζj}N−1

j=0 in O(N logN) operations. The DFT
is N -periodic in k, and, for real ζ (which is our case), satisifes the
Hermitian symmetry. This is, for k ∈ Z,

ζ̃k = ζ̃k+N , ζ̃−k = (ζ̃k)
∗,

where ∗ denotes complex conjugate. This gives rise to redundancy in
{ζ̃k}N−1

k=0 , which is eliminated by truncating the Fourier representation
at k = [N/2], as we have done. Another consequence of the Hermitian

symmetry is that ζ̃0 is real and, if N is even, ζ̃N/2 is also real. The
DFT coefficients and the Fourier coefficients are related by

ζ̃k = ζ̂k +
∞∑

l=1

(ζ̂k−lN + ζ̂k+lN).

Actual bounds of the difference ζ̃k−ζ̂k can be obtained from the Cauchy
estimates, that ensure exponential decay in |k| of |ζ̂k| for analytic ζ
(see e.g. [34]). This is the basis for a detailed error analysis of the
algorithms, that we have not pursued here (see e.g. [22]), but a direct
consequence of this approximation is that, for the algorithms to work,
N has to be large enough for |ζ̃k− ζ̂k| to be small. In the computations
of Section 4, the minimum value of N used is 32. Another consequence
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is that the relative error of the DFT approximation of the Fourier
coefficients increases with k. Even with (large) DFT queues of the order
of the machine epsilon, we have observed instability in Newton iterates
(divergence after apparent convergence). In our implementation, we
prevent it by setting to zero the upper half of the DFT coefficients
after each Newton iteration.

All the steps of algorithms 3.3.2, 3.4.1, 3.4.2, 3.5.1, 3.5.3 can be done
in O(N) operations in either grid or Fourier representation. Consider,
for instance, Algorithm 3.3.2. In the evaluation of (27), Wi(θ) is a
function we already have, XH(Ki(θ)) is obtained from Ki(θ) in O(N)
operations in grid form, as

{XH(Ki(j/N))}N−1
j=0 ,

and DKi(θ) obtained in O(N) operations in Fourier form from Ki(θ)
as

(D̃Ki)k = i2πk(K̃i)k.

Note that this last expression is actually an approximation: the equality
is satisfied by the Fourier coefficients of Ki and DKi, not the DFT ones.
As another example, the evaluation of (35) is done in O(N) operations

in grid form if N̂i+1(θ + ω
m

), Ki+1(θ + ω
m

) and DϕT/m(Ki(θ))N̂i(θ) are
known in grid form. The computation of Ki+1(θ + ω

m
) from Ki+1(θ)

is done in O(N) operations in Fourier form (again using approximate

identities). The computation of DϕT/m(Ki(θ))N̂i(θ) from Ki(θ) and

N̂i(θ) in grid form requires the numerical integration of the differential
equations (1) with his first variationals applied to several vectors on N
trajectories.

The different steps of the algorithms stated consist of evaluating
equations like the ones just mentioned and solving multiple cohomo-
logical equations. The solution of multiple cohomological equations
discussed in Section 3.2 is also done in O(N) operations in Fourier
form. As mentioned, converting from grid to Fourier and vice-versa us-
ing FFT requires O(N logN) operations. For the values of N for which
numerical integration is feasible, logN is small enough for the cost of
FFT to be considered O(N). Numerical integration is present in step 3
of Algorithm 3.3.2 (Eq. (35)), step 6 of Algorithm 3.5.1 (Eq. (67)),
step 5 of Algorithm 3.5.3 (Eq. (68)) and step 5 of Algorithm 3.5.4
(Eq.(69)). Note that Eqs. (67), (68), (69) require numerical integra-
tion of the second variational equations. Note also that all algorithms
perform numerical integration when computing the frame through Al-
gorithm 3.3.2.

The cost of numerical integration is formally also O(N), but for re-
alistic estimates it needs to be considered separatedly. Consider for
instance Equation (35) as discussed above. In the computations of

Section 4, n = 3, so N̂i(θ) has 3 columns, and the system of differential
equations to be numerically integrated consists of 24 equations. Taking
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for example the Runge-Kutta-Felhberg method of orders 7 and 8 for
numerical integration, that evaluates the vector field 13 times, since
orbits in Section 4 take over 50 integration steps, the factor multiply-
ing N is already 15600 times the number of operations required by the
evaluation of one differential equation. It turns out that, compared to
numerical integration, the remaining computational cost is almost neg-
ligible. Numerical integration can be parallelized in a straightforward
manner by distributing the N trajectories to be integrated among the
threads or processes available.

An actual implementation of a continuation procedure in order to
follow a family of tori by keeping ω constant requires an strategy in
order to choose the number of samples N and control the continua-
tion step size as we go along the family. We end this section with a
proposal of such a strategy in Algorithm 3.6.1, that has worked well
in the numerical computations presented in Section 4. For shortness,
we will represent a multiple torus, its multiple bundle, flying time and
eigenvalue as

T = (K0, . . . , Km−1,W0, . . . ,Wm−1, T, λ).

For step size control, the following norm of this compound object is
considered:

‖T ‖ =
(
T 2 + λ2 +

m−1∑

i=0

(
〈‖Ki‖2

2〉+ 〈‖Wi‖2
2〉
)1/2

,

where ‖Ki‖2 stands for the function θ 7→ ‖Ki(θ)‖2, ‖Wi‖2 is interpteted
analogously, and the averages are approximated as discrete averages of
the grid values (i.e as the 0-th DFT coefficient of the function averaged).
The errors in the torus and the bundle are estimated as

err(T ) = max
0≤i<m
0≤j<N

‖Ei(j/N)‖∞, errW (T ) = max
0≤i<m
0≤j<N

‖EW
i (j/N)‖∞,

with E(θ), EW (θ) defined as in Eqs. (48), (60), respectively.

Algorithm 3.6.1. Assume we are given a multiple torus, bundle and
associated parameters T , represented in grid form with N samples.
Assume we are also given a suggested continuation step α, tolerances
ε, εW , ε1, ε2 and integers ndes , nα. Perform a continuation step in order
to obtain a new T along the corresponding family with the same ω as
follows:

(1) Set δ ← (∂TK0, . . . , ∂TKm−1, ∂TW0, . . . , ∂TWm−1, 1, ∂Tλ), using
Algorithm 3.5.1.

(2) Set ∆T ← δ/‖δ‖.
(3) Set T ′ ← T +α∆T and perform Newton steps (Algorithms 3.4.1,

3.4.2) on T ′ until err(T ′) < ε and errW (T ′) < εW . If unsuccess-
ful, try halving α up to nα times. If unsuccessful, restart the
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algorithm by doubling N . Let nit be the number of iterates of
the successful Newton iteration.

(4) If err(T ′) < ε2, half N as long as err(T ′) ≤ ε1. Go to step 6.
(5) If err(T ′) > ε1, double N and perform Newton steps (Algo-

rithms 3.4.1, 3.4.2) until err(T ′) ≤ ε1. If unsuccessful, half α
and restart the algorithm.

(6) Set T ← T ′ (i.e., accept the new torus). Perform continuation
step size control as α← αndes/nit .

In step 1, Algorithm 3.5.3 can be used instead, by setting

δ ← (∂hK0, . . . , ∂hKm−1, ∂hW0, . . . , ∂hWm−1, ∂hT, ∂hλ).

4. An application: computation of the Lissajous family of
tori in the Restricted Three Body Problem

In this section we apply the algorithms described to the computa-
tion of the partially hyperbolic tori that emerge from the L1 equilibrium
point of the circular, Spatial Restricted Three-body Problem (RTBP),
in the Earth-Moon case. This family of tori is known as the Lissajous
family by the astrodynamics community, and plays a fundamental role
in libration point dynamics. An outgrowth of our algorithms is the
simultaneous computation of the stable, unstable and center bundles
of the invariant tori and other observables, such as the Lyapunov mul-
tipliers and Calabi invariant, that provide geometrical and dynamical
information during the computation of the families of tori. In par-
ticular, we will obtain information about the quality of hyperbolicity
properties, that is useful to detect possible bifurcations and breakdown
phenomena [10, 12, 31].

Apart from the intrinsic importance of the example, our choice is
motivated by the fact that the Lissajous family has been extensively
described in [27], and has been used as a testbed for different algorithms
by other authors (see e.g. [3]). Hence, one of our goals is to compare
the performance of the algorithms described here with the ones used
in [27], on a more thorough numerical exploration of this family.

All the numerical explorations presented here have been done by a
program that follows a family of tori with constant ω by performing
continuation steps through Algorithm 3.6.1 up to a maximum given
number, plus additional stopping criteria that will be specified below.
The explorations have been carried out on a Fujitsu Celsius R940 work-
station, with two 8-core Intel Xeon E5-2630v3 processors at 2.40GHz,
running Debian GNU/Linux 9.11 with the Xfce 4.12 desktop. The
source code has been written in C, compiled with GCC 6.3.0 and linked
against the Glibc 2.24, LAPACK 3.7.0, FFTW 3.3.5 and PGPLOT
5.2.2 libraries. The code uses OpenMP 4.0 extensions in order to per-
form simultaneous numerical integrations in the continuation of one
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family and also to perform numerical continuation of several families
at once. The figures have been generated with gnuplot 5.2.

4.1. The Lissajous family of tori of the RTBP. The circular,
spatial Restricted Three-Body Problem (RTBP) describes the motion
of a particle of infinitesimal mass under the attraction of two massive
bodies known as primaries, with masses m1 > m2 > 0. The primaries
are assumed to revolve uniformly in circles around their common center
of mass. In a rotating system of reference with the primaries in the
horizontal coordinate plane, known in astronomical terms as synodic,
the primaries can be made to lie at fixed positions in the x1 axis. After
a rescaling in space and time, and defining the mass ratio µ = m2

m1+m2
,

the coordinates of the primaries m1,m2 become (µ, 0, 0), (µ − 1, 0, 0),
their masses become 1−µ, µ respectively, and their period of revolution
becomes 2π. The motion of the infinitesimal mass is then described by
the autonomous Hamiltonian system with Hamiltonian

H(x1, x2, x3, p1, p2, p3) =
1

2
(p2

1 + p2
2 + p2

3)− x1p2 + x2p1 −
1− µ
r1

− µ

r2

,

where r2
1 = (x1−µ)2 +x2

2 +x2
3, r2

2 = (x1−µ+ 1)2 +x2
2 +x2

3. The value
of the hamiltonian will be denoted as “the energy” from now on.

The RTBP is shown to have 5 fixed points: the collinear ones,
L1, L2, L3, due to Euler, and the triangular ones, L4, L5, due to La-
grange (see e.g. [51]). Following the astrodynamical convention, we
will consider L1 to be the point located between the primaries. The x
coordinate of this point is xL1 = µ − 1 + γ1, with γ1 the positive root
of one of Euler’s quintic equations,

γ5
1 − (3− µ)γ4

1 + (3− 2µ)γ3
1 − µγ2

1 + 2µγ1 − µ = 0.

The linear behaviour around L1 is of the type center×center×saddle.
Namely, for the value of µ we use,

Spec DXH(L1) = {i2πω0
p,−i2πω0

p, i2πω
0
v ,−i2πω0

v , λ
0,−λ0}.

From now on we will focus our attention on this point, and we will
consider the primaries to be the Earth and the Moon, with mass pa-
rameter µ = 1.215058560962404 × 10−2, for which xL1 ≈ −0.83692,
ω0
p ≈ 0.371529, ω0

v ≈ 0.361096, λ0 ≈ 2.932056.
Lyapunov’s center theorem (see e.g. [43, 48]) ensures the existence

of a family of periodic orbits (p.o.), known as the planar (resp. verti-
cal) Lyapunov family, that fills a 2D manifold tangent to the ±i2πω0

p

(resp. ±i2πω0
v) eigenplane. The planar (resp. vertical) denomination

comes from the fact that the eigenvectors of eigenvalues ±i2πω0
p (resp.

±i2πω0
v) have zero x3, p3 (resp. x1, x2, p1, p2) coordinates. Both fami-

lies start at the energy of L1, that will be denoted as h0, and evolve
through higher energies. Denote by T hp (resp. T hv ) the period of the pla-

nar (resp. vertical) Lyapunov p.o. of energy h. Denote also as e±i2πν
h
p



32 ALEX HARO AND J.M. MONDELO

(resp. e±i2πν
h
v ) the multipliers of modulus one of the monodromy ma-

trix of the planar (resp. vertical) Lyapunov p.o. of energy h, with νhp
(resp. νhv ) chosen in [0, 1/2], as found when computing numerically.
This is,

e±i2πν
h
j ∈ Spec DϕTh

j
(xhj ), νhj ∈ [0, 1/2], j = p, v,

where xhp (resp. xhv) is an initial condition in the planar (resp. vertical)
periodic orbit of energy h. Lyapunov’s center theorem also ensures that

T hp
h→h0−→ 1/ω0

p, T hv
h→h0−→ 1/ω0

v ,

and

{e±i2πνhp } h→h0−→ {e±i2πω0
v/ω

0
p}, {e±i2πνhv } h→h0−→ {e±i2πω0

p/ω
0
v}.

From the numerical values of ω0
p, ω

0
v , we have

νhp
h→h0−→ 1− ω0

v/ω
0
p, νhv

h→h0−→ ω0
p/ω

0
v − 1.

The Lissajous family of tori mentioned above is made of the KAM
tori generated by the 4D central part of L1, that are contained inside
the 4D center manifold of this point. Denote by ωp, ωv the frequencies
of any torus in the family, chosen as to have ωp → ω0

p and ωv → ω0
v as

the torus collapses to L1. We will refer to ω̂ = (ωp, ωv) as the vector of

natural frequencies. Denote by K̂ a parameterization of a torus K̂ of
the family satisfying the invariance equation (5). Define

(70) νp(ωp, ωv) = 1− ωv/ωp, νv(ωp, ωv) = ωp/ωv − 1.

As stated previously, we will not compute a parameterization K̂ of the
whole torus, but of an invariant curve parameterized by K inside it
(recall that we actually compute a collection of invariant curves).

Following [27], we will use the energy h and the vertical rotation
number ρ = νv as parameters in order to represent the tori of the
Lissajous family. It was numerically found that, when varying h, νv
in the region enclosed by the α, β, γ curves of Fig. 1, they uniquely
determine a torus in the family. The α curve, with coordinates (h, νhv ),
represents the vertical Lyapunov family, from its birth at L1 at energy
h = h0 (point A) to its first 1:1 bifurcation, at energy h = −1.49590
(point D). The β curve represents the planar Lyapunov family from
its birth to its first 1:1 bifurcation, at energy h = hB = −1.58718
(point B, in which the Halo family of p.o. appears). In order to have
continuity at the point A, the vertical coordinate of the points of the
β curve is not νhp but the νv(ωp, ωv) value of limiting nearby tori. From
(70), it is found to be

1

1− νhp
− 1.

The γ curve, which is the segment from point B to pointD, corresponds
to the separatrix between the Lissajous family of tori and other families
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of quasi-periodic motion in the center manifold of L1, that are described
in [27].

As it has been mentioned in the introduction, the large matrix1 ap-
proach in [27] was to write K(θ) as a truncated Fourier series, K(θ) =

A0 +
∑Nf

k=1

(
Ak cos(2πkθ) + Bk sin(2πkθ)

)
, an then turn Eq. (7) into a

finite non-linear system of equations by imposing it at 1 + 2Nf equally
spaced values of θ. Multiple shooting was also implemented: all the
computations were done with m = 2. The computational bottleneck
of this procedure is that large values of Nf give rise to large systems of
equations. The different sub-regions inside the α, β, γ curves in Fig. 1,
that are not disjoint but nested, are labeled according to the value of
Nf obtained in the computations of [27] for the tori inside them. A
global upper limit of 100 was chosen for Nf , so tori in the ”> 100”
sub-region were actually not computed.
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Figure 1. (Adapted from [27]) Energy-rotation number
representation of the Lissajous family of invariant tori of
the RTBP around L1 for the Earth-Moon mass parame-
ter.

4.2. On the generators of tori in the Lissajous family. As stated
previously, we will not compute a parameterization K̂ of the whole
torus, but of an invariant curve parameterized by K inside it (recall
that we actually compute a collection of invariant curves), to which we
will refer to as a generator of the torus. The choice has consequences
in the determination of the geometrical observables and the selection
of the frequencies. We consider two cases, that we will distinguish as
vertical generators and planar generators.

We will denote as vertical generator of the invariant torus a param-
eterized curve of the form Kv(θ) = K̂(θ, θ∗v), for some fixed θ∗v ∈ [0, 1].

1According to the nomenclature of [31].
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A calculation shows that

ϕ1/ωv

(
Kv(θ)) = Kv

(
θ + νv

)
,

which is Eq. (7) with T = 1/ωv, ω = νv, with νv defined as in (70).
Close to vertical Lyapunov p.o., an invariant curve of the linearized
flow around the Lyapunov p.o. satisfies the linearized version of the
previous equation and thus provides an approximate solution, in order
to obtain a first torus and start continuation.

When globalizing the invariant curve Kv (for the time-T flow) to the
invariant torus (for the vector field) via Eq. (8) we get

K̂v(θ̂) = K̂v(θ1, θ2) = ϕθ2/ωv(Kv(θ1 − θ2νv)) = K̂(Âvθ̂ + θ̂∗v),

where

(71) Âv =

(
1 1
0 1

)
, θ̂∗v =

(
0
θ∗v

)
.

This is a reparameterization of the invariant torus K, for which the
frequencies are ω̂v = Â−1

v ω̂ = (ωp − ωv, ωv).
The geometrical observables provided by the Calabi invariants of the

two parameterizations of the torus K are related by the identities

C(K̂v) =

(
1 0
1 1

)
C(K̂), C(K̂) =

(
1 0
−1 1

)
C(K̂v),

see Remark 2.3.1, and, hence, C1(K̂) = C1(K̂v) = C(Kv) (which also

follows from the definition of Kv) and C2(K̂) = −C1(K̂v) + C2(K̂v).

Notice that C2(K̂v) = C(ϕθ/ωv(Kv(−θνv))) = C(ϕTθ(Kv(−θω))). In

summary, we can compute the Calabi invariants of K̂ from K̂v.
We will denote as planar generator of the invariant torus a parame-

terized curve of the form Kp(θ) = K̂(θ∗p,−θ), for some fixed θ∗p ∈ [0, 1].
A calculation shows then that

ϕ1/ωp

(
Kp(θ)) = Kp

(
θ + νp

)
,

wich is Eq. (7) with T = 1/ωp, ω = νp, with νp defined as in (70).
Close to a planar Lyapunov orbit, an invariant curve of the linearized
flow around the Lyapunov p.o. satisfies the linearized version of the
previous equation, and thus provides an approximate solution, in order
to obtain a first torus and start continuation.

When globalzing the invariant curve Kp (for the time-T flow) to the
invariant torus (for the vector field) via Eq. (8) we get in this case

K̂p(θ̂) = K̂p(θ1, θ2) = ϕθ2/ωp(Kp(θ1 − θ2νp)) = K̂(Âpθ̂ + θ̂∗p),

where

(72) Âp =

(
0 1
−1 1

)
, θ̂∗p =

(
θ∗p
0

)
.
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This is another reparameterization of the invariant torus K, for which
the frequencies are ω̂p = Â−1

p ω̂ = (ωp − ωv, ωp).
The Calabi invariants of the two parameterizations of the torus K

are related by the identities

C(K̂p) =

(
0 −1
1 1

)
C(K̂), C(K̂) =

(
1 1
−1 0

)
C(K̂p),

see Remark 2.3.1, and, hence, C1(K̂) = C1(K̂p)+C2(K̂p) and C2(K̂) =

−C1(K̂p) = −C(Kp) (as it follows from the definition of Kp). Notice

that C2(K̂p) = C(ϕθ/ωp(Kp(−θνp))) = C(ϕTθ(Kp(−θω))). In sum-

mary, we can compute the Calabi invariants of K̂ from K̂p.

4.3. The numerical explorations. We have performed two numeri-
cal explorations of the Lissajous family. In the first one we compute tori
with ρ > νh0v , whereas in the second one we compute tori with ρ < νh0v .
Since the tori with ρ > νh0v are included in the “< 100” sub-region of
Fig. 1, in the first exploration we are able to compare the performance
of this paper’s parameterization procedure against the one of the large
matrix approach of [27].

In our first exploration, we have chosen 74 values of ρ > νh0v , equally
spaced between 0.02944 and 0.08754, and “nobilized”2 with an abso-
lute tolerance of 1.6 × 10−4. For each of these values of ρ, we have
performed continuation of invariant curves given by vertical generators
Kv, for constant ω = ρ and increasing T , starting from a curve on a
narrow torus around a vertical Lyapunov p.o. and finishing by collaps-
ing to another vertical Lyapunov p.o. of a higher energy. We have also
simultaneously computed their invariant bundles. To do so, we have
performed continuation with respect to T using Algorithm 3.6.1, mak-
ing predictions through Algorithm 3.5.1, and refining each prediction
through Algorithm 3.4.1 (isochronous case). The parameters used in
Algorithm 3.6.1 have been: m = 4, ε = 10−7, εW = 10−5, ε1 = 10−8,
ε2 = 10−12, ndes = 4, nα = 5. The stopping criterion has been that,
when approaching the final vertical p.o., |C1(K̂)| = |C(Kv)| < 0.001
(see Section 4.2). We have repeated this first exploration using the
large-matrix approach of [27], selecting the parameters accordingly for
a fair comparison.

The results of this numerical exploration are shown in Fig. 2. The
left plot corresponds to the large matrix approach, whereas the right
plot corresponds to this paper’s parameterization one. Both plots show
the total number of Fourier coefficients used in the computation. For
the left plot this is 1 + 2Nf . For the right plot, it is considered to
be N/2, because of the DFT queue cleaning strategy mentioned in

2A noble number is one whose continued fraction expansion coefficients are equal
to one from a position on.
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Section 3.6. The total computing time3 of the large-matrix approach
is 68308 seconds, of which 22793 are spent in the computation of the
tori, whereas the rest are used in the computation of the stable and
unstable bundles through a slight modification of the method presented
in [40]. The total computing time of the parameterization approach of
this paper (that includes tori and bundles) is 5992 seconds. The total
number of tori computed is 4141 with the large-matrix method vs. 7008
with the parameterization one. This is due to the fact that, as can be
appreciated in Fig. 2, the continuation strategy of the large-matrix
procedure is able to use larger step sizes for tori with small values of
Nf .
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Figure 2. Tori with ρ > νh0v of the Lissajous family of
the Earth-Moon RTBP around L1, computed with the
large matrix procedure (left) and the parameterization
one (right).

In a second exploration, we have computed invariant tori that are
born from planar Lyapunov orbits that have rotation number ρ < νh0v .
Namely, we have chosen 31 values of ρ, equally spaced between 0.02785
and 0.00317, nobilized with an absolute tolerance of 1.6× 10−4 and for
each of the values we have performed continuation of invariant curves
given by planar generators Kp, for constant ω = 1 − 1/(1 + ρ) and
increasing T , starting from a narrow torus around a planar Lyapunov
p.o. The parameters used in the continuation algorithms have been
the same as before. The continuations have stopped either by reaching
the computational limit or, as in the first exploration, when |C1(K̂)| =
|C(Kv)| < 0.001 (see Section 4.2).

The motivation of this second exploration is twofold. On the one
hand, to perform a “stress test” of our procedure by exploring phase
space beyond the computations of [27]. On the other, to relate the

3The computing times given will always be qualified as “total”, meaning the sum
of all the times used by all the threads. The actual wall-clock time is roughly this
time divided by the number of cores (16 in our case). This rule is not followed
exactly because of uneven load balancing: the continuation of some constant-ω
families takes longer than others.
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Figure 3. Number of Fourier coefficients of all the tori
and invariant bundles computed of the Lissajous family
of the Earth-Moon RTBP around L1, using this paper’s
parameterization strategy.

behavior of dynamical and geometrical observables to the destruction
of invariant tori (see the next section). In this exploration, we have
always achieved convergence of Newton’s method provided that the
continuation step is small enough and the number of points N large
enough. The computational limits on these two quantities, chosen as
10−5 and 8192, respectively, have been set in order to obtain reasonable
run time and storage requirements in a single workstation. Notice that
working with such a large number of Fourier coefficients is unfeasible
with the large matrix approach, since it would require the solution of
non-linear sytems of equations with a size of nearly 100000 × 100000.
A limit, equal to 10000, has also been put for the maximum number
of tori computed in each constant ρ family of this second exploration.
With all these limits, this exploration has run for a total time of 27.0816
days and has generated a total of 130574 tori that, each compressed as
a bz2 file, take up 127.51 GiB of disk space.4

The results of this second exploration are shown in Fig. 3, that is
analogous to Fig. 2 right but including both explorations. Many of the
figures that follow will refer to the two explorations as a whole.

4.4. Dynamical and geometric observables. In this section we will
describe the behaviour of different dynamical and geometric observ-
ables of the invariant tori of the Lissajous family that are obtained

4Recall that the “wall-clock” time is roughly the total time divided by 16. On
the other hand, several strategies, that we have not pursued here, can be used
to reduce greatly these storage requirements, like using binary files with single
precision floating-point numbers, and not storing all the tori but a grid of them fine
enough in order to recover tori not in the grid by interpolation (see e.g. [44]).
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during their computation. These observables provide insight on both
numerical and dynamical vicissitudes faced by the method. We will
also display the evolution of three constant ρ families through the 3D
representation of some of their tori in configuration space. The results
presented here complement those in [27] that, by using iso-energetic
Poincaré sections, provides a detailed account of the evolution of the
Lissajous family of invariant tori, together with its interaction with
other families of invariant tori and periodic orbits.

For a parameterization K = K0 : T → R6 of the invariant curve
of the time T -flow with rotation number ω, obtained with multiple
shooting with m = 4 steps, that is a generator of the 2D invariant
torus given by (8), the dynamical observables we consider here are:

• the flying time T of the generator (notice that we get frequencies
for the 2D-torus by the formula ω̂ = 1

T
(ω, 1));

• the unstable Floquet multiplier Λu = λ−m, that provides in-
formation about hyperbolity properties of the invariant curve,
and from which one can obtain the Floquet exponent of the
2D-torus by χ = 1

T
log Λu.

Notice we select m so that λ−1 is not too big, in order to mitigate
numerical unstabilities. In our computations, λ−1 runs in the interval
[4, 8].

The geometric observables we consider are:

• The Calabi invariants C1(K̂), C2(K̂) of the parameterization

K̂(θ1, θ2) of the torus with natural frequencies ω̂ = (ωp, ωv).
These invariants give insight on the size of the generators in
area units. Section 4.2 provides formulae for their computation
from C(K̂p), C(K̂v).
• The (minimum) distances between several pairings of bundles

on the generator curve: TK, the tangent bundle of the generator
curve (generated by K ′); X, the bundle generated by the vector
field on the curve; the stable and the unstable bundles Es and
Eu, respectively; the central bundle, Ec, that has rank 4 and
contains the tangent bundle to the generator, the vector field
and, hence, the tangent bundle to the 2D torus. The distances
we consider are: d(TK, X), to measure the transversality of the
flow to the generator, and d(Es, Eu), d(Es, Ec), and d(Eu, Ec),
to measure the quality of hyperbolicity geometrical properties.

The bundles are generated by selected columns of the matrix map P =
P0 : T→ R6×6, that we write as

P (θ) =
(
K ′(θ) XH(K(θ)) W s(θ) N1(θ) N2(θ) W u(θ)

)

for reference. Hence, at a point K(θ) of the invariant curve, the fiber
of the stable bundle Es is generated by W s(θ), the fiber of the unsta-
ble bundle Eu is generated by W u(θ), and fiber of the center bundle
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Ec is generated by K ′(θ), XH(K(θ)), N1(θ), N2(θ). Notice that the
tangent bundle to the generator is generated by K ′(θ), and the tangent
bundle of the 2D torus is generated by K ′(θ), XH(K(θ)). There are
several ways of defining distances or angles between vector subspaces
of a given normed vector space. Here, the vector space is R6, with the
norm induced by the standard scalar product, and the distance we con-
sider between a vector subspace E1 of dimension 1 and another vector
subspace E2 is the length of the projection onto E⊥2 of a unit vector in
E1 (the angle between E1 and E2 is the arcsin of this lenght). Finally,
we define the distance between two bundles as the minimum distance
between corresponding fibres of the bundles.

Remark 4.4.1. We emphasize that the quality of hyperbolicity proper-
ties of the invariant torus are not only given by the Floquet multipliers
in the stable and unstable directions, that have to be away from 1, but
also by the positivity of the angles between the stable, unstable and
center directions. There are mechanisms of breakdown of invariant tori
that involve the degeneration of some of these angles, that go to zero,
while the stable and unstable Floquet multipliers remain far from 1.
See [10, 11, 12, 23, 30, 33].

Remark 4.4.2. Reversibility properties of the RTBP imply that stable
and unstable bundles can be obtained from each other using reversors,
and that they have same angles with the center manifold of the torus.
These properties could also be used to reduce the cost of the algorithms
presented here (reducing, for instace, the cost of generating the frame).
We prefer not doing so for the sake of generality.

By monitoring these observables during the continuation we can get
insight about dynamical and geometric properties of the torus (and its
invariant bundles), and detect numerical unstabilities caused by degen-
eracies of these properties (such as the hyperbolicity, regularity of the
frame, size of the generator). For instance, we recall that one stopping

criterion is that |C1(K̂)| = |C(Kv)| < 0.001, revealing that the torus
is approaching a periodic orbit. We have collected these observables
from the two numerical explorations exposed in the previous section,
and the results are summarized in Figure 4.

In this massive computation we observe that:

• The unstable multiplier ranges from 413.205 to 3344.26, from
which the spectral condition of hyperbolicity of the torus is
satisfied;
• The distance between the stable and unstable bundles is bigger

than 0.492489, and the distante between the stable and cen-
ter bundle, and the unstable and center bundle, is bigger than
0.0615721, from which the geometrical conditions of hyperbol-
icy is also satisfied.
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The continuations of families of Lissajous tori with smaller rotation
numbers stop because of the computational limit of 10000 tori for each
constant-ρ family. But, as we see from the behavior of the observables,
this phenomenon is not apparently due to the fact that hyperbolicity
breaks down. However, the fact that the step size of the continuation
becomes smaller and the number of Fourier coefficients becomes larger
reveals that the torus is losing regularity (the analyticy strip of the
complex domain of the parameterization of the torus goes to zero),
indicating an obstruction for the existence of the torus and that it is
breaking down. There is another possible mechanism of breakdown, it
is what we call KAM breakdown. These tori lie on the center manifold
of the L1 point, W c(L1), which is a 4D symplectic manifold. So, inside
W c(L1), these tori are KAM tori, and the basic mechanism of break-
down is the collision with resonances (the overlap criterion [16]), which
can be more geometrically described as the obstruction produced by
homoclinic and heteroclinic webs produced by the invariant manifolds
of unstable periodic orbits inside the center manifold (the obstruction
criterion in [45, 19]). So, it is very likely that in this case the break-
down is produced by this phenomenon inside the center manifold. We
will come back to this issue later.

In the following, we will particularize the results for three families of
Lissajous tori, with rotation numbers ρ = 0.031865, ρ = 0.019091 and
ρ = 0.013584. Figs. 5, 6 and 7 show several samples of tori of these
three families, projected on the configuration space in different forms
and views:

(left) as grids on the parameterized surfaces {K̂(θ1, θ2)}(θ1,θ2)∈T2 (see
Eq. (8)), including two generators of the homothopy group of

the torus, given by {K̂(θ, 0)}θ∈T, in blue, and {K̂(0, θ)}θ∈T, in
red;

(right) as opaque surfaces, with the same scale and range on all axes,
with colors corresponding to the different sides of the surface,
revealing self-intersections of the projections of tori on configu-
ration space.

Actually, instead of Eq. (8), the expression

K̂(θ1, θ2) = ϕ(θ2− j
m

)T

(
Kj

(
θ1 − (θ2 −

j

m
)ω
))
,

with j = [mθ2], has been used, in order to take advantage of multiple
shooting. In addition to these views, for each of these families we have
plotted in Figs. 9, 10 and 11 the dynamical and geometrical observables
as functions of the energy h. We will describe our findings below.

The results for the family ρ = 0.031865 are summarized in Figs. 5
and 9. From Fig. 5 we appreciate how the family begins with a small
torus around a vertical Lyapunov p.o., that grows up to approximately
the size of the planar Lyapunov orbit of the same energy, and then
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Figure 4. Dynamical and geometrical observables

starts bending until it “is about to close”. Then it opens again and
shrinks until it collapses to a vertical Lyapunov p.o. of higher energy.
All this is done while increasing in size, since energy also increases.
Fig. 9 displays the observables for this family. Since the family is born
in a vertical Lyapunov p.o. and dies in another vertical Lyapunov p.o.
of a higher energy, the Calabi invariant of the generator starts being 0
and finishes being 0. Notice that, in both cases, close to the p.o. the
Calabi invariant goes to zero assymptotically as a linear function of the
difference of the energy with the one of the p.o.
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Figure 5. Two views of a sample of invariant tori with
ρ = 0.031865. Letf: Parameterized surfaces, including
generators (Blue: invariant curve {K̂(θ, 0)}θ∈T. Red: in-

variant curve {K̂(0, θ)}θ∈T). Right: with the same scale
on all axes, and with opaque surfaces.
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The results for the family ρ = 0.019091 are summarized in Figs. 6
and 10. Fig. 6 shows a sample tori starting in a planar Lyapunov
p.o. and, hence, their homothopy group generators are exchanged with
respect to Fig. 5. The evolution with energy is similar to the one of
Fig. 6, with three main differences: the torus “seems to close after
bending” (a zoom of the fourth torus reveals that it does not actually
close), there is a more important accumulation of wireframe lines at the
“boundary that closes and opens”, and the family starts from a planar
Lyapunov p.o. instead of a vertical one. This is in fact the reason
the Calabi invariant of the computed generators starts being 0 (and,
again, with an asymptotic linear behaviour) and increases till the end
of the continuation (converging to the Calabi invariant of the vertical
Lyapunov p.o.), as it is observed in Fig. 10.

In the iso-energetic Poincaré section plots of [27] (and, for lower en-
ergy levels, in the ones of previous references like [26, 41]), it is numer-
ically seen that, from energy hB to hC , a double homoclinic connection
inside W c(L1) of the planar Lyapunov family of p.o. acts as separa-
trix from the Lissajous family and the quasi-Halo family of tori. From
energy hC to hD, this role is taken by heteroclinic connections (also in-
side W c(L1)) between the vertically symmetric families of p.o. that are
born at the second 1:1 bifurcation of the planar Lyapunov p.o. Plots
of orbits of these last families of p.o. can be found in Fig. 8 of [27]
(they are known as “axial” by other autors, e.g. [20]). In Fig. 6, it is
observed how the tori approach these connections. This fact is better
appreciated in Fig. 8, that shows magnifications of projections of the
third and fifth tori of Fig. 6. The view of the third torus has been
chosen in order to stress the fact that the torus represented approaches
two different, vertically simmetric quasi-Halo tori, as can be inferred
from the Poincaré representations of the center manifold in references
[27, 26, 41]. When approaching these connections, dynamics becomes

slow and, since the parameterization K̂ is tied to the dynamics through
the invariance equation (5), it produces the accumulation of wireframe
lines of Fig. 6 and the small values of d(TK, X) of Fig. 4. We believe
this kind of stiffness to be responsible for the drastic reduction of step
length of the second exploration and, to a lesser extent, of the first one.
As it has been commented, these connections are responsible for the
destruction of the families of invariant tori in the center manifold.

The phenomenon of breakdown is illustrated with the family with
ρ = 0.013584. The results for this family are summarized in Figs. 7
and 11. In Fig. 7 we observe that the torus is increasingly pinched,
while dynamical and geometrical observables in Fig. 11 do not sug-
gest the torus is being destroyed. However, the fact the continuation
step is getting very small and the number of Fourier coefficients of the
approximations is getting larger, related to the mentioned “pinching
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Figure 6. Two views of a sample of invariant tori with
ρ = 0.019091. Left: parameterized surfaces, including
generators (Blue: invariant curve {K̂(θ, 0)}θ∈T. Red: in-

variant curve {K̂(0, θ)}θ∈T). Right: with the same scale
on all axes, and with opaque surfaces.
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Figure 7. Two views of a sample of invariant tori with
ρ = 0.013584. Left: parameterized surfaces, including
generators (Blue: invariant curve {K̂(θ, 0)}θ∈T. Red: in-

variant curve {K̂(0, θ)}θ∈T). Right: with the same scale
on all axes, and with opaque surfaces.

phenomenon”, envisages the breakdown of the torus inside the center
manifold.

5. Conclusion

We have presented in this paper a very efficient method to com-
pute invariant tori in Hamiltonian systems. To do so, we have first
reduced the dimensionaly of the objects, by considering invariant tori
for flow maps, and then taken advantage of the geometrical and dynam-
ical properties of invariant tori in Hamiltonian systems. The method
also provides online information on the linearized dynamics around the
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Figure 8. Magnifications of projections of the third
and fifth tori of Fig. 6, corresponding to ρ = 0.019091.

torus, as well as on other geometrical properties. He have focused our
attention on partially hyperbolic invariant tori with rank-one stable
and unstable manifolds, and in this case the method provides not only
parameterizations of the tori but also of the linear approximations of
those manifolds. Tests have been performed for the computation of
invariant tori around libration points of the Circular Restricted Three
Body Problem, for which there is an extensive literature, so any one
could easily compare the performances.
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Figure 9. Calabi invariant C(Kv) = C1(K̂), and dis-
tances between several pairings of bundles, for the family
ρ = 0.031865.

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

-1.6 -1.58 -1.56 -1.54 -1.52 -1.5

C

h

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.6 -1.58 -1.56 -1.54 -1.52 -1.5

d

h

d(E
s
,E

u
)

d(E
s
,TK̂)

d(E
u
,TK̂)

d(E
s
,E

c
)

d(E
u
,E

c
)

Figure 10. Calabi invariant C(Kp) = −C2(K̂), and
distances between several pairings of bundles, for the
family ρ = 0.019091.
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Figure 11. Calabi invariant C(Kp) = −C2(K̂), and
distances between several pairings of bundles, for the
family ρ = 0.013584.

As we have already mentioned, we only present algorithms of compu-
tation, based on Newton’s method. Eventually, a proof of convergence
could be completed using KAM techniques for obtaining results in a
posteriori format. Although we have not attempted this, we do provide
information about the magical cancellations appearing in the linearized
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equations, that are key in the KAM proofs, and, with much more effort,
could be implemented as computer assisted proofs [22].

The increasing complexity of problems and applications has spurred
the research of this paper. The algorithms presented here are the
first ones in a new generation of algorithms to compute invariant tori
and their manifolds in Hamiltonian systems. We plan to extend the
methodologies to more complex problems in the future, with an eye in
the applications.

Appendix A. From Poincaré map to time-T map

In this section we will see how to obtain, from an invariant torus of
a the Poincaré map, an invariant torus of a time-T map. For instance,
the invariant torus of the Poincaré map could have been computed from
a center manifold reduction around an equilibrium point at a certain
fixed energy level (see e.g. [49, 38] for normal form methods and [29]
for direct parameterization methods, applied to the computation of the
center manifold of a colinear fixed point in the RTBP).

Assume we are given a parameterization KP : Td−1 → R2n of a
(d−1)-dimensional torus KP inside a d-dimensional torus K̂, produced
by a Poincaré map P associated to a transversal section to the vector
field XH . We also assume that the rotation vector of KP is ω (which
is assumed to be Diophantine). That is, we assume for all θ ∈ Td−1

ϕTP (θ)(KP (θ)) = KP (θ + ω),

where TP : Td−1 → R gives for each θ ∈ Td−1 the time for a point
KP (θ) to return to the transversal section. The flying time depends
then on the point on the torus.

We want to find a parameterization K : Td−1 → R2n of a (d − 1)-
dimensional torus K for which the flying time is constant. To do so,
we look for τ : Td−1 → R and T such that

K(θ) = ϕτ(θ)(KP (θ)), ϕT (K(θ)) = K(θ + ω).

Hence, since

ϕT (K(θ)) = ϕT+τ(θ)(KP (θ))

and

K(θ + ω) = ϕτ(θ+ω)(KP (θ + ω)) = ϕτ(θ+ω)+TP (θ)(KP (θ)),

we impose that

τ(θ)− τ(θ + ω) = TP (θ)− T.
This is the well-known small divisors equation (discussed here in Sec-
tion 3.2). We adjust then T to be the average of TP , T = 〈TP 〉, and
solve for τ . Notice that τ is defined up to a constant, the average
that we take as 0. This is natural since K is determined up to a time
translation (see Remark 2.4.3).
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Appendix B. Quadratically small averages

In this section we will prove that, given a multiple torus {Ki(θ)}m−1
i=0 ,

approximately invariant with errors

Ei(θ) = ϕT/m(Ki(θ))−Ki+1(θ + ω
m

),

then the averages of {η3
i (θ)}m−1

i=0 given by

η3
i (θ) =

(
−DKi+1(θ + ω

m
)>Ω(Ki+1(θ + ω

m
))Ei(θ)

−XH(Ki+1(θ + ω
m

))Ω(Ki+1(θ + ω
m

))Ei(θ)

)
=:

(
η31
i (θ)
η32
i (θ)

)

are quadratically small with respect to the errors (and their deriva-
tives). This is a crucial step in our algorithms, and also in a eventual
proof of their convergence using KAM methods.

First, we start by proving that 〈η32〉 is quadratically small. In fact

m−1∑

i=0

〈η32
i (θ)〉 =

m−1∑

i=0

〈DH(Ki+1(θ + ω
m

))Ei(θ)〉

=
m−1∑

i=0

〈H(ϕT/m(Ki(θ))−H(Ki+1(θ + ω
m

))〉

−
m−1∑

i=0

〈
∫ 1

0

(1− s) D2H(Ki+1(θ + ω
m

) + sEi(θ))[Ei(θ), Ei(θ)] ds〉

=−
m−1∑

i=0

〈
∫ 1

0

(1− s) D2H(Ki+1(θ + ω
m

) + sEi(θ))[Ei(θ), Ei(θ)] ds〉,

which is quadratically small in the errors.
Second, we prove that 〈η31〉 is quadratically small. We start using

the exactness of the symplectic form:

m−1∑

i=0

〈η31
i (θ)〉 =−

m−1∑

i=0

〈DKi+1(θ + ω
m

)>Da(Ki+1(θ + ω
m

))>Ei(θ)〉

+
m−1∑

i=0

〈DKi+1(θ + ω
m

)>Da(Ki+1(θ + ω
m

))Ei(θ)〉

=
m−1∑

i=0

〈DEi(θ)>a(Ki+1(θ + ω
m

)) + DKi+1(θ + ω
m

)>(∆1ai(θ)−∆2ai(θ))〉,

where we use

0 =〈D
(
a(Ki+1(θ + ω

m
))>Ei(θ)

)
〉

=〈Ei(θ)>D(a(Ki+1(θ + ω
m

))) + a(Ki+1(θ + ω
m

))>DEi(θ)〉,
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and the definitions

∆1ai(θ) =a(ϕT/m(Ki(θ)))− a(Ki+1(θ + ω
m

))

=

∫ 1

0

Da(Ki+1(θ + ω
m

) + sEi(θ))Ei(θ) ds

and

∆2ai(θ) =a(ϕT/m(Ki(θ)))− a(Ki+1(θ + ω
m

))−Da(Ki+1(θ + ω
m

))Ei(θ)

=

∫ 1

0

(1− s) D2a(Ki+1(θ + ω
m

) + sEi(θ))[Ei(θ), Ei(θ)] ds.

Hence, using that

DϕT/m(Ki(θ))DKi(θ)−DKi+1(θ + ω
m

) = DEi(θ)

and that
m−1∑

i=0

〈DKi+1(θ + ω
m

)>a(Ki+1(θ + ω
m

))〉 =
m−1∑

i=0

〈DKi(θ)
>a(Ki(θ))〉

we have:
m−1∑

i=0

〈η31
i (θ)〉 =

m−1∑

i=0

〈DKi(θ)
>(DϕT/m(Ki(θ))

>a(ϕT/m(Ki(θ)))− a(Ki(θ))
)
〉

−
m−1∑

i=0

〈DEi(θ)>∆1ai(θ) + DKi+1(θ + ω
m

)>∆2ai(θ)〉

=
m−1∑

i=0

〈D
(
pT/m(Ki(θ))

)>〉

−
m−1∑

i=0

〈DEi(θ)>∆1ai(θ) + DKi+1(θ + ω
m

)>∆2ai(θ)〉

=−
m−1∑

i=0

〈DEi(θ)>∆1ai(θ) + DKi+1(θ + ω
m

)>∆2ai(θ)〉,

which is quadratically small. We have used the exactness of the Hamil-
tonian flow, being pt is the primitive function of ϕt.
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