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Abstract

Besides bakers’ yeast, the methylotrophic yeast Komagataella phaffii (also known as Pichia
pastoris) has been developed into the most popular yeast cell factory for the production of
heterologous proteins. Strong promoters, stable genetic constructs and a growing collection
of freely available strains, tools and protocols have boosted this development equally as
thorough genetic and cell biological characterization. This review provides an overview of
state-of-the-art tools and techniques for working with P. pastoris, as well as guidelines for
the production of recombinant proteins with a focus on small scale production for
biochemical studies and protein characterization. The growing applications of P. pastoris for
in vivo biotransformation and metabolic pathway engineering for the production of bulk and

specialty chemicals are highlighted as well.
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Introduction

Methylotrophic yeasts raised the interest of biotechnologists first for their ability to grow on
methanol as the only carbon and energy source, thus promising the production of cheap
protein rich biomass for animal and human nutrition (1). The oil crisis in the 1970s
interrupted these plans, however, triggered the development of these yeasts as platforms
for the production of heterologous proteins. Among them, Komagataella phaffii (formerly
known as Pichia pastoris) stands out by its wide application in research labs and industrial
production. More recently, P. pastoris was also employed for the production of metabolites
by metabolic engineering. A well-annotated genome sequence (2) as well as genome editing
tools and collections of synthetic biology parts and devices make P. pastoris a promising
chassis for synthetic biology applications (3).

The first yeast strain of what is known today as the Komagataella genus was isolated in 1920
by Alexandre Guillermond from a wounded horse chestnut tree and described as
Zygosaccharomyces pastori (4). Further strains were described as Pichia pastoris by Herman
Phaff, isolated mainly from oak and pine trees of Southwest United States (5). Based on
ribosomal gene sequences P. pastoris was further allocated to a new genus, Komagataella,
and split into two species. With new isolates found over the following years Komagataella
comprises seven species today (6). The strains used in biotechnology however are usually
still all referred to as Pichia pastoris which will be used as a synonym for Komagataella spp.

in the following as well.

Methylotrophy

Methylotrophy, i.e. the ability to use methanol and similar one-carbon molecules as carbon
and energy source, has developed several times among bacteria and yeasts. Methylotrophic
yeasts are phylogenetically related and comprise species of the genera Komagataella,
Ogataea, and some Candida sp. (7). They share the specific metabolism, first oxidizing
methanol by alcohol oxidases (AOX) to formaldehyde, which is further assimilated by
dihydroxyacetone synthase (DAS) via the xylulose monophosphate cycle (Figure 1). Due to
the low specific activity of these enzymes extraordinarily high expression levels are required,
so that the promoters regulating AOX1 and the two DAS genes are stronger than any other
metabolic gene promoters of K. phaffii. The entire xylulose monophosphate cycle is localized

in peroxisomes which probably increases its efficiency by metabolic channeling and shielding
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the cytosol from toxic intermediates like hydrogen peroxide (8, 9). In three interconnected
cyclic pathways 3 xylulose-5-phosphate molecules are regenerated while one
glyceraldehyde-3-phosphate is built as a precursor for biomass formation (Figure 1). This
pathway shares surprising similarity to the Calvin-Benson-Bessham cycle of CO; assimilation
(9). Besides this assimilatory pathway, energy is produced by oxidation of formaldehyde to
CO; via formate, yielding cytosolic NADH which is both used as reduction equivalent and
channeled into the respiratory chain to provide ATP.

Methylotrophy was first employed in biotechnology for the production of yeast biomass
from natural gas for food and feed applications (1), but soon also considered useful for
recombinant protein production because of the strong and regulated promoters, mainly the
AOX1 promoter of P. pastoris (10). In a standard setup, methanol is used both as the carbon
and energy source and as the inducer of heterologous gene expression. To this end, three
different methanol utilization (Mut) phenotypes are employed based on the presence or
deletion of the two alcohol oxidase genes. The wild type with both AOX1 and AOX2 active is
called Mut*, while deletion of the main form, AOX1, leads to the Mut® (methanol utilization
slow) phenotype, and strains deleted in both AOX genes are called Mut. Mut® strains are
often employed in protein production while Mut" strains are considered less suitable based
on the assumption that they lack any energy supply from methanol, and also do not provide
for formaldehyde and formate which are considered to play a major role in the induction of
methanol utilization genes (11). Zavec et al. (12) showed however that also Mut" strains
consume methanol and can serve as a platform for the production of proteins. The same
authors demonstrated recently that native alcohol dehydrogenase (Adh2) of P. pastoris is

responsible for methanol oxidation in Mut strains (13).

Tools & Techniques

From strain construction until bioprocess optimization for recombinant production in any
expression system, several product-specific aspects need to be considered. This is where the
well-established and constantly expanding set of tools and techniques available for strain
and bioprocess engineering (Figure 2) contributes in making P. pastoris a highly efficient

expression system (14, 15).
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Design of the expression construct

P. pastoris offers a range of well-characterized constitutive and inducible promoters to
choose from. The constitutive promoter Psap has frequently been used in large scale
production of recombinant proteins in P. pastoris (16). Other strong constitutive promoters
include Prerz and Psewis (17). However, constitutive promoters are not ideal for recombinant
proteins that are toxic to the cells. In terms of inducible promoters, most commonly the
methylotrophic feature of P. pastoris is harnessed by driving the expression of recombinant
genes under the influence of the methanol-inducible promoter of the alcohol oxidase |
(AOX1) gene (18). Other strong methanol-based promoters include Prp: (also induced by
methylamine), Ppas and Pcar: (also induced by glycerol and de-repressed under carbon
source limitation) (17). While methanol-based promoters provide strong induction, their
disadvantage in terms of toxicity of methanol has led to extensive research for the discovery
of alternative, methanol-independent expression systems. On one hand, cell engineering has
been successfully applied to develop methanol-independent Paox: and Ppas: host systems
(19, 20). Hartner et al. created a library of several Paox: variants, by which they not only
identified variants with activities higher than the native promoter upon methanol induction,
but also identified some variants which demonstrated strong methanol-independent activity
in de-repressing conditions (21). On the other hand, several methanol-independent
promoters were identified, including Psry: (induced in glucose-limited conditions), Pruiz
(thiamine repressed) and Papns (ethanol-induced) (22-24). Orthologous promoters have also
been successfully used, for example, the promoter of the methanol oxidase gene from
Hansenula polymorpha (Pmox) (25, 26). Promoter engineering has been applied to some of
these native promoters as effective tool for engineering existing promoters for better
performance (27-30). Additionally, bidirectional promoters have been engineered which can

offer an advantage when co-expression of multiple genes is necessary (31).

Secretion of the recombinant product can simplify the downstream purification steps and
therefore is often desirable. Signal peptides play a very important role in efficiently driving
the secretion of the recombinant protein. While the secretion signal of the Saccharomyces
cerevisiae a-factor mating pheromone is most commonly used to drive the secretion of
recombinant proteins in P. pastoris, there have been instances where the native signal

peptide of the protein or other endogenous signal peptides were shown to have similar or
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even higher efficiencies (32, 33). Additionally, higher yields of recombinant proteins have
been demonstrated using modified versions of the S. cerevisiae a-mating factor secretion
signal (34). However, selection of signal peptide can be protein-dependent and therefore,
testing multiple signal peptides can lead to higher yields (35).

In addition to transcriptional termination, terminator regions can also influence the level of
expression. The toolbox of terminators in P. pastoris was quite small, consisting of only 20
terminators with not much variation in expression between them (36). Only recently, a
catalog of 72 endogenous, heterogeneous and synthetic terminators was developed and

characterized, within which a tunability of 17-fold was observed (37).

Selection of vector and background strain

While there have been some studies towards the generation of circular plasmids with
autonomously replicating sequences (ARS) for stable recombinant expression in P. pastoris,
genomic integration vector systems are most commonly used (38, 39). A selection of vector
systems is commercially available with a choice of antibiotic or auxotrophic selection
markers (40, 41). Additionally, there are vectors based on the GoldenPiCS modular cloning
system which enable single reaction assembly of selected promoters, terminators, resistance
cassettes and genomic integration loci (36). For selection of a background strain, one gets to
choose from various wild-type and auxotrophic strains, strains with different methanol-
utilization phenotypes (Mut*, Mut® & Mut’), protease-deficient strains and glycol-engineered

strains (42).

Molecular biology methods

Several well-established molecular biology techniques in P. pastoris aid in speeding up the
strain generation process (Figure 2). The modular cloning toolbox of GoldenPiCS, mentioned
earlier, allows one-step assembly of multiple expression cassettes into a single vector, which
can then be linearized and integrated into the genome of the host strain. This method
requires the use of selection markers, which can be exploited to increase the copy number
of the recombinant gene construct by increasing the selection pressure. This can be an
advantage since increased gene dosage is often associated with increase in protein titers (15,
43, 44). In case of antibiotic resistance markers, there is a possibility for removal of the

resistance gene post selection of positive clones by transient expression of Cre recombinase,
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however, this is not applicable if multicopy strains are intended (45). Recent development
and fine-tuning of the CRISPR/Cas9 technology in P. pastoris allows for marker free
integration of expression cassettes (46-48). While the technology still has its limitations, a
large amount of research has been directed in improving the technology leading to higher
efficiencies, possibility of multiple genomic integrations as well as application of deactivated

Cas9 (dCas9) for targeted gene interference (49).

Strain selection & bioprocess optimization

The final steps in strain development comprise evaluation of generated strains for final clone
selection and bioprocess optimization (Figure 2). Strain evaluation, often also referred to as
“screening”, is usually done in shake-flasks or in high-throughput microtiter plate cultivation.
Guidelines for such screenings are given in Box 1. To find suitable production clones,
screening of at least 20-40 clones is recommended. Depending on the protein of interest and
the desired product titer screening of several hundred clones may be required, which makes
high-throughput screening methods desirable. While on one hand it is possible to mimic
batch or fed-batch fermentation conditions and select optimum clones, bioprocess
optimization is usually not possible in shake-flasks/microtiter plates. In that respect
mini/microscale cultivations or microfluidics and Lab-on-Chip based technologies provide
alternative screening platforms that also integrate bioprocess optimization, making scale-up

more convenient (50-53).

Strain engineering to improve protein production

Several studies report strategies on how to enhance recombinant protein production and
secretion in P. pastoris (summarized in 54, 55). Such cell engineering approaches are mostly
not applied for initial characterization, unless a specific bottleneck is observed. Examples are
mainly the avoidance of proteolytic degradation through use of strains deficient in the major
cellular proteases such as pep4 deficient strains or the co-expression of certain chaperones,
especially protein disulfide isomerase (55, 56). Some proteins such as cytochrome P450s or
heme-containing proteins require co-factors that either need to be added externally or

produced by the cells (57).
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Systems biology

While a lot of advances has been made regarding the tools and techniques for strain
engineering in P. pastoris, development of systems biology tools is steadily gaining
importance. For example, genomic and proteomic studies have been applied to some
recombinant strains under conditions of recombinant protein production (54). Metabolic
flux analysis (MFA) has been carried out to understand the metabolic impact of recombinant
protein production in P. pastoris (58). Extensive MFA studies have been performed to

compare metabolite concentrations under different cultivation conditions (9, 59, 60).

Genome scale metabolic models (GEMs) have the potential to identify engineering targets to
alleviate metabolic burdens as well as to develop efficient bioprocess strategies. Several
GEMs have been available for P. pastoris since 2010 (61-65). Additionally, efforts have been
directed towards refining or upgrading existing GEMs, for e.g. by incorporating native and
humanized N-glycosylation pathways for production of glycoproteins (66), improving
biomass synthesis equations allowing improved prediction capabilities over a wide range of
substrates (67) or including additional reaction pathways (68). Thus, systems-level studies

are now being incorporated into the strain engineering and improvement workflow.

Pichia pastoris as a host for recombinant protein production

P. pastoris produced recombinant proteins for biomedical and industrial applications

Since the late 1990s P. pastoris has been used to produce proteins for biopharmaceutical,
industrial and diagnostic applications. Commercialized products include insulin, growth
factors, interferon, and subunit vaccines such as hepatitis B surface antigen, and several
others including peptides and antibody fragments (especially single chain antibody
fragments and nanobodies) are in the clinical pipeline (56, 69, 70). Furthermore, industrial
enzymes such as phospholipase C and phytase are produced using P. pastoris as host (71,
72). P. pastoris is also described to be a preferred expression system to prepare several
other recombinant subunit antigens against human and animal pathogens (70, 73), e.g.
brucellosis subunit vaccine (74), Zika virus envelope domain Ill (75), influenza hemagglutinin

and neuraminidase (69), and lately also Sars-CoV-2 spike antigen (76).
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Very recently, P. pastoris has entered into another emerging market, as soy leghemoglobin
produced in P. pastoris was approved as a flavor component of cultured meat by the FDA
(77, 78).

While virus antigens are often produced as intracellular virus like particles (VLPs) (73) or self-
assembling nanoparticles (69), most proteins produced in P. pastoris are secreted (56, 70).
This allows for a reduced number of downstream processing steps during purification
compared to intracellular production (56). As several proteins secreted by P. pastoris have
received a GRAS notice by the FDA (77), it is even possible to directly use the culture
supernatant containing the secreted protein of interest in some cases such as in animal feed

applications (79).

Production of recombinant proteins for structural and biophysical analysis

Apart from being an important host for commercial protein production purposes, a high
number of published studies deal with using P. pastoris to provide a wide variety of
heterologous proteins and mutants thereof for biochemical characterization such as enzyme
activity or for structural and biophysical studies. Often these studies are the first steps for
later utilization of enzymes. For example, P. pastoris was used to determine 1.7-A resolution
crystal structures and to identify the substrate specificities and the catalytically active sites
of several Aspergillus rutinosidases, which are potential catalysts for flavonoid compounds
with nutritional value (80, 81). Substrate specificity and crystal structures of several plant
and fungal carbohydrate active enzymes have been elucidated by expressing them in P.
pastoris. Heterologous expression of plant glycosyltransferases did not only result in the
production of mannan and glucomannan in P. pastoris, but additionally provided important
insights into the yet unresolved biosynthesis of these polysaccharides in plants (82, 83). Site-
directed mutagenesis was also carried out for proteins of biomedical interest, e.g. to study
immunogenic residues of the buckwheat allergen (84), to increase efficacy and stability of
ocriplasmin (85) or to strengthen the affinity of a scFv to its target and should be even more
facilitated by the high-throughput cloning tools available for P. pastoris now (see section

Tools & Techniques).

Membrane proteins (MP) are a particularly challenging class of proteins that have been

produced with a quite high rate of success in P. pastoris (86, 87). Several efforts have been



257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

undertaken to improve the expression levels and purification of MPs. Common cell
engineering strategies and tools for MP production in yeast were summarized by Byrne,
2015 and Routledge et al. 2016 (86, 88). Recently, a novel procedure was devised in which
misfolding and aggregation of integral MPs is avoided by directly solubilizing them from
protoplasts instead of crude membrane preparations (89). Nanodisc reconstitution was
successfully applied to generate sufficient amounts of purified channelrhodopsins for
biophysical characterization (90). The human tetraspanin CD81 expressed in P. pastoris could
be efficiently solubilized and purified within a lipid environment by using styrene-maleic
anhydride co-polymers, providing a platform to study the influence of protein-lipid
interactions of tetraspanins (91).

Crystal structures and biophysical characterization of human amino acid transporters,
aquaporins and several human G protein coupled receptors (GPCRs) expressed in P. pastoris
contributed significantly to our understanding of their substrate transport dynamics (87, 92-
94). The recent elucidation of the mating pathway in P. pastoris together with its high
expression capacity of GPCRs, so far mainly exploited for structural studies, paves the way to

perform in vivo GPCR signaling studies as described for S. cerevisiae (95, 96).

P. pastoris has been used since the 1990s to produce isotope-labeled proteins for NMR-
based structural analysis, and it is the preferred yeast host for this powerful structural
biology technique (87, 94). NMR spectroscopy is well suited to study protein-ligand
interactions and dynamics and to guide ligand design, however, for such purposes
incorporation of sophisticated isotopic labels is often required. Zhang, 2020 provided a
collection of suitable labeling protocols and summarized the most recent advances made in
P. pastoris (94). Labeling strategies include global or selective 3C >N-labeling, '°F-labeling,
deuterium labeling for improved resolution of spectra, and methyl-labeling of valine, leucine
or isoleucine for even more improved sensitivity of spectra of high-molecular-weight
proteins or complexes. Site-specific methyl-labeling in a deuterated background permitted
sensitive methyl-TROSY experiments in P. pastoris that were successfully conducted to
elucidate structure-function relationships of several human GPCRs of biomedical relevance
(87). On the other hand, selenomethionine labeling might be applied to improve X-ray
crystallography (97). For all of the latter approaches, uptake of labeled amino acid(s) might

be limiting, thus cell engineering provides a promising strategy for improving labeling

10
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efficiencies (94, 98). Cell-free expression systems recently established also for P. pastoris are
another alternative especially for the incorporation of otherwise cytotoxic selenomethionine

(99).

Design of culture conditions for small scale protein production

While projects aiming at producing a certain protein or compound usually required large
scale cultivation in bioreactors, studies aiming at protein characterization are often (at least
initially) performed in small scale such as shake flasks or deep well plates (100). Guidelines
for selecting suitable producer clones are given in Box 1.

Often, substantial efforts are invested to improve the cultivation conditions for a certain
protein of interest. Based on our experience we suggest investigating the impact of pH,
which should not be too close to the isoelectric point of the protein to avoid precipitation,
and may as well impact product quality and stability through proteolysis. Many researchers
investigate methanol concentration, with the outcome that in most cases addition of 0.5-1%
methanol twice a day works best. Usually higher cell density and higher product titers are
obtained in complex medium containing yeast extract and peptone or casamino acids,
however, proteolytic activity (probably due to cell lysis) might be observed. For secretory
proteins, growth-limiting carbon supply (e.g. by enzyme-mediated glucose release simulating
a fed batch regime) leads to good product titers and high product quality in our experience
(49, 101), and works comparably well for both complex and synthetic media. This cultivation
strategy is also well suited for the above described amino acid labeling strategies where the
use of minimal medium, with or without deuteration, is required, and helps to overcome the

previously reported limit of low protein amounts.

Metabolite production by whole-cell biotransformation and fermentation

bioprocesses

Although P. pastoris has been developed primarily as a cell factory for recombinant protein
production, its potential for metabolite production purposes has received increasing
attention over the past 15 years, likely boosted by the increasing physiological knowledge
base and synthetic biology tools availability (see excellent reviews by (102-104)). The use of

P. pastoris has been demonstrated for the production of diverse chemical compounds,

11
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particularly for complex metabolites such as plant secondary metabolites (polyketides,
terpenoids, isoflavonoids) and other drug metabolites (e.g. steroids, sphingolipids) as well
as, to a much lesser extent, for bulk chemicals such as organic acids, biofuels or biopolymers
(Figure 3). Nonetheless, most of these examples are proof-of-principle studies reporting
titers, yields and productivities far from industrially attractive metrics.

Two major metabolite production approaches have been explored, namely
biotransformation (biocatalysis) and fermentation bioprocesses. Whereas in fermentations
the products are synthesized from carbon/nitrogen substrates via the host cells’ native or
engineered metabolism, in biotransformations, cell growth and product synthesis phase are
separated, i.e. biotransformations are typically performed by resting cells, which convert
substrates/precursors to the desired products. Generally, biotransformations are catalyzed
by intracellular enzymes, although cell surface display of enzymes for biotransformation
purposes has also been demonstrated.

P. pastoris presents several a priori physiological advantages and specific metabolic traits
that make this yeast particularly interesting for whole-cell biocatalytic systems. i) As
Crabtree negative yeast, high cell densities, that is, high amounts of biocatalyst, can be easily
obtained from bioreactor cultures using cheap substrates; also, P. pastoris shows higher
resistance to harsh process conditions such as low pH compared to other cell factories such
as Escherichia coli. ii) The native alcohol oxidase (Aox), a peroxisomal enzyme with relative
low substrate specificity, can catalyze the oxidation of many short-chain alcohols to the
respective aldehydes using oxygen as electron acceptor, generating hydrogen peroxide as a
toxic by-product. Notably, P. pastoris also synthesizes large amounts of catalase in the
peroxisomes together with Aox during methylotrophic growth, thereby providing an
interesting system for oxidase-catalase-based reactions (104). This concept can be further
expanded by, e.g. targeting heterologous oxidases such as D-amino acid oxidases (DAO) to
the peroxisome, providing a system for oa-keto acids production from a-amino acid
substrates and resolution of racemic mixtures of amino acids (105). iii) The native methanol
dissimilation pathway, which oxidizes formaldehyde stepwise to formate and CO; by two
NAD*-dependent dehydrogenases has been exploited as a natural NADH regeneration
system for reduction reactions. Moreover, such endogenous system has been specifically
optimized for whole-cell biotransformation purposes by overexpressing the formaldehyde

dehydrogenase encoding gene (FLD) and disrupting the DAS genes, key genes in the

12
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competing methanol assimilatory pathway (106, 107). Also, NADPH regeneration engineered
systems or process strategies have been proposed (104). For instance, Tang and co-workers
(108) have used glucose as a co-substrate for NADPH synthesis to improve NADPH-
dependent synthesis of the steroid boldenone, an androgenic—anabolic steroid and a
testosterone derivative. iv) P. pastoris has shown a high aptitude for expression of
membrane bound proteins like cytochrome P450 monooxygenases (CYP) and reductases
(CPR). v) Under methanol-growing conditions, peroxisomes largely proliferate which offers
the possibility to compartmentalize synthetic metabolic pathways in this organelle as a
metabolic engineering strategy (103).

P. pastoris has also been used in whole-cell biotransformations requiring ATP such as the
synthesis of dipeptides and tripeptides, as well as in other reactions not dependent of
cofactors, e.g. hydrolysis, carbon-carbon bond formation reactions, and further synthesis
reactions. Some recent exemplary studies include the production of the dipeptides (109),
synthesis of phospholipids (110), and the use of transketolase-overproducing strains to
catalyze asymmetric carbon-carbon bond formation reactions, e.g. the production of L-
erythrulose from prochiral substrates (111) or, strains combining the overexpression of
transketolase and w-transaminases encoding genes for chiral amino-alcohols synthesis (112,

113).

Despite the fact P. pastoris presents several features such as an industrially well-established
fermentation technology and the ability to grow on renewable feed stocks like glycerol and
methanol that are more reduced than glucose, it remains largely unexploited as a cell factory
for bulk/platform chemicals and biofuels production (102, 103). For instance, conversion of
glycerol into L-lactic acid has been demonstrated by the expression of a lactate
dehydrogenase gene from Bos taurus (114). Additional metabolic engineering of this strain
investigated the impact of deletion of the pyruvate decarboxylase gene, aiming at reducing
acetic acid formation and consequently obtaining higher lactic acid titers. This resulted in a
yield of 67% L-lactic acid and 20% arabitol as a by-product in glycerol batches with oxygen
limitation (115). Further disruption of the arabitol dehydrogenase encoding gene has been
recently reported by the same group (116), obtaining an increase of 20% in lactic acid and a
50% reduction in arabitol yields in chemostat cultures. Also recently, the production of D-

lactic acid from methanol using an engineered P. pastoris strain expressing multiple copies of

13
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the D-lactate dehydrogenase gene from Leuconostoc mesenteroides has been reported
(117). Similarly, production of an increasing number of platform chemicals has also been
demonstrated, typically at shake flask or small bioreactor scale, including isobutanol and
isobutyl acetate (118), isopentanol (3-Methyl-1-butanol) (119), and 2,3-butanediol (120).
Moreover, the potential of P. pastoris to produce malic acid from methanol has been lately
explored through different metabolic engineering strategies, obtaining up to about 2.8 g/L of

malic acid in shake flask cultures (121).

So far, these novel developments to metabolically engineer P. pastoris for metabolite
production have generally relied on classical genetic tools (promoters, markers etc.) and
conventional strains that were originally optimized for recombinant protein production.
Despite enormous advances in systems and synthetic biology tools in recent years,
significant challenges in genome engineering remain compared to Saccharomyces cerevisiae,
e.g. generally lower efficiency of currently available CRISPR and homologous recombination
based methods (122). The incorporation of new-generation synthetic biology tools should
speed up development of metabolite production strains beyond mere demonstration/proof-
of-concept. To this end, the design of robust chassis strains supporting efficient conversion
of alternative carbon substrates/energy sources, for e.g., CO, (123), acetate (124) or
cellulose/cellobiose (125) to key metabolic precursors e.g. acetyl-CoA, farnesyl

pyrophosphate, malonyl-CoA (Figure 3) will be key in the forthcoming years.

Summary points

e Methylotrophy and the strong methanol regulated promoters were the key drivers to
develop P. pastoris to a protein production host.

e Early free access to strains and vectors has promoted research on P. pastoris
enormously.

e The development of tools and parts for P. pastoris make it an important synthetic
biology chassis.

e A wide range of available molecular and synthetic biology toolkits contributes in
developing a simple workflow from strain design to bioprocess optimization.

e The efficient native one-carbon metabolism offers promising perspectives for a

single-carbon (methanol, formate, CO;) based bioeconomy.
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Figure Legends

Figure 1: Metabolic pathways of methanol utilization in P. pastoris. After oxidation of
methanol to formaldehyde assimilation is achieved in the xylulose-5-phosphate cycle,
indicated in green. A byproduct of methanol oxidation is hydrogen peroxide, which is further
detoxified by catalase. These reactions, as well as the Xu5P cycle, are localized in
peroxisomes. Formaldehyde is also dissimilated to CO2 in three cytosolic reactions, indicated
in blue. The produced NADH serves as reduction equivalents and for ATP production.
Assimilation of three formaldehyde molecules leads to the release of one molecule of
glyceraldehyde-3-phosphate from peroxisomes which serves for biomass growth.

GSH: reduced glutathione; GS-CH20H: S-(hydroxymethyl)glutathione; GS-CHO: S-
formylglutathione; Catl: catalase; Fld1l: formaldehyde dehydrogenase; Fghl: S-
formylglutathione hydrolase; Fdh1: formate dehydrogenase; Aox1/2: alcohol oxidase 1 and
2; Das1/2: dihydroxyacetone synthase 1 and 2; Dak2: dihydroxyacetone kinase; Tpil:
triosephosphate isomerase; Fbal-2: fructose 1,6-bisphosphate aldolase; Fbp1: fructose 1,6-
bisphosphatase; Shb17: sedoheptulose 1,7-bisphosphatase; Rkil-2: Ribose 5-phosphate

ketol-isomerase; Rpel-2: D-ribulose 5-phosphate 3-epimerase.
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Figure 2: Workflow from construct design to bioprocess optimization and strain
improvement for recombinant protein production in P. pastoris. A. After selection of the
different modules, the expression cassette can be constructed using GoldenPiCS. There is a
possibility to integrate the expression construct in the recombinant strain either with
selection marker by direct plasmid linearization and integration or marker-free by
CRISPR/Cas9-based homology directed recombination. B. An optimum strain background
depending on the recombinant protein can be selected. C. Well-established transformation
protocols are available for generating the recombinant strain. D. Different screening
strategies enable evaluation of a large number of clones resulting in faster clone selection.
Lab-on-Chip technology also allows bioprocess optimization at this stage. E. Final clones can
be cultivated in bioreactors for producing high titers of the recombinant protein. F. Data
obtained during bioreactor cultivations combined with systems biology tools can be used to

identify further cell engineering targets for strain improvement
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467  Figure 3: Metabolites overproduced in P. pastoris. Major pathways towards key metabolic
468  precursors or metabolic nodes (in brown) and products already made by P. pastoris (green)
469 are depicted in black. Heterologous pathways and metabolites are depicted in blue. Relevant
470  substrates that P. pastoris can naturally assimilate as carbon and/or energy source are
471  showninyellow.
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Box1: Recommendations for selection of a producer strain

Guidelines how to select strains for biochemical studies or protein production purposes.

1.

After transformation, plate aliquots on a suitable selection medium e.g. YPD containing
100 pg/mL Zeocin (in case your vector has the Zeo resistance cassette). As strains with
higher gene copy number are often correlated with higher product titers, you might
also plate aliquots at a higher Zeocin concentration e.g. 250 pg/mL, 500 ug/mL or 1000
ug/mL.

After restreaking, use 20-40 transformants (selected from all Zeocin concentrations)
for the initial screening. On average, 5-10% of the clones outperform the
others. There may be cases where it is necessary to screen more clones, e.g. when
searching for a high production clone of a very difficult to produce protein.

Initial screening can be performed in 24 deep well plates, 96 deep well plates or any
other suitable format depending on the volume needed for quantification and analysis.
Select the pH of the cultivation medium according to your protein of interest (avoid
being close to the isoelectric point or a pH where degradation might occur). In most
cases, the starting pH of the medium is between 5.0-7.0, and a suitable buffer (e.g.
phosphate buffer, MES (2-(N-morpholino)ethanesulfonic acid), citrate) is used to
stabilize the pH during cell growth.

Prepare cryo stocks of your strains (e.g. 1 mL of selective overnight culture + 10%
glycerol and freeze at -70°C) early during screening. For further experiments, the
preparation of working cell banks (WCBs) from this stock is recommended to avoid
repeated freeze/thaw cycles of the stock.

Rescreen the 3-5 best or most-interesting clones to evaluate their performance, and
select 1 or 2 for further experiments.

If optimization of screening conditions is required, we recommend to evaluate
different pH values (see above) and cultivation temperatures (e.g. 20-25°C compared
to 28-30°C).

For inducible expression, e.g. using the AOX1 promoter, a pre-culture should be
performed: overnight culture in selective YP-based medium to inoculate pre-culture on
glycerol at low ODeoo and grow for 20-24 h; inoculate main culture at higher OD (e.g.

ODsoo- 4 or 8) and induce with 0.5% methanol; add 1% methanol approx. every 12 h.
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As secreted protein titers are also correlated to the achieved biomass concentration,
screening conditions often aim at high biomass by using complex medium. However, in
some cases such conditions resulting in fast growth are leading to product degradation
due to cell lysis, or the strain performance cannot be upscaled to the bioreactor later.
In such cases, growing the cells below their maximum specific growth rates by
simulating fed-batch like conditions already in screening by using a carbon-release

system is recommended.
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