
This is the **accepted version** of the journal article:

De, Sonakshi; Mattanovich, Diethard; Ferrer, Pau; [et al.]. «Established tools and emerging trends for the production of recombinant proteins and metabolites in *Pichia pastoris*». *Essays in Biochemistry*, Vol. 65, Issue 2 (July 2021), p. 293-307. DOI 10.1042/EBC20200138

This version is available at <https://ddd.uab.cat/record/266632>

under the terms of the IN COPYRIGHT license

Established tools and emerging trends for the production of recombinant proteins and metabolites in *Pichia pastoris*

Sonakshi De^{1,2}, Diethard Mattanovich^{1,2}, Pau Ferrer³, Brigitte Gasser^{1,2,4,*}

¹ Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Austria

² Austrian Centre of Biotechnology (ACIB), Vienna, Austria

³ Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain

⁴ Christian Doppler Laboratory for growth-decoupled protein production in yeast, BOKU University of Natural Resources and Life Sciences Vienna, Austria

* Corresponding author:

Brigitte Gasser, Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna
Muthgasse 18, 1190 Vienna, Austria

brigitte.gasser@boku.ac.at

22 **Abstract**

23 Besides bakers' yeast, the methylotrophic yeast *Komagataella phaffii* (also known as *Pichia*
24 *pastoris*) has been developed into the most popular yeast cell factory for the production of
25 heterologous proteins. Strong promoters, stable genetic constructs and a growing collection
26 of freely available strains, tools and protocols have boosted this development equally as
27 thorough genetic and cell biological characterization. This review provides an overview of
28 state-of-the-art tools and techniques for working with *P. pastoris*, as well as guidelines for
29 the production of recombinant proteins with a focus on small scale production for
30 biochemical studies and protein characterization. The growing applications of *P. pastoris* for
31 *in vivo* biotransformation and metabolic pathway engineering for the production of bulk and
32 specialty chemicals are highlighted as well.

33

34 **Introduction**

35 Methylotrophic yeasts raised the interest of biotechnologists first for their ability to grow on
36 methanol as the only carbon and energy source, thus promising the production of cheap
37 protein rich biomass for animal and human nutrition (1). The oil crisis in the 1970s
38 interrupted these plans, however, triggered the development of these yeasts as platforms
39 for the production of heterologous proteins. Among them, *Komagataella phaffii* (formerly
40 known as *Pichia pastoris*) stands out by its wide application in research labs and industrial
41 production. More recently, *P. pastoris* was also employed for the production of metabolites
42 by metabolic engineering. A well-annotated genome sequence (2) as well as genome editing
43 tools and collections of synthetic biology parts and devices make *P. pastoris* a promising
44 chassis for synthetic biology applications (3).

45 The first yeast strain of what is known today as the *Komagataella* genus was isolated in 1920
46 by Alexandre Guillermond from a wounded horse chestnut tree and described as
47 *Zygosaccharomyces pastori* (4). Further strains were described as *Pichia pastoris* by Herman
48 Phaff, isolated mainly from oak and pine trees of Southwest United States (5). Based on
49 ribosomal gene sequences *P. pastoris* was further allocated to a new genus, *Komagataella*,
50 and split into two species. With new isolates found over the following years *Komagataella*
51 comprises seven species today (6). The strains used in biotechnology however are usually
52 still all referred to as *Pichia pastoris* which will be used as a synonym for *Komagataella spp.*
53 in the following as well.

54

55 **Methylotrophy**

56 Methylotrophy, i.e. the ability to use methanol and similar one-carbon molecules as carbon
57 and energy source, has developed several times among bacteria and yeasts. Methylotrophic
58 yeasts are phylogenetically related and comprise species of the genera *Komagataella*,
59 *Ogataea*, and some *Candida* sp. (7). They share the specific metabolism, first oxidizing
60 methanol by alcohol oxidases (AOX) to formaldehyde, which is further assimilated by
61 dihydroxyacetone synthase (DAS) via the xylulose monophosphate cycle (**Figure 1**). Due to
62 the low specific activity of these enzymes extraordinarily high expression levels are required,
63 so that the promoters regulating *AOX1* and the two *DAS* genes are stronger than any other
64 metabolic gene promoters of *K. phaffii*. The entire xylulose monophosphate cycle is localized
65 in peroxisomes which probably increases its efficiency by metabolic channeling and shielding

66 the cytosol from toxic intermediates like hydrogen peroxide (8, 9). In three interconnected
67 cyclic pathways 3 xylulose-5-phosphate molecules are regenerated while one
68 glyceraldehyde-3-phosphate is built as a precursor for biomass formation (**Figure 1**). This
69 pathway shares surprising similarity to the Calvin-Benson-Bessham cycle of CO₂ assimilation
70 (9). Besides this assimilatory pathway, energy is produced by oxidation of formaldehyde to
71 CO₂ via formate, yielding cytosolic NADH which is both used as reduction equivalent and
72 channeled into the respiratory chain to provide ATP.

73 Methylotrophy was first employed in biotechnology for the production of yeast biomass
74 from natural gas for food and feed applications (1), but soon also considered useful for
75 recombinant protein production because of the strong and regulated promoters, mainly the
76 *AOX1* promoter of *P. pastoris* (10). In a standard setup, methanol is used both as the carbon
77 and energy source and as the inducer of heterologous gene expression. To this end, three
78 different methanol utilization (Mut) phenotypes are employed based on the presence or
79 deletion of the two alcohol oxidase genes. The wild type with both *AOX1* and *AOX2* active is
80 called Mut⁺, while deletion of the main form, *AOX1*, leads to the Mut^S (methanol utilization
81 slow) phenotype, and strains deleted in both *AOX* genes are called Mut⁻. Mut^S strains are
82 often employed in protein production while Mut⁻ strains are considered less suitable based
83 on the assumption that they lack any energy supply from methanol, and also do not provide
84 for formaldehyde and formate which are considered to play a major role in the induction of
85 methanol utilization genes (11). Zavec et al. (12) showed however that also Mut⁻ strains
86 consume methanol and can serve as a platform for the production of proteins. The same
87 authors demonstrated recently that native alcohol dehydrogenase (Adh2) of *P. pastoris* is
88 responsible for methanol oxidation in Mut⁻ strains (13).

89

90 **Tools & Techniques**

91 From strain construction until bioprocess optimization for recombinant production in any
92 expression system, several product-specific aspects need to be considered. This is where the
93 well-established and constantly expanding set of tools and techniques available for strain
94 and bioprocess engineering (**Figure 2**) contributes in making *P. pastoris* a highly efficient
95 expression system (14, 15).

96

97

98 **Design of the expression construct**

99 *P. pastoris* offers a range of well-characterized constitutive and inducible promoters to
100 choose from. The constitutive promoter P_{GAP} has frequently been used in large scale
101 production of recombinant proteins in *P. pastoris* (16). Other strong constitutive promoters
102 include P_{TEF1} and P_{GCW14} (17). However, constitutive promoters are not ideal for recombinant
103 proteins that are toxic to the cells. In terms of inducible promoters, most commonly the
104 methylotrophic feature of *P. pastoris* is harnessed by driving the expression of recombinant
105 genes under the influence of the methanol-inducible promoter of the alcohol oxidase I
106 ($AOX1$) gene (18). Other strong methanol-based promoters include P_{FLD1} (also induced by
107 methylamine), P_{DAS} and P_{CAT1} (also induced by glycerol and de-repressed under carbon
108 source limitation) (17). While methanol-based promoters provide strong induction, their
109 disadvantage in terms of toxicity of methanol has led to extensive research for the discovery
110 of alternative, methanol-independent expression systems. On one hand, cell engineering has
111 been successfully applied to develop methanol-independent P_{AOX1} and P_{DAS1} host systems
112 (19, 20). Hartner *et al.* created a library of several P_{AOX1} variants, by which they not only
113 identified variants with activities higher than the native promoter upon methanol induction,
114 but also identified some variants which demonstrated strong methanol-independent activity
115 in de-repressing conditions (21). On the other hand, several methanol-independent
116 promoters were identified, including P_{GTH1} (induced in glucose-limited conditions), P_{THI11}
117 (thiamine repressed) and P_{ADH3} (ethanol-induced) (22-24). Orthologous promoters have also
118 been successfully used, for example, the promoter of the methanol oxidase gene from
119 *Hansenula polymorpha* (P_{Mox}) (25, 26). Promoter engineering has been applied to some of
120 these native promoters as effective tool for engineering existing promoters for better
121 performance (27-30). Additionally, bidirectional promoters have been engineered which can
122 offer an advantage when co-expression of multiple genes is necessary (31).

123

124 Secretion of the recombinant product can simplify the downstream purification steps and
125 therefore is often desirable. Signal peptides play a very important role in efficiently driving
126 the secretion of the recombinant protein. While the secretion signal of the *Saccharomyces*
127 *cerevisiae* α -factor mating pheromone is most commonly used to drive the secretion of
128 recombinant proteins in *P. pastoris*, there have been instances where the native signal
129 peptide of the protein or other endogenous signal peptides were shown to have similar or

130 even higher efficiencies (32, 33). Additionally, higher yields of recombinant proteins have
131 been demonstrated using modified versions of the *S. cerevisiae* α -mating factor secretion
132 signal (34). However, selection of signal peptide can be protein-dependent and therefore,
133 testing multiple signal peptides can lead to higher yields (35).

134 In addition to transcriptional termination, terminator regions can also influence the level of
135 expression. The toolbox of terminators in *P. pastoris* was quite small, consisting of only 20
136 terminators with not much variation in expression between them (36). Only recently, a
137 catalog of 72 endogenous, heterogeneous and synthetic terminators was developed and
138 characterized, within which a tunability of 17-fold was observed (37).

139

140 **Selection of vector and background strain**

141 While there have been some studies towards the generation of circular plasmids with
142 autonomously replicating sequences (ARS) for stable recombinant expression in *P. pastoris*,
143 genomic integration vector systems are most commonly used (38, 39). A selection of vector
144 systems is commercially available with a choice of antibiotic or auxotrophic selection
145 markers (40, 41). Additionally, there are vectors based on the GoldenPiCS modular cloning
146 system which enable single reaction assembly of selected promoters, terminators, resistance
147 cassettes and genomic integration loci (36). For selection of a background strain, one gets to
148 choose from various wild-type and auxotrophic strains, strains with different methanol-
149 utilization phenotypes (Mut⁺, Mut^S & Mut^C), protease-deficient strains and glycol-engineered
150 strains (42).

151

152 **Molecular biology methods**

153 Several well-established molecular biology techniques in *P. pastoris* aid in speeding up the
154 strain generation process (**Figure 2**). The modular cloning toolbox of GoldenPiCS, mentioned
155 earlier, allows one-step assembly of multiple expression cassettes into a single vector, which
156 can then be linearized and integrated into the genome of the host strain. This method
157 requires the use of selection markers, which can be exploited to increase the copy number
158 of the recombinant gene construct by increasing the selection pressure. This can be an
159 advantage since increased gene dosage is often associated with increase in protein titers (15,
160 43, 44). In case of antibiotic resistance markers, there is a possibility for removal of the
161 resistance gene post selection of positive clones by transient expression of Cre recombinase,

162 however, this is not applicable if multicopy strains are intended (45). Recent development
163 and fine-tuning of the CRISPR/Cas9 technology in *P. pastoris* allows for marker free
164 integration of expression cassettes (46-48). While the technology still has its limitations, a
165 large amount of research has been directed in improving the technology leading to higher
166 efficiencies, possibility of multiple genomic integrations as well as application of deactivated
167 Cas9 (dCas9) for targeted gene interference (49).

168

169 **Strain selection & bioprocess optimization**

170 The final steps in strain development comprise evaluation of generated strains for final clone
171 selection and bioprocess optimization (**Figure 2**). Strain evaluation, often also referred to as
172 “screening”, is usually done in shake-flasks or in high-throughput microtiter plate cultivation.
173 Guidelines for such screenings are given in **Box 1**. To find suitable production clones,
174 screening of at least 20-40 clones is recommended. Depending on the protein of interest and
175 the desired product titer screening of several hundred clones may be required, which makes
176 high-throughput screening methods desirable. While on one hand it is possible to mimic
177 batch or fed-batch fermentation conditions and select optimum clones, bioprocess
178 optimization is usually not possible in shake-flasks/microtiter plates. In that respect
179 mini/microscale cultivations or microfluidics and Lab-on-Chip based technologies provide
180 alternative screening platforms that also integrate bioprocess optimization, making scale-up
181 more convenient (50-53).

182

183 **Strain engineering to improve protein production**

184 Several studies report strategies on how to enhance recombinant protein production and
185 secretion in *P. pastoris* (summarized in 54, 55). Such cell engineering approaches are mostly
186 not applied for initial characterization, unless a specific bottleneck is observed. Examples are
187 mainly the avoidance of proteolytic degradation through use of strains deficient in the major
188 cellular proteases such as *pep4* deficient strains or the co-expression of certain chaperones,
189 especially protein disulfide isomerase (55, 56). Some proteins such as cytochrome P450s or
190 heme-containing proteins require co-factors that either need to be added externally or
191 produced by the cells (57).

192

193

194 **Systems biology**

195 While a lot of advances has been made regarding the tools and techniques for strain
196 engineering in *P. pastoris*, development of systems biology tools is steadily gaining
197 importance. For example, genomic and proteomic studies have been applied to some
198 recombinant strains under conditions of recombinant protein production (54). Metabolic
199 flux analysis (MFA) has been carried out to understand the metabolic impact of recombinant
200 protein production in *P. pastoris* (58). Extensive MFA studies have been performed to
201 compare metabolite concentrations under different cultivation conditions (9, 59, 60).

202

203 Genome scale metabolic models (GEMs) have the potential to identify engineering targets to
204 alleviate metabolic burdens as well as to develop efficient bioprocess strategies. Several
205 GEMs have been available for *P. pastoris* since 2010 (61-65). Additionally, efforts have been
206 directed towards refining or upgrading existing GEMs, for e.g. by incorporating native and
207 humanized N-glycosylation pathways for production of glycoproteins (66), improving
208 biomass synthesis equations allowing improved prediction capabilities over a wide range of
209 substrates (67) or including additional reaction pathways (68). Thus, systems-level studies
210 are now being incorporated into the strain engineering and improvement workflow.

211

212 ***Pichia pastoris* as a host for recombinant protein production**

213

214 ***P. pastoris* produced recombinant proteins for biomedical and industrial applications**

215 Since the late 1990s *P. pastoris* has been used to produce proteins for biopharmaceutical,
216 industrial and diagnostic applications. Commercialized products include insulin, growth
217 factors, interferon, and subunit vaccines such as hepatitis B surface antigen, and several
218 others including peptides and antibody fragments (especially single chain antibody
219 fragments and nanobodies) are in the clinical pipeline (56, 69, 70). Furthermore, industrial
220 enzymes such as phospholipase C and phytase are produced using *P. pastoris* as host (71,
221 72). *P. pastoris* is also described to be a preferred expression system to prepare several
222 other recombinant subunit antigens against human and animal pathogens (70, 73), e.g.
223 brucellosis subunit vaccine (74), Zika virus envelope domain III (75), influenza hemagglutinin
224 and neuraminidase (69), and lately also Sars-CoV-2 spike antigen (76).

225 Very recently, *P. pastoris* has entered into another emerging market, as soy leghemoglobin
226 produced in *P. pastoris* was approved as a flavor component of cultured meat by the FDA
227 (77, 78).

228 While virus antigens are often produced as intracellular virus like particles (VLPs) (73) or self-
229 assembling nanoparticles (69), most proteins produced in *P. pastoris* are secreted (56, 70).
230 This allows for a reduced number of downstream processing steps during purification
231 compared to intracellular production (56). As several proteins secreted by *P. pastoris* have
232 received a GRAS notice by the FDA (77), it is even possible to directly use the culture
233 supernatant containing the secreted protein of interest in some cases such as in animal feed
234 applications (79).

235

236 **Production of recombinant proteins for structural and biophysical analysis**

237 Apart from being an important host for commercial protein production purposes, a high
238 number of published studies deal with using *P. pastoris* to provide a wide variety of
239 heterologous proteins and mutants thereof for biochemical characterization such as enzyme
240 activity or for structural and biophysical studies. Often these studies are the first steps for
241 later utilization of enzymes. For example, *P. pastoris* was used to determine 1.7-Å resolution
242 crystal structures and to identify the substrate specificities and the catalytically active sites
243 of several *Aspergillus* rutinosidases, which are potential catalysts for flavonoid compounds
244 with nutritional value (80, 81). Substrate specificity and crystal structures of several plant
245 and fungal carbohydrate active enzymes have been elucidated by expressing them in *P.*
246 *pastoris*. Heterologous expression of plant glycosyltransferases did not only result in the
247 production of mannan and glucomannan in *P. pastoris*, but additionally provided important
248 insights into the yet unresolved biosynthesis of these polysaccharides in plants (82, 83). Site-
249 directed mutagenesis was also carried out for proteins of biomedical interest, e.g. to study
250 immunogenic residues of the buckwheat allergen (84), to increase efficacy and stability of
251 ocriplasmin (85) or to strengthen the affinity of a scFv to its target and should be even more
252 facilitated by the high-throughput cloning tools available for *P. pastoris* now (see section
253 Tools & Techniques).

254

255 Membrane proteins (MP) are a particularly challenging class of proteins that have been
256 produced with a quite high rate of success in *P. pastoris* (86, 87). Several efforts have been

undertaken to improve the expression levels and purification of MPs. Common cell engineering strategies and tools for MP production in yeast were summarized by Byrne, 2015 and Routledge *et al.* 2016 (86, 88). Recently, a novel procedure was devised in which misfolding and aggregation of integral MPs is avoided by directly solubilizing them from protoplasts instead of crude membrane preparations (89). Nanodisc reconstitution was successfully applied to generate sufficient amounts of purified channelrhodopsins for biophysical characterization (90). The human tetraspanin CD81 expressed in *P. pastoris* could be efficiently solubilized and purified within a lipid environment by using styrene-maleic anhydride co-polymers, providing a platform to study the influence of protein-lipid interactions of tetraspanins (91).

Crystal structures and biophysical characterization of human amino acid transporters, aquaporins and several human G protein coupled receptors (GPCRs) expressed in *P. pastoris* contributed significantly to our understanding of their substrate transport dynamics (87, 92-94). The recent elucidation of the mating pathway in *P. pastoris* together with its high expression capacity of GPCRs, so far mainly exploited for structural studies, paves the way to perform *in vivo* GPCR signaling studies as described for *S. cerevisiae* (95, 96).

273

P. pastoris has been used since the 1990s to produce isotope-labeled proteins for NMR-based structural analysis, and it is the preferred yeast host for this powerful structural biology technique (87, 94). NMR spectroscopy is well suited to study protein-ligand interactions and dynamics and to guide ligand design, however, for such purposes incorporation of sophisticated isotopic labels is often required. Zhang, 2020 provided a collection of suitable labeling protocols and summarized the most recent advances made in *P. pastoris* (94). Labeling strategies include global or selective ¹³C ¹⁵N-labeling, ¹⁹F-labeling, deuterium labeling for improved resolution of spectra, and methyl-labeling of valine, leucine or isoleucine for even more improved sensitivity of spectra of high-molecular-weight proteins or complexes. Site-specific methyl-labeling in a deuterated background permitted sensitive methyl-TROSY experiments in *P. pastoris* that were successfully conducted to elucidate structure-function relationships of several human GPCRs of biomedical relevance (87). On the other hand, selenomethionine labeling might be applied to improve X-ray crystallography (97). For all of the latter approaches, uptake of labeled amino acid(s) might be limiting, thus cell engineering provides a promising strategy for improving labeling

289 efficiencies (94, 98). Cell-free expression systems recently established also for *P. pastoris* are
290 another alternative especially for the incorporation of otherwise cytotoxic selenomethionine
291 (99).

292

293 **Design of culture conditions for small scale protein production**

294 While projects aiming at producing a certain protein or compound usually required large
295 scale cultivation in bioreactors, studies aiming at protein characterization are often (at least
296 initially) performed in small scale such as shake flasks or deep well plates (100). Guidelines
297 for selecting suitable producer clones are given in **Box 1**.

298 Often, substantial efforts are invested to improve the cultivation conditions for a certain
299 protein of interest. Based on our experience we suggest investigating the impact of pH,
300 which should not be too close to the isoelectric point of the protein to avoid precipitation,
301 and may as well impact product quality and stability through proteolysis. Many researchers
302 investigate methanol concentration, with the outcome that in most cases addition of 0.5-1%
303 methanol twice a day works best. Usually higher cell density and higher product titers are
304 obtained in complex medium containing yeast extract and peptone or casamino acids,
305 however, proteolytic activity (probably due to cell lysis) might be observed. For secretory
306 proteins, growth-limiting carbon supply (e.g. by enzyme-mediated glucose release simulating
307 a fed batch regime) leads to good product titers and high product quality in our experience
308 (49, 101), and works comparably well for both complex and synthetic media. This cultivation
309 strategy is also well suited for the above described amino acid labeling strategies where the
310 use of minimal medium, with or without deuteration, is required, and helps to overcome the
311 previously reported limit of low protein amounts.

312

313 **Metabolite production by whole-cell biotransformation and fermentation
314 bioprocesses**

315

316 Although *P. pastoris* has been developed primarily as a cell factory for recombinant protein
317 production, its potential for metabolite production purposes has received increasing
318 attention over the past 15 years, likely boosted by the increasing physiological knowledge
319 base and synthetic biology tools availability (see excellent reviews by (102-104)). The use of
320 *P. pastoris* has been demonstrated for the production of diverse chemical compounds,

321 particularly for complex metabolites such as plant secondary metabolites (polyketides,
322 terpenoids, isoflavonoids) and other drug metabolites (e.g. steroids, sphingolipids) as well
323 as, to a much lesser extent, for bulk chemicals such as organic acids, biofuels or biopolymers
324 (**Figure 3**). Nonetheless, most of these examples are proof-of-principle studies reporting
325 titers, yields and productivities far from industrially attractive metrics.

326 Two major metabolite production approaches have been explored, namely
327 biotransformation (biocatalysis) and fermentation bioprocesses. Whereas in fermentations
328 the products are synthesized from carbon/nitrogen substrates via the host cells' native or
329 engineered metabolism, in biotransformations, cell growth and product synthesis phase are
330 separated, i.e. biotransformations are typically performed by resting cells, which convert
331 substrates/precursors to the desired products. Generally, biotransformations are catalyzed
332 by intracellular enzymes, although cell surface display of enzymes for biotransformation
333 purposes has also been demonstrated.

334 *P. pastoris* presents several *a priori* physiological advantages and specific metabolic traits
335 that make this yeast particularly interesting for whole-cell biocatalytic systems. i) As
336 Crabtree negative yeast, high cell densities, that is, high amounts of biocatalyst, can be easily
337 obtained from bioreactor cultures using cheap substrates; also, *P. pastoris* shows higher
338 resistance to harsh process conditions such as low pH compared to other cell factories such
339 as *Escherichia coli*. ii) The native alcohol oxidase (Aox), a peroxisomal enzyme with relative
340 low substrate specificity, can catalyze the oxidation of many short-chain alcohols to the
341 respective aldehydes using oxygen as electron acceptor, generating hydrogen peroxide as a
342 toxic by-product. Notably, *P. pastoris* also synthesizes large amounts of catalase in the
343 peroxisomes together with Aox during methylotrophic growth, thereby providing an
344 interesting system for oxidase-catalase-based reactions (104). This concept can be further
345 expanded by, e.g. targeting heterologous oxidases such as D-amino acid oxidases (DAO) to
346 the peroxisome, providing a system for α -keto acids production from α -amino acid
347 substrates and resolution of racemic mixtures of amino acids (105). iii) The native methanol
348 dissimilation pathway, which oxidizes formaldehyde stepwise to formate and CO₂ by two
349 NAD⁺-dependent dehydrogenases has been exploited as a natural NADH regeneration
350 system for reduction reactions. Moreover, such endogenous system has been specifically
351 optimized for whole-cell biotransformation purposes by overexpressing the formaldehyde
352 dehydrogenase encoding gene (FLD) and disrupting the DAS genes, key genes in the

353 competing methanol assimilatory pathway (106, 107). Also, NADPH regeneration engineered
354 systems or process strategies have been proposed (104). For instance, Tang and co-workers
355 (108) have used glucose as a co-substrate for NADPH synthesis to improve NADPH-
356 dependent synthesis of the steroid boldenone, an androgenic-anabolic steroid and a
357 testosterone derivative. iv) *P. pastoris* has shown a high aptitude for expression of
358 membrane bound proteins like cytochrome P450 monooxygenases (CYP) and reductases
359 (CPR). v) Under methanol-growing conditions, peroxisomes largely proliferate which offers
360 the possibility to compartmentalize synthetic metabolic pathways in this organelle as a
361 metabolic engineering strategy (103).

362 *P. pastoris* has also been used in whole-cell biotransformations requiring ATP such as the
363 synthesis of dipeptides and tripeptides, as well as in other reactions not dependent of
364 cofactors, e.g. hydrolysis, carbon-carbon bond formation reactions, and further synthesis
365 reactions. Some recent exemplary studies include the production of the dipeptides (109),
366 synthesis of phospholipids (110), and the use of transketolase-overproducing strains to
367 catalyze asymmetric carbon-carbon bond formation reactions, e.g. the production of L-
368 erythrulose from prochiral substrates (111) or, strains combining the overexpression of
369 transketolase and ω -transaminases encoding genes for chiral amino-alcohols synthesis (112,
370 113).

371
372 Despite the fact *P. pastoris* presents several features such as an industrially well-established
373 fermentation technology and the ability to grow on renewable feed stocks like glycerol and
374 methanol that are more reduced than glucose, it remains largely unexploited as a cell factory
375 for bulk/platform chemicals and biofuels production (102, 103). For instance, conversion of
376 glycerol into L-lactic acid has been demonstrated by the expression of a lactate
377 dehydrogenase gene from *Bos taurus* (114). Additional metabolic engineering of this strain
378 investigated the impact of deletion of the pyruvate decarboxylase gene, aiming at reducing
379 acetic acid formation and consequently obtaining higher lactic acid titers. This resulted in a
380 yield of 67% L-lactic acid and 20% arabitol as a by-product in glycerol batches with oxygen
381 limitation (115). Further disruption of the arabitol dehydrogenase encoding gene has been
382 recently reported by the same group (116), obtaining an increase of 20% in lactic acid and a
383 50% reduction in arabitol yields in chemostat cultures. Also recently, the production of D-
384 lactic acid from methanol using an engineered *P. pastoris* strain expressing multiple copies of

385 the D-lactate dehydrogenase gene from *Leuconostoc mesenteroides* has been reported
386 (117). Similarly, production of an increasing number of platform chemicals has also been
387 demonstrated, typically at shake flask or small bioreactor scale, including isobutanol and
388 isobutyl acetate (118), isopentanol (3-Methyl-1-butanol) (119), and 2,3-butanediol (120).
389 Moreover, the potential of *P. pastoris* to produce malic acid from methanol has been lately
390 explored through different metabolic engineering strategies, obtaining up to about 2.8 g/L of
391 malic acid in shake flask cultures (121).

392

393 So far, these novel developments to metabolically engineer *P. pastoris* for metabolite
394 production have generally relied on classical genetic tools (promoters, markers etc.) and
395 conventional strains that were originally optimized for recombinant protein production.
396 Despite enormous advances in systems and synthetic biology tools in recent years,
397 significant challenges in genome engineering remain compared to *Saccharomyces cerevisiae*,
398 e.g. generally lower efficiency of currently available CRISPR and homologous recombination
399 based methods (122). The incorporation of new-generation synthetic biology tools should
400 speed up development of metabolite production strains beyond mere demonstration/proof-
401 of-concept. To this end, the design of robust chassis strains supporting efficient conversion
402 of alternative carbon substrates/energy sources, for e.g., CO₂ (123), acetate (124) or
403 cellulose/cellobiose (125) to key metabolic precursors e.g. acetyl-CoA, farnesyl
404 pyrophosphate, malonyl-CoA (**Figure 3**) will be key in the forthcoming years.

405

406 **Summary points**

- 407 • Methylotrophy and the strong methanol regulated promoters were the key drivers to
408 develop *P. pastoris* to a protein production host.
- 409 • Early free access to strains and vectors has promoted research on *P. pastoris*
410 enormously.
- 411 • The development of tools and parts for *P. pastoris* make it an important synthetic
412 biology chassis.
- 413 • A wide range of available molecular and synthetic biology toolkits contributes in
414 developing a simple workflow from strain design to bioprocess optimization.
- 415 • The efficient native one-carbon metabolism offers promising perspectives for a
416 single-carbon (methanol, formate, CO₂) based bioeconomy.

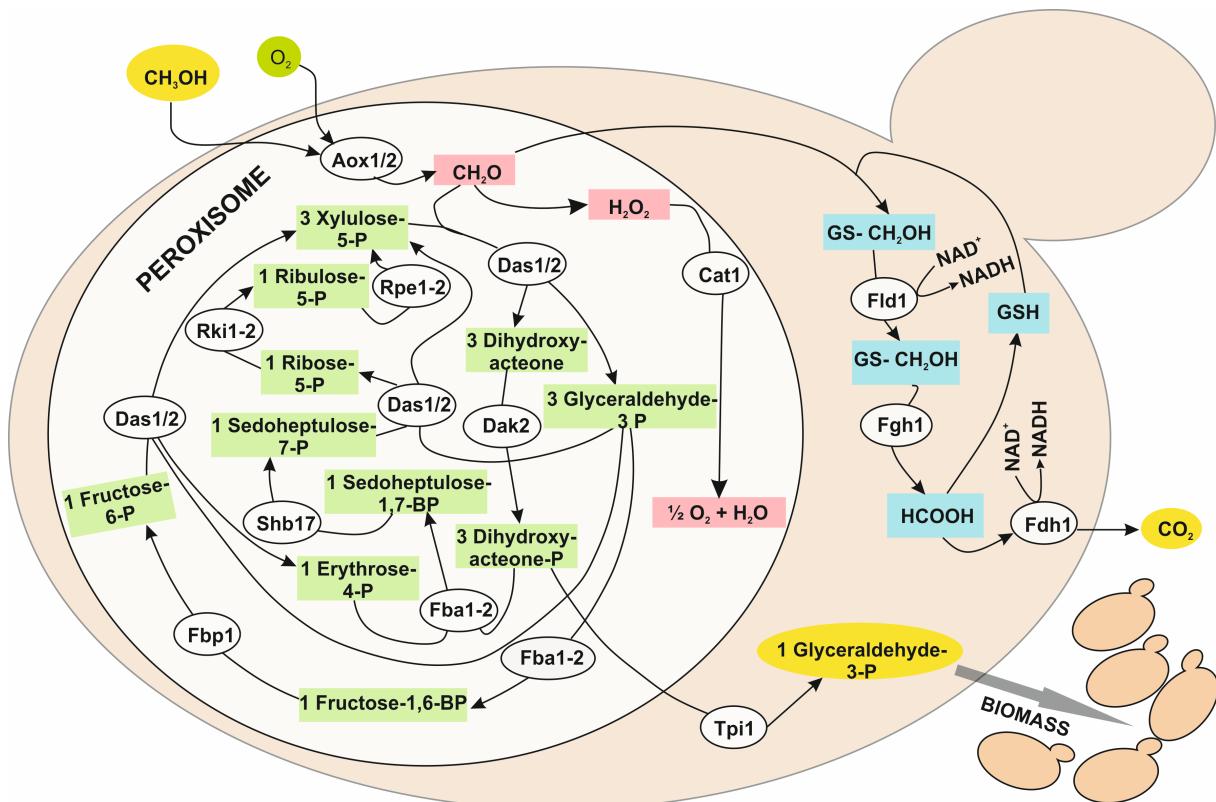
417

418 **Author contributions:** All authors contributed to the manuscript and figure drafts, SD
419 prepared the final figures. All authors have read and agreed to the final version of the
420 manuscript.

421 **Declaration of Interests:** The authors declare no competing interests.

422 **Funding:** BG, SD and DM acknowledge funding by the Austrian BMDW and Nationalstiftung
423 FTE through the Christian Doppler Research Association, by BMK, BMDW, SFG,
424 Standortagentur Tirol, Government of Lower Austria und Vienna Business Agency through
425 the FFG – COMET Funding Program, and by the Austrian Science Fund FWF (BioToP, grant
426 W1224). PF acknowledges support from the Spanish Ministry of Science and Innovation:
427 Project PID2019-104666GB-I00, and from the Agency for Management of University and
428 Research Grants (AGAUR) of the Catalan Government: Grant 2017-SGR-1462 - Program to
429 support activities of research groups.

430

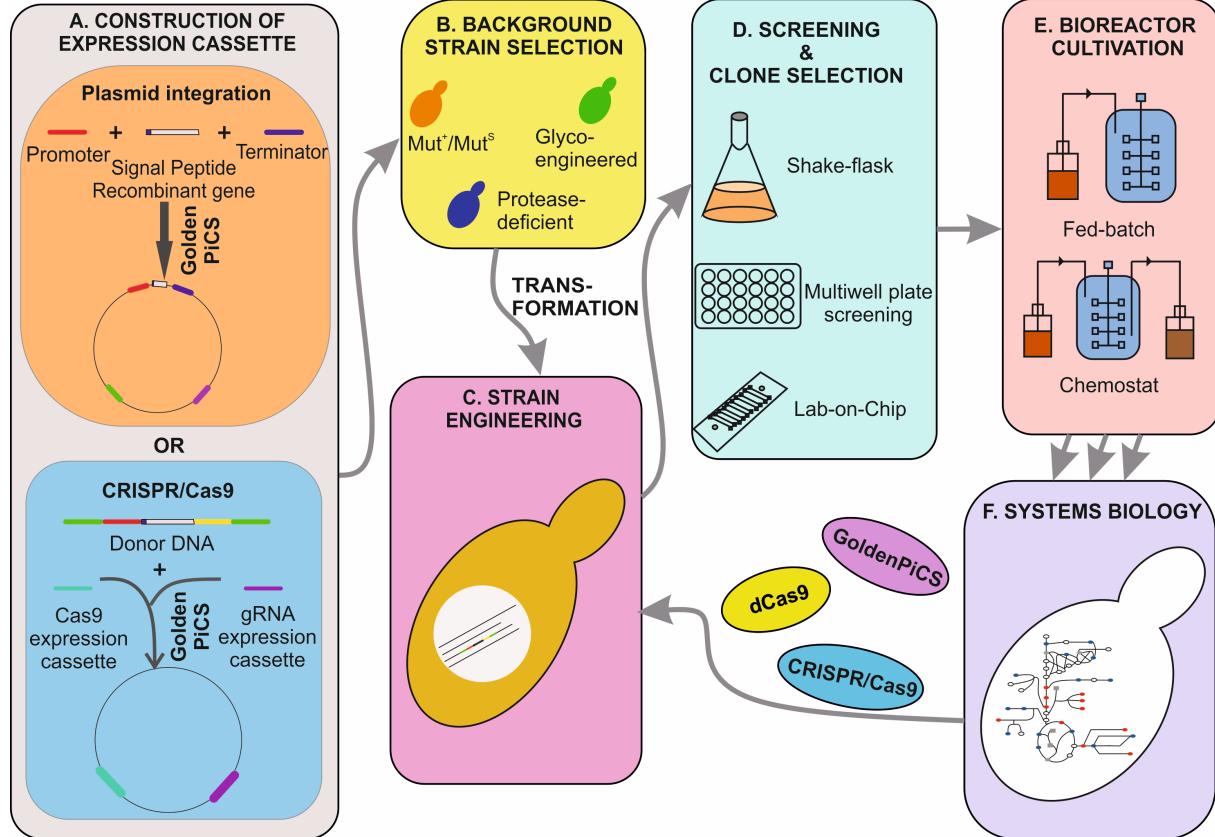

431

432 **Figure Legends**

433 **Figure 1: Metabolic pathways of methanol utilization in *P. pastoris*.** After oxidation of
 434 methanol to formaldehyde assimilation is achieved in the xylulose-5-phosphate cycle,
 435 indicated in green. A byproduct of methanol oxidation is hydrogen peroxide, which is further
 436 detoxified by catalase. These reactions, as well as the Xu5P cycle, are localized in
 437 peroxisomes. Formaldehyde is also dissimilated to CO₂ in three cytosolic reactions, indicated
 438 in blue. The produced NADH serves as reduction equivalents and for ATP production.
 439 Assimilation of three formaldehyde molecules leads to the release of one molecule of
 440 glyceraldehyde-3-phosphate from peroxisomes which serves for biomass growth.

441 GSH: reduced glutathione; GS-CH₂OH: S-(hydroxymethyl)glutathione; GS-CHO: S-
 442 formylglutathione; Cat1: catalase; Fld1: formaldehyde dehydrogenase; Fgh1: S-
 443 formylglutathione hydrolase; Fdh1: formate dehydrogenase; Aox1/2: alcohol oxidase 1 and
 444 2; Das1/2: dihydroxyacetone synthase 1 and 2; Dak2: dihydroxyacetone kinase; Tpi1:
 445 triosephosphate isomerase; Fba1-2: fructose 1,6-bisphosphate aldolase; Fbp1: fructose 1,6-
 446 bisphosphatase; Shb17: sedoheptulose 1,7-bisphosphatase; Rki1-2: Ribose 5-phosphate
 447 ketol-isomerase; Rpe1-2: D-ribulose 5-phosphate 3-epimerase.

448

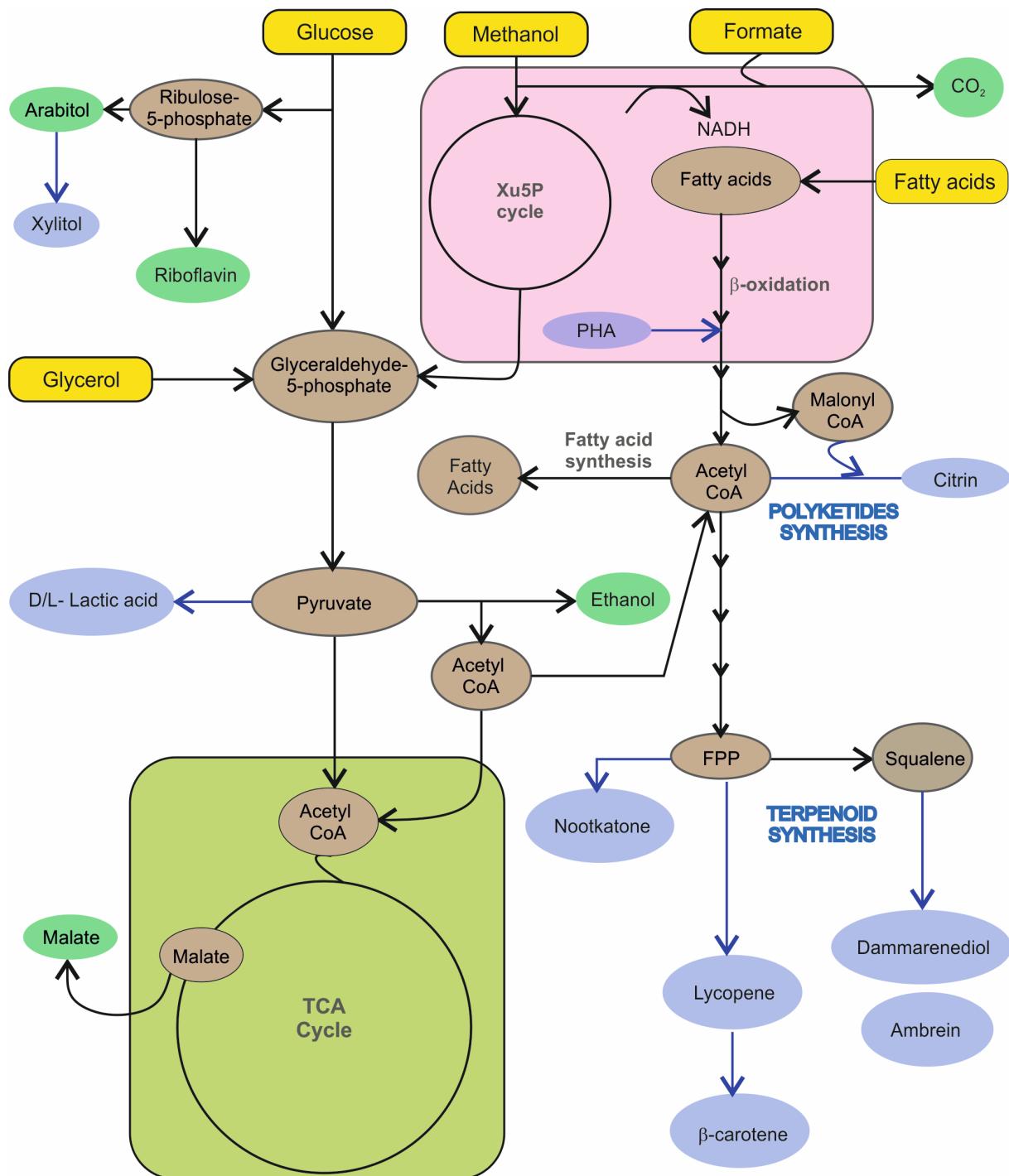


449

450

451 **Figure 2: Workflow from construct design to bioprocess optimization and strain**
 452 **improvement for recombinant protein production in *P. pastoris*.** A. After selection of the
 453 different modules, the expression cassette can be constructed using GoldenPiCS. There is a
 454 possibility to integrate the expression construct in the recombinant strain either with
 455 selection marker by direct plasmid linearization and integration or marker-free by
 456 CRISPR/Cas9-based homology directed recombination. B. An optimum strain background
 457 depending on the recombinant protein can be selected. C. Well-established transformation
 458 protocols are available for generating the recombinant strain. D. Different screening
 459 strategies enable evaluation of a large number of clones resulting in faster clone selection.
 460 Lab-on-Chip technology also allows bioprocess optimization at this stage. E. Final clones can
 461 be cultivated in bioreactors for producing high titers of the recombinant protein. F. Data
 462 obtained during bioreactor cultivations combined with systems biology tools can be used to
 463 identify further cell engineering targets for strain improvement

464



465

466

467 **Figure 3: Metabolites overproduced in *P. pastoris*.** Major pathways towards key metabolic
 468 precursors or metabolic nodes (in brown) and products already made by *P. pastoris* (green)
 469 are depicted in black. Heterologous pathways and metabolites are depicted in blue. Relevant
 470 substrates that *P. pastoris* can naturally assimilate as carbon and/or energy source are
 471 shown in yellow.

472

473

474

475 **Box1: Recommendations for selection of a producer strain**

476 Guidelines how to select strains for biochemical studies or protein production purposes.

477 1. After transformation, plate aliquots on a suitable selection medium e.g. YPD containing
478 100 µg/mL Zeocin (in case your vector has the Zeo resistance cassette). As strains with
479 higher gene copy number are often correlated with higher product titers, you might
480 also plate aliquots at a higher Zeocin concentration e.g. 250 µg/mL, 500 µg/mL or 1000
481 µg/mL.

482 2. After restreaking, use 20-40 transformants (selected from all Zeocin concentrations)
483 for the initial screening. On average, 5-10% of the clones outperform the
484 others. There may be cases where it is necessary to screen more clones, e.g. when
485 searching for a high production clone of a very difficult to produce protein.

486 3. Initial screening can be performed in 24 deep well plates, 96 deep well plates or any
487 other suitable format depending on the volume needed for quantification and analysis.

488 4. Select the pH of the cultivation medium according to your protein of interest (avoid
489 being close to the isoelectric point or a pH where degradation might occur). In most
490 cases, the starting pH of the medium is between 5.0-7.0, and a suitable buffer (e.g.
491 phosphate buffer, MES (2-(N-morpholino)ethanesulfonic acid), citrate) is used to
492 stabilize the pH during cell growth.

493 5. Prepare cryo stocks of your strains (e.g. 1 mL of selective overnight culture + 10%
494 glycerol and freeze at -70°C) early during screening. For further experiments, the
495 preparation of working cell banks (WCBs) from this stock is recommended to avoid
496 repeated freeze/thaw cycles of the stock.

497 6. Rescreen the 3-5 best or most-interesting clones to evaluate their performance, and
498 select 1 or 2 for further experiments.

499 7. If optimization of screening conditions is required, we recommend to evaluate
500 different pH values (see above) and cultivation temperatures (e.g. 20-25°C compared
501 to 28-30°C).

502 8. For inducible expression, e.g. using the *AOX1* promoter, a pre-culture should be
503 performed: overnight culture in selective YP-based medium to inoculate pre-culture on
504 glycerol at low OD₆₀₀ and grow for 20-24 h; inoculate main culture at higher OD (e.g.
505 OD₆₀₀ = 4 or 8) and induce with 0.5% methanol; add 1% methanol approx. every 12 h.

506 9. As secreted protein titers are also correlated to the achieved biomass concentration,
507 screening conditions often aim at high biomass by using complex medium. However, in
508 some cases such conditions resulting in fast growth are leading to product degradation
509 due to cell lysis, or the strain performance cannot be upscaled to the bioreactor later.
510 In such cases, growing the cells below their maximum specific growth rates by
511 simulating fed-batch like conditions already in screening by using a carbon-release
512 system is recommended.

513

514

515 **References**

516 1. Cooney CL, Levine DW. Microbial utilization of methanol. *Adv Appl Microbiol.* 1972;15:337-65.

517 2. Valli M, Tatty NE, Peymann A, Gruber C, Landes N, Ekker H, Thallinger GG, Mattanovich D, Gasser
518 B, Graf AB. Curation of the genome annotation of *Pichia pastoris* (*Komagataella phaffii*) CBS7435
519 from gene level to protein function. *FEMS Yeast Res.* 2016;16(6).

520 3. Gasser B, Mattanovich D. A yeast for all seasons - Is *Pichia pastoris* a suitable chassis organism for
521 future bioproduction? *FEMS Microbiol Lett.* 2018;365(17).

522 4. Guilliermond A. *Zygosaccharomyces pastori*, nouvelle espèce de levures copulation
523 hétérogamique. *Bull Soc Mycol Franc.* 1920;36:203-11.

524 5. Phaff HJ, Miller MW, Shifrine M. The taxonomy of yeasts isolated from *Drosophila* in the Yosemite
525 region of California. *Antonie Van Leeuwenhoek.* 1956;22(2):145-61.

526 6. Naumov GI, Naumova ES, Boundy-Mills KL. Description of *Komagataella mondaviorum* sp. nov., a
527 new sibling species of *Komagataella* (*Pichia*) *pastoris*. *Antonie Van Leeuwenhoek.*
528 2018;111(7):1197-207.

529 7. Shen XX, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh KV, Haase MAB, Wisecaver JH, Wang
530 M, Doering DT, Boudouris JT, Schneider RM, Langdon QK, Ohkuma M, Endoh R, Takashima M,
531 Manabe RI, Čadež N, Libkind D, Rosa CA, DeVirgilio J, Hulfachor AB, Groenewald M, Kurtzman CP,
532 Hittinger CT, Rokas A. Tempo and mode of genome evolution in the budding yeast subphylum.
533 *Cell.* 2018;175(6):1533-45.e20.

534 8. van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M. The significance of peroxisomes in methanol
535 metabolism in methylotrophic yeast. *Biochim Biophys Acta.* 2006;1763(12):1453-62.

536 9. Rußmayer H, Buchetics M, Gruber C, Valli M, Grillitsch K, Modarres G, Guerrasio R, Klavins K,
537 Neubauer S, Drexler H, Steiger M, Troyer C, Al Chalabi A, Krebiehl G, Sonntag D, Zellnig G, Daum
538 G, Graf AB, Altmann F, Koellensperger G, Hann S, Sauer M, Mattanovich D, Gasser B. Systems-
539 level organization of yeast methylotrophic lifestyle. *BMC Biol.* 2015;13:80.

540 10. Ellis SB, Brust PF, Koutz PJ, Waters AF, Harpold MM, Gingeras TR. Isolation of alcohol oxidase and
541 two other methanol regulatable genes from the yeast *Pichia pastoris*. *Mol Cell Biol.*
542 1985;5(5):1111-21.

543 11. Singh A, Narang A. The Mut⁺ strain of *Komagataella phaffii* (*Pichia pastoris*) expresses P_{AOX1} 5 and
544 10 times faster than Mut^S and Mut^C strains: evidence that formaldehyde or/and formate are true
545 inducers of P_{AOX1}. *Appl Microbiol Biotechnol.* 2020;104(18):7801-14.

546 12. Zavec D, Gasser B, Mattanovich D. Characterization of methanol utilization negative *Pichia pastoris*
547 for secreted protein production: New cultivation strategies for current and future applications.
548 *Biotechnol Bioeng.* 2020;117(5):1394-405.

549 13. Zavec D, Troyer C, Maresch D, Altmann F, Hann S, Gasser B, Mattanovich D. Beyond alcohol
550 oxidase: The methylotrophic yeast *Komagataella phaffii* utilizes methanol also with its native
551 alcohol dehydrogenase Adh2. *FEMS Yeast Res.* 2021; foab009.

552 14. Fischer JE, Glieder A. Current advances in engineering tools for *Pichia pastoris*. *Curr Opin*
553 *Biotechnol.* 2019;59:175-81.

554 15. Yang Z, Zhang Z. Engineering strategies for enhanced production of protein and bio-products in
555 *Pichia pastoris*: A review. *Biotechnol Adv.* 2018;36(1):182-95.

556 16. García-Ortega X, Cámara E, Ferrer P, Albiol J, Montesinos-Seguí JL, Valero F. Rational development
557 of bioprocess engineering strategies for recombinant protein production in *Pichia pastoris*
558 (*Komagataella phaffii*) using the methanol-free GAP promoter. Where do we stand? *N Biotechnol.*
559 2019;53:24-34.

560 17. Türkanoğlu Özçelik A, Yılmaz S, Inan M. *Pichia pastoris* Promoters. *Methods Mol Biol.*
561 2019;1923:97-112.

562 18. Kielkopf CL, Bauer W, Urbatsch IL. Expression of cloned genes in *Pichia pastoris* using the
563 methanol-inducible promoter *AOX1*. *Cold Spring Harb Protoc.* 2021;2021(1):pdb.prot102160.

564 19. Wang J, Wang X, Shi L, Qi F, Zhang P, Zhang Y, et al. Methanol-independent protein expression by
565 *AOX1* promoter with trans-acting elements engineering and glucose-glycerol-shift induction in
566 *Pichia pastoris*. *Sci Rep.* 2017;7:41850.

567 20. Shen W, Xue Y, Liu Y, Kong C, Wang X, Huang M, Cai M, Zhou X, Zhang Y, Zhou M. A novel
568 methanol-free *Pichia pastoris* system for recombinant protein expression. *Microb Cell Fact.*
569 2016;15(1):178.

570 21. Hartner FS, Ruth C, Langenegger D, Johnson SN, Hyka P, Lin-Cereghino GP, Lin-Cereghino J, Kovar
571 K, Cregg JM, Glieder A. Promoter library designed for fine-tuned gene expression in *Pichia pastoris*
572 . *Nucleic Acids Res.* 2008;36(12):e76.

573 22. Prielhofer R, Maurer M, Klein J, Wenger J, Kiziak C, Gasser B, Mattanovich D. Induction without
574 methanol: novel regulated promoters enable high-level expression in *Pichia pastoris*. *Microb Cell*
575 *Fact.* 2013;12:5.

576 23. Karaoglan M, Karaoglan FE, Inan M. Comparison of *ADH3* promoter with commonly used
577 promoters for recombinant protein production in *Pichia pastoris*. *Protein Expr Purif.*
578 2016;121:112-7.

579 24. Landes N, Gasser B, Vorauer-Uhl K, Lhota G, Mattanovich D, Maurer M. The vitamin-sensitive
580 promoter P_{THI11} enables pre-defined autonomous induction of recombinant protein production in
581 *Pichia pastoris*. *Biotechnol Bioeng.* 2016;113(12):2633-43.

582 25. Vogl T, Fischer JE, Hyden P, Wasmayer R, Sturmberger L, Glieder A. Orthologous promoters from
583 related methylotrophic yeasts surpass expression of endogenous promoters of *Pichia pastoris*.
584 *AMB Express*. 2020;10(1):38.

585 26. Mombeni M, Arjmand S, Siadat SOR, Alizadeh H, Abbasi A. pMOX: a new powerful promoter for
586 recombinant protein production in yeast *Pichia pastoris*. *Enzyme Microb Technol*.
587 2020;139:109582.

588 27. Portela RMC, Vogl T, Ebner K, Oliveira R, Glieder A. *Pichia pastoris* Alcohol Oxidase 1 (AOX1) Core
589 promoter engineering by high resolution systematic mutagenesis. *Biotechnol J*.
590 2018;13(3):e1700340.

591 28. Yang J, Cai H, Liu J, Zeng M, Chen J, Cheng Q, Zhang L. Controlling AOX1 promoter strength in
592 *Pichia pastoris* by manipulating poly (dA:dT) tracts. *Sci Rep*. 2018;8(1):1401.

593 29. Ergün BG, Gasser B, Mattanovich D, Çalık P. Engineering of alcohol dehydrogenase 2 hybrid-
594 promoter architectures in *Pichia pastoris* to enhance recombinant protein expression on ethanol.
595 *Biotechnol Bioeng*. 2019;116(10):2674-86.

596 30. Prielhofer R, Reichinger M, Wagner N, Claes K, Kiziak C, Gasser B, Mattanovich D. Superior protein
597 titers in half the fermentation time: Promoter and process engineering for the glucose-regulated
598 *GTH1* promoter of *Pichia pastoris*. *Biotechnol Bioeng*. 2018;115(10):2479-88.

599 31. Vogl T, Kickenweiz T, Pitzer J, Sturmberger L, Weninger A, Biggs BW, Köhler EM, Baumschlager A,
600 Fischer JE, Hyden P, Wagner M, Baumann M, Borth N, Geier M, Ajikumar PK, Glieder A.
601 Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. *Nat
602 Commun*. 2018;9(1):3589.

603 32. Massahi A, Çalık P. Endogenous signal peptides in recombinant protein production by *Pichia*
604 *pastoris*: From in-silico analysis to fermentation. *J Theor Biol*. 2016;408:22-33.

605 33. Heiss S, Puxbaum V, Gruber C, Altmann F, Mattanovich D, Gasser B. Multistep processing of the
606 secretion leader of the extracellular protein Epx1 in *Pichia pastoris* and implications for protein
607 localization. *Microbiol*. 2015;161(7):1356-68.

608 34. Barrero JJ, Casler JC, Valero F, Ferrer P, Glick BS. An improved secretion signal enhances the
609 secretion of model proteins from *Pichia pastoris*. *Microb Cell Fact*. 2018;17(1):161.

610 35. Aw R, McKay PF, Shattock RJ, Polizzi KM. Expressing anti-HIV VRC01 antibody using the murine
611 IgG1 secretion signal in *Pichia pastoris*. *AMB Express*. 2017;7(1):70.

612 36. Prielhofer R, Barrero JJ, Steuer S, Gassler T, Zahrl R, Baumann K, Sauer M, Mattanovich D, Gasser
613 B, Marx H. GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic
614 biology in the yeast *Pichia pastoris*. *BMC Syst Biol*. 2017;11(1):123.

615 37. Ito Y, Terai G, Ishigami M, Hashiba N, Nakamura Y, Bamba T, Kumokita R, Hasunuma T, Asai K, Ishii
616 J, Kondo A. Exchange of endogenous and heterogeneous yeast terminators in *Pichia pastoris* to
617 tune mRNA stability and gene expression. *Nucleic Acids Res.* 2020;48(22):13000-12.

618 38. Nakamura Y, Nishi T, Noguchi R, Ito Y, Watanabe T, Nishiyama T, Aikawa S, Hasunuma T, Ishii J,
619 Okubo Y, Kondo A. A stable, autonomously replicating plasmid vector containing *Pichia pastoris*
620 centromeric DNA. *Appl Environ Microbiol.* 2018;84(15).

621 39. Schwarzhans JP, Luttermann T, Wibberg D, Winkler A, Hübner W, Huser T, Kalinowski J, Friehs K. A
622 mitochondrial autonomously replicating sequence from *Pichia pastoris* for uniform high level
623 recombinant protein production. *Front Microbiol.* 2017;8:780.

624 40. Betancur MO, Reis VCB, Nicola AM, De Marco JL, de Moraes LMP, Torres FAG. Multicopy plasmid
625 integration in *Komagataella phaffii* mediated by a defective auxotrophic marker. *Microb Cell Fact.*
626 2017;16(1):99.

627 41. Yang J, Nie L, Chen B, Liu Y, Kong Y, Wang H, Diao L. Hygromycin-resistance vectors for gene
628 expression in *Pichia pastoris*. *Yeast.* 2014;31(4):115-25.

629 42. Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in *Pichia pastoris*: recent achievements
630 and perspectives for heterologous protein production. *Appl Microbiol Biotechnol.*
631 2014;98(12):5301-17.

632 43. Liu J, Han Q, Cheng Q, Chen Y, Wang R, Li X, Liu Y, Yan D. Efficient expression of human lysozyme
633 through the increased gene dosage and co-expression of transcription factor Hac1p in *Pichia*
634 *pastoris*. *Curr Microbiol.* 2020;77(5):846-54.

635 44. Nordén K, Agemark M, Danielson J, Alexandersson E, Kjellbom P, Johanson U. Increasing gene
636 dosage greatly enhances recombinant expression of aquaporins in *Pichia pastoris*. *BMC*
637 *Biotechnol.* 2011;11:47.

638 45. Li C, Lin Y, Zheng X, Yuan Q, Pang N, Liao X, Huang Y, Zhang X, Liang S. Recycling of a selectable
639 marker with a self-excisable plasmid in *Pichia pastoris*. *Sci Rep.* 2017;7(1):11113.

640 46. Gassler T, Heistinger L, Mattanovich D, Gasser B, Prielhofer R. CRISPR/Cas9-mediated homology-
641 directed genome editing in *Pichia pastoris*. *Methods Mol Biol.* 2019;1923:211-25.

642 47. Weninger A, Fischer JE, Raschmanová H, Kniely C, Vogl T, Glieder A. Expanding the CRISPR/Cas9
643 toolkit for *Pichia pastoris* with efficient donor integration and alternative resistance markers. *J*
644 *Cell Biochem.* 2018;119(4):3183-98.

645 48. Liu Q, Shi X, Song L, Liu H, Zhou X, Wang Q, Zhang Y, Cai M. CRISPR-Cas9-mediated genomic
646 multiloci integration in *Pichia pastoris*. *Microb Cell Fact.* 2019;18(1):144.

647 49. Baumschabl M, Prielhofer R, Mattanovich D, Steiger MG. Fine-Tuning of transcription in *Pichia*
648 *pastoris* using dCas9 and RNA scaffolds. *ACS Synth Biol.* 2020;9(12):3202-9.

649 50. Parekh M, Ali A, Ali Z, Bateson S, Abugchem F, Pybus L, Lennon C. Microbioreactor for lower cost
650 and faster optimisation of protein production. *Analyst*. 2020;145(18):6148-61.

651 51. Totaro D, Radoman B, Schmelzer B, Rothbauer M, Steiger MG, Mayr T, Sauer M, Ertl P,
652 Mattanovich D. Microscale perfusion-based cultivation for *Pichia pastoris* clone screening enables
653 accelerated and optimized recombinant protein production processes. *Biotechnol J*.
654 2020:e2000215.

655 52. Weis R. High-Throughput screening and selection of *Pichia pastoris* strains. *Methods Mol Biol*.
656 2019;1923:169-85.

657 53. Eck A, Schmidt M, Hamer S, Ruff AJ, Förster J, Schwaneberg U, Blank LM, Wiechert W, Oldiges M.
658 Improved microscale cultivation of for clonal screening. *Fungal Biol Biotechnol*. 2018;5:8.

659 54. Zahrl RJ, Peña DA, Mattanovich D, Gasser B. Systems biotechnology for protein production in
660 *Pichia pastoris*. *FEMS Yeast Res*. 2017;17(7).

661 55. Puxbaum V, Mattanovich D, Gasser B. Quo vadis? The challenges of recombinant protein folding
662 and secretion in *Pichia pastoris*. *Appl Microbiol Biotechnol*. 2015;99(7):2925-38.

663 56. Love KR, Dalvie NC, Love JC. The yeast stands alone: the future of protein biologic production.
664 *Curr Opin Biotechnol*. 2018;53:50-8.

665 57. Hausjell J, Halbwirth H, Spadiut O. Recombinant production of eukaryotic cytochrome P450s in
666 microbial cell factories. *Biosci Rep*. 2018;38(2).

667 58. Jordà J, Rojas HC, Carnicer M, Wahl A, Ferrer P, Albiol J. Quantitative metabolomics and
668 instationary ¹³C-metabolic flux analysis reveals impact of recombinant protein production on
669 trehalose and energy metabolism in *Pichia pastoris*. *Metabolites*. 2014;4(2):281-99.

670 59. Jordà J, de Jesus SS, Peltier S, Ferrer P, Albiol J. Metabolic flux analysis of recombinant *Pichia*
671 *pastoris* growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived
672 (13)C-labelling data from proteinogenic amino acids. *N Biotechnol*. 2014;31(1):120-32.

673 60. Jordà J, Jouhten P, Cámara E, Maaheimo H, Albiol J, Ferrer P. Metabolic flux profiling of
674 recombinant protein secreting *Pichia pastoris* growing on glucose:methanol mixtures. *Microb Cell*
675 *Fact*. 2012;11:57.

676 61. Chung BK, Selvarasu S, Andrea C, Ryu J, Lee H, Ahn J, Lee H, Lee DY. Genome-scale metabolic
677 reconstruction and *in silico* analysis of methylotrophic yeast *Pichia pastoris* for strain
678 improvement. *Microb Cell Fact*. 2010;9:50.

679 62. Sohn SB, Graf AB, Kim TY, Gasser B, Maurer M, Ferrer P, Mattanovich D, Lee SY. Genome-scale
680 metabolic model of methylotrophic yeast *Pichia pastoris* and its use for *in silico* analysis of
681 heterologous protein production. *Biotechnol J*. 2010;5(7):705-15.

682 63. Caspeta L, Shoaei S, Agren R, Nookaew I, Nielsen J. Genome-scale metabolic reconstructions of
683 *Pichia stipitis* and *Pichia pastoris* and in silico evaluation of their potentials. *BMC Syst Biol.*
684 2012;6:24.

685 64. Tomàs-Gamisans M, Ferrer P, Albiol J. Integration and validation of the genome-scale metabolic
686 models of *Pichia pastoris*: A comprehensive update of protein glycosylation pathways, lipid and
687 energy metabolism. *PLoS One.* 2016;11(1):e0148031.

688 65. Saitua F, Torres P, Pérez-Correa JR, Agosin E. Dynamic genome-scale metabolic modeling of the
689 yeast *Pichia pastoris*. *BMC Syst Biol.* 2017;11(1):27.

690 66. Irani ZA, Kerkhoven EJ, Shojaosadati SA, Nielsen J. Genome-scale metabolic model of *Pichia*
691 *pastoris* with native and humanized glycosylation of recombinant proteins. *Biotechnol Bioeng.*
692 2016;113(5):961-9.

693 67. Tomàs-Gamisans M, Ferrer P, Albiol J. Fine-tuning the *P. pastoris* iMT1026 genome-scale
694 metabolic model for improved prediction of growth on methanol or glycerol as sole carbon
695 sources. *Microb Biotechnol.* 2018;11(1):224-37.

696 68. Ye R, Huang M, Lu H, Qian J, Lin W, Chu J, Zhuang Y, Zhang S. Comprehensive reconstruction and
697 evaluation of *Pichia pastoris* genome-scale metabolic model that accounts for 1243 ORFs.
698 *Bioresour Bioprocess.* 2017;4(1):22.

699 69. Liu B, Shi P, Wang T, Zhao Y, Lu S, Li X, Luo S, Chang S, Wang S, Sun P, Gong X, Gao Y, Wu J.
700 Recombinant H7 hemagglutinin expressed in glycoengineered *Pichia pastoris* forms nanoparticles
701 that protect mice from challenge with H7N9 influenza virus. *Vaccine.* 2020;38(50):7938-48.

702 70. Karbalaei M, Rezaee SA, Farsiani H. *Pichia pastoris*: A highly successful expression system for
703 optimal synthesis of heterologous proteins. *J Cell Physiol.* 2020;235(9):5867-81.

704 71. Spohner SC, Müller H, Quitmann H, Czermak P. Expression of enzymes for the usage in food and
705 feed industry with *Pichia pastoris*. *J Biotechnol.* 2015;202:118-34.

706 72. Duman-Özdamar ZE, Binay B. Production of industrial enzymes via *Pichia pastoris* as a cell factory
707 in bioreactor: Current status and future aspects. *Protein J.* 2021; doi: 10.1007/s10930-021-09968-
708 7.

709 73. Wang M, Jiang S, Wang Y. Recent advances in the production of recombinant subunit vaccines in
710 *Pichia pastoris*. *Bioengineered.* 2016;7(3):155-65.

711 74. Zhu L, Wang Q, Wang Y, Xu Y, Peng D, Huang H, Hu L, Wei K, Zhu R. Comparison of immune effects
712 between *Brucella* recombinant Omp10-Omp28-L7/L12 proteins expressed in eukaryotic and
713 prokaryotic systems. *Front Vet Sci.* 2020;7:576.

714 75. Shanmugam RK, Ramasamy V, Shukla R, Arora U, Swaminathan S, Khanna N. *Pichia pastoris*-
715 expressed Zika virus envelope domain III on a virus-like particle platform: design, production and
716 immunological evaluation. *Pathog Dis.* 2019;77(3).

717 76. Argentinian AntiCovid Consortium (2020). Structural and functional comparison of SARS-CoV-2-
718 spike receptor binding domain produced in *Pichia pastoris* and mammalian cells. *Sci Rep.*
719 2020;10(1):21779.

720 77. Reyes TF, Chen Y, Fraser RZ, Chan T, Li X. Assessment of the potential allergenicity and toxicity of
721 *Pichia proteins* in a novel leghemoglobin preparation. *Regul Toxicol Pharmacol.* 2021;119:104817.

722 78. Fraser RZ, Shitut M, Agrawal P, Mendes O, Klapholz S. Safety evaluation of soy leghemoglobin
723 protein preparation derived from *Pichia pastoris*, intended for use as a flavor catalyst in plant-
724 based meat. *Int J Toxicol.* 2018;37(3):241-62.

725 79. Levesque CL, Akhtar N, Huynh E, Walk C, Wilcock P, Zhang Z, Dyce PW, de Lange CFM, Khafipour E,
726 Li J. The impact of epidermal growth factor supernatant on pig performance and ileal microbiota.
727 *Transl Anim Sci.* 2018;2(2):184-94.

728 80. Makabe K, Hirota R, Shiono Y, Tanaka Y, Koseki T. *Aspergillus oryzae* Rutinosidase: Biochemical
729 and structural investigation. *Appl Environ Microbiol.* 2021;87(3).

730 81. Pachl P, Kapešová J, Brynda J, Biedermannová L, Pelantová H, Bojarová P, Křen V, Řezáčová P,
731 Kotik M. Rutinosidase from *Aspergillus niger*: crystal structure and insight into the enzymatic
732 activity. *FEBS J.* 2020;287(15):3315-27.

733 82. Voiniciuc C, Dama M, Gawenda N, Stritt F, Pauly M. Mechanistic insights from plant
734 heteromannan synthesis in yeast. *Proc Natl Acad Sci U S A.* 2019;116(2):522-7.

735 83. Verhertbruggen Y, Bouder A, Vigouroux J, Alvarado C, Geairon A, Guillon F, Wilkinson MD, Stritt F,
736 Pauly M, Lee MY, Mortimer JC, Scheller HV, Mitchell RAC, Voiniciuc C, Saulnier L, Chateigner-
737 Boutin AL. The TaCslA12 gene expressed in the wheat grain endosperm synthesizes wheat-like
738 mannan when expressed in yeast and *Arabidopsis*. *Plant Sci.* 2021;302:110693.

739 84. Zheng B, Zhang H, Shen W, Wang L, Chen P. Core epitope analysis of 16 kDa allergen from tartary
740 buckwheat. *Food Chem.* 2020;346:128953.

741 85. Baghban R, Farajnia S, Ghasemi Y, Hoseinpoor R, Safary A, Mortazavi M, Zarghami N. Mutational
742 analysis of Ocriplasmin to reduce proteolytic and autolytic activity in *Pichia pastoris*. *Biol Proced
743 Online.* 2020;22(1):25.

744 86. Byrne B. *Pichia pastoris* as an expression host for membrane protein structural biology. *Curr Opin
745 Struct Biol.* 2015;32:9-17.

746 87. Clark L, Dikiy I, Rosenbaum DM, Gardner KH. On the use of *Pichia pastoris* for isotopic labeling of
747 human GPCRs for NMR studies. *J Biomol NMR.* 2018;71(4):203-11.

748 88. Routledge SJ, Mikaliunaite L, Patel A, Clare M, Cartwright SP, Bawa Z, Wilks MD, Low F, Hardy D,
749 Rothnie AJ, Bill RM. The synthesis of recombinant membrane proteins in yeast for structural
750 studies. *Methods.* 2016;95:26-37.

751 89. Hartmann L, Metzger E, Ottelard N, Wagner R. Direct extraction and purification of recombinant
752 membrane proteins from *Pichia pastoris* protoplasts. *Methods Mol Biol.* 2017;1635:45-56.

753 90. Walter M, Schlesinger R. Nanodisc reconstitution of channelrhodopsins heterologously expressed
754 in *Pichia pastoris* for biophysical investigations. *Methods Mol Biol.* 2021;2191:29-48.

755 91. Ayub H, Clare M, Milic I, Chmel NP, Böning H, Devitt A, Krey T, Bill RM, Rothnie AJ. CD81 extracted
756 in SMALP nanodiscs comprises two distinct protein populations within a lipid environment
757 enriched with negatively charged headgroups. *Biochim Biophys Acta Biomembr.*
758 2020;1862(11):183419.

759 92. Jeckelmann JM, Fotiadis D. Sub-Nanometer Cryo-EM density map of the human heterodimeric
760 amino acid transporter 4F2hc-LAT2. *Int J Mol Sci.* 2020;21(19).

761 93. Munro R, de Vlugt J, Ladizhansky V, Brown LS. Improved protocol for the production of the low-
762 expression eukaryotic membrane protein human aquaporin 2 in *Pichia pastoris* for solid-state
763 NMR. *Biomolecules.* 2020;10(3).

764 94. Zhang M. Recent developments of methyl-labeling strategies in *Pichia pastoris* for NMR
765 spectroscopy. *Protein Expr Purif.* 2020;166:105521.

766 95. Heistinger L, Gasser B, Mattanovich D. Creation of stable heterothallic strains of *Komagataella*
767 *phaffii* enables dissection of mating gene regulation. *Mol Cell Biol.* 2018;38(2).

768 96. Lengger B, Jensen MK. Engineering G protein-coupled receptor signalling in yeast for
769 biotechnological and medical purposes. *FEMS Yeast Res.* 2020;20(1).

770 97. Larsson AM, Jones TA. Selenomethionine labeling of recombinant proteins. *Methods Mol Biol.*
771 2007;389:165-74.

772 98. Kitajima T, Yagi E, Kubota T, Chiba Y, Nishikawa S, Jigami Y. Use of novel selenomethionine-
773 resistant yeast to produce selenomethionyl protein suitable for structural analysis. *FEMS Yeast*
774 *Res.* 2009;9(3):439-45.

775 99. Aw R, Spice AJ, Polizzi KM. Methods for expression of recombinant proteins using a *Pichia pastoris*
776 cell-free system. *Curr Protoc Protein Sci.* 2020;102(1):e115.

777 100. Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K.
778 Cultivation strategies to enhance productivity of *Pichia pastoris*: A review. *Biotechnol Adv.*
779 2015;33(6 Pt 2):1177-93.

780 101. Panula-Perälä J, Vasala A, Karhunen J, Ojamo H, Neubauer P, Mursula A. Small-scale slow glucose
781 feed cultivation of *Pichia pastoris* without repression of *AOX1* promoter: towards high throughput
782 cultivations. *Bioprocess Biosyst Eng.* 2014;37(7):1261-9.

783 102. Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic
784 engineering in *Pichia pastoris*. *Biotechnol Adv.* 2017;35(6):681-710.

785 103. Peña DA, Gasser B, Zanghellini J, Steiger MG, Mattanovich D. Metabolic engineering of *Pichia*
786 *pastoris*. *Metab Eng.* 2018;50:2-15.

787 104. Zhu T, Sun H, Wang M, Li Y. *Pichia pastoris* as a versatile cell factory for the production of
788 industrial enzymes and chemicals: Current status and future perspectives. *Biotechnol J.*
789 2019;14(6):e1800694.

790 105. Abad S, Nahalka J, Bergler G, Arnold SA, Speight R, Fotheringham I, Nidetzky B, Glieder A.
791 Stepwise engineering of a *Pichia pastoris* D-amino acid oxidase whole cell catalyst. *Microb Cell*
792 *Fact.* 2010;9:24.

793 106. Schroer K, Luef PK, Hartner FS, Glieder A, Pscheidt B. Engineering the *Pichia pastoris* methanol
794 oxidation pathway for improved NADH regeneration during whole-cell biotransformation. *Metab*
795 *Eng.* 2010;12(1):8-17.

796 107. Geier M, Brandner C, Strohmeier GA, Hall M, Hartner FS, Glieder A. Engineering *Pichia pastoris* for
797 improved NADH regeneration: A novel chassis strain for whole-cell catalysis. *Beilstein J Org Chem.*
798 2015;11:1741-8.

799 108. Tang R, Shen Y, Xia M, Tu L, Luo J, Geng Y, Gao T, Zhou H, Zhao Y, Wang M. A highly efficient step-
800 wise biotransformation strategy for direct conversion of phytosterol to boldenone. *Bioresour*
801 *Technol.* 2019;283:242-50.

802 109. Li YM, Gao JQ, Pei XZ, Du C, Fan C, Yuan WJ, Bai FW. Production of L-alanyl-L-glutamine by
803 immobilized *Pichia pastoris* GS115 expressing α -amino acid ester acyltransferase. *Microb Cell*
804 *Fact.* 2019; 18(1):27.

805 110. Liu Y, Huang L, Fu Y, Zheng D, Ma J, Li Y, Xu Z, Lu F. A novel process for phosphatidylserine
806 production using a *Pichia pastoris* whole-cell biocatalyst with overexpression of phospholipase D
807 from *Streptomyces halstedii* in a purely aqueous system. *Food Chem.* 2019;274:535-42.

808 111. Wei YC, Braun-Galleani S, Henríquez MJ, Bandara S, Nesbeth D. Biotransformation of β -
809 hydroxypyruvate and glycolaldehyde to L-erythrulose by *Pichia pastoris* strain GS115
810 overexpressing native transketolase. *Biotechnol Prog.* 2018;34(1):99-106.

811 112. Braun-Galleani S, Henríquez MJ, Nesbeth DN. Whole cell biosynthesis of 1-methyl-3-
812 phenylpropylamine and 2-amino-1,3,4-butanetriol using. *Heliyon.* 2019;5(8):e02338.

813 113. Henríquez MJ, Braun-Galleani S, Nesbeth DN. Whole cell biosynthetic activity of *Komagataella*
814 *phaffii* (*Pichia pastoris*) GS115 strains engineered with transgenes encoding *Chromobacterium*
815 *violaceum* ω -transaminase alone or combined with native transketolase. *Biotechnol Prog.*
816 2020;36(1):e2893.

817 114. de Lima PB, Mulder KC, Melo NT, Carvalho LS, Menino GS, Mulinari E, de Castro VH, Dos Reis TF,
818 Goldman GH, Magalhães BS, Parachin NS. Novel homologous lactate transporter improves L-lactic

819 acid production from glycerol in recombinant strains of *Pichia pastoris*. *Microb Cell Fact.*
820 2016;15(1):158.

821 115. Melo NTM, Mulder KCL, Nicola AM, Carvalho LS, Menino GS, Mulinari E, Parachin NS. Effect of
822 pyruvate decarboxylase knockout on product distribution using *Pichia pastoris* (*Komagataella*
823 *phaffii*) engineered for lactic acid production. *Bioeng.* 2018;5(1).

824 116. Tamires Moreira Melo N, Pontes GC, Procópio DP, Cunha GCGE, Eliodório KP, Paes HC, Basso TO,
825 Parachin NS. Evaluation of product distribution in chemostat and batch fermentation in lactic
826 acid-producing *Komagataella phaffii* strains utilizing glycerol as substrate. *Microorganisms.*
827 2020;8(5).

828 117. Yamada R, Ogura K, Kimoto Y, Ogino H. Toward the construction of a technology platform for
829 chemicals production from methanol: D-lactic acid production from methanol by an engineered
830 yeast *Pichia pastoris*. *World J Microbiol Biotechnol.* 2019;35(2):37.

831 118. Siripong W, Wolf P, Kusumoputri TP, Downes JJ, Kocharin K, Tanapongpipat S, Runguphan W.
832 Metabolic engineering of *Pichia pastoris* for production of isobutanol and isobutyl acetate.
833 *Biotechnol Biofuels.* 2018;11:1.

834 119. Siripong W, Angela C, Tanapongpipat S, Runguphan W. Metabolic engineering of *Pichia pastoris*
835 for production of isopentanol (3-Methyl-1-butanol). *Enzyme Microb Technol.* 2020;138:109557.

836 120. Yang Z, Zhang Z. Production of (2R, 3R)-2,3-butanediol using engineered *Pichia pastoris*: strain
837 construction, characterization and fermentation. *Biotechnol Biofuels.* 2018;11:35.

838 121. Guo F, Dai Z, Peng W, Zhang S, Zhou J, Ma J, Dong W, Xin F, Zhang W, Jiang M. Metabolic
839 engineering of *Pichia pastoris* for malic acid production from methanol. *Biotechnol Bioeng.*
840 2021;118(1):357-71.

841 122. Patra P, Das M, Kundu P, Ghosh A. (2021) Recent advances in systems and synthetic biology
842 approaches for developing novel cell-factories in non-conventional yeasts. *Biotechnol Adv* 47:
843 107695.

844 123. Gassler T, Sauer M, Gasser B, Egermeier M, Troyer C, Causon T, Hann S, Mattanovich D, Steiger
845 MG. The industrial yeast *Pichia pastoris* is converted from a heterotroph into an autotroph
846 capable of growth on CO₂. *Nat Biotechnol.* 2020;38(2):210-6.

847 124. Xu Q, Bai C, Liu Y, Song L, Tian L, Yan Y, et al. Modulation of acetate utilization in *Komagataella*
848 *phaffii* by metabolic engineering of tolerance and metabolism. *Biotechnol Biofuels.* 2019;12:61.

849 125. Kickenweiz T, Glieder A, Wu JC. Construction of a cellulose-metabolizing *Komagataella phaffii*
850 (*Pichia pastoris*) by co-expressing glucanases and β-glucosidase. *Appl Microbiol Biotechnol.*
851 2018;102(3):1297-306.

852