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ABSTRACT 
 
This study assessed the association of CD5L and soluble CD36 (sCD36) with the risk of a cardiovascular event 
(CVE), including CV death and all-cause mortality in CKD. We evaluated the association of CD5L and sCD36 with 
a predefined composite CV endpoint (unstable angina, myocardial infarction, transient ischemic attack, 
cerebrovascular accident, congestive heart failure, arrhythmia, peripheral arterial disease [PAD] or amputation 
by PAD, aortic aneurysm, or death from CV causes) and all-cause mortality using Cox proportional hazards 
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INTRODUCTION 
 
Chronic kidney disease (CKD) is a well-known 
independent risk factor for premature cardiovascular 
disease (CVD) and death [1]. In individuals with 
CKD, cardiovascular (CV) events and mortality 
increase progressively with declining renal function 
and/or increasing albuminuria [1], with a 50% risk of 
CV mortality even before reaching end-stage renal 
disease [2]. 
 
CV events and mortality are only partially explained by 
the traditional risk factors of diabetes, dyslipidemia, 
hypertension, obesity, smoking, and gender. 
Furthermore, more recently described biomarkers have 
not improved the prediction of CV events in 
individuals with renal impairment [3–7]. As a result, 
current risk prediction algorithms may underestimate 
the CV risk in adults with CKD [8]. Therefore, the 
identification of novel and more efficient biomarkers 
for early CV risk prediction is essential to be able to 
implement optimal risk-reduction strategies to improve 
clinical outcomes. 
 
CD5 molecule-like (CD5L), also known as apoptosis 
inhibitor of macrophages (AIM), is a 40-kDa secreted 
glycoprotein that belongs to the scavenger receptor 
cysteine-rich superfamily. It participates in a broad 
spectrum of biological mechanisms that control 
inflammatory responses involved in infections, 
atherosclerosis, and cancer [9, 10]. Additionally, CD5L 
modulates other aspects of macrophage biology, such as 
antimicrobial responses through Toll-like receptor 
activation [10, 11]. 
 
CD36 is an 88-kDa transmembrane glycoprotein 
expressed in a wide variety of cell types, with critical 
roles in macrophage metabolism, activation of 
transforming growth factor beta (TGF-β), and uptake of 
oxidized low-density lipoprotein (oxLDL). This 
receptor is associated with inflammation and stands at 
the crossroads of cardio- and cerebrovascular diseases 
[12]. Additionally, CD36 also plays a role in 
atherosclerosis progression [13, 14], and it is associated 
with traditional CV risk factors [15]. 

Both scavenger receptors, CD5L and CD36, are 
essential molecules related to inflammatory responses 
and atherosclerosis mediated by macrophages; while 
CD36 oxLDL endocytosis prompts foam cell formation, 
CD5L facilitates CD36-mediated oxLDL uptake [16]. 
Additionally, in adipose tissue, macrophage-derived 
CD5L taken up by adipocytes through CD36-mediated 
endocytosis, stimulates lipolysis. In turn, the lipolytic 
response stimulates adipocyte inflammation favoring 
the induction of metabolic disorders predisposing to 
severe CVD [17]. Based on these cellular functions, 
CD36 has been proposed as a biomarker of CVD [18], 
although the soluble form in plasma (sCD36) as a CVD 
predictive factor is a controversial issue. Indeed, some 
studies have reported that high levels of sCD36 
represent a strong biomarker of CVD in individuals 
with diabetes and of CV mortality in people with CKD 
[19, 20], while others did not find any significant 
association with CV risk [21, 22]. Given these 
contradictory results and since the issue has not been 
fully explored in a large population of individuals with 
CKD, we hypothesized that high concentrations of 
CD5L and sCD36 could be useful biomarkers of an 
increased risk of CV events and mortality in individuals 
with CKD. 
 
RESULTS 
 
The study included 1,516 CKD subjects followed for a 
median of 4.1 years (interquartile range [IQR], 3.7; 
4.4). The characteristics of the study population are 
described in Table 1. Median age was 62 years (IQR, 
51; 68), 38.9% (n = 590) of the participants were 
female, and 26.8% (n = 406) had diabetes. Almost all 
CKD subjects had hypertension (n = 1,392; 91.8%) and 
69.5% (n = 1,053) had dyslipidemia. The etiology of 
CKD was diverse: in 21.2% of cases it was related to a 
vascular disease; in 15.7% to glomerular nephropathy; 
and in 14.6% to diabetic kidney disease (additional 
causes are in Supplementary Figure 1). Up to 240 
(15.8%) participants received a kidney transplant 
during follow-up. For most variables, there were 
significant differences by gender except for body mass 
index, hypertension, dyslipidemia, and diastolic blood 
pressure (Supplementary Table 1). Regarding the 

regression, adjusted for CV risk factors. The analysis included 1,516 participants free from pre-existing CV 
disease followed up for 4 years. The median age was 62 years, 38.8% were female, and 26.8% had diabetes. 
There were 98 (6.5%) CVEs and 72 (4.8%) deaths, of which 26 (36.1%) were of CV origin. Higher baseline CD5L 
concentration was associated with increased risk of CVE (HR, 95% CI, 1.17, 1.0–1.36), and all-cause mortality 
(1.22, 1.01–1.48) after adjusting for age, sex, diabetes, systolic blood pressure, dyslipidemia, waist 
circumference, smoking, and CKD stage. sCD36 showed no association with adverse CV outcomes or mortality. 
Our study showed for the first time that higher concentrations of CD5L are associated with future CVE and all-
cause mortality in individuals with CKD. 
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Table 1. Demographic and clinical characteristics of the study subjects. 
 CKD 

N 1516 
Gender, female, n (%)   590 (38.92%) 
Age, years, median [IQR] 62 [51; 68] 
Diabetes mellitus, n (%) 406 (26.8%) 
Body mass index, kg/m2, mean (SD) 28.7 (5.4) 
Waist circumference, cm, mean (SD) 98.9 (12.9) 
Active smoker, n (%) 292 (19.3%) 
Hypertension, n (%)   1392 (91.8%) 
Dyslipidemia, n (%) 1053 (69.5%) 
Systolic blood pressure, mmHg, mean (SD) 142.8 (21.1) 
Diastolic blood pressure, mmHg, mean (SD) 81.6 (11.3) 
Creatinine, mg/dl, median [IQR] 2.02 [1.52; 2.89] 
Albumin/creatinine ratio, mg/g, median [IQR]  103.5 [12.5; 455.5] 
eGFR, mL/min/1,73 m2, median [IQR] 32.4 [21.9; 45.4] 
CKD stage 3, n (%) 669 (44.1%) 
CKD stage 4–5, n (%) 539 (35.6%) 
Dialysis, n (%) 308 (20.3%) 
Aspartate transaminase, U/L, median [IQR] 19 [16; 24] 
Alanine transaminase, U/L, median [IQR] 19 [14; 27] 
Total cholesterol, mg/dL, median [IQR]  177.2 [153; 205] 
HDL cholesterol, mg/dL, median [IQR] 47 [39; 58] 
LDL cholesterol, mg/dL, median [IQR] 101 [79; 122] 
Triglycerides, mg/dL, median [IQR] 123 [92; 175] 
Glucose, mg/dL, median [IQR] 98 [88; 113] 
HbA1c, %, median [IQR] 5.9 [5.3; 6.7] 
Hematocrit, %, median [IQR] 38.83 (5.09) 
Hemoglobin, g/dL, mean (SD)  12.9 (1.73) 
CD5L, ng/mL, median [IQR] 2276 [1812; 2876] 
sCD36, ng/mL, median [IQR] 1.0 [0.05; 6.75] 

Abbreviations: CKD: chronic kidney disease; eGFR: estimated glomerular filtration rate; HDL: high-density lipoprotein; IQR: 
interquartile range; LDL: low-density lipoprotein; SD: standard deviation. 
 
potential biomarkers, there were no significant 
differences in the median CD5L concentration by 
gender (females: 2,230 ng/mL [IQR, 1,798; 2,888]; 
males: 2,295 ng/mL [IQR, 1,818; 2,875]). In contrast, 
sCD36 was significantly higher in females than in 
males (1.20 ng/mL [IQR, 0.05; 8.86] vs. 0.85 ng/mL 
[IQR, 0.05; 5.37]). 
 
The participants with diabetes were older (65.0 years 
[IQR, 58.0; 70.0] vs. 61.0 years [IQR, 50.0; 67.0]), had a 
higher median body mass index (30.0 kg/m2 [IQR, 26.5; 

33.7] vs. 27.5 kg/m2 [IQR, 24.5; 30.9], waist 
circumference (103 cm [IQR, 94.0; 111] vs. 96.0 cm 
[IQR, 89.0; 105]), and systolic blood pressure (146 
mmHg [IQR, 132; 162] vs. 139 mmHg [IQR, 127; 154]), 
and more often had hypertension (98.3% vs. 89.5%) and 
dyslipidemia (82.3% vs. 64.8%) (Supplementary Table 
2). As for the biomarkers, the median CD5L 
concentrations were significantly higher among the 
participants with diabetes (2,421.2 ng/mL; IQR, 1,899; 
3,105) than in those without diabetes (2,206.11ng/mL; 
IQR, 1,782; 2,802) (Supplementary Table 2). 
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Conversely, the sCD36 concentrations were not 
significantly different between participants with or 
without diabetes (1.31 ng/mL [IQR, 0.05; 7.57] vs. 0.83 
ng/mL [IQR, 0.05; 5.93]) (Supplementary Table 2). 
 
Incidence of cardiovascular events 
 
A total of 98 (6.5%) CV events were registered during 
the follow-up, yielding a CV event rate of 1.55 per 1,000 
person-years (specific causes are described in 
Supplementary Figure 2). Compared to participants 
without a CV event, those who did suffer a CV event 
were more frequently diabetic (43.9% vs. 25.6%), on 
dialysis therapy (29.6% vs. 19.7%), active smokers 
(29.6% vs. 18.5%), had a higher waist circumference 
(102 cm [IQR, 93;110] vs. 98.0 cm [IQR, 90; 107]), and 
lower HDL cholesterol concentrations (43.0 mg/dL 
[IQR, 33.5; 51.2] vs. 47.0 mg/dL [IQR, 39.0; 58.5]) 
(Supplementary Table 3). However, gender had no effect 
on the proportion of incident CV events (7.0% in males 
vs. 5.9% in females) or on the CV event rate, which was 
1.69 per 1,000 person-years in men and 1.32 per 1000 
person-years in females. Moreover, participants with 
diabetes had a higher rate of CV events (2.61 per 1,000 
person-years) than those without diabetes (1.17 per 
1,000 person-years). Finally, participants who had a CV 
event exhibited higher CD5L concentrations than those 
who did not (2,571 ng/mL [IQR, 1,910; 3,314] and 
2,245 ng/mL [IQR, 1,806; 2,847], respectively; p = 
0.004). Conversely, the sCD36 concentrations were not 
different between the groups (1.31 ng/mL [IQR, 0.05; 
6.66] vs. 0.96 ng/mL [IQR, 0.05; 6.79]). 
 
All-cause mortality 
 
A total of 72 deaths (6.5%) were registered during 
follow-up with a rate of 1.11 per 1,000 person-years. 
Among them, 26 (36.1%) were CV deaths with a rate of 
0.4 per 1,000 person-years. CD5L and sCD36 
concentrations were higher in those who died (n = 72), 
compared to the participants alive at the end of the 
follow-up period (CD5L: 2,409 [1,876; 3,546] vs. 2,255 
[1,811; 2,857] ng/m, and CD36: 3.19 [0.17; 9.66] vs. 
0.94 [0.05; 6.64] ng/mL). All-cause mortality was not 
significantly higher in males than in females (5.62% vs. 
3.39%), with an all-cause mortality rate in men of 1.32 
per 1,000 person-years and 0.79 per 1,000 person-years 
in women. In participants with diabetes, the proportion 
of deaths was higher than in those without diabetes 
(7.39% vs. 3.78%), the rate of all-cause mortality being 
1.76 vs. 0.88 per 1,000 person-years, respectively. 
 
Factors associated with cardiovascular disease 
 
Cox proportional hazards models revealed that CD5L was 
an independent predictor of CV events (hazard ratio [HR], 

1.17; 95% confidence interval [CI], 1.0–1.36) after 
adjusting for CV risk factors such as age, sex, diabetes, 
waist circumference, smoking, systolic blood pressure, 
dyslipidemia, and CKD stage (Table 2). Other independent 
predictors of CV event risk were older age, diabetes, 
smoking habit, and dialysis therapy (Table 2). The results 
of the model for CD5L including estimated glomerular 
filtration rate (eGFR) are shown in Supplementary Table 4. 
In contrast, sCD36 did not predict the occurrence of CV 
events, although in this case the independently associated 
factors were also older age, diabetes, active smoking, and 
dialysis therapy (Supplementary Table 5). The results of 
the model for sCD36 including eGFR are presented in 
Supplementary Table 6. 
 
Factors associated with all-cause mortality 
 
Cox proportional hazards models showed that CD5L 
was an independent predictor of all-cause mortality (HR, 
1.22; 95% CI, 1.01–1.48) after adjusting for CV risk 
factors such as age, sex, diabetes, waist circumference, 
smoking, systolic blood pressure, dyslipidemia, and 
CKD stage (Table 3). Other significant independent 
predictors of death were older age, current smoking, 
diabetes and dialysis stage (Table 3). The results of the 
model for CD5L including eGFR are shown in 
Supplementary Table 7. In contrast, sCD36 did not 
predict all-cause mortality (Supplementary Table 8), but 
older age, current smoking, waist circumference, CKD 
stage 4–5 and dialysis therapy were independent 
predictors. The results of the model for sCD36 including 
eGFR are shown in Supplementary Table 9. 
 
The goodness of fit over adjusted models 
 
We also evaluated whether the adjusted model including 
CD5L and the traditional CV risk factors improved the 
prediction of CV events and mortality compared to the 
model without CD5L. The absolute log-likelihood value 
showed that inclusion of CD5L in the model slightly 
improved the predictive ability compared to the model 
without CD5L (−614.3 vs. −616.0, p = 0.065). On the 
other hand, the absolute log-likelihood value showed 
that the model, including the interaction between CD5L 
and diabetes also improved the all-cause mortality model 
(−424.7 vs. −426.5, p = 0.061). 
 
Competing risks approach 
 
Of the overall population of 1,516 studied subjects, 46 
experienced non-CV deaths and 98 CV events, of which 
26 were CV-deaths. Considering all-cause mortality as a 
competing risk, the CV event rate was 1.55 (1.25–1.88) 
per 1,000 person-years. When considering a CV event 
as a competing risk, the all-cause mortality rate was 
0.69 (0.5–0.92) per 1,000 person-years. 
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Table 2. Cardiovascular risk prediction cox regression model for CD5L. 

Predictors HR, 95% CI p-value 

Diabetes 1.74, 1.1–2.73 0.017 
CD5L 1.17, 1.0–1.36 0.045 
Age 1.32, 1.01–1.74 0.045 
Gender, female 0.86, 0.54–1.36 0.512 
Active smoker 2.06, 1.27–3.34 0.003 
Dyslipidemia 1.04, 0.64–1.69 0.887 
Waist circumference 1.17, 0.94–1.45 0.167 
Systolic blood pressure 1.13, 0.92–1.39  0.257 
CKD 4–5* 1.33, 0.82–2.14 0.245 
Dialysis* 2.18, 1.20–3.95 0.010 

*CKD stage 3 was the reference to assess dialysis and CKD stage 4–5. Abbreviations: CI: confidence interval; CKD: chronic 
kidney disease; HR: hazard ratio. 
 
Table 3. All-cause mortality cox regression model for CD5L. 

 HR, 95% CI p-value 

Diabetes 1.59, 0.92–2.75 0.099 
CD5L 1.22, 1.01–1.48 0.043 
Age 2.23, 1.50–3.32 <0.001 
Gender, female 0.65, 0.36–1.15 0.136 
Active smoker 1.99, 1.11–3.56 0.020 
Systolic blood pressure 1.09, 0.85–1.40 0.490 
Dyslipidemia 0.82, 0.47–1.41 0.467 
Waist circumference 1.33, 1.02–1.73 0.034 
CKD 4–5* 1.92, 1.06–3.47 0.032 
Dialysis* 4.12, 2.07–8.22 <0.001 
CD5L::Diabetes 0.69, 0.45–1.07 0.098 

*CKD stages 4–5 and dialysis taking CKD stage 3 as reference. Abbreviations: CI: confidence interval; CKD: chronic kidney 
disease; HR: hazard ratio. 
 
The Cox model revealed that the independent predictive 
variables for CV events were CD5L (HR, 1.19; 95% CI, 
1.01–1.41), diabetes (HR, 1.72; 95% CI, 1.09–2.71), 
age (HR, 1.29; 95% CI, 0.99–1.68), smoking (HR, 2.03; 
95% CI, 1.25–3.28) and dialysis (HR, 2.12; 95% CI, 
1.17–3.84). Figure 1 shows that the probability of a CV 
event was higher with high CD5L concentrations but 
similar for all-cause mortality according to the Cox 
model adjusted with competitive risks. 
 
DISCUSSION 
 
In this multicenter cohort, we found that high 
circulating CD5L concentrations were associated with 
CV events and all-cause mortality in individuals with 

CKD. In contrast, sCD36 was not associated with a risk 
of CVD or death. This is, to the best of our knowledge, 
the first time that CD5L has been shown to be 
associated and could be a potential predictor of CVD 
and all-cause mortality in individuals with CKD. 
 
CD5L as a biomarker 
 
Our findings are in line with studies showing that CD5L 
might be detrimental in metabolic disorders and 
atherosclerosis, including diabetes and CV events [17, 
23]. This could be explained by the fact that CD5L is 
involved in the pathogenesis of several inflammatory 
processes as well as in immune homeostasis [23, 24]. 
Macrophage-derived CD5L enters into the adipocytes 
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via CD36-mediated endocytosis; once inside the cell, it 
associates with fatty acid synthase (FAS) and catalyzes 
the synthesis of saturated fatty acids [25]. Saturated 
fatty acids activate Toll-like receptor (TLR) 4 and 
induce a response tightly associated with obesity-
induced inflammation [26]. Thus, CD5L acts as a key 
factor in the initiation of obesity-associated chronic 
inflammation leading to insulin resistance [17, 27], 
which results in the progression of atherosclerosis and 
contributes to future CV events [17]. Indeed, CD5L is 
highly expressed in foam macrophages harvested from 
atherosclerotic plaques, which supports macrophage 
survival through inhibition of apoptosis and their 
consequent accumulation, in turn causing inflammatory 
responses within the lesion that eventually leads to 
disease progression [23]. 
 
Previous studies in mice have shown that deletion of 
CD5L reduces the accumulation of pro-inflammatory 
M1 macrophages in myocardial tissue [28]. Moreover, 
the depletion of CD5L shows cardiac effects, such as 
decreased systolic dysfunction, a decreased incidence of 
cardiac rupture, and reduction of the infarct size during 
the acute phase after myocardial infarction, in turn 
resulting in improved survival rates [28, 29]. These 
findings led to the authors concluding that the inhibition 
of CD5L could prevent CVD in chronic inflammation 
and could attenuate the functional impairment after 
myocardial infarction [28, 29]. In humans, higher CD5L 
concentrations on epicardial fat secretome were found 
in male subjects with heart failure who developed atrial 

fibrillation [30]. Those results also support the 
hypothesis that CD5L could be useful for predicting 
CVD. Indeed, recent studies reported that high 
concentrations of CD5L strongly predict 30-day 
mortality risk in individuals with bacterial pneumonia 
[31] and 28-day mortality in adults and pediatric 
individuals with sepsis [32]. Additionally, a proteomic 
study found that CD5L is an independent predictor of 
acute heart rejection, which is a surrogate marker of 
mortality after transplantation [33]. Our study adds to 
the literature that CD5L is associated and an 
independent predictor of mortality in individuals with 
advanced CKD, i.e., CKD stage 4–5 and dialysis 
therapy. 
 
sCD36 as a biomarker 
 
In our study, sCD36 concentrations did not predict 
CVD or mortality. The usability of sCD36 as a 
biomarker of CVD is controversial. In one study in 
children with and without hypercholesterolemia, a high 
plasma sCD36 concentration was negatively associated 
with CV risk factors (high body mass index, body 
weight, waist and hip circumference, systolic blood 
pressure, and HOMA-IR), suggesting a possible 
protective effect of sCD36 [22]. Another study also 
reported possible protective effects of high sCD36 
concentrations on metabolic syndrome components in 
individuals with coronary artery disease [34]. The same 
study also observed that higher sCD36 concentrations 
were associated with a lower risk of left ventricular 

 

 
 
Figure 1. Probability of a cardiovascular event or all-cause mortality. Cox models adjusted for competitive risks according to CD5L 
levels. The continuous line is the median (1) and the dashed line is the median plus one standard deviation (0). 
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hypertrophy, although it was identified as a potential 
risk factor of impaired left ventricular diastolic function. 
In contrast, sCD36 has been reported as an independent 
risk factor for coronary artery stenosis in elderly 
individuals with coronary heart disease [35]. Moreover, 
a study conducted in subjects with moderate to 
advanced CKD followed for about 5 years found that 
sCD36 concentrations were an independent predictor of 
total mortality risk [36]. Finally, a study in individuals 
with CKD stage 5 also found that higher sCD36 
concentrations were associated with increased 3-year 
mortality, although the association was only significant 
after correcting for age and gender, but not after 
additional correction for diabetes and CVD [20]. 
 
CD36 represents the primary fatty acid uptake system in 
the kidneys and appears to play a central role in CKD 
development and progression [37]. CD36 expression 
levels are higher in CKD subjects with diabetic 
nephropathy and kidney damage [38] and are closely 
associated with CV risk factors such as hyperlipidemia 
and diabetes [12]. According to previous findings from 
our group, this role is not reflected by the circulating 
form of the protein (i.e., sCD36), as we previously 
reported similar plasma concentrations in individuals 
with or without diabetes [15] as well as in diabetic and 
nondiabetic individuals with subclinical carotid 
atherosclerosis [39]. 
 
The discordant results on the association between sCD36 
concentrations and atherosclerosis could be explained by 
several reasons. Among them, the heterogeneity of 
subjects included in the different studies published so 
far, ranging from healthy subjects to those with type 2 
diabetes, CKD or even with recent CV events; the 
different definitions of atherosclerosis adopted by 
researchers, i.e. carotid intima-media thickness (cIMT), 
subclinical atherosclerotic plaques or plaques associated 
with a recent CV event; and the different methods used 
to determine circulating sCD36, especially as there is not 
a well-characterized or standardized method to evaluate 
its concentration [34, 40]. 
 
The relationship between decreased kidney function and 
high CV morbidity and mortality has been established 
in individuals with diabetes [41, 42]. Our finding 
confirms that individuals with diabetes have a higher 
susceptibility for CV events than their counterparts 
without diabetes and, in line with other studies, 
highlights the relevance of hypertension, smoking, and 
age in this population [1, 5, 43, 44]. Additionally, and in 
agreement with previous reports, gender was not 
identified as a risk factor for CV events or death, 
although males exhibited slightly higher proportions of 
both outcomes than females [45, 46]. CD5L was 
significantly higher in diabetic subjects and those who 

had a CV event, and tended to be higher in males and 
those with all-cause mortality. 
 
Limitations 
 
Our study has several strengths and limitations worth 
mentioning. The main strength is that it is a large 
multicenter study from diverse geographic regions in 
Spain. Moreover, the participants had a variety of 
kidney disease etiologies, making our results 
generalizable to the CKD population at large. And no 
changes were reported in the monitoring protocols of 
the subjects during the follow-up period.  Additionally, 
all biomarker measurements were performed in the 
same laboratory to ensure consistency across the whole 
cohort. Finally, we included a set of well-recognized 
and well-defined variables to correct for confounding 
bias. One limitation of the study is that we did not 
measure tissue-specific biomarker levels. It is therefore 
possible that elevations in local biomarker levels in the 
heart or kidneys could have been clinically significant, 
but not detected from the plasma in our study. The 
second limitation is that we do not have the urine 
albumin to creatinine ratio in all patients, a well-known 
CV/mortality risk factor in CKD. Moreover, the small 
number of CV deaths that occurred during the follow-up 
was a significant limitation when analyzing the CV 
mortality as a single outcome. 
 
CONCLUSIONS 
 
The identification of specific biomarkers for CVD is 
crucial for the development of improved diagnostics 
and personalized treatment strategies. In individuals 
with CKD, circulating CD5L could improve CVD 
prediction and may help to identify those at higher CV 
risk. However, further population studies on CD5L in 
relation to traditional risk factors are needed to validate 
its usability as a true CVD biomarker, its predictive 
validity, and to explore whether its utility is restricted to 
individuals with CKD. 
 
METHODS 
 
Design and study population 
 
This study assessed the predictive ability of CD5L and 
sCD36 for CV events and mortality in individuals with 
CKD from the National Observatory of Atherosclerosis 
in Nephrology (NEFRONA) study [47]. To evaluate the 
predictive ability of CD5L and sCD36, we included 
1,516 participants enrolled in the NEFRONA cohort. 
The NEFRONA study is a multicenter, prospective 
observational study. The design, objective, and methods 
of the NEFRONA study have been described in detail in 
a previous publication [47]. Briefly, the NEFRONA 
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study included 2,445 subjects between 18 and 75 years 
of age, with CKD but without prior CVD recruited from 
81 hospitals and dialysis clinics throughout Spain 
between October 2009 and June 2011 [48]. Exclusion 
criteria were pregnancy, life expectancy below 12 
months, any active infection, previous organ 
transplantation, or known CVD or carotid artery 
procedure. During a four-year follow-up period, all CV 
events, CV and non-CV deaths, and kidney 
transplantations were registered. The study protocol was 
conducted following the Declaration of Helsinki and 
approved by the Ethics Committee of Germans Trias i 
Pujol Hospital and Arnau de Vilanova Hospital. An 
informed consent form was signed by all the study 
participants. 
 
Clinical and biochemical data 
 
Detailed information was collected at baseline 
including the participant’s medical history, CV risk 
factors, and medication. The physical examination 
included standard vital tests and anthropometric 
measures, such as height, body weight, and waist-hip 
ratio. Dyslipidemia was defined as a recorded clinical 
diagnosis or the current use of lipid-lowering 
medication [47]. Biochemical parameters were 
obtained from a routine fasting blood test, and the 
glomerular filtration rate (eGFR) was estimated using 
the Modification of Diet in Renal Disease Study 
formula (MDRD-4) [49]. The criteria for diabetes 
were: a previous diagnosis of diabetes recorded in the 
individual's medical history, a fasting plasma glucose 
≥126 mg/dl or glycated hemoglobin (HbA1c) ≥6.5% 
(48 mmol/mol) determined by laboratory testing, or a 
current prescription of any anti-diabetic drug [50]. 
 
Determination of CD5L and sCD36 
 
Plasma concentrations of human CD5L and sCD36 
were measured using commercially available kits: 
CircuLex human AIM/CD5L/Sp ELISA (Medical and 
Biological Laboratories, Nagova, Aichi-ken, Japan) and 
sCD36 ELISA (Nordic BioSite, Täby, Sweden); the 
detection limits were 0.754 ng/mL and 1.95 ng/mL, 
respectively. Experiments were done in duplicate, with 
appropriate dilutions according to the manufacturer's 
instructions. Briefly, samples were incubated in 
microtiter wells coated with antibodies for either protein 
for 2 hours. After incubation and washing, a 
biotinylated antibody conjugated with streptavidin 
peroxidase was added to the wells for 1 hour. After a 
second incubation and washing step, the substrate 
tetramethylbenzidine was added to the wells at room 
temperature for 20–30 minutes, followed by the 
addition of sulfuric acid to stop the enzymatic reaction. 
The absorbance was read at 450 nm using a SpectraMax 

340PC384 microplate reader (Molecular Devices, LLC 
Sunnyvale, USA). The protein concentration was 
estimated using a four-parameter logistic curve and log-
log curve fit, respectively, based on the standards’ 
measurements. 
 
Cardiovascular events 
 
Participants were followed-up for 4 years, and data on 
fatal and non-fatal CV events, death due to any cause, 
and kidney transplants were recorded by the referring 
physician [45]. The following CV events were 
considered, as defined by the International 
Classification of Diseases, Ninth Revision, Clinical 
Modification (ICD9-CM): unstable angina, myocardial 
infarction, transient ischemic attack, cerebrovascular 
accident, congestive heart failure, arrhythmia, 
peripheral arterial disease (PAD) or amputation due to 
PAD, and aortic aneurysm [23]. Cardiovascular 
mortality causes included myocardial infarction, 
arrhythmia, congestive heart failure, stroke, abdominal 
aortic aneurysm, mesenteric infarction, and sudden 
death. In addition, non-CV mortality from any other 
causes was recorded; these included deaths caused by 
neoplasia, accident, infection, non-determined cause, or 
unknown death. 
 
Statistical analysis 
 
Categorical variables are presented as frequencies and 
percentages, while the numerical ones are expressed as 
the mean with standard deviation or the median with 
the first and last quartiles (the interquartile range 
[IQR]). 
 
We used Cox regression models to estimate raw and 
adjusted hazard ratios (HRs) of CV events in relation to 
CD5L and sCD36. Potential confounders considered for 
adjustment in the multivariable models were: diabetes, 
age, sex, smoking, body mass index, abdominal 
circumference, systolic blood pressure, dyslipidemia, 
CKD stage and eGFR. Fine and Gray modeling was 
used to estimate risk prediction whilst illustrating the 
effect of competing risk with no CV death and kidney 
transplantation. Cause-specific HRs were reported from 
the Cox model, as were subhazard ratio and cumulative 
incidence function from the Fine and Gray regressions. 
We tested the proportional hazard assumption 
graphically and analytically with the test of 
proportional-hazards assumption. We used a likelihood 
ratio test to assess if the model with CD5L improved the 
goodness of fit over CV events and death. Confidence 
intervals at the 95% level were calculated whenever 
possible. All analyses were conducted with the free 
software environment for statistical computing R 
version 3.5.3 (2019-03-11) for Windows. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 

Supplementary Figure 1. Etiology of chronic kidney disease in the study group. 
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Supplementary Figure 2. Type of cardiovascular events in the study group. 
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Supplementary Tables 
 
Supplementary Table 1. Clinical characteristics of the study group by gender. 

 Male Female p. overall 
N, (%) 926 (61.08) 590 (38.92)  

Diabetes, n (%) 265 (28.6) 141 (23.9) 0.050 
Body mass index, kg/m2, median [IQR] 28.1 [25.3; 31.2] 27.8 [24.3; 32.5] 0.975 
Waist circumference, cm, median [IQR] 100 [93.0; 108] 95.0 [86.0; 105] <0.001 
Active smoker, n (%) 218 (23.5) 74 (12.5) <0.001 
Hypertension, n (%) 854 (92.2) 538 (91.2) 0.533 
Dyslipidemia, n (%) 659 (71.2) 394 (66.8) 0.080 
SBP, mmHg, median [IQR] 142 [130; 157] 139 [126; 156] 0.004 
DBP, mmHg, median [IQR] 82.0 [75.0; 89.0] 80.0 [73.0; 88.0] 0.095 
Age, years, median [IQR] 62.0 [53.0; 69.0] 61.0 [50.0; 68.0] 0.062 
Creatinine, mg/dL, median [IQR] 2.11 [1.60; 3.00] 1.90 [1.40; 2.60] <0.001 
eGFR, mL/min/1.73 m2, median [IQR] 34.3 [22.9; 46.9] 29.6 [20.2; 41.3] <0.001 
CKD stage, n (%)   <0.001 
CKD-3 447 (48.3) 222 (37.6)  

CKD4-5 306 (33.0) 233 (39.5)  

Dialysis 173 (18.7) 135 (22.9)  

Albumin/creatinine ratio, mg/g, median [IQR] 135 [14.2; 509] 72.8 [10.3; 372] 0.039 
Total cholesterol, mg/dL, median [IQR] 171 [148; 197]  188 [165; 214] <0.001 
HDL cholesterol, mg/dL, median [IQR] 44.0 [36.0; 52.0] 53.0 [45.0; 66.0] <0.001 
LDL cholesterol, mg/dL, median [IQR] 98.0 [76.0; 118] 106 [83.5; 126] <0.001 
Triglycerides, mg/dL, median [IQR] 124 [94.2; 179] 121 [89.0; 167] 0.018 
Glucose, mg/dL, median [IQR] 101 [90.0; 116] 94.0 [85.0; 109] <0.001 
HbA1c, %, median [IQR] 5.90 [5.38; 6.60] 5.90 [5.30; 7.10] 0.545 
Hematocrit, median [IQR] 39.9 [36.0; 43.5] 37.0 [34.7; 39.9] <0.001 
Hemoglobin, g/dL, median [IQR] 13.2 [12.0; 14.6] 12.2 [11.4; 13.2] <0.001 
CD5L, ng/mL, median [IQR] 2295 [1818; 2875] 2230 [1798; 2888] 0.397 
sCD36, ng/mL, median [IQR] 0.85 [0.05; 5.37]  1.20 [0.05; 8.86] 0.028 
Cardiovascular event, n (%) 65 (7.02) 33 (5.59) 0.320 
Kidney transplant, n (%) 138 (14.9)  102 (17.3) 0.243 
Death    0.093 
Alive at the end of follow-up, n (%) 874 (94.4) 570 (96.6)  
CV death, n (%) 17 (1.84) 9 (1.53)  
Non-CV death, n (%) 35 (3.78) 11 (1.86)  

Abbreviations: CDK: chronic kidney disease; CV: cardiovascular; DBP: diastolic blood pressure; eGFR: estimated glomerular 
filtration rate; HbA1c: glycated hemoglobin; HDL: high-density lipoprotein; IQR: interquartile range; LDL: low-density 
lipoprotein; SBP: systolic blood pressure. 
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Supplementary Table 2. Clinical characteristics of the study group by the presence of diabetes. 
 No diabetes Diabetes p. overall 

N, (%) 1110 (73.22%) 406 (26.78%)  

Gender, female, n (%) 449 (40.5%) 141 (34.7%) 0.050 
Body mass index, kg/m2, median [IQR] 27.5 [24.5; 30.9] 30.0 [26.5; 33.7] <0.001 
Waist circumference, cm, median [IQR] 96.0 [89.0; 105] 103 [94.0; 111]  <0.001 
Active smoker, n (%) 216 (19.5%) 76 (18.7%)  0.803 
Hypertension, n (%) 993 (89.5%) 399 (98.3%) <0.001 
Dyslipidemia, n (%) 719 (64.8%) 334 (82.3%) <0.001 
SBP, mmHg, median [IQR] 139 [127; 154]  146 [132; 162]  <0.001 
DBP, mmHg, median [IQR] 82.0 [75.0; 89.0] 79.5 [72.0; 86.0] <0.001 
Age, years, median [IQR] 61.0 [50.0; 67.0] 65.0 [58.0; 70.0] <0.001 
Creatinine, mg/dL, median [IQR] 2.08 [1.51; 2.90] 1.95 [1.54; 2.77] 0.337 
eGFR, mL/min/1.73 m2, median [IQR] 31.6 [21.4; 45.3] 34.3 [22.5; 45.7] 0.306 
CKD stage, n (%)   <0.001 
CKD-3 468 (42.2%) 201 (49.5%)  

CKD4-5 381 (34.3%) 158 (38.9%)  

Dialysis 261 (23.5%) 47 (11.6%)   

Albumin/creatinine ratio, mg/g, median [IQR] 83.5 [10.3; 381] 178 [25.4; 687]  0.001 
Total cholesterol, mg/dL, median [IQR] 180 [156; 208]  171 [144; 197]  <0.001 
HDL cholesterol, mg/dL, median [IQR] 48.0 [40.0; 59.0] 44.0 [36.0; 54.0] <0.001 
LDL cholesterol, mg/dL, median [IQR] 105 [83.9; 125]  90.0 [71.6; 111] <0.001 
Triglycerides, mg/dL, median [IQR] 118 [89.8; 164]  140 [101; 205]  <0.001 
Glucose, mg/dL, median [IQR] 94.0 [86.0; 103] 134 [108; 169]  <0.001 
HbA1c, %, median [IQR] 5.50 [5.10; 5.80] 6.90 [6.20; 8.00] <0.001 
Hematocrit, median [IQR] 38.8 [35.5; 42.3] 37.7 [34.8; 41.1] 0.002 
Hemoglobin, g/dL, median [IQR] 12.8 [11.8; 14.2] 12.5 [11.5; 13.8] 0.005 
CD5L, ng/mL, median [IQR] 2206 [1782; 2802] 2421 [1899; 3105] <0.001 
sCD36, ng/mL, median [IQR] 0.83 [0.05; 5.93] 1.31 [0.05; 7.57] 0.311 
Cardiovascular event, n (%) 55 (4.95%)  43 (10.6%)  <0.001 
Kidney transplant, n (%) 200 (18.0%) 40 (9.85%)  <0.001 
Death   0.013 
Alive at the end of follow-up, n (%)  1068 (96.2) 376 (92.6%)  

CV death, n (%)  16 (1.44%)  10 (2.46%)   

Non-CV death, n (%) 26 (2.34%)  20 (4.93%)   

Abbreviations: CDK: chronic kidney disease; CV: cardiovascular; DBP: diastolic blood pressure; eGFR: estimated glomerular 
filtration rate; HbA1c: glycated hemoglobin; HDL: high-density lipoprotein; IQR: interquartile range; LDL: low-density 
lipoprotein; SBP: systolic blood pressure. 
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Supplementary Table 3. Clinical characteristics of the study group by the presence of a cardiovascular event during 
follow-up. 

 NoCVE CVE p. overall 
N, (%) 1418 (93.54%) 98 (6.46%)  

Diabetes, n (%) 363 (25.6%) 43 (43.9%) <0.001 
Gender, female, n (%) 557 (39.3%) 33 (33.7%) 0.320 
Body mass index, kg/m2, median [IQR] 28.0 [24.9; 31.7] 29.3 [25.7; 32.4] 0.117 
Waist circumference, cm, median [IQR] 98.0 [90.0; 107] 102 [93.0; 110] 0.009 
Active smoker, n (%) 263 (18.5%) 29 (29.6%) 0.011 
Hypertension, n (%) 1298 (91.5%) 94 (95.9%) 0.180 
Dyslipidemia, n (%) 980 (69.1%) 73 (74.5%) 0.315 
SBP, mmHg, median [IQR] 140 [128; 156] 146 [131; 163] 0.125 
DBP, mmHg, median [IQR] 81.0 [74.0; 89.0] 83.0 [72.0; 89.8] 0.844 
Age, years, median [IQR] 62.0 [51.0; 68.0] 64.0 [54.0; 69.8] 0.074 
Creatinine, mg/dL, median [IQR] 2.00 [1.51; 2.87] 2.13 [1.70; 3.14] 0.093 
eGFR, mL/min/1.73 m2, median [IQR] 32.5 [21.9; 45.7] 30.1 [19.6; 39.1] 0.089 
CKD stage, n (%)   0.046 
CKD-3 634 (44.7%) 35 (35.7%)  

CKD4-5 505 (35.6%) 34 (34.7%)  

Dialysis 279 (19.7%) 29 (29.6%)  

Albumin/creatinine ratio, mg/g, median [IQR] 96.0 [11.9; 448] 212 [91.1; 1000] 0.003 
Total cholesterol, mg/dL, median [IQR] 178 [154; 205] 169 [139; 206] 0.185 
HDL cholesterol, mg/dL, median [IQR] 47.0 [39.0; 58.5] 43.0 [33.5; 51.2] <0.001 
LDL cholesterol, mg/dL, median [IQR] 101 [80.4; 122] 93.5 [67.3; 117] 0.054 
Triglycerides, mg/dL, median [IQR] 122 [91.0; 174] 135 [104; 184] 0.088 
Glucose, mg/dL, median [IQR] 98.0 [87.0; 112] 103 [91.0; 152] 0.002 
HbA1c, %, median [IQR] 5.80 [5.30; 6.70] 6.80 [6.00; 8.00] <0.001 
Hematocrit, median [IQR] 38.6 [35.3; 42.0] 37.8 [34.0; 41.8] 0.090 
Hemoglobin, g/dL, median [IQR] 12.8 [11.8; 14.1] 12.4 [11.3; 14.0] 0.066 
CD5L, ng/mL, median [IQR] 2245 [1806; 2847] 2571 [1910; 3314] 0.004 
sCD36, ng/mL, median [IQR] 0.96 [0.05; 6.79] 1.31 [0.05; 6.66] 0.347 
Kidney transplant, n (%) 229 (16.1%) 11 (11.2%) 0.251 
Death   <0.001 
Alive at the end of follow-up, n (%) 1374 (96.9%) 70 (71.4%)   

CV death, n (%)  0 (0.00%)  26 (26.5%)   

Non-CV death, n (%) 44 (3.10%)  2 (2.04%)   

Abbreviations: CDK: chronic kidney disease; CV: cardiovascular; DBP: diastolic blood pressure; eGFR: estimated glomerular 
filtration rate; HbA1c: glycated hemoglobin; HDL: high-density lipoprotein; IQR: interquartile range; LDL: low-density 
lipoprotein; SBP: systolic blood pressure. 
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Supplementary Table 4. Cardiovascular risk prediction cox regression model for CD5L.  

Predictors HR, 95% CI p-value 

Diabetes 1.56, 0.94– 2.59 0.083 

CD5L 1.23, 1.02–1.48 0.030 

Age 1.26, 0.91–1.73 0.161 

Gender, female 0.86, 0.51–1.46 0.570 

Active smoker 2.50, 1.47–4.26 0.001 

Dyslipidemia 1.64, 0.85–3.16 0.138 

Waist circumference 1.24, 0.97–1.58 0.091 

Systolic blood pressure 1.24, 0.98–1.58 0.073 

eGFR (MDRD4) 0.76, 0.59–0.98 0.037 

Abbreviations: CI: confidence interval; eGFR: estimated glomerular filtration rate; HR: hazard ratio; MDRD: Modification of 
Diet in Renal Disease. 
 
 
Supplementary Table 5. Cardiovascular risk prediction cox regression model for sCD36. 

Predictors HR, 95% CI p 

Diabetes 1.83 1.17–2.87 0.009 

sCD36 1.03 0.83–1.29 0.772 

Age 1.36 1.04–1.79 0.025 

Gender, female 0.88 0.55–1.39 0.574 

Smoker 2.08 1.28–3.38 0.003 

Dyslipidemia 1.03 0.63–1.68 0.912 

Waist circumference 1.17 0.94–1.46 0.148 

Systolic blood pressure 1.12 0.91–1.39 0.272 

CKD4–5* 1.37 0.85–2.20 0.198 

Dialysis* 2.45 1.37–4.38 0.003 

*CKD stages 4–5 and dialysis taking CKD stage 3 as reference. Abbreviations: CI: confidence interval; HR: hazard ratio; CKD: 
chronic kidney disease. 
 
 
Supplementary Table 6. Cardiovascular risk prediction cox regression model for sCD36. 

Predictors HR, 95% CI p 

Diabetes 1.69, 1.03–2.77 0.039 

sCD36 1.07, 0.83–1.38 0.586 

Age 1.29, 0.94–1.78 0.113 

Gender, female 0.89, 0.53–1.51 0.5671 

Smoker 2.54, 1.49–4.35 0.001 

Dyslipidemia 1.63, 0.85–3.13 0.145 
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Waist circumference 1.26, 0.98–1.61 0.070 

Systolic blood pressure 1.25, 0.98–1.59 0.069 

eGFR (MDRD4) 0.75, 0.58–0.96 0.025 

Abbreviations: CI: confidence interval; eGFR: estimated glomerular filtration rate; HR: hazard ratio; MDRD: Modification of 
Diet in Renal Disease. 
 
 
Supplementary Table 7. All-cause mortality cox regression model for CD5L. 

 HR, 95% CI p-value 

Diabetes 1.71, 0.92–3.16 0.088 

CD5L 1.25, 0.89–1.75 0.202 

CD5L::Diabetes 0.73, 0.43–1.27 0.268 

Age 0.45, 0.21–0.95 0.002 

Gender, female 0.63, 0.36–1.13 0.037 

Active smoker 2.17, 1.11–4.24 0.023 

Dyslipidemia 1.38, 0.63– 3.02 0.421 

Waist circumference 1.42, 1.03–1.96 0.031 

Systolic blood pressure 1.11, 0.82–1.50 0.498 

eGFR (MDRD4) 0.63, 0.46–0.88 0.007 

Abbreviations: CKD: chronic kidney disease; CI: confidence interval; eGFR: estimated glomerular filtration rate; HR: hazard 
ratio; MDRD: Modification of Diet in Renal Disease. *CKD stage 3 was the reference to assess dialysis and CKD stage 4–5. 
 
 
Supplementary Table 8. All-cause mortality cox regression model for CD36. 

Predictors HR 95% CI p 

Diabetes 1.50 0.87–2.58 0.143 

CD36 1.12 0.89–1.41 0.320 

Age 2.28 1.53–3.39 <0.001 

Gender, female 0.62 0.35–1.10 0.103 

Smoker 2.07 1.15–3.72 0.015 

Systolic blood pressure 1.08 0.84–1.38 0.562 

Dyslipidemia 0.83 0.48–1.45 0.517 

Waist circumference 1.31 1.01–1.70 0.046 

CKD 4–5* 1.96 1.09–3.55 0.026 

Dialysis* 4.40 2.26–8.58 <0.001 

Abbreviations: CKD: chronic kidney disease; confidence interval; HR: hazard ratio. *CKD stages 4–5 and dialysis taking CKD 
stage 3 as reference. 
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Supplementary Table 9. All-cause mortality cox regression model for CD36. 

Predictors HR 95% CI p 

Diabetes 1.70, 0.92–3.14 0.091 

CD36 1.18, 0.89–1.55 0.245 

Age 2.27, 1.38–3.74 0.001 

Gender, female 0.43, 0.20–0.91 0.027 

Smoker 2.21, 1.13–4.32 0.021 

Dyslipidemia 1.35, 0.62–2.95 0.447 

Waist circumference 1.41, 1.02–1.94 0.036 

Systolic blood pressure 1.09, 0.81–1.47 0.578 

eGFR (MDRD4) 0.63, 0.46–0.87 0.006 

Abbreviations: CI: confidence interval; eGFR: estimated glomerular filtration rate; HR: hazard ratio; MDRD: Modification 
of Diet in Renal Disease. *CKD stages 4–5 and dialysis taking CKD stage 3 as reference. 
 
 
 


