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Patients with chronic inflammatory diseases often exhibit cardiovascular risk. This

risk is associated with the systemic inflammation that persists in these patients,

causing a sustained endothelial activation. Different mechanisms have been considered

responsible for this systemic inflammation, among which activated platelets have been

regarded as a major player. However, in recent years, the role of platelets has become

controversial. Not only can this subcellular component release pro- and anti-inflammatory

mediators, but it can also bind to different subsets of circulating lymphocytes, monocytes

and neutrophils modulating their function in either direction. How platelets exert this dual

role is not yet fully understood.
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INTRODUCTION

Systemic inflammation (SI) has been described as a consequence of increased levels of the
circulating pro-inflammatory mediators that activate endothelial cells (EC). Endothelial activation
is part of a normal immune system defense, but a prolonged inflammatory stimulus induces
a sustained endothelial activation/dysfunction that is often associated with atherogenesis and
cardiovascular events. The role of SI on cardiovascular (CV) risk has been explored in autoimmune
diseases. Systemic lupus erythematosus (SLE)-like mouse models display endothelial dysfunction
and cardiac hypertrophy, mediated through IL-6 and IL-1α (1). In these patients, it has been shown
that B lymphocyte stimulator induced apoptosis of endothelial progenitors cells and EC (2). In
addition, it has been suggested that autoantibodies play a role in endothelial dysfunction, possibly
by modulating the adhesion of neutrophils (3, 4). In a model of arthritis, endothelial dysfunction
was only observed in rats with a persisting imbalance between NOS and COX-2 pathways, higher
plasma levels of IL-1β and tumor necrosis factor-α (TNF-α) (5). The presence of diabetes mellitus
type 2 in patients with metabolic syndrome impairs the endothelial function (6). In a model of SI,
the levels of endothelin-1 and endocan are related to endothelial dysfunction (7). However, there
are some circumstances in which the relationship between SI and endothelial dysfunction is less
clear. In Systemic Inflammatory Response syndrome, the levels of dysfunctional ECwere associated
with mortality and organ dysfunction independently of inflammatory markers (8).

The link between inflammation and endothelial dysfunction has been confirmed by the
inhibition of molecules related to SI. Anti-TNFα antibodies reduces sE-selectin and sVCAM
expression (9) and decreases endothelium-dependent relaxation (10, 11). EC treated with
etanercept revert the apoptosis induced by TNF-α (12). JAK inhibitors improve endothelium
dependent vasorelaxation, endothelial cell differentiation and lipoprotein profiles, while decreasing
pro-inflammatory cytokines in SLE-like syndrome (13). Glucocorticoids decrease IL-1β and TNF-α
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levels, improving the function of endothelium in rheumatoid
arthritis (RA) (14). Patients with CV risk factors had
increased levels of IL-1β and its gene expression signature
and blocking IL-1β with canakinumab was observed to
prevent recurrent cardiovascular disease (CVD) (15). Agents
with nucleoside triphosphate hydrolase activity decrease
platelet-leukocyte-endothelium interaction, the transcription of
pro-inflammatory cytokines, microvascular platelet-neutrophil
aggregate sequestration, activation marker expression on
platelets (PLTs) and neutrophils contained in these aggregates,
leukocyte extravasation, and organ damage (16). Furthermore,
dihydroartemisin inhibits the occludin downregulation induced
by TNF-α, improving the permeability of EC (17) and the
inhibition of cannabinoid receptors reduces leukocyte-adhesion
and improves microvascular blood flow (18). The pre-treatment
of primary cultured human umbilical vein endothelial cells
(HUVECs) with sevoflurane reduces ICAM-1 (intercellular
adhesion molecule-1) and VCAM-1 (vascular cell adhesion
molecule-1) IκBα, and NF-κB activation, and blocks the
adhesion of leukocytes (19).

Products with anti-inflammatory properties can improve
endothelial function. Lactobacillus plantarum 299v supplements
decreased inflammatory markers (20), while the active form
of vitamin D diminishes IL-6 secretion and increases the
angiogenic capacity of myeloid angiogenic cells via CXCL10
down-regulation (21).

FEATURES OF ENDOTHELIAL
DYSFUNCTION

The inflammatory phase that leads to endothelial dysfunction
is initiated by TNF-α and subsequently amplified by IL-1, IL-6
and downstream mediators. Endothelial dysfunction refers to
the failure by ECs to perform their physiological functions,
often due to a maladaptive response to pathological stimuli.
The phenotypic features of endothelial dysfunction include
the upregulated expression of endothelial leukocyte adhesion
molecules (ELAMs) [E-selectin, ICAM-1 and VCAM-1].
On leukocytes, activated ECs induce the affinity of counter-
receptors for ELAMs and secrete and display chemokines on
the luminal surface. Endothelial dysfunction also includes a
compromised barrier function, the secretion of microvesicles,
an increased vascular smooth muscle tone, and the increased
production of vasoconstrictor substances, the reduced resistance
to thrombosis via platelet aggregation and oxidative stress
upregulation (22–24). It was described that high levels of IL-8 and
TNF-α up-regulate CX3CR1 expression on platelet-monocyte
aggregates, increasing adhesion to activated endothelium
(25). In mouse models, increased IL-17 was associated with
reactive oxygen species formation, circulating inflammatory
leukocytes and endothelial dysfunction (26), while higher
levels of resistin, TNF-α, IL-1β, and MMP-9 expression were
associated with the levels of inflammatory infiltrates in artery
walls (27).

Beyond the activation of the well-known signaling cascades,
the stimulation of EC induces gene expression via microRNAs

(miRNA) and epigenetic modifications. The overexpression of
miR100 in ECs attenuates leukocyte-endothelial interaction,
represses the mammalian target of rapamycin complex 1
signaling, stimulating endothelial autophagy, and attenuates NF-
κB signaling. Local miR100 expression is inversely correlated
with an inflammatory cell content (28). miR181b inhibits
downstream and upstream NF-κB signaling in response to
activation (29), while the NF-κB target genes (VCAM-1, ICAM-
1, E-selectin, and tissue factor) (30) and miR223 are associated
with HUVEC dysfunction (31). Additionally, IFN-α, through
miR155, promotes an endothelial dysfunction signature in
HUVECs characterized by transcription suppression and the
mRNA instability of eNOS and by the upregulation ofMCP-1 and
VCAM-1 and enhanced neutrophil adhesion (32).

Endothelial microparticles (MPs), shed as a result of
the activation of EC are considered a source of important
information on the status of ECs and vascular function (33, 34).
Circulating levels of endothelial MPs reflect a balance between
cell stimulation, proliferation, apoptosis, and cell death (35) and
are increased by inflammatory stimuli, mediated by the activation
of NF-κB and associated with oxidative stress intensity (36, 37).
Endothelial MPs are increased in autoimmune diseases (38) and
serve asmarkers for vascular dysfunction and their effects depend
on their cargo and on the surface molecules. Recently, levels of
endothelial MPs have been associated with disease activity in SLE
patients and CV risk (39).

MPs from RA patients had higher expression of TNF-α on the
surface compared to healthy donors (HD), increasing apoptosis
and autophagy levels on EC and correlating with clinical RA
activity (40).

PLATELETS AND SYSTEMIC
INFLAMMATION

PLTs have come to be recognized as active players in SI. After
activation, PLTs participate in the vasculature inflammation and
damage, atherogenesis and thrombosis (41–45). Wide ranges of
stimulus are able to activate PLTs. The strong PLT activation was
achieved with the ligation of the agonist thrombin, collagen and
ADP to the PLTs receptors: protease-activated receptor 1, GPVI
and P2Y1 or P2Y12 respectively (46–48). Other non-classical
pathways are able to activate PLTs due to the expression of Toll-
like receptors (TLR), TNF-α receptor, IL-1β receptors and C-type
lectin-like receptors (49–53). Some autoantibodies presents in
autoimmune disease patients such as anti-citrullinated protein,
anti-β2 glycoprotein I and anti-D4GDI have also the ability to
induce PLT activation through FCγRIIa (54–56).

However, PLTs also participate in the resolution of
inflammation as anti-inflammatory elements. How PLTs
sense the signal to exert pro- or anti-inflammatory functions
is not yet fully known. However, it is known that PLTs exert
their functions by releasing soluble factors and interacting
with cells. The dual role of PLTs in inflammation (57, 58) may
be the result of differences in the PLT packing of molecules,
activated-dependent release by different stimuli, the kinetics of
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TABLE 1 | Evidences of dual role of expressed/secreted platelet factors.

Factor Pro-inflammatory Anti-inflammatory

PF4 • Monocytes:

↑ phagocytosis (59)

↑ respiratory burst (59)

↑ pro-inflammatory

cytokines (59)

• Neutrophils:

↑ NETs formation (60)

• Endothelial cells:

↑ Leukocyte recruitment (60)

• T lymphocytes:

↓proliferation (61)

↓Th17 differentiation (62)

↓granzyme B (61)

IL-1 ↑ endothelial activation (63, 64)

↑ EC damage (63)

↑ neutrophil adhesion (63)

P-selectin • Monocytes:

↑ pro-inflammatory

cytokines (65)

• Neutrophils:

↑ NETs formation (66)

• In vitro:

↓neutrophil adhesion to

activated EC (67)

sCD40L Plasmatic levels correlated CV

risk and pro-inflammatory

cytokines (68, 69)

↑ B cell isotype switching (70)

• Monocytes:

↓TNF-α (71)

↑IL-10 (71)

Correlation with IDO, Treg (68)

TGF-β • T lymphocytes:

↓T cell function and

proliferation (72, 73)

↓Th1, Th17 response (72)

↓IFN-γ production (72, 73)

↓granzyme B and perforin

(73)

↑Treg differentiation (72)

HMGB1 • Monocytes:

↑ migration and accumulation in

tissues (74, 75)

↓apoptosis (74)

• Neutrophils:

↑ NETs formation (76, 77)

release and the de novo synthesis of soluble factors and their
binding to certain molecules on the surface of leukocytes.

Pro-inflammatory and Anti-inflammatory
Soluble Factors Released by PLTs
Some of the released factors of PLTs are synthesized
de novo, whereas others are stored and are secreted
from granules as pro-thrombotic, immunoregulatory
molecules and growth factors immediately after activation.
Molecules from dense granule components contribute to
hemostasis and coagulation. Molecules from α-granules
contain multiple cytokines, mitogens, pro- and anti-
inflammatory factors and other bioactive molecules that
are essential regulators in the complex microenvironment
(Table 1).

Platelet Factor 4 (PF4, also called CXCL4) is the most
abundant protein secreted by activated PLTs and is deposited
on endothelium. Higher levels of circulating PF4 have been
observed in patients with chronic inflammation (78–80). PF4
increases phagocytosis, respiratory burst, survival and the
secretion of inflammatory cytokines in monocytes (59). PF4

blocking reduces the inflammation of vasculature and CV
events by reducing leukocyte recruitment and the generation
of neutrophil extracellular traps (NETs) by neutrophils (60, 81,
82).

PF4 also acts as an anti-inflammatory factor on T lymphocytes
(83), limiting Th17 differentiation by suppressing RORγ

expression (62). A lack of PF4 induces the rejection of
cardiac transplantation by increasing levels of IL-17 and T cell
mediated inflammation. We has observed that PF4 decreases T
lymphocyte proliferation and granzyme B expression in CD8+
T lymphocytes (61), explaining how higher levels of PF4 in a
malignant context can limit T lymphocyte stimulation (61).

Stimulated PLTs are able to secrete and store IL-1β (63). PLT
levels were closely associated with plasmatic IL-1β levels (15).
This cytokine activates HUVECs, inducing neutrophil adhesion
and endothelium damage (63). The co-culture of PLTs from SLE
with HUVECs increased EC damage and inflammatory marker
expression in an IL-1β dependent manner (64). In experimental
models of inflammation, IL-1α secreted by activated PLTs also
played a crucial role in SI (84–86).

The soluble P-selectin secreted from α-granules is also
implicated in inflammatory responses. P-selectin from activated
PLTs induces the release of 3-10 folds of inflammatory cytokines
by monocytes (65) and also promotes NETs formation (66).
Elevated levels of circulating soluble P-selectin may contribute
to early vascular disease by promoting the adhesion of
leukocytes to the endothelium (87). However, soluble P-selectin
can prevent in vitro adhesion of neutrophils to activated
endothelium (67).

Circulating soluble CD40L (sCD40L) is secreted mainly
by activated PLTs. In human immunodeficiency virus (HIV)
patients, sCD40L levels correlated with pro-inflammatory
cytokines (68). Moreover, PLTs support B cell isotype switching
throughCD40L-CD40 binding (70). In patients with an increased
CV risk plasmatic sCD40L was increased and correlated with
disease activity and with pro-inflammatory cytokines (69).
The addition of thrombin-activated PLTs to TLR-stimulated
monocytes has been seen to reduce TNF-α and IL-6 secretion
and induce IL-10 production, and were abolished by blocking
sCD40L (71). In HIV, sCD40L levels were correlated with IDO
enzymatic activity and Treg frequency, in addition to induced
Treg expansion and differentiation (68).

TGF-β is a potent anti-inflammatory factor, produced mainly
by PLTs, which suppresses T lymphocytes function and is
involved in Treg differentiation. The culture of CD4+ T
lymphocytes with PLTs enhances Th1 and Th17 cytokine
production but the TGF-β secreted by PLTs activates Treg
suppressing Th1 and Th17 response (72). PLTs inhibit CD4+
and CD8+IFN-γ production, proliferation and granzyme B and
perforin expression in a TGF-β dependent manner (73).

PLTs also release the damage-associated molecular
pattern molecule high-mobility group box 1 (HMGB1)
contributing to thrombosis process (87) promoting monocytes
migration, suppressing monocyte apoptosis via TLR4-
ligation and the monocyte accumulation at the site of
vascular thrombosis (74, 75) and promote NETs formation
(76, 77).

Frontiers in Immunology | www.frontiersin.org 3 April 2021 | Volume 12 | Article 625181

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zamora et al. Platelets in Cardiovascular Risk

TABLE 2 | Effects of PLT binding to other cells.

Ligands of interaction Effect on bound cells

Endothelial cells GPIIB/IIIa- ICAM1

CD40L-CD40

Adhesion (88)

Expression E-selectin

VCAM-1 (89)

Secretion IL-8 MCP-1 (89)

Neutrophils GPIβα-Mac-1

P-selectin-PSGL-1

Arrest to endothelium

(90–92)

NETs formation (66, 93)

Monocytes P-selectin-PSGL-1

GPIβ-CD11b

CD147-CD147

CD40L-CD40

Secretion MCP-1, IL-8,

TNF-α, MMP9 (94, 95)

Expression TF (96)

Differentiation M1

macrophages (97)

Secretion IL-10 (71, 98, 99)

Reduction TNF-α, IL-1β

(71, 99)

Lymphocytes P-selectin-PSGL-1

P-selectin-ALCAM

• (SLE) B cells:

Upregulation CD86,

BAFF (100)

Secretion IL-10 (100)

• (Psoriasis) CD4+:

Secretion IL-17 (101)

• Healthy donors:

Less proliferation

(102–105)

Less pro-inflammatory

cytokines (102–105)

Binding of PLTs to Leukocytes and
Endothelial Cells
The interaction of PLTs with leukocytes and EC contributes
to SI by favoring the arrest of leukocytes on endothelium, the
production of inflammatory cytokines and NETs formation.
Under certain circumstances, the binding of PLTs to leukocytes
decreases the inflammatory response, participating in the
resolution of thrombo-inflammation (Table 2).

Under inflammatory stress, PLTs have a firm adhesion to
endothelium via GPIIB/IIIa-ICAM-1 in a fibrinogen dependent
manner (88). CD40L expressed by PLTs induces the expression
of E-selectin, VCAM-1 and ICAM-1 on endothelium and the
secretion of IL-8 and MCP-1 (89), increasing the recruitment
of leukocytes.

Although the P-selectin-PSGL-1 (P-selectin glycoprotein 1)
axis is essential to the binding of PLTs to leukocytes, other
pathways are involved in this process: P-selectin-ALCAM,
GPIβα-Mac1, CD40L-CD40, P-selectin-CD15, JAM-C-Mac1,
TREM1L-TREM1, CD36-trombospondin-CD36, and CD147
pathway (94, 106, 107).

The interaction of PLTs with neutrophils through GPIβα-
Mac-1 and P-selectin-PSGL-1 is crucial for the development
of thrombo-inflammation and vascular damage by arresting
neutrophils to endothelium and the induction of NETs
formation (66, 90–93). The neutrophil-platelet aggregates
can also be seen in tissues in acute coronary syndrome
and the skin of psoriatic patients (108, 109). Stimulated
TLR4 PLTs, through the binding with neutrophils, induced
robust neutrophil activation and formation of NETs (93).
Induced NETs formation by PLTs was abolished blocking their

binding with neutrophils (110). The increase of neutrophil-
platelet aggregates in the circulation of autoimmune disease
patients correlates with neutrophil activation (111) and vascular
abnormalities (112) which was abolished with intravenous
immunoglobulins plus prednisolone treatment (112). However,
even all the current evidences supports that interaction of
PLTs with neutrophils are involved in inflammatory process
and vasculature damage, this interaction could have also
anti-inflammatory consequences depending on the neutrophil
status. The addition of PLTs to previously stimulated TLR-
neutrophils downregulates degranulation markers expression
and the secretion of elastase (113).

Although monocyte-PLT aggregates are increased in
CVD (114), the interaction of PLTs with monocytes have
pro- or anti-inflammatory consequences depending on the
experimental assay and the activation status of monocytes.
As pro-inflammatory consequence, thrombin-activated PLTs
through P-selectin-PSGL-1 binding induces the expression of
MCP-1 and IL-8 in resting monocytes (95). P-selectin expressed
on the surface of PLTs induced a rapid tissue factor expression
by monocytes (96). The binding of PLTs to monocytes through
GPIβ-CD11b induces a M1 macrophage phenotype that produce
TNF-α (97). Via CD147 axis, RA patients had more circulating
intermediate monocytes-PLTs aggregates, increasing the TNF-
α and MMP-9 secretion (94). Autoimmune patients with a
higher CV risk have more monocyte-PLT aggregates and its
associated with the activated state of monocytes (115). As
anti-inflammatory consequences, it has been observed that the
binding of PLTs to activatedmonocytes induces IL-10 production
and decreases TNF-α and IL-1β production, and were abolished
by the blocking of P-selectin-PSGL-1, CD40L-CD40 axis and
Ca2+ chelator (71, 98, 99).

Although the binding of PLTs to lymphocytes has preferably
anti-inflammatory consequences, it was demonstrated a
contribution in inflammatory process. High levels of
lymphocytes-PLTs aggregates were observed in SLE and
psoriasis. In SLE, lymphocytes-PLTs aggregates had an up-
regulation of CD86, B cell activation factor receptor and IL-10
production and correlated positively with plasmatic levels of
IgG, IgA, IL-10, sCD40L and renal manifestation, and correlated
negatively with IgM levels (100). In psoriasis, the IL-17+ CD4+
had higher levels of bound PLTs and anti-TNF-α drugs normalize
the numbers (101), while in HIV there are more lymphocytes-
PLTs aggregates and are associated to D-dimer levels, increasing
the CV risk (116).

We observed that CD4+ T lymphocytes-PLT aggregates had
a reduced proliferation and production of pro-inflammatory
cytokines. A less severe phenotype and a decreased CV
risk was observed in RA patients with higher levels of
circulating CD4+T lymphocytes-PLTs aggregates (102).
The addition of PLTs to lymphocytes from RA synovial
fluids decreased their proliferation and the secretion of IFN-
γ, IL-17, and increased IL-10 production (103). PLTs MPs
cultured with Tregs prevented the differentiation into IL-
17– and IFN-γ-producing cells in a P-selectin dependent
manner (104). The co-cultures of CD4+ CD25- T cells with
PLTs induced Tregs and this effect was abolished by the
blocking of glycoprotein A repetitions predominant (105).
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In HIV, the aberrant function of CD8+ T lymphocytes was
abolished when these cells were co-cultured with PLTs from
HD, implying that direct contact with PLTs and TGF-β
secretion contributed to this functional improvement (117).
In later stages of experimental autoimmune encephalomyelitis
(EAE), there was an increase CD4+ T lymphocytes-PLTs
aggregates through the interaction of P-selectin-ALCAM,
down-regulating their activation, proliferation and the
production of IFN-γ, crucial for the spontaneous resolution
of EAE. The blocking of CD4+-PLT aggregates exacerbate
EAE (118).

Platelet to Lymphocyte Ratio in Systemic
Inflammation
The platelet to lymphocyte ratio (PLR) has emerged as
a reliable marker of SI. Although elevated counts of
PLTs and low counts of lymphocytes per se has been
associated with worse prognosis of CVD, increase CV
mortality and morbidity and SI (119, 120), PLR predicts
better the outcomes of CVD. The role of PLR as an
independent marker in CVD and SI has been extensively
reviewed (121, 122). In patients with chronic inflammatory
diseases, PLR is elevated and it correlates with markers of
SI (122–125).

However, there are confounding factors that alter PLR. Sex
and ethnic origin also modulates PLR (126) as well as drugs that
affect blood cell maturation in the bonemarrow (127, 128). Other
confounding factors of PLR may be the technical limitations

of PLR measurements, such as EDTA dependent agglutination
(129, 130).

CONCLUSIONS

PLTs have been considered to play a pro-inflammatory role in SI.
However, their binding to leukocytes and EC and the secretion of
immunomodulatory molecules during activation also have anti-
inflammatory consequences. Different effects were observed with
platelets from healthy donors or chronic inflammatory patients.
In addition, the binding to each subpopulation of leukocytes has
distinctive consequences. Further research is necessary to reveal
how platelets exert their dual function.
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