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Abstract The development of organs-on-chip (OoC) has revolutionized in vitro cell-culture experiments by allowing a better
mimicry of human physiology and pathophysiology that has consequently led researchers to gain more meaningful
insights into disease mechanisms. Several models of hearts-on-chips and vessels-on-chips have been demonstrated
to recapitulate fundamental aspects of the human cardiovascular system in the recent past. These 2D and 3D
systems include synchronized beating cardiomyocytes in hearts-on-chips and vessels-on-chips with layer-based
structures and the inclusion of physiological and pathological shear stress conditions. The opportunities to discover
novel targets and to perform drug testing with chip-based platforms have substantially enhanced, thanks to the
utilization of patient-derived cells and precise control of their microenvironment. These organ models will provide
an important asset for future approaches to personalized cardiovascular medicine and improved patient care.
However, certain technical and biological challenges remain, making the global utilization of OoCs to tackle
unanswered questions in cardiovascular science still rather challenging. This review article aims to introduce and
summarize published work on hearts- and vessels-on chips but also to provide an outlook and perspective on how
these advanced in vitro systems can be used to tailor disease models with patient-specific characteristics.
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1. Introduction

Cardiovascular diseases (CVDs) are a group of disorders affecting the
heart and the vasculature that represent the number one cause of
mortality globally.1 Only in Europe, CVDs causes over 4 million deaths
each year,2 accounting for 47% of all deaths in Europe. The most
common underlying pathology in CVDs is atherosclerosis, which causes
an ischaemia in the heart and in peripheral arteries. Atherosclerosis is de-
fined as a chronic disease of the vasculature, whose architecture is slowly
remodelled over time. This disease and remodelling process involves the

interplay of numerous cell subtypes, including endothelial cells (ECs)
(becoming dysfunctional), leukocytes and macrophages (triggering
inflammation), and smooth muscle cells (which dedifferentiate or
undergo apoptosis).3,4

Unstable atherosclerotic plaques can rupture, which results in arterial
thrombosis. Thrombosis, the formation of blood clots, prevents blood
flow, and triggers life-threatening clinical conditions in the arterial sys-
tem, such as myocardial infarction (MI) and ischaemic forms of stroke
(IS). Although MI and IS are usually acute events resulting from chronic
atherosclerotic processes affecting coronary and carotid arteries,
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respectively, venous thromboembolism (VTE) is mainly caused by hae-
mostatic or coagulation abnormalities.5

Another severe result of tissue ischaemia is heart failure (HF), which is
most commonly associated with coronary artery disease (CAD).6 Other
complications of ischaemia include arrhythmias caused by discontinued
oxygen supply to the cardiac conduction system. In particular long-term
complications after an acute MI that triggers pathological myocardial
remodelling remain unsolved and are a major cause for high re-hospitali-
zation rates.7 Hallmark features of this cardiac remodelling process8 are
excessive deposition of extracellular matrix (ECM) leading to cardiac
fibrosis, chamber dilation (dilated cardiomyopathy), and cardiomyocyte
hypertrophy. Apart from ischaemia being the key inducer leading to HF,
several non-cardiac therapies can cause adverse reactions that induce a
similar disease phenotype.9 In particular, anti-cancer treatment strategies
(radiation as well as chemotherapies) are particularly known for their
cardiotoxic potential. Here, the new field of cardio-oncology aims at
improving our understanding of molecular and clinical alterations that
cancer therapies generate in the cardiovascular system.10

Our knowledge about etiopathogenetic mechanisms in CVD has
dramatically benefited from advances in ‘-omics’ technologies. A typical
pipeline to tackle unanswered disease research questions exploits disci-
plines such as genomics and transcriptomics to identify novel targets in
human cohorts as well as in vivo models to validate these findings.
Genome-wide association studies (GWAS) to investigate CAD,11

VTE,12,13 IS,14 and HF15 have evaluated hundreds to thousands of individ-
uals and led to the identification of multiple genetic loci associated with
the respective disease. With the availability of new technologies and the
combination of genomic data utilizing publicly available expression data-
sets, the translation from genomic loci to the discovery of causal genes is
starting to become a reality. Functional assessments using in vitro modula-
tion in cultured cells or in vivo animal models are considered irreplace-
able to identify the actual genes or variants that are relevant for causing
the associations while trying to validate biological relevance. However,
the translation of discoveries across species remains challenging: the
poor sequence conservation of most non-coding genes (unlike protein-
coding genes) substantially limits the experimental studies of exiting can-
didates, such as long non-coding RNAs or circular RNAs.16 Moreover,
the human circulatory system, including its mechanical, electrical,
biochemical, and cellular complexity, is hard to mimic. Human in vitro
models that consist of single types of cells cultured under static condi-
tions on a plastic surface in two dimensions poorly represent our physio-
logical constitution.17 These simplistic models lack the three-dimensional
complexity of the tissue, the effect of flow, the cell–cell interaction be-
tween blood cells and the endothelium as well as the involvement of the
ECM that characterizes vascular tissue in vivo.

In recent years, organs-on-chips (OoCs) have emerged as powerful
new tools to fill the translational gap from animal models to human dis-
ease, with a particular potential to even replace animal testing in the fu-
ture.18 OoC technology will improve the modelling of organs or organ
systems for healthcare research while immensely impacting the precision
medicine approach.18 OoCs comprise systems integrating either 2D cell
cultures on permeable membranes or cells cultured in 3D hydrogel scaf-
folds. In this current review article, we are referring to OoCs as defined
by the EU project ORCHID.19 Within the scale of novel physiologically
relevant in vitro models, organoids need to be mentioned at this point.
They will however not be covered in greater detail in this present re-
view. Organoids are self-organized three-dimensional tissue cultures de-
riving from stem cells. They differ from OoCs especially in biological
complexity, displaying multi-cellular self-assembled constructs,20

whereas OoCs are typically multi-structural engineered systems for
on-chip cell cultures.

In the following pages, we introduce the general concept and scientific
potential of OoC systems in CVD research. We further discuss the
opportunities and challenges of utilizing OoCs in preclinical drug testing
and target discovery.

2. Methods

OoCs are micro-engineered in vitro models that recapitulate aspects of hu-
man physiology and pathology. They can be used in drug discovery as well as
for efficacy and toxicology testing.21 OoCs are defined as microfluidic cell-
culture devices that contain continuously perfused chambers being inhabited
by living human cells arranged in a three-dimensional organization that pre-
serves and mimics the tissue geometry.22,23 The high level of control, enabling
customised cell-culture environment in OoCs, is illustrated in Figure 1. This
includes custom ECM topology, the integration of sensors and actuators for
monitoring and electrical/mechanical stimuli, control of microfluidic channel
dimensions, and temporal and spatial flow profiles for pulsatile flow and
chemical stimuli. Moreover, the precise microfluidic flow control enables an
optimal growing environment (influx of nutrients and efflux of cell-waste) as
well as the circulation of drugs, signalling molecules, or immune cells. The fab-
rication methods used to realize OoC systems were originally developed for
the microelectronics industry, providing methods to define microfluidic chan-
nels and compartments with dimensions from a few micrometres (mm) to
several millimetres (mm), thus matching the dimensions of real arteries, veins,
and functional units of organs.

In order to fabricate vessel models, it is imperative to consider the geome-
try as this affects the flow profile, wall shear stress, culture area, and the total
number of cells used in the specific model. The material most commonly
used for proof-of-concept models is poly(dimethylsiloxane) (PDMS), a poly-
mer developed in the late 1990s 24 to fabricate microfluidic channels. PDMS
has several advantages for miniaturized cell cultures, such as simple fabrica-
tion, gas permeability, and optical transparency. Using PDMS, supportive
microfluidic channels can be moulded off a master that has the reverse topo-
graphical features. By removing the PDMS from the mould and bonding the
structure onto a glass slide, a sealed channel structure can be created
(Figure 2). Inlet and outlet holes for connecting tubing for perfusion can easily
be punched into the PDMS.

In order to form vessel mimics, the microfluidic channels can then be
coated with human ECs, forming artificial intima layers of vessels in which
blood, plasma, or other cells of interest (e.g. monocytes and platelets) can be
perfused.25 Specific culture media with different added stimuli or drugs can
be added to the system, and real-time observation of the system under a mi-
croscope can be used to evaluate the effect of certain stimuli. At the same
time, variations in flow and shear stress can provide more information than
static cultivation in well plates. To study disease onset, systems with higher
complexity, including 3D lumen-chips that incorporate the media layer
populated by SMCs, are required. A recent example of a perfusable artery-
on-chip was published by Cho and Park,26 where SMCs and human umbilical
vein ECs (HUVECs) were co-cultured in a PDMS channel. In an attempt to
induce the proper morphology and orientation of SMCs, wrinkles were
formed on the circular PDMS channel surface during the moulding as contact
guidance, and the HUVECs were aligned by medial perfusion.

One major disadvantage of using PDMS is that the material is porous,
thus absorbing especially hydrophobic compounds, which can lead to false-
negative read-outs from drug-screening studies.27 Also, the polymer is not
inert, meaning that silicon will leach from the structure into the cell culture
environment.28 Developments of more inert yet biocompatible materials are
therefore currently a major focus within the field.29

In an effort to make the vascular structure more biomimetic, one can de-
sign the system to include multiple microfluidic compartments where some
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..can be filled with a biomimetic cell-culture scaffold to recreate the physiolog-
ical environment of the vasculature.30–33 Alternatively, one can mould the
complete device in a biological material such as collagen.34,35 Cells can fur-
ther be introduced into the biomimetic scaffolds. This set-up allows investiga-
tion of the tissue-blood interface in a controlled environment that cannot be
monitored in animals or patients. It can also be utilized to study the interac-
tion with adjacent cells on disease sub-phenotypes, such as endothelial per-
meability, communication with blood cells, or platelet aggregation. Another
approach to fabricate vessel models in a biomimetic material is to utilize the
method of viscous fingering,36 thus forming co-centred channels instead of
adjacent ones. The approach also has the advantage of generating circular
vessel structures, which cannot be obtained via conventional PDMS mould-
ing. The method has been used to study cell–cell interactions in 600mm
wide37 and 250mm38 diameter vessel models. Although very interesting from
a biological perspective, there are several technical challenges with integrat-
ing biomimetic scaffolds into OoC systems, which have been discussed in
more detail elsewhere.39

One option to exploit the angiogenic potential of the cells themselves is
to increase the biological relevance of the vasculature models even further.
In such systems, vascular cells are seeded in the biomimetic scaffold and ex-
posed to mechanical stimuli via slow perfusion40 or a chemical gradient of
growth factors.41 This results in a vascular bed formation after 2–3 weeks, in-
cluding both larger macro-vessels and dense capillary microvascular net-
works. Taking a completely different approach to investigating small and
large artery diseases, one can utilize the advantages of microfluidics by devel-
oping advanced ex vivo culture platforms. They can be used if a higher com-
plexity is needed to investigate, for example, cell–cell interactions and their
relevance for the onset of a certain disease. An initial attempt to investigate
structural changes occurring within the vessel wall was presented by

Günther et al.42 They used a microfluidic platform for immobilizing small ar-
teries obtained ex vivo from mice and long-term culturing under physiological
conditions (37�C, 45 mmHg transmural pressure). Live imaging allowed
them to determine the arteries’ inner and outer diameter in real time while
assessing the effects of heterogeneous environmental changes on the micro-
vascular structure and function.

Cardiac models are often realized using the multichannel approach described
above, as it provides the possibility to compartmentalize the different domains
of the cardiovascular system. This unprecedented modularity has led to the de-
velopment of different heart-on-chip models that have focused on specific car-
diovascular subdomains of great interest to cardiovascular researchers. The
heart models can be fabricated to include multiple channels that are aligned in
parallel either along the horizontal axis 43–45 or the vertical axis.46–48 The choice
of layout is often related to the assays used, where horizontally structured chan-
nels, for example, allow for easy optical access of the separate compartments.

There are also several reports of 2D-based cardiac models,46,47 for exam-
ple developed with an electrophysiological focus due to the increased sim-
plicity of integrating planar electrodes with cell cultures. These systems are
often fabricated in more robust materials, such as silicon- or glass-coated,
with fibronectin, that enhance cellular adhesion.

Three-dimensional models, on the other hand, are more commonly found
in models that mimic multi-organ systems or three-dimensional aspects that
2D models fail to recapitulate, such as the force of contraction measure-
ments and maturation of the co-culture micro-tissues. Such models include
mechanically moveable parts, such as suspended membranes49,50 or cantile-
vers structures51 that expose the encapsulated cardiac cells to mechanical
stimulation during the culture.

A fabrication method that is rapidly gaining attention, both for realizing
vessels and heart constructs, is ‘bioprinting’, a type of additive manufacturing

Figure 1 Fabricating heart-on-chip and vessel-on-chip models using micromachining allows for integration of several advanced features.
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..or ‘3D printing’. In bio-printing, hydrogel cell suspensions are directly ex-
truded onto a substrate, building up the final biological structures layer-by-
layer. Advantage of bioprinting is that the final device can include a high level
of topographical complexity and that multiple cell and material combinations
can be realized. Bio-printed models of vascular networks52 have been
reported, and recently, proof-of-principle of a drug toxicity screening heart-
on-chip model using bioprinted cardiac cells was demonstrated.53 Although
bioprinting is a rapidly developing technology, the challenge with interfacing
bioprinted heart models with vascular models for controlled media perfusion
still remains.

2.1 Integrated electrodes for cellular

stimulation and read-out
The inclusion of electrodes in cell-culture systems assist in producing highly
controlled environments and allow for continuous read-out of parameters
essential to identifying cell behaviour. Various materials can be used for the
fabrication of the electrodes, including bio-friendly metals such as gold44 and
platinum,46,54 and organic conducting materials, such as carbon55 or poly
(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS).56

For the realization of reliable heart-on-chip models, it is very important to
support the development of cells with a mature electrophysiological conduc-
tion system, such as synchronized beating. Although some cultures of cardio-
myocytes show spontaneous synchronized beating already after a few days
of culture even without external interactions,44,54,57 an effective method to
induce synchronised beating in immature cultures is to assist the synchroniza-
tion of the beating by using external electrical stimulation58,59 (Figure 2).
Typically, the cells are exposed to trains of electrical pulses similar to the
electrical signalling of native cardiomyocytes. Often, this is achieved via large
external electrodes, but more user-friendly custom systems have been devel-
oped using integrated electrodes on-chip.44,60 It has been shown that matura-
tion of cells may be improved by pacing the cells as proved by expression of

a-actinin, connexin,43 and cardiac troponin-T.60 In addition to external elec-
trical stimulation, maturation schemes that rely on external mechanical43,61

and biochemical62 cues—or a combination of the aforementioned50,57—
have also been presented.

The main use for microfabricated integrated electrodes in heart-on-chip
systems is, however, for on-chip read-out of electrophysiology. Here, the ion
currents of the cells are measured extracellularly as changes in the field po-
tential. The extracellular field potential is closely linked to the QT interval
through the corrected field potential duration.63 Multiple localized measure-
ments of single cells enable assessment of the synchronization of beating cells
and wavefront propagation. As demonstrated in open-format cell cultures,
cells can be cultured on top of high-density electrodes, so-called microelec-
trode arrays (MEAs) for read-out of cellular electrophysiology.64–66

Customized MEAs can fit in virtually any microfluidic system and have been
reported for several OoC systems.46,54,67

Normally, very close contact between the cells and the MEA is desired for
optimal resolution and signal strength, resulting in cell culture on hard flat
surfaces and 2D cell models. To make the culture environment more biomi-
metic, Kujala et al.64 cultured cardiomyocytes on a �100-mm-thick micro-
grooved gelatin layer attached to the MEA and showed that the electrophysi-
ology still could be mapped, although no longer with single-cell resolution.
Other approaches that address the issue of 2D culture on hard surfaces are
non-contact MEA measurements as explored by Sharf et al.68 and patterning
of MEAs on a soft PDMS substrate as demonstrated by Gaio et al.57

Electrical sensors can also be integrated to monitor cell contraction. Quin
et al.65 have demonstrated this in an open-top structure, where interdigitated
electrodes were pattered for cell-contraction measurements in combination
with MEAs to monitor beating. Although highly correlated in normally func-
tioning cardiac tissue, contraction and electrophysiology are two different
mechanisms that are important to follow in heart-on-chip models.
Alternative ways to map cell contraction is to integrate mechanical sensors
into the heart model,54,66 or to utilize an external optical read-out with

Figure 2 Schematic drawing showing the six basic steps of PDMS moulding to form a microfluidic channel that can be used in organs-on-chip. 1—A
master is prepared having the inverse topography of the final channel structures, 2—PDMS pre-polymer is poured onto the master and polymerised
upon heat treatment, 3—The moulded channels are released from the master, 4—Holes for connecting tubing for media perfusion are prepared in the
PDMS by punching, 5—The PDMS surface is activated for bonding via plasma treatment, 6—The microfluidic channels are sealed by bonding the PMDS
slab onto a glass microscope slide which may include patterned electrodes.
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..computational motion tracking,62 or mapping the transient intracellular cal-
cium signal using cells modified to include GCaMP6.44

Integrated electrodes are also interesting for vessel models, as they can be
used to assess the barrier integrity of the cultured cells via trans-endothelial
electrical resistance (TEER) measurements. Most commonly, this method
works by integrating electrodes on either side of a porous membrane on
which the ECs are cultured. As the cells form tight junctions, it becomes in-
creasingly more difficult for any electrical current to flow through the cell
layer, and the measured electrical resistance increases. It is possible to com-
bine electrophysiological measurements and TEER as demonstrated by Maoz
et al.,46 using a dual-channel, endothelialized heart-on-chip model. Further,
3D tubular vessels may incorporate TEER sensing capability by insertion of
electrodes inside the vessel and in a surrounding hydrogel matrix.69

It may be noted that most models with integrated electrical sensing capa-
bilities are two-dimensional, which is explained by the well-established tech-
nology to form electrodes on hard 2D surfaces. However, electrodes can
also interface more in vivo-like cardiac microtissue as in the case of Weng
et al.44 An increase in the number of publications on this topic is expected.
Further, the hydrogel scaffold may be topologically patterned on top of the
electrodes,64 or the electrodes themselves can be structured into 3D for-
mats.60,70 Alternatively, conducting and biocompatible scaffolds can be pre-
pared, thus enabling electrical read-out via the porous scaffold itself.71

2.2 Heart-on-chip disease models
Heart-on-a-chip models developed so far have focused on establishing biomi-
metic, functional aspects of the heart, focusing in particular on the co-culture
of multiple cell types, for example, cardiomyocytes and cardiac fibroblasts as
well as on the electromechanical stimulation of the cells cultured on these

systems (Figure 3). Heart-on-chip models aim to recapitulate the intricate
conditions of the microenvironment that cells would experience in the heart.
Nonetheless, the ability to include 3D cell cultures in these devices enables
an increase in their biological complexity. Control over the microenviron-
ment and the cultured cell types permits the recreation of relevant aspects
of a specific disease (Table 1). Among the different reported heart-on-a-chip
platforms, models to address cardiac ischaemia, cardiac fibrosis, and cardio-
toxicity can be found in the literature (Figure 3), whereas many other exiting
approaches have been developed and summarized in further review
articles.62,72–77

2.2.1 Ischaemia
The abrupt disruption of blood flow in ischaemia leads to the accumulation
of metabolic by-products while reducing the oxygen supply to the tissue.
This locally affects the contraction of cardiomyocytes. Liu et al.67 were able
to replicate the hypoxic microenvironment and follow the action potential
changes over time in the cell culture using patterned electrodes in a heart-
on-a-chip device. The combination of the microenvironment cues, along
with the insights gained from the electrophysiology of the cells depicts the
solid control that can be attained with these devices.

2.2.2 Cardiac fibrosis
In the scope of cardiac fibrosis, Kong et al.49 were able to recreate the in-
creased ECM stiffness using a photopolymerizable hydrogel while including
the mechanical load similar to the stimulus that cardiac fibroblasts would ex-
perience under pro-fibrotic conditions. The cyclic mechanical loading, along
with the exposure to a biochemical stimulus like transforming growth factor
b (TGFb) can even more closely mimic the fibrotic microenvironment of the

Figure 3 Heart-on-chip devices can recapitulate cardiac functions in vitro and integrate sensing units to monitor the cells in culture, e.g. action potential.
Examples of cardiovascular diseases can be found in these devices, such as ischaemia and cardiac fibrosis. Integrated electrodes and mechanical actuation
allow to monitor and stimulate the cells in culture, better recapitulating the cardiac microenvironment.
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..heart. There have also been non-microfluidic devices that make use of 3D
cardiac tissue models to mimic hallmarks of cardiac fibrosis using human
induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) along
with fibroblasts. Mastikhina et al.78 reported a model where expression of
collagen and brain natriuretic protein were upregulated when tissues
were exposed to TGF-b, a pro-fibrotic agent, and downregulated when
subsequently exposed to an anti-fibrotic drug. Wang et al.35 used cardiac
fibroblast overpopulation of the tissues to mimic a fibrotic scenario, thus
avoiding the pleiotropic effects of TGF-b. These two methods could be
combined into microfluidic devices in additional adjacent compartments
where, ECs can be integrated, and more complex, integrative models
be made.

2.2.3 Cardiotoxicity
Interestingly, the vast majority of heart-on-chip devices reported in literature
state cardiotoxicity as their primary goal. Although cardiotoxicity encom-
passes a myriad of aetiologies, two common trends can be found in these
devices: (i) an investigation of the toxic effects that specific drugs have on car-
diac cells and (ii) the toxic effect produced by the co-cultured cells from
other organs (e.g. liver). The highly controlled environment of the heart-on-
chip devices makes it a highly appealing platform for drug toxicity studies, as
evidenced by a large number of devices with this as its motivation of the
design.

The highly controlled microenvironment in heart-on-chip models makes
them very useful for modelling diseases. There is plenty of room to study dis-
ease mechanisms that cannot be dissected in common platforms such as cell
culture and animal models. However, one advantage of animal models com-
pared with heart-on-a-chip models is the cross-talk between different organs,
which are typically involved in the chronic diseases that lead to CVD.79 A ma-
jor challenge in developing heart-on-a-chip disease models would be the diffi-
culty of integrating multi-organ co-cultures for longer periods of time,
typically around 1 week–7 days—after tissue formation. Nonetheless,
aspects of complex chronic diseases can still be modelled with OoCs, e.g.,
cardiac fibrosis, as mentioned above.

Naturally, the aforementioned models make use of cardiac cells, a scarce
resource since primary cardiomyocytes proliferate poorly in vitro. With the
advent of human iPSC-CMs, this major cell source bottleneck is gradually be-
ing overcome. However, hurdles still remain to improve their immaturity,
which ultimately affects the pharmacological response, with oncotherapy
effects80 and the biomimetic aspects of the OoCs that employ human iPSC-
CMs. Cardiac cell maturity can be defined in several aspects such as

electrophysiology, metabolism, and morphology, to name a few. Unveiling
what mechanisms underlie iPSC-derived cardiomyocytes maturity is an active
field of research and is reviewed elsewhere.81 The models created with these
cells naturally inherit their limitations. There are examples of initiatives that
aim to characterize iPSC-CMs and their response to pharmacological agents
with a known response as an attempt to benchmark different cell sources,
such as the CiPA initiative82 and the Pulse CRACK-IT83 project. In the future
development of heart-on-chip models, the drugs used for benchmarking in
the mentioned initiatives can be used as a reference for new devices. With
the aim of generating a model where the response of cardiac tissues exposed
to libraries of compounds could determine the drug used, Lee et al.84 used a
machine-learning model for the drug-response analysis. This clearly
demonstrates that heart-on-chip development is a multidisciplinary field,
where pharmacologists, engineers, biologists, regulators, and clinicians,
among others, play a key role in the development of these models and their
respective validation.

2.3 Studying atherosclerosis using chip-based

systems
Modelling the different stages of the advancement of atherosclerosis is con-
sidered crucial in the development of vascular OoCs (summarized in Table 2
and Figure 4). Qiu et al.25 developed a 3D microvasculature-on-chip that is
able to display physiological endothelial barrier function for several weeks,
therefore allowing to study how chronic endothelial dysfunction develops.
To model atherosclerosis progression, several devices have been created
with occlusion or stenosis of the lumen, which recreates the higher shear
region commonly found in developing atherosclerotic plaques.38

Westein et al.,85 Tovar-Lopez et al.,86 and Costa et al.87 have provided
excellent examples of how to investigate atherosclerosis using chip-based
systems. These three models differ regarding their biological and technical
complexity. The chips developed by Westein et al. and Tovar-Lopez et al.
consist of a square channel in which an artificial atherosclerotic plaque is al-
ready embedded (Figure 4). In order to study 3D vessel geometry in a more
physiologic way, Costa et al.87 created different 3D vascular structures by
using 3D-printed anatomical models based on observations generated
by computed tomography angiography. They were, therefore, able to
closely mimic architectures found in both healthy and stenotic blood vessels.

A disadvantage of these models is the lack of the ECM, as PDMS is respon-
sible for creating the lumen that directly surrounds the cells. If the occlusion
mechanism and pathophysiology of the development of atherosclerosis are

..............................................................................................................................................................................................................................

Table 1 Summary of the heart-on-chip platforms.

Aspects of human cardiac physiology and disease in organs-on-chips

Cardiac physiology Defined 3D tissue organization 43,48,61,62,64,135

Force of contraction 51,54,130,135

Electrophysiology 43,46,57,62,64,65,67,135

Cardiac-vascular interactions 44,46,62,135

Body-on-chip approach 54,130,135

Cardiac disease and toxicity Hypertrophy 61

Arrhythmia 47,49

Ischaemia 67

Fibrosis (e.g. fibroblast proliferation, collagen deposition, and valve calcification) 47,49

Inflammation 46,135

Cardiotoxicity & Pharmacology 43,44,46,51,54,61,62,64,65,130,135

The selection criteria employed in this table were that the devices used in the study could be considered a heart-on-a-chip device, i.e. a microfluidic device where the microenviron-
ment of the cells or tissue in culture can be controlled and/or be stimulated mechanically and/or electrically. Platforms where constructs are cultured in well-plates or make use of
spheroid technology were not considered due to the lack of their microfluidic character, which is seen as a requirement for organs-on-chips.
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to be studied, a more flexible model in which monocytes and macrophages
can be included would be highly appreciated.

2.4 Mimicking thrombosis on-a-chip
Thrombosis is a complex process influenced by genetic and environmental
factors, involving three main components: abnormalities in the vessel wall
(endothelium), abnormalities in components of the blood (coagulation pro-
teins and platelets), or abnormalities in fluid dynamics (turbulence flow and
shear stress).88,89 Unlike static in vitro cell-culture models, vessels-on-a-chip
can mimic the effect of flow and its interaction with the vessel wall while
overcoming inter-species differences of animal models. Microfluidic

technology has therefore been used extensively to create new in vitro models
to study thrombotic diseases.90–94

Although previous work has been published studying thrombosis on
microfluidic devices lacking ECs (reviewed in Westein et al.91 and Zhu
et al.92), we here review OoC models of thrombosis typically consisting of a
tubular or rectangular mould that is covered by components of the ECM
(typically fibrin or collagen). ECs form a monolayer, therefore recreating en-
dothelial geometry and function. In normal healthy conditions, the endothe-
lium has anticoagulant and anti-inflammatory properties, therefore allowing
blood flow through the lumen and preventing platelet activation and fibrin
clot formation.95 Upon endothelial damage or activation, coagulation and

..............................................................................................................................................................................................................................

Table 2 Summary of vessel-on-chip platforms.

Aspects of human vascular physiology and disease in organs-on-chips

Vascular physiology Perfusable 3D blood vessels with defined geometries 37,38,87,93,97,139,140

Perfusable microvasculature with self-organized geometries 31,141

Angiogenesis 31,34

Endothelial-mural interactions 31,34,37,139

Blood perfusion 34,85,87,94,98,99

Vascular disease modelling Thrombosis 34,85,87,93,94,97–99

Inflammation (e.g. permeability and adhesion molecules) 31,34,37,85,93,94,97,98,139

Immune cell recruitment 31,34

Vessel-on-chip devices included in this table consist of different types of perfusable blood vessels modelling human vascular physiology as well as pathophysiology.

Figure 4 Vessels-on-chips devices are useful tools to study pathological mechanisms occurring within the vessel wall in early and later stages of athero-
sclerosis. Preliminary research can be performed in easier fabricated straight PDMS channels, whereas for more extensive and complicated research
questions, a more elaborate model can be used by producing a 3D lumen in a hydrogel.
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platelet aggregation are triggered to promote the formation of a thrombus.96

Besides endothelial damage, several stimuli and the effect of blood flow are
known to activate the endothelium.

Several examples of OoC have been published that study the different
triggers of clot formation through direct monitoring of platelet aggregation
under a microscope. In this direction, Zheng et al.34 engineered microvascu-
lar networks by seeding HUVECs intro microfluidic circuits coated with col-
lagen and demonstrated that upon perfusion with human blood, rolling and
adhesion of platelets occurred only at sites of damage—or in stimulated en-
dothelium where long fibres of von Willebrand factor (VWF) covered the
surface of the activated endothelium. These structures had not been
reported in previous planar cultures or mouse models of thrombosis.
Similarly, a recent study by Brouns et al.94 explored the anticoagulant effect
of intact endothelium (created by a microfluidic model coated with
HUVECs) through natural anticoagulants while comparing with artificially
damaged endothelium covering a highly thrombogenic surface created with
collagen and tissue factor.

One of the key advantages of OoCs is their great capacity to tightly con-
trol vessel geometry and flow, which has contributed significantly to the un-
derstanding of flow-based changes on platelet activation and the risk of
thrombosis. To better understand the contribution of atherosclerosis and
vessel stenosis to thrombosis, stenotic vessels perfused with whole human
blood have been developed. The results indicate that platelets aggregate at
the outlet zone of constriction, therefore concluding that the shear rate is
crucial for platelet adhesion and aggregation.85,87,90,97

Although these examples clearly contribute to advancing research and un-
derstanding of the coagulation process, most of these models are not practi-
cal to enhance clinical diagnosis. Several commercial devices are emerging
with the idea to provide simple tools that can be used for clinical testing.
Towards this aim, Mannino et al.97 proposed a commercial simple endothe-
lial-coated cylindrical microchannel to test the effect of local vascular geome-
tries on blood cell-endothelium interactions. One year later, Jain et al.98

demonstrated that a microfluidic device coated with ECs could be fixed and
still retain their ability to modulate haemostasis under flow. The device was
able to detect differences in patients taking antiplatelet medication and there-
fore providing a new tool for clinical laboratories for coagulation testing in
more robust and practical diagnostic assays.

Mathur et al.99 created a model for thrombo-inflammation where they first
isolated blood outgrowth endothelial cells (BOEC) from healthy subjects
and then introduced these cells to microfluidic channels. These cells were
then stimulated with TNFa and exposed to re-calcified human whole blood
to compare the inflammatory response of these cells to models using
HUVECs. Due to the easy isolation method of these BOECs, and a different
response of healthy and unhealthy patients, this model could be used as a
tool in personalized medicine approaches for certain pathologies, in which
thrombo-inflammation is an essential contributor to disease exacerbation.

Sepsis is a disease often coinciding with thrombus formation in smaller
vessels and arteries, which can lead to ischaemic events of the heart and sub-
sequent HF.100 Many of the models described above can be used to model
thrombotic sepsis in a microfluidic chip. In sepsis, high levels of inflammation
in blood vessels are observed and accompanied by an elevation of TNF-a,
interleukin-1, and interferons. These factors activate the endothelium to a
pro-thrombotic state and strongly induce thrombus formation.101,102 After
incubation with these factors, or other known contributors to sepsis, a blood
perfusion assay can be performed to better understand more mechanisms
involved in sepsis-associated thrombosis.

Finally, clinical applicability has also been demonstrated by using vessels-
on-chips to predict thrombotic side effects in drug candidates prior to human
clinical trials. For example, Tsai and collaborators used a vessel-on-chip de-
vice to perfuse blood samples from patients with sickle cell disease and test
the effect of certain drugs in microvascular occlusion and thrombosis.93

Another study by Barrile et al.103 used a vascular channel coated with ECs
and perfused whole human blood to study the potential for different drugs

to promote blood clots. These studies serve as interesting examples for the
potential of vessels-on-chips to evaluate thrombotic side effects that would
otherwise be missed in prior animal or static cell culture studies. They are
further proof of how OoCs can enhance drug safety during the process of
developing novel treatment strategies.

2.5 Future importance of organs-on-a-chip in

personalized cardiovascular medicine
Animal and genetic studies have implicated specific genes conferring in-
creased susceptibility to many human diseases. Together with other emerg-
ing techniques (e.g. genome editing), OoCs have the potential to significantly
enhance our understanding of how certain genes and epigenetic regulators
are capable of influencing our personal CVD risk.

The novel genome editing CRISPR/Cas9 technology enables the introduc-
tion of targeted mutations or specific gene knock-outs104 into human cells.
This methodology has allowed the generation of stable cell lines carrying the
desired genetic mutation/knock-out while eliminating the effect of inter-indi-
vidual variations due to the genetic background.

Although primary cells from specific individuals can be difficult to obtain
and cannot be cultured indefinitely, stable cell lines with the desired genomic
background can be generated from human iPSCs. Human iPSCs are obtained
from a somatic cell and can be differentiated into all cell types.110,111 They
can therefore be derived from accessible adult tissues of any patient, such as
the blood or the skin. There are current protocols available for the genera-
tion of cardiomyocytes,112 defined atrial and ventricular cardiomyocyte sub-
types,113 ECs as well as pericytes and vascular SMCs.114,115 An important
limitation of iPSC-CMs relates to their immaturity. In fact, they share more
similarities with foetal than adult human CMs. Although human iPSC-CMs
express high levels of cardiac-specific genes and display a striated pattern for
a-actinin and myosin light chain similar to the adult ventricular myocardium,
their shape is typically roundish (and not elongated), whereas their cell body
is smaller.111 In addition, the intrinsic immaturity of iPSC-CMs is reflected by
electrophysiological impairments,111 which constitute a valid criticism when
employing these cells for the investigation of arrhythmias. Various methods
to enhance maturity are constantly developed and refined, including expo-
sure to electrical stimulation, application of mechanical strain, and culturing
human iPSC-CMs in three-dimensional tissue configuration.112 A great
advantage of the iPSC differentiation protocols is that they allow for patient-
specific iPSC-derived systems that can be conveniently edited to test the
effect of specific disease-related mutations.113,114 The aforementioned
gene-editing can be used to restore the effect of specific genes or mutations
while exploring genotypic effects on specific phenotypes.

The opportunity to build OoC with disease-relevant cells can minimize
the current challenges of most genomic studies. For example, vessel- and
heart-on-chip designs could be used to test whether genetic associations
emerging from recent CAD, VTE, HF, or IS GWAS will increase the disease
risk through an effect in the cardiovascular system. At the same time, blood
from individuals with a known genetic background can be perfused into
different microchannels to study interactions between blood cells and the
endothelium. Overall, the advanced possibilities of OoCs using novel avail-
able technologies offer great potential to finally elucidate the effect of genetic
factors on CVD phenotypes, therefore enabling us to more rapidly and effi-
ciently move towards the era of personalized medicine and pharmacoge-
nomics. OoCs have already demonstrated their potential to support clinical
trials of certain drug candidates.120 The opportunity to create patient-specific
organ-on-chips could therefore pave the way for the development of precise
and individualized therapies.

It is essential to mention that the majority of advances in personalized
medicine stem from organoids-based research. In this context, Atchinson
et al.116 have developed micro-engineered blood vessels based on SMCs de-
rived from human iPSC of Hutchinson–Gilford progeria, a rare accelerating
aging disorder that causes early onset of atherosclerosis. The work
highlighted the possibility of the in vitro system to recapitulate the key features
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of the disease and how to utilize it as a patient-specific drug testing device.
More recently, self-assembled 3D blood vessel organoids have been gener-
ated from human iPSCs. Blood vessel organoids are made of endothelial net-
works and pericytes that are genetically identical and can recapitulate the
formation of a vascular lumen and basement membrane deposition.117

However, it is not yet possible to mimic blood flow perfusion in these models
and therefore to obtain functional parameters, such as permeability or
immune-cell adhesion/extravasation under defined in vitro conditions. This, as
aforementioned, is one of the major advantages of OoC systems.

Moreover, several studies showing the integration of gene-editing technol-
ogy and organoids culture systems have been published.118,119 An example
was presented in a cystic fibrosis organoid model, where mutations in CFTR
gene were repaired in intestinal stem cells by CRISPR/Cas9 system.120

Genome editing in iPSC-derived organoids have also been proved useful for
drug testing,121 or to study the effect of virus infections.122,123 Very recent
work in organoids made from iPSCs have shown that SARS-CoV-2 can infect
engineered human blood vessel organoids and leak out into the blood-
stream124 and that the infection could be inhibited by human recombinant
soluble angiotensin-converting enzyme 2 (ACE2).

Few examples of personalized medicine accompanied by OoCs have been
published in the CVD field.125,126 Wang et al.127 created a heart-on-a-chip
using genetically engineered iPSC to proof that contractile deficiencies in car-
diomyocytes associated with Barth syndrome were caused by a mutation in
tafazzin gene, thus elucidating the biological mechanism and providing poten-
tial therapeutic targets to treat the disease. Another interesting approach is
the integration of clinical data with the fabrication of OoC devices was used
by Costa et al.,87 as described in detail in the atherosclerosis section above.
Here, CTA data of a coronary artery formed the basis to construct personal-
ized chips with the measured grade of stenosis. This method allowed the
researchers to reproduce in vitro the unique (personalized) flow profile of
individual patients and to observe the formation of thrombi dynamically.
Similarly, blood vessel-on-chips can be perfused with human blood from indi-
viduals treated with different anticoagulant therapies to assess drug response
of specific patients in a personalized manner.128

3. Conclusion and outlook

OoCs have advanced the drug development process by stimulating
scientists to increase the level of complexity of better mimicking human
biology and physiology on a more systemic level. Further, the possibility
to integrate more than one organ in the same model is an important and
on-going effort in the field.129–131 Microfluidic devices that contain the
function of different organs have been connected with each other via
vessels-on-chips to obtain the so-called ‘body-on-a-chip’. This concept
captures the potential efficacy and toxicity of a drug in different
organs.129,132 An important advancement in the validation of multi-
organs-on-chip usage in drug screening has been the integration of sen-
sors to ensure continuous assessment of the microenvironment parame-
ters (pH, oxygen, and temperature).133 Kamei et al.134 have developed
an integrated system composed by a healthy heart-on-chip connected to
a liver cancer-on-chip and recapitulated the cardiotoxic effect of the
anti-cancer drug doxorubicin. The side effect of the doxorubicin treat-
ment on cardiac cells was due to toxic metabolites produced in the liver
cancer cells.

Especially relevant for cardiovascular research are models that include
both vasculature and the heart. This can be achieved either by building a
microfabricated vascular network that cardiac tissue can be shaped
around135 or by generating vascularized cardiac microtissues via co-cul-
ture with ECs. The latter approach shows a higher biological relevance
but comes with the challenge to interface the microtissue constructs
with microfluidic circuits for controlled perfusion. To recapitulate

complex, multi-layered, and interconnected tissue architectures remain
impossible with the current engineering approaches utilised to build
OoCs. However, the possibility to combine biological self-assembly ca-
pabilities of organoids with the controllable assembly of microfabricated
OoCs represents an attractive advancement of both technologies. This
has been demonstrated by a novel microphysiological model of the hu-
man retina derived from hiPSCs incorporated in a two-channel chip sep-
arated by a thin porous membrane mimicking the endothelial barrier and
enabling the exchange of nutrients and metabolites.136

An important challenge for cardiovascular OoC platforms is the ability
to reproduce the chronic aspect underlying the progression of CVDs.
Animal models in this respect are still somewhat irreplaceable; however,
investigators can benefit from OoCs to study a specific mechanism and
subsequently refine the targets to be evaluated in further animal models.

The field of OoC is growing, and an increasing number of academic
groups and companies are becoming active in the development of OoC
systems.19 All these OoC systems have different layouts and interfaces,
which prevents them from being easily connected, interchanged, or
compared. This lack of common standards for OoC systems is consid-
ered to be one of the major challenges in their future development and
implementation.137 Initiatives are currently emerging in the field to ad-
dress this challenge, for example, the development of a Translational
Organ-on-Chip Platform, which aims to be an ‘open’ platform based on
standards that are defined and supported by the stakeholders (develop-
ers, manufacturers, users) in the field (https://top.hdmt.technology/).

Standardization and harmonization are not only of importance for the
technical aspects of an OoC but also for the cells and tissues that are in-
tegrated into the chips. Human cells are highly variable in terms of
growth, stability, and function, particularly when primary tissues or stem
cells are used as a source. Mainly, users from the industry consider ac-
cess to human cell material, including patient material, to be a major chal-
lenge.138 In the field of stem-cell technology, efforts are made to address
this issue by setting up open databases of available human stem-cell lines,
including their characteristics, sources, and restrictions to use (e.g.
https://hpscreg.eu/).

Overall, the use of OoC is rapidly moving from basic science to trans-
lational research to validate results from genomic studies and provide
better models for drug testing, paving the way for personalized medicine.
The combination of organ-on-chips with gene editing and iPSC use for
better control of genetic background is becoming an innovative, attrac-
tive alternative for the functional study of the cardiovascular system.
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Tokgözo�glu L, Lewis EF. Atherosclerosis. Nat Rev Dis Primers 2019;5:56.

4. Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth
muscle cells in atherosclerosis. Nat Rev Cardiol 2019;16:727–744.

5. Phillippe HM. Overview of venous thromboembolism. Am J Manag Care 2017;23:
S376–S382.

6. Bahit MC, Kochar A, Granger CB. Post-myocardial infarction heart failure. JACC:
Heart Failure 2018;6:179–186.

7. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part
1 of 2. Circulation 2013;128:388–400.

8. Kehat I, Molkentin JD. Molecular pathways underlying cardiac remodeling during
pathophysiological stimulation. Circulation 2010;122:2727–2735.

9. Page RL, O’Bryant CL, Cheng D, Dow TJ, Ky B, Stein CM, Spencer AP, Trupp RJ,
Lindenfeld JAnn, Lindenfeld J, American Heart Association Clinical Pharmacology
and Heart Failure and Transplantation Committees of the Council on Clinical
Cardiology; Council on Cardiovascular Surgery and Anesthesia; Council on
Cardiovascular and Stroke Nursing; and Council on Quality of Care and Outcomes
Research. Drugs that may cause or exacerbate heart failure: a scientific statement
from the American Heart Association. Circulation 2016;134:e32–e69.

10. Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM.
Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-
oncological prevention. J Natl Cancer Inst 2010;102:14–25.

11. Nelson CP, Goel A, Butterworth AS, Kanoni S, Webb TR, Marouli E, Zeng L, Ntalla
I, Lai FY, Hopewell JC, Giannakopoulou O, Jiang T, Hamby SE, Di Angelantonio E,
Assimes TL, Bottinger EP, Chambers JC, Clarke R, Palmer CNA, Cubbon RM,
Ellinor P, Ermel R, Evangelou E, Franks PW, Grace C, Gu D, Hingorani AD,
Howson JMM, Ingelsson E, Kastrati A, Kessler T, Kyriakou T, Lehtimäki T, Lu X, Lu
Y, März W, McPherson R, Metspalu A, Pujades-Rodriguez M, Ruusalepp A, Schadt
EE, Schmidt AF, Sweeting MJ, Zalloua PA, AlGhalayini K, Keavney BD, Kooner JS,
Loos RJF, Patel RS, Rutter MK, Tomaszewski M, Tzoulaki I, Zeggini E, Erdmann J,
Dedoussis G, Björkegren JLM, Schunkert H, Farrall M, Danesh J, Samani NJ, Watkins
H, Deloukas P, EPIC-CVD Consortium. Association analyses based on false

discovery rate implicate new loci for coronary artery disease. Nat Genet 2017;49:
1385–1391.

12. Lindström S, Wang L, Smith EN, Gordon W, Vlieg AH, de Andrade M, Brody JA,
Pattee JW, Haessler J, Brumpton BM, Chasman DI, Suchon P, Chen M-H, Turman
C, Germain M, Wiggins KL, MacDonald J, Braekkan SK, Armasu SM, Pankratz N,
Jackson RD, Nielsen JB, Giulianini F, Puurunen MK, Ibrahim M, Heckbert SR,
Damrauer SM, Natarajan P, Klarin D, de Vries PS, Sabater-Lleal M, Huffman JE,
Bammler TK, Frazer KA, McCauley BM, Taylor K, Pankow JS, Reiner AP, Gabrielsen
ME, Deleuze J-F, O’Donnell CJ, Kim J, McKnight B, Kraft P, Hansen J-B, Rosendaal
FR, Heit JA, Psaty BM, Tang W, Kooperberg C, Hveem K, Ridker PM, Morange P-E,
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