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Abstract— The emergence of deep learning has consider-
ably advanced the state-of-the-art in cardiac magnetic res-
onance (CMR) segmentation. Many techniques have been
proposed over the last few years, bringing the accuracy
of automated segmentation close to human performance.
However, these models have been all too often trained and
validated using cardiac imaging samples from single clin-
ical centres or homogeneous imaging protocols. This has
prevented the development and validation of models that
are generalizable across different clinical centres, imaging
conditions or scanner vendors. To promote further research
and scientific benchmarking in the field of generalizable
deep learning for cardiac segmentation, this paper presents
the results of the Multi-Centre, Multi-Vendor and Multi-
Disease Cardiac Segmentation (M&Ms) Challenge, which
was recently organized as part of the MICCAI 2020 Confer-
ence. A total of 14 teams submitted different solutions to the
problem, combining various baseline models, data augmen-
tation strategies, and domain adaptation techniques. The
obtained results indicate the importance of intensity-driven
data augmentation, as well as the need for further research
to improve generalizability towards unseen scanner ven-
dors or new imaging protocols. Furthermore, we present a
new resource of 375 heterogeneous CMR datasets acquired
by using four different scanner vendors in six hospitals
and three different countries (Spain, Canada and Germany),
which we provide as open-access for the community to
enable future research in the field.
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I. INTRODUCTION

ACCURATE segmentation of cardiovascular magnetic res-
onance (CMR) images is an important pre-requisite in

clinical practice to reliably diagnose and assess a number of
major cardiovascular diseases [1], [2]. Currently, the process
typically requires the clinician to provide a significant amount
of manual input and correction to accurately and consistently
annotate the cardiac boundaries across all image slices and
cardiac phases. The automation of such a tedious and time-
consuming task has been pursued for a long time by using mul-
tiple approaches, such as statistical shape models [3] or cardiac
atlases [4]. In the last few years, the advent of the deep
learning paradigm has motivated the development of many
neural network based techniques for improved CMR segmen-
tation, as listed in a recent review [5]. However, most of these
techniques have been all too often trained and evaluated using
cardiac imaging samples collected from single clinical centres
using similar imaging protocols. While these works have
advanced the state-of-the-art in deep learning based cardiac
image segmentation, their high performances were reported on
samples with relatively homogeneous imaging characteristics.

As an example, the CMR datasets from the Automated
Cardiac Diagnosis Challenge (ACDC) dataset [6] have been
extensively used to build and test new implementations of
deep neural networks for cardiac image segmentation. The
top performing technique in the ACDC challenge, proposed
by Isensee et al. [7], obtained a very high segmentation
accuracy for both the left and right ventricles. However,
the ACDC datasets were compiled from 150 subjects scanned
at a single clinical centre using the same imaging protocol,
which limits the ability of the researchers to develop and test
models that can generalize suitably across multiple centres
and scanner vendors. Other researchers attempted to encode
higher variability by building and testing their models based
on much larger datasets obtained from the UK Biobank [8].
For instance, Bai et al. [9] implemented a fully convolutional
network that achieved highly accurate results on this large
dataset (over 4,875 cases), but the authors concluded that their
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model might not generalize well to other vendor or sequence
datasets.

Some researchers proposed to improve CMR segmenta-
tion by training neural networks with images from multiple
cohorts [10], [11], but these works do not include methods for
addressing domain shifts between training and new unseen
cohorts. Other works used data augmentation on models built
from single cohorts such as the ACDC [12] or the UK
Biobank [13], then tested their techniques on other existing
public cohorts, including the Sunnybrook Cardiac Data [14],
LV Segmentation Challenge Dataset (LVSC) [15] or RV
Segmentation Challenge Dataset (RVSC) [16]. However, these
studies are limited by the fact that these different CMR
cohorts have been annotated with distinct standard operating
procedures (SOPs), which makes it difficult to draw con-
clusions from the multi-cohort comparative results. Further-
more, such an approach requires a large training dataset from
the single centre to model high variability across subjects.
Another multi-centre and multi-vendor study conducted by
Tao et al. [11] relied solely on private data, which makes
it difficult to replicate the results and perform community-
driven benchmarking. While these recent works confirmed the
difficulties encountered by deep learning models to generalize
beyond the training samples, they also support the need for
well-defined heterogeneous public datasets that can be used
by the community to improve model generalizability through
scientific benchmarking.

In this context, the Multi-Centre, Multi-Vendor and Multi-
Disease Cardiac Segmentation (M&Ms) Challenge was pro-
posed and organized as part of the Statistical Atlases and
Computational Modelling of the Heart (STACOM) Workshop,
held in conjunction with the MICCAI 2020 Conference. The
M&Ms challenge was set up as part of the euCanSHare inter-
national project,1 which is aimed at developing interoperable
data sharing and analytics solutions for multi-centre cardiovas-
cular research data. Together with clinical collaborators from
six different hospitals in Spain, Canada and Germany, a public
CMR dataset was established from 375 participants, scanned
with four different scanners (Siemens, Philips, General Electric
(GE) and Canon) and annotated using a consistent contouring
SOP across centres.

To our knowledge, this dataset is the most diverse resource
of CMR studies, which is provided as open-access2 to promote
further research and scientific benchmarking in the devel-
opment and evaluation of future generalizable deep learning
models in cardiac image segmentation. In this paper, we also
present and discuss the results of the M&Ms challenge in
detail, to which a total of 14 international teams submitted
a range of solutions, including different strategies of transfer
learning, domain adaptation and data augmentation, to accom-
modate for the differences in scanner vendors and imaging
protocols. The obtained results show the extent of the problem,
the promise of the proposed solutions, as well as the need for
further research to build fully generalizable tools that can be

1euCanSHare project website: www.eucanshare.eu
2The dataset is publicly available at www.ub.edu/mnms

TABLE I
INFORMATION FROM CENTRES INCLUDED IN THIS WORK

Fig. 1. Visual appearance of a CMR short axis middle slice for
anatomically similar subjects in the four different vendors considered.

TABLE II
DISTRIBUTION OF THE MOST FREQUENT PATHOLOGIES AND HEALTHY

VOLUNTEERS BETWEEN CENTRES. THE ABBREVIATIONS

CORRESPOND TO HYPERTROPHIC CARDIOMYOPATHY (HCM), DILATED

CARDIOMYOPATHY (DCM), HYPERTENSIVE HEART DISEASE (HHD),
ABNORMAL RIGHT VENTRICLE (ARV), ATHLETE HEART

SYNDROME (AHS), ISCHEMIC HEART DISEASE (IHD),
AND LEFT VENTRICLE NON-COMPACTION (LVNC)

translated reliably and deployed in routine clinical practice
across the globe.

II. CHALLENGE FRAMEWORK

A. Data Preparation

A total of six clinical centres from Spain, Canada and
Germany (numbered 1 to 6 in this work) contributed to this
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TABLE III
AVERAGE SPECIFICATIONS FOR THE IMAGES ACQUIRED IN THE DIFFERENT CENTRES

challenge by providing a different number of CMR studies
from different scanner vendors, as detailed in Table I. In total,
375 studies were included in this challenge. The subjects
considered for this multi-disease study were selected among
groups of various cardiovascular diseases, such as hypertrophic
cardiomyopathy, dilated cardiomyopathy, coronary heart dis-
ease, abnormal right ventricle, myocarditis and ischemic car-
diomyopathy as well as healthy volunteers (see Table II for
more details on the distribution of these cases). The specific
scanner manufacturers are: 1) Siemens (Siemens Healthi-
neers, Germany), 2) Philips (Philips Healthcare, Netherlands),
3) General Electric (GE, GE Healthcare, USA) and 4) Canon
(Canon Inc., Japan). These four manufacturers were coded
as A, B, C and D during the challenge, respectively. The
CMR images derived from these four vendors are illustrated
in Fig. 1. More specific details on the studies are given
in Table III.

Every CMR study was annotated manually by an expert
clinician from the centre of origin, with experiences ranging
from 3 to more than 10 years. Following the clinical protocol,
short-axis views were annotated at the end-diastolic (ED) and
end-systolic (ES) phases, as they correspond to the phases
used to compute the relevant clinical biomarkers for cardiac
diagnosis and follow-up. Three main regions were considered:
the left and right ventricle (LV and RV, respectively) cavities
and the left ventricle myocardium (MYO). In order to reduce
the inter-observer and inter-centre variability in the contours,
in particular at the apical and basal regions, a detailed revi-
sion of the provided segmentations was performed by four
researchers in pairs. They applied the same SOP across all
CMR datasets to obtain the final ground truth. To generate
consistent annotations for the research community, we chose to
apply the SOP that was already used by the ACDC challenge,
as follows:

a) The LV and RV cavities must be completely covered,
including the papillary muscles.

b) No interpolation of the MYO boundaries must be per-
formed at the basal region.

c) The RV must have a larger surface at the ED time-frame
compared to ES.

d) The RV does not include the pulmonary artery.
Clinical delineations as well as later corrections were

performed using CVI42 software (Circle Cardiovascular Imag-
ing Inc., Calgary, Alberta, Canada). All studies were pro-
vided in DICOM format and contours were extracted in
cvi42 workspace format (.cvi42ws). An in-house software was
then used to extract the contours and transform the images into

TABLE IV
NUMBER OF STUDIES FOR EACH STEP OF THE CHALLENGE

PRESENTED BY CENTRE AND SCANNER VENDOR

Fig. 2. Degree of generalizability of models trained from the four vendors.
Four 2D UNet models [17] were trained with datasets from the four
vendors separately (rows) and subsequently tested their segmentation
performance on datasets from all vendors (columns). The heatmap
shows the Dice similarity coefficient, with a color scale that goes from blue
(good generalizability) to red (poor generalizability). The results are the
average of 5 models cross-validated on subsets of 30 training subjects.

the NIFTI format, representing the final files delivered to the
challenge participants.

B. Model Training

The 375 CMR studies were divided into three sets, namely
training, validation and testing, as detailed in Table IV.
To decide on a particular subdivision, we first estimated the
degree of generalizability of models trained from the four ven-
dors, as shown in Figure 2. We have thus decided to combine
the datasets from vendors A, which generalize relatively well,
with datasets from B, which generalize poorly to new vendors,
as training datasets. The participants received the 175 training
cases on 1st May 2020, including 75 annotated CMRs from
vendor A, 75 annotated CMRs from vendor B, 25 CMRs from
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vendor C but without any annotations (only the raw images)
and no datasets from vendor D, in order to test generalizability
to different situations (e.g. image protocol included or not
included in the training). Note that in the case of vendor A,
the 75 CMRs were included from centre 1 but none from
centre 6, to test generalizability across vendors but also across
centres for the same vendors. Regarding vendor B, we included
more training datasets from centre 2 (50 cases) than from
centre 3 (25 cases) to assess the impact of imbalanced training
data and fairness in multi-centre cardiac image segmentation.
For optimizing the models, the participants were allowed to
remotely validate against 40 additional CMRs, i.e. 10 from
each of the four vendors. A maximum of 7 submissions
were allowed per team during the validation process. Note
that during training, it was not allowed to use any external
datasets or pre-trained models, to enable a fair comparison
between the proposed solutions.

C. Model Evaluation
The testing period for the challenge started on 8th

June 2020 and concluded on 15th July 2020. The participants
had to evaluate their models remotely to ensure the unseen
datasets were totally hidden from the segmentation methods.
As such, for example, the participants had no prior information
on the images provided by vendor D. In order to evaluate
the models, the participants were asked to build a Singularity
image3 and share it with the organizers via a MEGA4 folder
shared by the organizers or by any other secure cloud storage
service. This Singularity image allows its execution on a
similar architecture machine without the need to install all the
diversity of used libraries. The necessary computing power
was sponsored by NVIDIA, who provided the organizers with
access to an NVIDIA V100 GPU card with 16GB of memory,
as well as the Barcelona Supercomputing Center (BSC) who
provided access to two K80 NVIDIA GPU cards.

In order to assess the quality of the automatically segmented
masks P with respect to the ground truth G, four measures
were proposed, namely:

(i) Dice similarity coefficient (DSC):

DSC(P, G) = 2|P ∩ G|
|P| + |G| (1)

that measures the degree of overlapping of two volumes.
(ii) Jaccard index (JI):

J I (P, G) = |P ∩ G|
|P ∪ G| = |P ∩ G|

|P| + |G| − |P ∩ G| (2)

that measures overlapping as well but is more sensitive to
results with average performance.

(iii) Average symmetric surface distance (ASSD):

ASSD(P, G) = 1

|P| + |G|

⎛
⎝∑

p∈P

d(p, G) +
∑
g∈G

d(g, P)

⎞
⎠

d(p, G) := inf
g∈G

d(p, g) (3)

that measures the average distance between the two volumes.

3https://sylabs.io
4https://mega.nz

(iv) Hausdorff distance (HD):

H D(P, G) = max

{
sup
p∈P

d(p, G), sup
g∈G

d(g, P)

}
(4)

that measures the largest disagreement between the volumes
and it is useful for identifying small outliers. All these metrics
were computed using the public library medpy.5

These metrics were computed for the three target labels:
LV, RV, and MYO, resulting in a total of 12 measures. In case
one participant had a prediction missing for a specific subject,
a value of zero was assumed for DSC and JI and maximum
values of 150 and 50 milimetres were assumed for HD and
ASSD, respectively, based on the worst results obtained by
the participating methods. Any value above the thresholds on
surface distances was set to the maximum value.

To obtain the final ranking for each team, a weighted
average was computed giving a greater importance to the
unlabelled and unseen scanner vendors. Therefore, if vA and
vB are defined as the labelled vendors, vC , the unlabelled one
and vD , the unseen one, the weighted sum for a metric M is
obtained as follows:

M = 1

6
MvA + 1

6
MvB + 1

3
MvC + 1

3
MvD (5)

Then, a min-max normalization was applied across participants
for each measure and a final average over the normalized
metrics yielded the performance (P) ranging from 0 to 1,
being 1 the value that a team would obtain if it had the best
results for every metric.

III. PARTICIPATING METHODS

In total, 80 teams registered to download the M&Ms training
dataset, 16 submitted a solution for the final testing phase
and 14 teams submitted their methodology as a paper to the
STACOM Workshop (see Table V for details on these teams).
All participants used deep learning as their segmentation
approach. Table VI summarizes the main characteristics of
the submitted techniques, including the backbone architectures
and domain adaptation strategies, which are described in more
detail in the following subsections. Furthermore, details on
the hardware used during training and the times that each
method took for training and inference as well as the number
of parameters for each model are presented in Table VII.

A. Backbone Architectures

There is a degree of variability in the backbone architectures
used between the different participants, as shown in Table VI.
Four teams used the nnUNet [33] (which includes UNet
architectures in 2D and 3D as well as a cascaded UNet)
as their baseline segmentation model (P1-P3 & P9). Four
participants used a traditional UNet [17] (P6, P10, P13, P14),
while other variants of UNets were adopted by the rest
of the teams. In particular, UNets combined with residual
connections were applied by three teams (P4, P8, P11),
with P8 preferring a residual UNet with dilated convolutions
(DRUNet) [34]. P5 proposed the use of an attention UNet [35],

5https://github.com/loli/medpy
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TABLE V
LIST AND DETAILS OF THE PARTICIPATING TEAMS IN THE CHALLENGE

TABLE VI
CHARACTERISTICS OF PARTICIPATING MODELS. ABBR: ROTATIONS (R), FLIPPING (F), SCALING (S), DEFORMATIONS (D), HISTOGRAM

MATCHING (HM), GAUSSIAN NOISE (GN), BRIGHTNESS (B), GAMMA (G), TEST TIME AUGMENTATION (TTA)

TABLE VII
TRAINING AND INFERENCE TIME, AND HARDWARE USED, FOR ALL

PARTICIPATING METHODS. H, M, S AND MIL. STAND FOR HOURS,
MINUTES, SECONDS AND MILLIONS, RESPECTIVELY

while P7 developed a modified UNet based on multi-gate and
dilated inception blocks to extract multi-scale features. Lastly,
one team (P12) proposed a modified Spatial Decomposition
Network (SDN) [36] with an AdaIN [37] decoder.

As pre-processing techniques, all models that provided
detailed information about this step performed either image
normalization to a unit Gaussian distribution or pixel value
rescaling to the range [0,1] (only P6 chose the range [0,255]
instead). With regards to image resolution, images were
resized based on target size or pixel resolution values in 10 out
of 14 methods, while the other methods preferred to keep
the original image resolution (P4, P7, P8, P11). In order
to obtain squared images, cropping and zero padding were
used depending on the desired image size for each case.
Additionally, some methods applied intensity clipping between
varying ranges to get rid of bright artifacts (P5, P6, P11).
Finally, P8 was the only method to apply also a non-local
means denoising filter prior to the training process.

B. Data Augmentation

All participants in the challenge (except P11) used some
form of data augmentation to enhance their models. Specif-
ically, two families of data augmentations were considered:
(1) spatial transformations to increase sample size through
rotation, flipping, scaling or deformation of the original
images; (2) intensity-driven techniques, which maintain the
spatial configuration of the anatomical structures but modify
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Fig. 3. The effect of data augmentation on a single CMR slice. In the
top row, the original image and spatial augmentations are shown. In the
bottom row, intensity-based augmentations.

their image appearance. The second type of augmentation
seems particularly relevant for the M&Ms as it may increase
the variability in image appearance, with the hypothesis that
this may lead to improved adaptation to varying imaging
protocols and scanner vendors. Two teams performed data aug-
mentation using only spatial transformations (P4, P6). Eleven
teams additionally implemented intensity-based transforma-
tions using one of two main approaches: (i) standard image
transformations such as histogram matching, blurring, change
in brightness, gamma and contrast, or addition of Gaussian
noise (P1-P3, P7-P8, P10, P13) (see 3 for a visualization
of a subset of these transformations on a training slice);
(ii) advanced image synthesis by using generative adversarial
networks (GANs) (P5, P8, P14) or variational auto-encoders
(VAE) (P12). For the latter one, the generation of synthetic
images for the unseen vendor D is not feasible since it was
not included in the training. Note that the majority of the
teams participating in the challenge (10 out of 14) relied solely
on data augmentation of the training sample to address the
domain-shift problem posed by the M&Ms challenge.

Additionally, some teams (P1-P3, P9, P13) applied test-
time augmentation techniques, which consist of passing to the
model two or more transformed versions of the same inference
image to obtain several predictions. These predictions are then
combined to obtain one final outcome, usually by averaging
them. This method has been shown to improve the final per-
formance in small data size scenarios and a net improvement
with a scale effect that depends on the model architecture [38].

C. Domain Adaptation

Of all participants, only three teams (P4, P6, P10) imple-
mented a method to explicitly address the differences in the
image distributions between the unseen and trained vendors.
At training, P4 constructed a classifier to distinguish between
scanner vendors and used it to modify the training images
(through error propagation) until the classifier could not dis-
tinguish between the domain. In other words, this method
resulted in training images and a trained model that are less
dependent on the specific vendors. P6 and P10 proposed to
train two models simultaneously with shared features, one
for segmentation and one for classification, such that the

classification loss is high while the segmentation loss is low,
generating features that are robust to vendor-specific variations
as well as optimal for segmentation.

IV. RESULTS

As shown in Table IV, a balanced dataset across the four
vendors was prepared for evaluating the final submissions
(40 CMRs per vendor, total 160 datasets). In this section,
we analyze the obtained results per (1) team, (2) vendor,
(3) clinical center, and (4) show some qualitative results.
For analysing the obtained results, we also implemented two
baseline models to better appreciate the added value of the
data augmentation and domain adaptation techniques used in
this challenge:
B1: A 2D UNet without any data augmentation as described

in the original reference [17], trained with weighted
cross entropy loss.

B2: The nnUNet pipeline, with a 2D UNet module and
default parameters as given in [33] (the best fold accord-
ing to the validation set was selected).

In particular, B2 differed from those in P1-P3 in that it only
included one architecture type [2D UNet] and ±180 degrees
rotations, flippings, scalings, deformations, gamma transfor-
mations and test-time augmentation as data augmentation.
In contrast, P1, P2 and P3 methods included further augmen-
tation techniques such as histogram matching, noise addition,
brightness modification, contrast modification and pseudo-
label generation by label propagation in time space.

A. Analysis per Team

Fig. 4 displays the results of the challenge for all partici-
pants and according to two evaluation metrics (DSC and HD).
It can be seen that the curves are flat for about half of the
participating teams, which indicates comparable performances
overall. Note that these methods (P1 to P7) are also the
ones that performed better than the baseline methods and
we hypothesize that the other models (P8 to P14) suffered
from some form of over-fitting (see also the shapes of the
curves in Fig. 4). Team P1 provided the most consistent
results across all metrics. However, the difference with respect
to other teams was relatively small and in many cases not
statistically significant, as presented in Table VIII. The three
best performing teams, P1 to P3, used nnUNet as the baseline
pipeline, as well as standard intensity-based data augmentation
(e.g. blurring, noise addition, histogram matching), but no
domain adaptation, showing a significative improvement with
respect to the standard nnUNet implementation B2. For a sim-
ilar performance, P5 used an Attention UNet as the backbone
architecture and CycleGANs for data augmentation through
image synthesis. P4 and P6 also obtained similar performances
overall, but implemented instead domain adaptation methods
and no image-driven data augmentation.

Fig. 5 displays the average DSC for all participating teams
organised this time per pathology, showing better segmentation
performance for healthy cases and dilated cardiomyopathy
(DCM), followed by hypertrophic cardiomyopathy (HCM) and
other pathologies. It can be seen that the performances of
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Fig. 4. Weighted average DSC and HD for all participating methods, according to equation (5).

TABLE VIII
DSC AND HD FOR THE FINAL SUBMISSIONS OF ALL PARTICIPANTS AND THE TWO BASELINE MODELS. BOLD FACE NUMBERS ARE THE BEST

RESULTS FOR EACH COLUMN AND BLUE NUMBERS ARE NON-SIGNIFICANTLY LOWER RESULTS WHEN COMPARED TO THE

P1 RESULTS (p-VALUE > 0.01 FOR THE WELCH’S t-TEST). HD IS MEASURED IN MILLIMETERS

Fig. 5. Average DSC for all participants for the most common pathologies
in the dataset. HCM and DCM stand for hypertrophic and dilated
cardiomyopathy, respectively.

the 14 techniques relative to each other do not change when
analysed per pathology.

B. Analysis per Vendor

Fig. 6 summarizes the segmentation results for all teams
for each vendor separately (A, B, C & D). It can be seen that
overall, the differences in the segmentation errors between the
vendors are reduced with respect to the results obtained by the
two baseline methods as detailed in Table IX. Specifically, it

Fig. 6. Boxplots with vendor-wise results for DSC and HD when all
participants predictions are considered. Vendors are presented in order:
Siemens (A), Philips (B), GE (C) and Canon (D).

can be seen that for the baseline methods there is a loss of
accuracy of up to −6% in the segmentation of images from
vendors C and D compared to A and B. However, this loss
is reduced, for example, to −1.5% for P1 (e.g. from DSC =
0.92 for vendor A to 0.90 in vendor C and D, for the LV),
−2.1% for P2 (e.g. from DSC = 0.87 in vendor B to 0.82
in vendor D, for the RV), and almost to 0% for P7. This
indicates that while there is a need for further research to
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TABLE IX
DSC RESULTS STRATIFIED BY VENDOR AND HEART SUBSTRUCTURE. THE LAST TWO COLUMNS ARE THE AVERAGE DSC LOSS

FOR VENDORS C AND D WITH RESPECT TO THE COMBINED AVERAGE DSC RESULTS FROM VENDORS A AND B

Fig. 7. Boxplots with centre-wise results for DSC and HD when all
participants predictions are considered. Same color-coding as in Fig. 6
is used for scanner vendors.

Fig. 8. Boxplots for DSC and HD results for centres that had labelled
samples in the training set, unlabelled samples in the training set and no
samples at all.

bring segmentation accuracy in unseen and unlabelled vendors
at the same level of the one obtained in trained vendors, data
augmentation and data adaptation enable to close the gap and
improve the generalizability of deep learning models.

C. Analysis per Centre
In the previous subsection, centres were combined in

the analysis despite having different machines or scanning
protocols. In doing so, possible variabilities between centres

Fig. 9. Boxplots for DSC results for the top 3 performing methods
depending on different cardiac structures (LV, MYO and RV) and different
slice position for both ED and ES. The apex and the base are defined as
the last and first annotated slices, respectively. The middle slice is the
slice located in between the apex and base slices. The remaining slices
are defined based on their relative position with respect to the middle
slice.

using the same scanner may be overstated, making it necessary
to consider also Fig. 7, where the segmentation results are
summarized according to the six clinical centres. Here too,
it can be seen that there remains some degree of variation
in the segmentation of the CMR images from the different
centres. In more detail, there is a decrease in segmentation
accuracy between centres 1 and 6 even though their images
are from the same scanner vendor A. However, this difference
can be explained by two facts: 1) the scanners in these two
centres are different models and have different field strengths,
as shown in Table III, and 2) all the 75 datasets included during
training for vendor A were from centre 1 (Spain) and none
from centre 6 (Canada). In this case, even though the images
are from the same vendor, differences in scanner specifications
resulted in the lack of generalizability. In contrast, images from
both centres 2 and 3 were included in the training of vendor
B, which resulted in segmentation accuracies for these two
centres that are comparable. Finally, the datasets from centres
4 and 5 correspond to vendors C and D, respectively, which
were not included in the training, which explain the loss of
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Fig. 10. Prediction examples for method P1 for vendors C (GE) and D (Canon). Top two rows show satisfactory results, while the two bottom rows
present some error in the final contours. Color correspondence: left ventricle endocardium (red), left ventricle epicardium (green) and right ventricle
endocardium (yellow). Ground truth is drawn in white color.

accuracy compared to centres 1, 2 and 3. In Fig. 8, the results
are grouped for all centres according to their inclusion (or not)
in the training. Clearly, it can be seen that the segmentation
accuracy is the highest for centres that are part of the training
together with their labels, followed by those with images but
no labels, and finally the performance is the lowest and most
variable for images from fully unseen centres. This result
confirms the need for further developments to optimize the
generalizability of deep learning solutions in future tools for
cardiac image segmentation.

D. Qualitative Results

Fig. 9 presents the effect of the slice position in the
final segmentation DSC for the top three performing teams,
quantifying the loss of accuracy, especially prominent in the
apical and basal slices. To illustrate this, Fig. 10 provides some
visual examples from team P1 to further show the added value
of the implemented techniques, as well as their limitations
when applied to unseen vendors. In the two examples above,
the segmentation techniques enabled to accurately identify the
cardiac boundaries even though these imaging protocols were
not included in the training set. However, in the two examples
below, despite the use of data augmentation and domain
adaptation, the models were unsuccessful in the segmentation
of these unseen cases and diverged more notably from the
ground truth in basal slices. These examples illustrate the need
for future work to further improve the generalizability of deep
learning models in cardiac image segmentation.

V. DISCUSSION

In this paper, we presented a comprehensive analysis
of a range of deep learning solutions for the automated
segmentation of multi-centre, multi-vendor and multi-disease
CMR datasets. Roughly speaking, the 14 participants in the

challenge developed varying workflows combining a base-
line neural network, intensity-based and/or spatial data aug-
mentation, and in some cases a data adaptation strategy.
In addition to a relatively large sample of 175 cases for
training, the authors were given a total of seven attempts for
optimising the parameters and characteristics of their models
during the validation process, to ensure an optimal design of
the solutions.

A. Analysis of the Methods

The obtained results, first of all, indicate that data aug-
mentation, though its primary purpose is to increase training
size and reduce over-fitting, can perform well in addressing
some of the differences in image appearance between vendors.
In particular, by varying the parameters and types of intensity
transformations (e.g. histogram matching, contrast modifi-
cation, noise addition, image synthesis), one can generate
new training images that enhance the generalizability of the
models. As an example, one can look at the performance
of the baselines models B1 and B2 and augmented models,
such as P1, P2 and P3. While for the baseline models,
the results do not differ significantly for specific cases, such as
at ES, P1-P3 used many more data augmentation types, such
as histogram matching, noise addition, brightness modifica-
tion and contrast modification, and obtained a more marked
improvement (e.g. the DSC for the myocardium at ES
increased from 0.84 for B1 to 0.86 for P1, the DSC for the
RV at ES increased from 0.81 for B1 to 0.84 for P3). This
indicates the added value of more advanced image-driven data
augmentation for multi-vendor image segmentation as well as
that the domain shift between different scanners or protocols
can be potentially solved by using an exhaustive set of image
transformations during training. However, the results also
clearly show that the obtained segmentations remain generally
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more stable in trained vendors compared to unseen vendors,
as intensity-driven data augmentation alone cannot enable a
full coverage of the variety of imaging protocols that can exist
across clinical centres.

As for domain adaptation, while it is theoretically suitable
for multi-vendor image segmentation, as it can adapt on the
spot to the imaging distribution of the unseen images, it did
not result in better segmentations than when using exhaustive
data augmentation alone. In fact, the three first techniques in
the ranking did not use any domain adaptation, though it is
important to reiterate that the first seven solutions obtained
relatively similar results overall. It is worth noting that the
choice of the baseline model may play a role, as again
the first three techniques used the same model, namely the
nnUNet. Finally, while the results indicate the potential of
data augmentation and domain adaption, they also show that
there is still a loss in segmentation accuracy when segmenting
labelled versus unlabelled or unseen image samples. Note also
that training and testing a model on two datasets from the
same vendor does not guarantee a good generalizability. This
is particularly true if the two sets of images are from two
different centres and scanner types, such as 1.5T (e.g. centre 1)
and 3T (e.g. centre 6) as shown in Figure 7.

The results also show that advanced workflows integrating,
for instance, data augmentation or generative adversarial net-
works, are not guaranteed to lead to robust segmentations.
In fact, half of the submitted techniques had a lower perfor-
mance than the two baselines implemented for comparison.
This shows that over-fitting remains a challenge that requires
special attention during the calibration and validation of com-
plex deep learning solutions for cardiac image segmentation,
in particular in the presence of highly heterogeneous data.

Lastly, the presented methods show a vast diversity in
hardware performance, with training times ranging from
6 to 100 hours and inference times from tenths of seconds
to almost half a minute. However, the amount of training
and inference time do not correlate well with the final accu-
racy, indicating an excessive use of computational power for
some techniques. For example, the methods implemented by
P1 and P2, despite using the same baseline model than P3,
needed around half the time for training and obtained slightly
better results (1.2% average improvement in DSC), while
P4 used around one tenth of computing time for similar
loss of accuracy with respect to P1 (1.6% average loss in
DSC). Furthermore, clinical centres usually lack dedicated
hardware for deep learning models thus increasing even more
the segmentation time. In this sense, a good equilibrium
between accuracy and processing time needs to be attained,
with methods such as P4 serving as a good example with
a competitive performance and a prediction rate of around
3 images per second.

In summary, the main findings are:
a) Exhaustive data augmentation reduced considerably the

domain gap, although the results were still more stable
within the domains used during training.

b) Domain adaptation did not result in better performance
when compared to nnUNet models trained with spatial
and intensity-driven data augmentation.

c) Complex workflows did not always lead to better results,
resulting sometimes in an excessive use of computing
resources.

B. Analysis of the Segmentation Results

Compared to other publicly available and annotated multi-
structure (LV, MYO, RV) datasets in the field of CMR seg-
mentation, M&Ms is the largest as well as the most diverse
(375 cases from four vendors, six centres and three countries,
vs. 150 cases for ACDC from one centre). However, given
that ACDC is an established database, we selected to use
its contouring SOP in this challenge to derive standardized
annotations for the community, as well as to enable the
combination of these datasets in future studies.

Note that our study, while it focuses on multi-scanner
generalizable segmentation, confirms several of the results
already obtained by the ACDC challenge and other previous
works. Specifically:

a) The segmentations at ED were more accurate than at
ES for LV and RV cavities, but not for the myocardium,
which becomes thicker and therefore easier to segment
when the heart contracts.

b) The segmentation accuracy according to the DSC was
the highest for the LV blood pool, followed by the RV
and MYO, in this order, but it was the lowest for the
RV for the distance-based measures, given its shape
complexity.

c) The segmentation accuracy was at its maximum at the
mid-ventricular slices, while the performance decreased
for the apical and basal slices, where there is higher
variability and complexity.

On average, the best performing method in this challenge
obtained 0.88 as DSC and 11 mm as HD versus the values
0.93 and 9 mm obtained in the ACDC challenge, respectively,
with the greatest difference shown at ES. This gap can be
easily explained by the single-centre nature of the ACDC
studies in comparison to a multi-centre scenario in this work,
although other effects such as the training size may play a role
and should be assessed (150 vs. 100 studies, respectively).

C. Future Work

In addition to the results and analyses presented in this paper
on multi-scanner cardiac image segmentation, we also provide
the M&Ms dataset open-access for the community, which
can be downloaded from the M&Ms website.6 It represents
one of the most heterogeneous datasets ever compiled in
cardiac image analysis, comprising CMRs from a variety of
imaging protocols and cardiology units, and including a range
of cardiovascular diseases as distinct as coronary heart disease,
cardiomyopathies, abnormal right ventricle or myocarditis.
We thus hope the dataset will be of high value for the commu-
nity to address a number of research topics in the field, such as
multi-scanner image registration, multi-structure segmentation,
cardiac quantification, motion analysis and image synthesis.

6www.ub.edu/mnms



CAMPELLO et al.: MULTI-CENTRE, MULTI-VENDOR AND MULTI-DISEASE CARDIAC SEGMENTATION 3553

It is important to note that a follow-up challenge is being
organised on multi-centre, multi-vendor and multi-disease car-
diac diagnosis. The diagnoses for the 375 cases are being gath-
ered from the different hospitals in a legally compliant manner
and the clinical information will be made available after the
end of the next challenge, thus allowing the community to
work on cardiac image analysis as well as on computer-aided
diagnosis in a multi-centre setting. Note that the participants
had less than three months to implement, optimize and test
their techniques, which did not allow to go beyond the
existing state-of-the-art techniques in data augmentation and
domain adaptation. With more time at their disposal beyond
the constraints of the challenge, we expect that researchers
will have a valuable resource with the M&Ms dataset to
investigate, develop and test new theories and frameworks for
addressing the difficulties posed by domain-shift in cardiac
image analysis.

D. Conclusion

The M&Ms challenge is the first study to evaluate a range
of deep learning solutions for the automated segmentation of
multi-centre, multi-vendor and multi-disease cardiac images.
The results show the promise of existing data augmentation
and domain adaptation methods, but also calls for further
research to develop highly generalizable solutions given the
inherent heterogeneity in cardiac imaging between centres,
vendors and protocols. More generally, there is a need for
more research and development to realise the much-needed
shift from single-centre image analysis towards multi-domain
approaches that will enable wider translation and usability
of future artificial intelligence tools in cardiac imaging and
clinical cardiology.
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