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Approximately 20% of lung adenocarcinomas harbor KRAS mutations, an oncogene that
drives tumorigenesis and has the ability to alter the immune system and the tumor immune
microenvironment. While KRAS was considered “undruggable” for decades, specific
KRAS G12C covalent inhibitors have recently emerged, although their promising results
are limited to a subset of patients. Several other drugs targeting KRAS activation and
downstream signaling pathways are currently under investigation in early-phase clinical
trials. In addition, KRASmutations can co-exist with other mutations in significant genes in
cancer (e.g., STK11 and KEAP1) which induces tumor heterogeneity and promotes
different responses to therapies. This review describes the molecular characterization of
KRAS mutant lung cancers from a biologic perspective to its clinical implications. We aim
to summarize the tumor heterogeneity of KRAS mutant lung cancers and its immune-
regulatory role, to report the efficacy achieved with current immunotherapies, and to
overview the therapeutic approaches targeting KRAS mutations besides KRAS
G12C inhibitors.
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INTRODUCTION

After decades of research, the treatment efficacy of advanced lung cancer has remarkably improved,
by incorporating novel therapeutic strategies including targeted therapies inhibiting specific
genetically activated proteins, or immunotherapies such as immune-checkpoint inhibitors (ICI)
(1). Mutations affecting members of the RAS family genes (KRAS, HRAS, NRAS) are the most
frequent genetic alterations in human cancer, affecting about 27% of all tumors, including lung,
colorectal and pancreatic ductal adenocarcinoma, among others (2, 3).

Lung adenocarcinoma (LuAD) is a type of cancer with the largest number of oncogenic
alterations that are therapeutically approachable (4). Approximately 20-25% of the LuADs
harbor KRAS mutations, most of them affecting codons 12 (~85%), 13 (~10%) or 61 (~5%). In
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LuADs from smokers, the vast majority of KRAS mutations
consist on guanine to thymine transversions, an effect that is
associated with the tobacco carcinogens (5). At the aminoacid
level, most of these mutations replace the glycine (G) in codon 12
by a cysteine (C) (G12C) and occurs in almost 50% of KRAS
mutant tumors. On the other hand, KRAS mutations in never-
smokers are less frequent, and the most prevalent changes
involve nucleotide transitions that replace the glycine in codon
12 by an aspartic acid (G12D) or a valine (G12V) (6,
7) (Figure 1).

In contrast to other oncogenic proteins activated in cancer
and despite multiple attempts to harness it, KRAS was
considered undruggable for a long time. The KRAS mutated
proteins has a reduced capability to hydrolyze GTP or to interact
with the GTPase-activating proteins, maintaining the oncogene
and the downstream pathways constitutively activated. The lack
of specific inhibitors targeting the KRAS hydrophobic pocket
and the complexity of downstream pathways have contributed to
the challenge of developing effective therapeutic strategies (8).
After years of study, novel KRAS selective inhibitors became
available for the KRAS G12Cmutant protein, enabling a covalent
binding that hinders downstream signaling, which led to
promising results in the clinical setting. Two specific KRAS
G12C inhibitors, first sotorasib (AMG510) and later adagrasib
(MRTX849), earned the breakthrough designation by the US
Food and Drugs Administration (FDA), to treat metastatic lung
cancer patients harboring that particular KRAS mutation who
have progressed to at least one prior systemic therapy. In the case
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of sotorasib, this was based on the efficacy results of the phase I/II
CodeBreak-100 trial (NCT03600883) that reported an objective
response rate (ORR) of 32% and disease control rate (DCR) of
88% among lung cancer patients. Thus, sotorasib has the FDA-
approval for this clinical indication (9). On the other hand, data
from the phase I/II KRYSTAL-1 trial (NCT03785249) for
adagrasib showed significant benefit with an ORR of 45%,
although the study is still ongoing and definitive conclusions
cannot be inferred (10). Many other drugs targeting KRAS
activation and other parallel and downstream pathways, as well
as immunotherapeutic strategies, are currently under
investigation in early-phase clinical trials (11).

Here, we aim to describe the tumor heterogeneity of KRAS
mutant lung cancers and its immune-regulatory role, to report
the efficacy with current immunotherapies, and to overview the
therapeutic approaches targeting KRAS mutant tumors, other
than KRAS G12C inhibitors.
KRAS-MUTANT LUNG CANCER IS A
HETEROGENEOUS DISEASE AND HAS A
CHARACTERISTIC IMMUNE-
MICROENVIRONMENT

Mutations on KRAS and on other actionable oncogenic drivers,
such as EGFR or ALK, are often mutually exclusive. However,
they co-occur with mutations in important tumor suppressor
FIGURE 1 | Simplified overview of KRAS mutant tumor, downstream/upstream KRAS pathways, its impact on the immune-microenvironment and family of drugs
targeting KRAS mutant tumors. (*) In the inset box, the oncogenic mutations in codon 12 of KRAS and aminonacid changes. Figure has been created with
BioRender.com.
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genes, such as STK11 (also known as LKB1), KEAP1, TP53, or
CDKN2A, whose inactivation cooperates with KRAS in the
oncogenic process and, thus, characterize the heterogeneous
nature of KRAS mutant tumors (12, 13). In addition, the
different KRAS mutated proteins differ on their biologic
properties to hydrolyze GTP and to activate downstream
signaling pathways, which determines the differences in their
therapeutic vulnerabilities (14, 15).

Skoulidis et al. described a molecular classification of KRAS
mutant LuAD according to the presence of co-mutations in
tumor suppressor genes TP53 (~30%) and/or LKB1 (~30% each)
(16). These co-mutation partners lead to variances in gene
expression and distinct patterns of inflammatory and immune-
checkpoint molecules release, which models the tumor
microenvironment and promotes different responses to
therapies (12, 17). Because of this tumor heterogeneity, the
prognostic role of KRAS mutant cancers remains uncertain,
although most studies report a major aggressive behavior of
this type of cancer (18–20).

KRAS mutant tumors are characterized by enabling tumor
cells to escape immunosurveillance as one of the hallmarks
of cancer (21). NF-kB, STAT3, and certain suppressive
inflammatory cytokines such as IL-6, IL-1b and GM-CSF, are
key transducers of the immunosuppressive properties of KRAS
driven tumors (22–24). Other mechanisms in this tumor type
consist in increasing the expression of immune-checkpoints (e.g.,
PD-L1) to prevent T-cell effector functions, eliciting the release
of myeloid-derived suppressor cells, regulatory T cells, and M2-
differentiated tumor-associated macrophages, all of which impair
antitumor immunity and facilitates tumor growth (25,
26) (Figure 1).

In preclinical mice models, Stk11/Krasmutant tumors produced
abundant IL-6 and were associated with neutrophil accumulation
and inflammatory cytokines with immunosuppressive properties in
the tumor microenvironment, along with increased levels of T-cell
exhaustion markers, compared with normal lungs (27).
Accordingly, KRAS/STK11-mutant tumors are associated to a
“cold immunophenotype” with lower T-cell infiltration and lower
rates of PD-L1 immunostaining, among other immunosuppressive
features. Lung cancer patients with this tumor genetic profile
showed a worse response to ICI than did patients with KRAS-
mutant tumors without LKB1 co-mutations (27–30).

More recently, STK11 inactivation in KRAS-mutant tumors,
has been shown to enhance the silencing of the STimulator of
INterferon Genes (STING) protein, in part through epigenetic
mechanisms (31). STING is a key component of the innate
immunity and acts as a sensor for double-strand DNA (dsDNA)
in the cytosol from virus and pathogens, which mediates the type I
interferon production (32). By silencing STING expression, KRAS/
STK11-mutant tumors become insensitive to cytoplasmatic
dsDNA sensing, avoiding T-cell inflammation and promoting
the recruitment of exhausted T-cell lymphocytes. Thus, restoring
STING expression or activation of the cyclic GMP–AMP synthase
(cGAS)-STING pathway with STING agonists, could induce T cell
infiltration and turn this subset of tumors into more
immunogenic, increasing the synergistic effects in combination
with ICI (33).
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THE EFFICACY OF CURRENT
IMMUNOTHERAPIES IN LUNG CANCERS
WITH KRAS MUTATIONS
Besides the immune-related nature of KRAS driven tumors, the
smoking habit of patients with KRAS mutations has been
associated with higher tumor mutational burden (TMB), which
might predict better responses to ICI (34, 35).

Mazieres et al. retrospectively evaluated a cohort of non-small
cell lung cancer (NSCLC) harboring different oncogenic driver
mutations. Among them, the subset of KRAS mutant tumors
expressed higher rates of PD-L1 and responded better to ICI than
tumors with other oncogenic driver alterations (36). On the
other hand, most phase 3 clinical trials evaluating all-comers
with NSCLC treated with ICI did not stratify by KRAS status, and
only post-hoc analyses have been performed on that subset. The
following section compiles the evidence derived from
exploratory analyses of the most relevant phase 3 clinical trials
evaluating ICI and real-world data from retrospective cohorts of
NSCLC patients treated with ICI.

The efficacy of nivolumab has been reported in two
international studies. In the Italian Expanded Access Program
out of the 530 patients who received 2nd or 3rd line nivolumab,
206 (39%) were positive for KRASmutation. KRAS status did not
influence nivolumab efficacy in terms of ORR (20% vs 17%, p =
0.39) nor DCR (47% vs 41%, p = 0.23) in patients with KRAS-
mutant tumors when compared to KRAS-wild type (wt). No
statistically significant differences were found in the median
progression-free survival (mPFS) nor in the median overall
survival (mOS) between both groups, although the 3-months
PFS was significantly higher in KRAS-mutant patients (53% vs
42%, p = 0.01) (37). On the other hand, in the phase 3 study
CA209-057, patients who had progressed to previous platinum-
based chemotherapy (ChT), were randomized to receive either
nivolumab or docetaxel. Among the 582 patients studied, KRAS
was tested in 185 patients and 33% showed a KRAS mutation.
When comparing the latter with KRAS-wt patients in the groups
who received ICI, the hazard ratio (HR) for OS and PFS were
0.52 (95% confidence interval [CI]: 0.29-0.95) and 0.82 (95% CI:
0.47-1.43), respectively, in favor to KRAS mutant patients (38).

Regarding pembrolizumab, the clinical outcomes of two
phase 3 clinical trials including KRAS mutant population have
been reported. The KEYNOTE-042 trial (NCT0222089)
evaluated pembrolizumab compared to platinum-based ChT as
first-line treatment for PD-L1 positive tumors. The exploratory
analysis presented by Herbst et al. showed that, out of 301
patients, 22.9% harbored KRAS mutations (9.6% were KRAS
G12C) and presented higher levels of PD-L1 and tissue TMB.
Both mOS and mPFS favored KRASmutant tumors when treated
with pembrolizumab compared to KRAS-wt, with a HR of 0.42
(95% CI: 0.22-0.81) and 0.51 (95% CI: 0.29-0.87), respectively
(39). On the other hand, the KEYNOTE-189 trial evaluated
platinum-based ChT either alone or in combination with
pembrolizumab as first-line setting in advanced disease.
Among 289 patients, 30.8% harbored a KRAS mutation and
12.8% a KRAS G12C. These tumors also presented higher levels
of PD-L1 and higher tissue TMB. Pembrolizumab-based therapy
January 2022 | Volume 11 | Article 793121
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was associated with improved clinical outcomes in terms of OS,
PFS, and ORR regardless of KRAS status (40). Finally, results
from real-world data published by Frost et al. from a multicenter,
retrospective study evaluated the efficacy of first-line
pembrolizumab in 119 patients with KRAS mutant LuAD with
high PD-L1 expression (≥50%). Co-mutations in TP53 were also
evaluated, and patients with KRAS G12C/TP53 had significantly
higher ORR (100% vs 27.3%; p = 0.003) and longer mPFS (33.3
vs 2.8 months; HR, 0.18; 95% CI: 0.06-0.53; p = 0.002) than
tumors with KRAS nonG12C/TP53 mutations (41), suggesting
that KRAS G12C present better outcomes to immune-based
therapies. Furthermore, Noordhof et al. reported another
retrospective study that evaluated the outcomes of first-line
pembrolizumab in 595 patients with metastatic LuAD and
high PD-L1 expression. KRAS mutations were found in 57% of
the cases. Although not statistically significant, mOS with ICI
was higher in KRASmutant patients than in those with KRAS-wt
(19.2 vs 16.8 months; p = 0.86) (42).

In relation to atezolizumab, efficacy results are derived from a
single trial, IMpower 150 (NCT02366143), a phase 3 study with
first-line ChT and bevacizumab in combination or not with
atezolizumab in patients with metastatic NSCLC. An exploratory
analysis evaluated atezolizumab efficacy in KRAS mutant
population according to STK11/KEAP1 mutation status. Among
920 evaluable patients, 24.5% harbored a KRAS mutation, which
in 45% of the cases were co-mutated with STK11 and/or KEAP1.
Greater benefits in terms of OS and PFS were observed in patients
harboring KRAS mutations in the immunotherapy-based arm,
regardless of STK11 and KEAP1 status (43).

Finally, results on durvalumab in stage III NSCLC patients
after ChT-radiotherapy are available from a retrospective study
that was carried out in 134 patients from MD Anderson Hospital.
Patients with driver oncogenic mutations, including KRAS
mutations (n=26) and targetable driver mutations (n=24) in
EGFR, ALK translocations, ROS1 fusions, MET exon 14 skipping,
RET fusion, and/or BRAF, had significantly worse mPFS
compared to those without driver mutations (n=84) (8.9 months
vs 26.6 months; HR 2.62 p < 0.001), particularly in cases with
KRAS mutant tumors (mPFS 7.9 months, HR 3.34, p < 0.001),
with no impact on OS based on driver mutation status (44).
TARGETING KRAS BEYOND KRAS
G12C MUTATIONS

KRAS is a GTPase that, when mutated, loses the ability to turn
back to the GDP-bound state and leads to a constitutively active
GTP-bound state. This, in turn, activates downstream signaling
pathways, including MAPK, PI3K/AKT/mTOR, and Ras-like
GEF, among others, all of them responsible for cell
proliferation and survival (45, 46) (Figure 1). In addition, the
heterogeneity of KRAS mutations results in a variety of different
diseases, which hinders the finding of a unique common therapy
to address all of them. Thus, while KRAS G12C specific
inhibitors have proven efficacy against their target, many other
therapeutic strategies are currently under development for those
Frontiers in Oncology | www.frontiersin.org 4
KRAS mutant tumors with no druggable genetic alteration (47).
Clinical trials addressed to KRASmutant NSCLC non specific for
KRAS G12C are listed in Table 1.

Before the advent of KRAS G12C inhibitors, several strategies
were tested to target the broad spectrum of KRAS mutant
tumors, but most of them failed. Historically, the majority of
these strategies focused on downstream effectors. For instance,
the MEK inhibitor selumetinib combined with docetaxel showed
good responses in early trials but failed to improve survival in a
randomized phase 3 trial (48, 49). The cyclin-dependent kinase
(CDK4/6) inhibitor abemaciclib was also tested in a randomized
phase 3 trial against erlotinib but could not achieve its OS
primary endpoint (50). Combining downstream effector
inhibitors targeting MEK/PI3K demonstrated moderate
responses but unacceptable toxicity profiles (51). Another
therapeutic strategy focusing on the RAS family was the
interruption of its anchoring to the cell membrane by
inhibiting the post-translational farnesylation (e.g. tipifarnib).
Unfortunately, despite a seemingly effective strategy in early
phase trials, phase 2 and 3 trials assessing the effectivity in
KRAS mutant tumors could not meet the expected outcomes
(52). Hence, ChT remained the main treatment for these tumors
for a long time, albeit with limited success.

Since KRAS mutant tumors form a heterogenous disease,
nowadays, investigational efforts are focused on a subset of
targeted therapies that can be further classified in different
families according to their mechanism of action. Furthermore,
to achieve better outcomes, the different families can be
combined with themselves, with KRAS G12C inhibitors, or
with immunotherapy. We will subsequently develop further
each one of these potential options:

i) KRAS Mutation-Specific Inhibitors

Besides KRAS G12C inhibitors, no other point mutations of
KRAS have been successfully targeted in human trials yet.
However, the artificial cyclic peptide KS-58 enhanced anti-
cancer activity in vitro and in vivo in KRAS G12D mutant
tumors by blocking intracellular Ras-effector protein
interactions (53). Also, the new molecule MRTX1133 has
shown promising results, binding to G12D in lung and
pancreatic tumor models (54).

ii) Pan-KRAS Inhibitors

SOS1 is a guanine exchange factor for KRAS promoting the
phosphorylation of GDP to GTP by binding to its catalytic
site. Moreover, SOS1 can bind to the allosteric site of KRAS that
potentiates its GEF function, increasing its positive feedback
regulation (54). SOS1 inhibition has demonstrated a depletion
effect on tumors that depend on KRAS activation. Recently, a
new potent and selective SOS1 inhibitor, BI-3406, has shown in
vitro and in vivo antitumor activity (55). The drug decreased
GTP-loaded KRAS and attenuated feedback reactivation by
MEK inhibitors, suggesting that this combination may be a
promising treatment option. In fact, that specific combination
was tested in vitro in cell lines resistant to KRAS G12C inhibitors
with satisfactory results and is currently ongoing phase 1 trials
(56). SHP2 is a protein tyrosine phosphatase existing either
January 2022 | Volume 11 | Article 793121
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bound to the cytoplasmatic portion of an activated RTK or as a
component of the RAS activating complex (57). SHP2 allosteric
inhibitors, such as TNO155 and RMC-4630, have shown activity
on ERK inhibition; ongoing trials combining both treatments are
currently assessing their potential to overcome drug resistance to
RTK/RAS/MAPK inhibitors (58, 59).

iii) Downstream KRAS Inhibitors

The immediate effect of activated RAS is the interaction between
the RAS switched region with the RAS binding domain (RBD)
conserved in multiple proteins of multiple signaling pathways.
A RAS mimetic small molecule, rigosertib, targets these RBD
by interrupting RAF, RALGDS, and PI3Ks signaling cascades
(60). So far, RAF and MEK inhibitors alone or in combination
with RTK inhibitors have failed to prove effective in KRAS
mutant tumors. However, a novel RAF/MEK potent inhibitor
showed a 60% tumor reduction in RAS-RAF mutated tumors
and is being tested in combination with a FAK inhibitor in
KRAS mutant LuAD (61). ERK 1/2 inhibitors are yet to be
Frontiers in Oncology | www.frontiersin.org 5
approved but are expected to directly suppress the MAPK
pathway’s effector node. When administered alone, only
achieved disease stabilization and the phase I trial testing
LT462 (NCT02711345) was terminated earlier. ERK inhibitors
could further be combined with drugs targeting upstream
nodes in the MAPK pathway to reduce the incidence of
acquired resistance. Besides, the PI3K/mTOR/AKT pathway
is a downstream pathway activated by the RAS family. In this
early phase clinical trial (NCT00933777), the combination of
sorafenib (a multi-TKI) with everolimus (mTOR inhibitor)
did not achieve any partial response in NSCLC patients
harboring KRAS mutation, assessed by CT-scans (62).
However, combinations of MEK and PI3K/mTOR/AKT
inhibitors have demonstrated better efficacy in KRAS
mutant LuADthan either one alone, but their potential
toxicity has to be addressed by different treatment schemes
(e.g. intermittent dosage) (63, 64).

iv) Upstream KRAS Inhibitors
TABLE 1 | Clinical trials of drugs targeting KRAS.

Therapeutic Family Clinical Trial Phase Drug Indication Results

Pan-RASinh NCT03114319 1 TNO155 (SHP2i) alone or with nazartinib (EGFRi) EGFR/KRAS NSCLC, esophageal SCC, H/N
SCC, Melanoma

N/A

NCT03634982 1 RMC-4630 (SHP2i) All solid tumors N/A
NCT04045496 1 JAB-3312 (SHP2i) All solid tumors N/A

Pan-RASinh
+downstream inh

NCT04111458 1 BI 1701963 (SOS1i) + trametinib (MEKi) KRAS NSCLC N/A

NCT04916236 1 RMC-4630 (SHP2i) + LY3214996 (ERK1/2i) KRAS tumors N/A
Pan- RASinh + IT NCT04000529 1b TNO155 (SHP2i) + ribociclib (CDK4/6i) or

spartalizumab (PD1i)
KRAS NSCLC N/A

Downstream inh NCT03681483 1 RO5126766 (RAF/MEKi) KRAS NSCLC N/A
Downstream inh
combination

NCT02857270 1 LY3214996 (ERK1/2i) alone or + other drugs All solid tumors N/A

NCT03284502 1b HM95573 (RAFi) + cobimetinib (MEKi)or cetuximab
(EGFRi)

All solid tumors N/A

NCT03170206 1/2 palbociclib (CDK 4/6i) + binimetinib (MEKi) KRAS NSCLC N/A
NCT04620330 2 VS-6766 (RAF/MEKi) + defactinib (FAKi) G12V or other KRAS NSCLC N/A
NCT02974725 1 LXH254 (RAFi) + LTT462 (ERK1/2i) or trametinib

(MEKi) or ribociclib (CDK4/6i)
KRAS and BRAF tumors N/A

Downstream inh +
Upstream inh

NCT01229150 2 selumetinib
(MEKi) + erlotinib
(EGFRi)
vs selumetinib

NSCLC ORR 10% vs
0%
OS 21.8 vs
10.5 months

NCT02230553 1/2 trametinitb (MEKi) + lapatinib (Erbb1-2i) KRAS NSCLC N/A
NCT03704688 1/2 trametinib (MEKi) + poniotinib (VEGFi) KRAS NSCLC N/A
NCT04967079 1 trametinib (MEKi) + anlotinib (panRTKi) KRAS NSCLC N/A
NCT01859026 1/2. MEK162 (MEKi) + erlotinib KRAS or EGFR tumors N/A
NCT04965818 1b/2 futibatinib (FGFRi) + binimetinib (MEKi) KRAS tumors N/A

Downstream inh +
autophagy inh

NCT04735068 2 binimetinib (MEKi) + hydroxychloroquine KRAS NSCLC N/A

NCT04892017 1 DCC-3116 (ULK 1/2i) + trametinib (MEKi) RAS-RAF mutant all solid tumors N/A
Autophagy inh NCT03095612 1/2 selinezor (XPO1i) + docetaxel KRAS NSCLC N/A
Downstream inh + IT NCT02779751 1b pembrolizumab (PD1i) + abemaciclib (CDKi) KRAS non squamous NSCLC, sq-NSCLC and

Luminal-like breast cancer
N/A

NCT02779751 1b pembrolizumab (PDL1i) + abemaciclib (CDKi) KRAS non squamous NSCLC, sq-NSCLC and
Luminal-like breast cancer

N/A

NCT03299088 1b pembrolizumab (PD1i) + trametinib (MEKi) KRAS NSCLC N/A
Downstream inh +
ChT

NCT03990077 1 HL-085 (MEKi) + docetaxel KRAS NSCLC N/A

mRNA vaccine NCT03948763 1 V941 (mRNA vaccine) All solid tumors N/A
Metabolic modifier NCT03808558 2 TVB-2640 (FASNi) KRAS NSCLC N/A
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KRAS-mutant tumors are still sensitive to extracellular growth
factors and not completely independent of growth factor
receptors (ERBB proteins), since both have a role in
tumorigenesis (65). Their activity could be tackled by blocking
upstream effectors and the combination of pan-Erbb family
inhibitors with KRAS pathway inhibitors could increase the
efficacy as well as contribute to overcome the drug resistance
enhancing the outcomes observed with inhibiting each target
alone, although at cost of increased toxicities. Two preclinical
studies further support the idea that mutant KRAS demands
activation of ERBB receptors to facilitate lung tumorigenesis (65,
66). One approach was focused on combining KRAS inhibition
with epidermal growth factor receptor (EGFR) TKIs, as the
EGFR signaling pathway is often activated in tumor cells to
bypass KRAS inhibition. However, past clinical trials combining
MEK inhibitor, selumetinib with EGFR inhibitor, Erlotinib were
largely unsuccessful with an ORR of 10% (95% CI 2.1 to 26.3%)
in KRAS mutant patients (67).

v) Cellular Metabolism and Autophagy

KRAS mutant tumors present a high glucose metabolism, so that,
multiple glycolytic genes are upregulated and its suppression
could prevent tumor growth (68). Autophagy is a strategy to
overcome starvation in healthy cells and it has been observed to
be increased in many cancer types. Autophagy prevents cells
from undergoing programmed cell death. Moreover, it has been
shown that the RAF/MEK/ERK cascade leads to autophagy via
STK11/AMPkinase-activated (AMPK) protein that activates the
autophagy kinase 1 signaling axis (69). Combined inhibition of
autophagy and MAPK signaling is nowadays being studied in
phase 1 and 2 trials (NCT04892017) (70).
CONCLUSIONS

The high frequency of KRAS mutations in cancer justifies the
multiple efforts invested in developing novel therapeutic
Frontiers in Oncology | www.frontiersin.org 6
strategies targeting KRAS. A deeper understanding of the
cancer biology and immune system interactions that fuel
carcinogenesis in KRAS mutant tumors is essential for
developing new drugs and improving disease prognosis.
Besides KRAS G12C specific inhibitors, several other drugs
targeting KRAS directly or indirectly are being investigated. In
addition, the list of actionable KRAS mutations in lung cancer
will likely increase in the upcoming years.

Current immunotherapies seem to be effective for subset of
KRAS mutant tumors, due in part, by the influence of smoking
related nature of KRAS G12C mutations. The presence of co-
mutations such as STK11 or KEAP1 shape the tumor immune
microenvironment and might has an impact on treatment efficacy.
Incorporating these genetic alterations in diagnostic panels as
predictive markers represent a useful strategy for therapeutic
decisions, including immunotherapy-based regimens.

Finally, the genomic complexity of KRAS mutant tumors will
ultimately require tailored application of therapeutic approaches
and upcoming data from clinical trials will contribute to provide
the most promising strategies.
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