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Simple Summary: Hodgkin lymphoma (HL) is a non-AIDS defining neoplasm, but people living
with HIV (PLWH) have between a 5- and 26-fold higher risk of developing it than the general popu-
lation. Epstein-Barr virus is present in almost all HIV-related HL cases, and plays an important role
in its etiopathogenesis. Despite the aggressive characteristics, the prognosis of HL affecting PLWH is
similar to that of the general population if patients are treated following the same recommendations.
Administration of cART concomitantly with chemotherapy is highly recommended. However, this
combination may be challenging due to drug–drug interactions and overlapping toxicity. Thus,
interdisciplinary collaboration between hemato-oncologists and HIV specialists is crucial for the
optimal treatment of both lymphoma and HIV infection.

Abstract: Despite widespread use of combined antiretroviral therapy (cART) and increased life
expectancy in people living with HIV (PLWH), HIV-related lymphomas (HRL) remain a leading
cause of cancer morbidity and mortality for PLWH, even in patients optimally treated with cART.
While the incidence of aggressive forms of non-Hodgkin lymphoma decreased after the advent
of cART, incidence of Hodgkin lymphoma (HL) has increased among PLWH in recent decades.
The coinfection of Epstein–Barr virus plays a crucial role in the pathogenesis of HL in the HIV
setting. Currently, PLWH with HRL, including HL, are treated similarly to HIV-negative patients
and, importantly, the prognosis of HL in PLWH is approaching that of the general population. In this
regard, effective cART during chemotherapy is strongly recommended since it has been shown to
improve survival rates in all lymphoma subtypes, including HL. As a consequence, interdisciplinary
collaboration between HIV specialists and hemato-oncologists for the management of potential
drug–drug interactions and overlapping toxicities between antiretroviral and antineoplastic drugs is
crucial for the optimal treatment of PLWH with HL. In this article the authors review and update the
epidemiological, clinical and biological aspects of HL presenting in PLWH with special emphasis on
advances in prognosis and the factors that have contributed to it.
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1. Introduction

Since the introduction of combination antiretroviral therapy (cART) the incidence of
opportunistic infections and AIDS defining cancers, such as Kaposi sarcoma (KS), aggres-
sive B-cell non-Hodgkin lymphomas (NHL) and invasive cervical cancer, has decreased
in people living with HIV (PLWH) [1,2]. However, lymphoma is the most frequent AIDS-
defining neoplasm in developed countries and is still one of the most frequent neoplastic
causes of death among HIV-infected individuals [3]. The most common HIV-related
lymphomas are diffuse large B-cell lymphoma (DLBCL), which includes primary CNS
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lymphoma (PCNSL), and Burkitt lymphoma (BL). Primary effusion lymphoma (PEL), and
plasmablastic lymphoma (PBL) are less frequent, although they occur with preference in
HIV-positive patients. Hodgkin lymphoma (HL) is a non-AIDS defining neoplasm, but
PLWH have between a 5- and 26-fold higher risk of developing it than the general popula-
tion. Unlike the dramatic decrease observed in the incidence of NHL among PLWH with
the introduction of cART, the risk of HL initially increased but eventually has remained
stable or decreased [2,4,5].

Classical HL (cHL) is the type that has been linked to PLWH. The most common
histologic subtype is mixed cellularity followed by nodular sclerosis and lymphocyte-
depleted [6–9]. Unlike cHL affecting the general population, around 90% of cases of
PLWH-related are associated with Epstein–Barr virus (EBV) infection of tumor cells, which
are Hodgkin Reed–Sternberg cells (HRS) [10]. The etiopathogenesis of HIV-related cHL
is not yet fully understood. However, there is evidence indicating a crucial role for EBV
infection of pre-apoptotic B cells, together with a cooperation with HIV, for triggering the
lymphomagenic process [11,12]. Interactions between lymphoma cells and the microen-
vironment will eventually contribute to maintaining their proliferation as well as their
escaping from the immune responses [11,13].

Although presenting with more aggressive characteristics, PLWH with cHL have
similar response rates and survival to HIV-negative patients when they are treated with the
same standard therapies [9,14]. Early and effective cART during chemotherapy has been
shown to increase survival rates. Hence, initiation or maintenance of cART is highly recom-
mended for PLWH with any type of lymphoma, including cHL [15–17]. As a consequence,
it is currently very important to take into account the potential drug–drug interactions
between antiretrovirals and drugs administered for the treatment of cHL.

In this article the authors review and update the epidemiological, clinical, and bio-
logical aspects of cHL presenting in PLWH with special emphasis on the improvement of
prognosis and the factors that have contributed to it.

2. Epidemiology

The relative risk of HL in PLWH is 5- to 26-fold higher than in the general population
with an estimated incidence of around 50 cases per 100,000 persons per year [4,18]. The
subtype characteristically linked to HIV infection is cHL. Some studies show that PLWH at
cHL diagnosis are older than those of the general population, such as one from the French
ANRS-CO16 Lymphovir cohort (median of 44 vs. 29 years) [19] and other from the UK
(median of 41 vs. 31 years) [14]. With the advent of cART, an increase in the incidence of
HL was observed within the first few years. However, after the increment observed in the
first decade, the incidence of HL eventually seems to have remained stable over the last
few years [4,20,21]. In a collaborative work, including 33 observational cohort studies of
adult and pediatric HIV-infected patients in 30 European countries, PLWH who develop
HL had lower CD4 counts than controls (PLWH without lymphoma) [18]. However, at
cHL diagnosis patients usually have a moderate decrease in CD4+ lymphocytes (between
150 and 260 cells/µL [22,23]. It has been speculated that this fact could be explained
because of a certain number of CD4-positive lymphocytes are needed to facilitate the
micro-environment development and the proliferation of HRS cells [2,24]. In turn, HRS
cells produce many cytokines and chemokines, resulting in an influx of activated CD4 cells,
histiocytes, and other cells. On the other hand, very low CD4 counts would lead to an
impairment of these mechanisms and, hence, to a worse condition for the development
of HL in severely immunosuppressed PLWH [23,25,26]. This hypothesis would explain
the observation that the increase in the incidence of HL in the cART era has been observed
mainly in those HIV-infected individuals with moderate immune suppression. On the
other hand, the most immune suppressed individuals would be at lower risk of developing
HL, but higher than those with CD4 counts above 0.5 × 109/L who have a similar risk than
the general population [23]. Of note, some studies reported that HIV-infected individuals
are at higher risk of developing HL in the first 6 months after initiation of cART [27,28].
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3. Etiopathogenesis

In cHL, the malignant HRS are scarce among an extensive and complex microenvi-
ronment. They are B cells because they carry immunoglobulin (Ig) heavy- and light-chain
V gene rearrangements [29]. Their specific origin appears to be, in the majority of cases,
pre-apoptotic germinal center (GC) B cells because destructive somatic mutations in the
rearranged immunoglobulin (Ig) genes have been observed, leading to the loss of the
capacity to express a B-cell receptor (BCR) [24]. The sequence of events during malignant
transformation of pre-apoptotic GC B cells toward HRS cells is poorly understood, but
escape from programmed cell death seems to be an early and essential event [30]. Nearly all
cases of cHL with destructive Ig gene mutations eliminating BCR expression (e.g., nonsense
mutations) are EBV-positive, suggesting that EBV-encoded genes have a particular function
to prevent apoptosis of HRS-cell precursors that acquire these crippling mutations [31].

Virtually all cases of cHL in PLWH are EBV associated and show a type II latency pat-
tern. They express viral proteins such as EBV nuclear antigen-1 (EBNA1), latent membrane
protein 1 (LMP1), and LMP2, as well as EBERs and BARTs RNAs [32–36]. There is some
evidence indicating a pathogenic role for EBV in the early stages of lymphomagenesis in
EBV-positive cHL cases [11]. The protein EBNA1 is mandatory for the replication of the
viral genome [24]. The expression of LMP1 and LMP2A (one of the two proteins encoded by
LMP2), seems to play a crucial role in the development of EBV-related cHL [37,38]. LMP1
promotes B-cell activation and proliferation by activating NF-κB, mitogen-activated protein
kinase (MAPK), phosphatidylinositol 3-kinase (PI3-K), IRF7, and STAT pathways [39]. This
function is mainly produced because LMP1 mimics the CD40 receptor [34,40,41]. Interest-
ingly, HIV virions from CD4+ cells harbor a CD40 ligand (CD40L) that might complement
the effects induced by LMP1 [42–44]. On the other hand, LMP2A prevents apoptosis via
mimicking B-cell receptor (BCR) signaling [45,46]. In addition, EBV induces the overex-
pression of PD-L1 in a subset of cHL cases, leading to an immune escape response and
contributing altogether to EBV-infected HRS proliferation and tumor progression [47].

The implication of EBV seems to be a higher influence on the microenvironment of
cHL, as EBV-positive cHL tissues are enriched in genes characteristic of T-cell and antiviral
responses. The cellular microenvironment of EBV-positive cHL cells is largely composed of
immune cells that are probably attempting to eliminate EBV-positive HRS cells, together
with inflammatory cells that contribute to the growth of the neoplastic component [11,13].
Cytotoxic T lymphocytes have been isolated from cHL patients and have been shown
to specifically kill LMP1 and LMP2 expressing targets ex vivo [48,49]. Moreover, high
numbers of CD4+ CD25+ regulatory T cells (Tregs) have been detected in the peripheral
blood and tumor tissues of cHL patients [48–52]. The proteins EBNA1 and LMP1 have been
demonstrated to play a role in attracting Tregs to the cHL tissue [53,54]. Additionally, high
numbers of CD8+ and natural killer cells have been identified in tissues of cHL cases [45].
Therefore, it seems that in EBV-positive cHL, activated CD8+ T cells, probably specific for
viral epitopes, and Treg cells coexist in the microenvironment [11].

Compared to EBV-negative cases, EBV-related cHL have higher infiltration by
macrophages, mainly of type M1, which promote Th1 responses and kill tumor cells [55–58].
There is some evidence indicating that this macrophage infiltrating pattern is also pre-
dominant in cHL in the HIV setting [59,60]. A differential characteristic of the HIV-related
cHL microenvironment is the paucity of CD4+ cells in the infiltrate surrounding HRS
cells [61,62]. This is likely due to the reduced CD4+ lymphocyte count present in PLWH
at cHL diagnosis. Moreover, a significant reduction in CD56+ cells (functional NK cells),
CD57+ cells (terminally differentiated T lymphocytes and mature NK), CD123+ plasmo-
cytoid dendritic cells, and B cells, have been observed [62]. These findings show the
differences between the microenvironment of cHL in PLWH and that of the general popula-
tion and could contribute to the increased incidence of cHL among HIV-infected people [62].
On the other hand, the absolute number of CD8+ T lymphocytes is preserved in these cases,
although a decrease in infiltrating GrB+ cells (activated cytotoxic cells) and an increase in
infiltrating TIA+ T cells (mainly nonactivated cytotoxic cells) are observed [59,61]. It has
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been speculated that these differences in the cellular components of the microenvironment
could be due to the specific cytokine/chemokine profile of HIV-related cHL [11].

A cooperation between HIV and EBV has been speculated to take part in lymphomage-
nesis, through interactions mediated by cellular dysregulation/immunodeficiency and/or
chronic antigenic stimulation/inflammation [12]. Regarding this, some HIV-encoded pro-
teins and the virus itself promote B-cell proliferation and activation by chronic antigenic
stimulation [63–65]. This would lead to an oligoclonal dysregulated B-cell expansion that
would be at risk of acquiring genetic alterations, finally leading to lymphoma develop-
ment [11]. The hyperactivated B cells, induced either directly or indirectly by HIV stimuli,
may express activation-induced cytidine deaminase (AID), a DNA editing enzyme that
mediates immunoglobulin class switch recombination, somatic hypermutation, and the
development of chromosomal translocations [66,67].

In summary, the lymphomagenesis of cHL in PLWH seems to be the result of interac-
tions between pre-apoptotic B cells and the microenvironment, and the cooperation of both
viruses, EBV and HIV, along with the presence of inherent genetic abnormalities. These
mechanisms might trigger lymphomagenesis by activating cell signaling pathways. The
interactions between HRS cells and the microenvironment will eventually develop and
maintain malignant cell growth.

4. Pathological and Clinical Characteristics

The WHO classification of tumors of hematopoietic and lymphoid tissues considers
two types of HL with different pathological characteristics; nodular lymphocyte predomi-
nant HL and classical HL (cHL), which is the type associated to HIV infection [68]. From the
4 histological cHL subtypes, the most frequent among PLWH is mixed cellularity followed
by nodular sclerosis [6,9,69].

Pathology findings are similar in HIV-positive and HIV-negative patients. In both
settings, HRS are characteristically observed on a heterogeneous background of lympho-
cytes, eosinophils, neutrophils, macrophages, and plasma cells. Neoplastic cells show the
usual HRS phenotype (PAX5+, CD30+, CD15+), rarely express CD20 and usually are CD45
negative. The frequency of mixed cellularity subtype increases along with the decrease of
CD4+ lymphocytes [23]. Coinfection with EBV occurs in 90–100% of cases compared to
30–40% in HIV-negative patients [11,24,68]. The HRS cells express EBNA1, LMP1 and are
EBER positive. Figure 1 shows a typical case of mixed cellularity in an HIV-positive case.
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5. Treatment and Prognosis 

Figure 1. Classical Hodgkin Lymphoma, Mixed Cellularity. The lymph node architecture is effaced
by a mixed population of lymphocytes, plasma cells, eosinophils, histiocytes and Reed–Sternberg
(RS) cells ((A,B), Hematoxilin & eosin, 100× and 400×). RS cells are weakly positive for PAX5 ((C),
200×), and Epstein–Barr encoded RNA (EBERs) can be detected ((D), 200×). CD30 and CD15 are
strongly positive in RS cells ((E,F) respectively, 200×).
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A characteristic pathological finding in HIV-related cHL is a higher amount of HRS
cells compared with cHL in HIV-negative patients [11]. The presence of large confluent
areas of necrosis underlying the presence of a proinflammatory activity has been also de-
scribed, with a “sarcomatoid pattern”, attributed to the increased quantity of CD163 spindle
shaped macrophages [59]. The most typical feature of HIV-related cHL is likely the scarce
number of CD4+ T cells present in the microenvironment and an inverted CD4/CD8 T-cell
ratio resulting in a predominance of CD8+ T lymphocytes in the background [59,61,62].

Regarding the clinical features, the proportion of males is higher than in HIV-
negative subjects and some studies have shown that the age at diagnosis is higher in
PLWH [14,21]. Among PLWH, cHL often presents with unfavorable features at diagnosis,
such as poorer performance status, advanced-stage, extranodal disease, and bone marrow
involvement [9,14,19]. The presence of B symptoms is also more frequent than in the
general population [14] and exclusive extranodal presentation has been reported in some
sites such as bone marrow and liver [70,71]. In the cART era the median CD4 count at HL
diagnosis is between 120 and 385 × 109/L [6,9,14] (Table 1).

Table 1. Results of front-line treatment of the main studies performed on cHL in PLWH since the introduction of cART.

Author Chemotherapy
Regimen N Median Age *

(Range) Stage CD4+ Count/µL *
Median (Range) CR (%) Survival (%) Overall

Survival (%)

Spina et al. [72] Stanford V 59 38 (28–64) I–IV 238 (32–1038) 81 68 (3-year DFS) 51 (3-year)

Hartmann
et al. [73] BEACOPP 12 33 (22–49) III–IV 205 (110–1020) 100 70 (5-year DFS) 70 (5-year)

Xicoy et al. [6] ABVD 51 37 (24–61) II–IV 129 (5–1209) 87 95 (5-year EFS) 76 (5-year)

Montoto
et al. [14] ABVD 93 41 (26–73) I–IV NA 74 59 (5-year EFS) 81 (5-year)

Hentrich et al.
[74] 1

BEACOPP
baseline or

ABVD 2

Stage-adapted

71/108 44 (27–70) 3 III–IV 240 (7–967) 3 86 1 87.5 (2-year
PFS) 1 87 (2-year) 1

Castillo
et al. [75] ABVD 229 NA III–IV NA 83 69 (5-year PFS) 78 (5-year)

Besson
et al. [19] ABVD (96%) 68 44 (38–48) I–IV 387 (151–540) NA 89 (2-year PFS 94 (2-year)

Sorigué
et al. [9] ABVD 21 40 (18–56) III–IV NA 89 70 (10-year DFS) 73 (10-year)

* Age and CD4+ count at HL diagnosis. 1 Treatment results refer only to advanced stage cases (III-IV, N = 71). 2 ABVD was given in advanced
stage if CD4 < 50/µL. 3 results refer to the whole series (N = 108); ABVD: adriamycin-bleomycin-vinblastine-dacarbazine BEACOPP:
bleomycin-etoposide-doxorubicin (adryamicine)-cyclophosphamide-vincristine (oncovin)-procarbacine-prednisone; CR: complete response;
DFS: disease-free survival (calculated for patients with CR from the first CR recorded until relapse or until the last known date on which
the patient was disease-free); EFS: event-free survival (defined for all patients as time from diagnosis to failure of treatment, including not
achieving CR/CR uncertain or relapse after CR/CR uncertain, or death from any cause); NA: not available; PFS: progression-free survival
(defined as the time between the date of diagnosis and the date of progression, death, or last follow-up.

5. Treatment and Prognosis

Before starting the treatment, a staging procedure, including the same tests as in
HIV-negative patients, should be performed. A basal PET-CT scan is mandatory in all
cases, but bone marrow biopsy can be avoided in most cases due to the reliability of PET-CT
in diagnosing infiltration by cHL in this site.

With the introduction of cART, the prognosis of PLWH and cHL has been steadily
improving until patients have reached almost the same outcomes as cHL in the general
population when applying the same treatments [6,9,14,74]. Some studies, performed in
the cART era, have shown that response rates and survival of cHL in PLWH are similar to
those in HIV-negative patients, although HIV-patients presented more aggressive charac-
teristics [9,14,19,75,76]. In our own experience, the results are good even in patients with
low CD4+ lymphocyte counts. In the study by Xicoy et al., we did not find worse outcomes
in patients with CD4+ lymphocyte <200/µL treated with ABVD [6].
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For this reason, the recommendations for the treatment of cHL in PLWH should not
differ from those in the general population. Standard regimens such as ABVD (doxorubicin,
bleomycin, vinblastine and dacarbazine), BEACOPP (bleomycin, etoposide, doxorubicine,
cyclophosphamide, vincristine, procarbazine, prednisone) baseline and Stanford V have
been demonstrated to be highly effective in HIV-infected patients [6,9,14,72–74]. In a retro-
spective study comparing PLWH and HIV-negative individuals treated with ABVD, the
complete response (CR) rates were 74% and 79%, respectively, and five-year overall sur-
vival (OS) was 81% and 88% for HIV-positive and HIV-negative patients, respectively [14].
Results from the French cohort reported again no differences between HIV-negative and
HIV-positive patients [19] In a similar study, patients with advanced cHL treated with
ABVD, had similar CR rates, (89% in HIV-positive vs. 91% in HIV-negative) and survival.
In all these studies, HIV-positive patients received cART concomitantly with ABVD. More-
over, Yotsumoto and colleagues, compared only EBV-positive HL cases, most of them
treated with ABVD (with or without radiotherapy) and did not find significant differences
in the CR rate, OS, and progression-free survival (PFS) between EBV+ HIV-positive and
EBV+ HIV negative instances. However, in this study, whether HIV-positive patients
received cART along with chemotherapy was not reported [76].

As in HIV-negative patients, the treatment can be tailored by taking into account the
risk factors and stratifying the patients, aiming for less toxicity and high efficacy. In this
sense, Hentrich et al. reported a study administering different treatment to patients with
early-stage with favorable risk HL (2 cycles of ABVD followed by 20 Gy of involved-field
radiotherapy) than to those with early-stage with unfavorable risk (4 cycles of BEACOPP
baseline followed by 30 Gy of involved-field radiotherapy) [74]. In this study, advanced
stage patients received 6–8 cycles of BEACOPP baseline. The results of these approaches
showed similar outcomes to those reported in the general population. However some
patients with advanced disease died because of neutropenic infections related to treatment
toxicity, meaning that this regimen should be given with caution in PLWH [74]. On the
other hand, due to the lack of prospective studies, there is scarce reliable information on
toxicity of ABVD in PLWH. However, based on the available information, this regimen
seems to be safe with acceptable toxicity in the HIV-setting [6,14]. Table 1 summarizes
the results of front-line treatment of cHL in PLWH of the main studies performed in the
cART era.

Interim PET-CT after two or three cycles can be used to decide if less chemotherapy can
be given according to the to the metabolic response. A retrospective study by Lawal et al.
showed the usefulness of fluorine-18-fluorodeoxyglucose PET (FDG-PET) performed at
diagnosis to stratify PLWH and cHL, without differences in metabolic parameters between
HIV-positive and HIV-negative patients [77]. A study by Okosun et al. demonstrated the
utility of an interim FDC-PET after two or three cycles to predict outcomes in PLWH with
advanced stage cHL treated with BVD [78]. They reported 100% 2-year PFS probability
in patients with negative interim PET-CT. Other studies have shown the feasibility of
stage-adapted approach treatments in the HIV-setting based on an interim PET-CT. Danilov
et al. reported the usefulness of an interim PET-CT after two cycles of ABVD to guide
further treatment in HIV-infected individuals with advanced HL. In this study 10 patients
with negative interim PET-CT were scheduled to receive four additional cycles of ABVD.
Nine of them completed the six cycles and only one patient discontinued it due to disease
progression [79].

Brentuximab vedotin (BV) is an anti-CD30 antibody-drug conjugate potently active in
Hodgkin lymphoma, approved by the Food and Drug Administration and the European
Medicines Agency for frontline treatment of HL in combination with doxorubicin, vinblas-
tine, and dacarbazine (AVD-BV). However, as usual, trials excluded HIV-infected patients
and the usefulness of BV in PLWH with cHL is still under investigation. A phase I trial
demonstrated the combination AVD-BV was well tolerated with 100% CR, in the absence
of strong CYP3A4 inhibitors as part of cART, and a phase II trial is ongoing [80].
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Relapses in HIV-infected patients with cHL can be treated with the same strategies
as HIV-negative patients including autologous stem cell transplantation. Several studies
have reported similar outcomes in HIV-infected patients and the general population when
treated with salvage therapy followed by autologous stem cell transplantation [81–83].
Moreover, two patients with cHL have been reported in a prospective clinical trial of
allogeneic bone marrow transplantation for patients with HIV and hematological malig-
nancies [84].

The new immunomodulatory treatments, such as checkpoint inhibition with anti-
PDL1 drugs, have been used in some patients and are currently under investigation in a
clinical trial combining Nivolumab, an anti-PD-1 blocking antibody, and Ipilimumab, a
monoclonal antibody against CTLA-4 (NCT02408861) [85,86].

Additional Measures and Supportive Care

In addition to specific lymphoma treatment, there are other issues to take into account
in the management of HIV-related lymphomas. Antimicrobial systematic prophylaxis
is a matter of controversy. Some groups are in favor of using fluoroquinolones, but this
practice is not generally recommended, because of the concern of generating bacterial
resistances to antibiotics and side effects [15,87]. However, primary infectious prophylaxis
using colony-stimulating factors such as G-CSF given after every cycle of chemotherapy,
is highly recommended [15,17,88]. Prophylaxis against Pneumocystis jirovecii should be
given to all PLWH who receive chemotherapy or radiotherapy as these treatments have
been demonstrated to decrease CD4+ lymphocyte counts [89–91]. The most recommended
is cotrimoxazole, which may have the additional benefits of prevention from bacterial
infections and toxoplasmosis. Mycobacterium avium complex should also be prevented in
patients with CD4+ lymphocytes lower than 50/µL, using oral azithromycin [88,92].

6. Management of cART in Patients with Classical Hodgkin Lymphoma
6.1. Initiation/Maintenance of cART

Whether combining cART with chemotherapy outweighs potential risk of increased
toxicity has remained controversial. The risk of overlapping toxicities and the potential for
difficult-to-manage drug–drug interactions have been reasons to justify postponement or
interruption of cART during chemotherapy by some authors [92,93]. However, effective
cART during chemotherapy has been shown to improve survival in PLWH with lym-
phoma [94–99]. Gopal and colleagues reported a 35% increase in mortality 5 years after
lymphoma diagnosis for each log10 increase in plasma HIV RNA load within the 6 months
after lymphoma diagnosis [97]. In addition, interruption of cART has been associated with
higher risk of death, AIDS, and serious non-AIDS morbidity [100]. Consequently, initia-
tion or maintenance of cART is currently recommended for PLWH with cancer, including
cHL [101]. One possible exception to this statement would be the case of patients with
a very poor prognosis. In such patients it may be reasonable to forego cART since they
are unlikely to have either HIV-related symptoms or a survival benefit from the addition
of cART.

6.2. Drug Interactions between cART and Chemotherapy

Currently approved antiretroviral drugs include nucleos(t)ide and non-nucleoside
reverse-transcriptase inhibitors (NRTIs and NNRTIs, respectively), protease inhibitors
(PIs), integrase strand transfer inhibitors (INSTIs), and entry inhibitors [102]. Management
of PLWH with cHL remains challenging due to potential drug–drug interactions among
antineoplastics, co-medications and antiretroviral drugs.

Despite the lack of controlled studies, clinically significant interactions between
chemotherapy regimens and cART have been reported. The risk for interactions is high-
est with antiretroviral regimens that include ritonavir or cobicistat (commonly known as
“boosters”). The use of boosters aims to increase concentrations in plasma of other antiretro-
virals including PIs or the INSTI elvitegravir to attain therapeutic concentrations over 24 h.
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However, ritonavir and cobicistat are potent inhibitors of cytochrome P450 enzymes and
drug transporters which are involved in the disposition of numerous drugs, leading to
marked increases in drug exposure [103,104]. Specifically in PWLH with lymphoma, the
use of boosters have been associated with a higher probability of dose-reduction and treat-
ment delay as well as with worse OS [105,106]. Specifically, the use of ritonavir was shown
to raise the risk of both hematologic and nonhematologic adverse events in PLWH treated
with cyclophosphamide, doxorubicin and etoposide [107,108]. Similarly, Leveque et al.
described increased autonomic neurotoxicity in one patient receiving lopinavir/ritonavir
and vincristine [109]. All of these limitations together with current availability of other
cART options with similar efficacy and better tolerability mean that unboosted regimens
should be considered for PLWH undergoing chemotherapy for lymphoma.

In patients with lymphoma unboosted INSTIs may be particularly recommended due
to their favorable interaction profile with antineoplastic drugs. Raltegravir, dolutegravir or
bictegravir do not exert inducer or inhibitor effects on P450 enzymes or drug transporters,
minimizing their potential for drug interactions [110–112]. Conversely, elvitegravir needs
to be coadministered with cobicistat. For this reason, the use of elvitegravir-based cART in
PLWH receiving chemotherapy shares most of the limitations of boosted PIs, and its use in
this setting should be discouraged.

On the contrary to ritonavir or cobicistat, some NNRTIs (i.e., nevirapine, efavirenz,
etravirine) are moderate to potent inducers of cytochrome P450 enzymes, and could poten-
tially reduce exposure, and thus efficacy, of certain chemotherapy drugs [113]. Rilpivirine
and doravirine are second-generation NNRTIs that do not induce the P450 system limiting
their potential for interactions with chemotherapy [114,115].

Nucleoside analogues reverse-transcriptase inhibitors are still considered the backbone
of cART [102]. Although no pharmacokinetic interactions between NRTIs and chemother-
apy are expected, their concomitant use with chemotherapy may be limited by phar-
macodynamic interactions with overlapping toxicity. Tenofovir may be associated with
renal toxicity [116]. Thus, if the patient is receiving tenofovir disoproxil fumarate with
other potentially nephrotoxic drugs (i.e., methotrexate, cisplatin, etc.). the use of tenofovir
alafenamide may be preferred. Similarly, zidovudine may cause anemia, myelosuppres-
sion, fatigue and nausea; and patients treated with didanosine or stavudine may develop
peripheral neuropathy, which can be worsened by chemotherapy [102].

Beside causing drug interactions, antiretroviral drugs may also be victims of interac-
tions caused by co-medications commonly used in patients with lymphoma. For example,
omeprazole and other proton pump inhibitors may reduce oral bioavailability of rilpivirine,
and coadministration may result in the loss of the therapeutic effect of rilpivirine [114]. An-
tiacids or multivitamins containing divalent cations may decrease oral absorption of INTIs
if they are taken at the same time, and dose staggering should be recommended [117,118].

6.3. Clinical Approach to Management of Patients on cART and Hodgkin Lymphoma

Since standard dosing algorithms do not exist for managing interactions between cART
and chemotherapy, increased monitoring for safety and efficacy is strongly recommended
in PLWH undergoing chemotherapy for cHL. In addition, the risk of specific drug–drug
interactions between antiretroviral and antineoplastic or supportive drugs should be
addressed. In this regard, we recommend consulting specific web pages on this topic, such
as www.hiv-druginteractions.org (accessed on 30 May 2021) [119] or www.hivclinic.ca/
main/drugs_interact.html (accessed on 30 May 2021) [120] (Table 2).

www.hiv-druginteractions.org
www.hivclinic.ca/main/drugs_interact.html
www.hivclinic.ca/main/drugs_interact.html
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Table 2. Main drug–drug interactions (DDI) between drugs for the treatment of Hodgkin lymphoma and antiretroviral agents (www.hiv-druginteractions.org; www.hivclinic.ca/main/
drugs_interact.html accessed on 30 May 2021) *.

DRV/r
DRV/c

ATV/r
ATV/c LPV/r NVP EFV ETR RPV DOR RAL EVG/c DTG BIC

Cyclophosphamide
(CYC)

Monitor CYC
toxicity

Monitor CYC
toxicity

Monitor CYC
toxicity

Monitor CYC
efficacy/toxicity

Monitor CYC
efficacy/toxicity

Monitor CYC
efficacy/toxicity

No DDI
expected

No DDI
expected

No DDI
expected

Monitor
CYC

toxicity

No DDI
expected

No DDI
expected

Doxorubicin (DOX) No DDI
expected

Monitor
ECG **

Monitor
ECG **

No DDI
expected

No DDI
expected

No DDI
expected

Monitor
ECG **

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

Vincristine/Vinblastine
(VIN)

Increased
VIN toxicity

Increased
VIN toxicity

Increased
VIN toxicity

Monitor VIN
efficacy

Monitor VIN
efficacy

Monitor VIN
efficacy

No DDI
expected

No DDI
expected

No DDI
expected

Increased
VIN toxicity

No DDI
expected

No DDI
expected

Prednisone (PRE) Monitor PRE
toxicity

Monitor PRE
toxicity

Monitor PRE
toxicity

Monitor PRE
efficacy

Monitor PRE
efficacy

Monitor PRE
efficacy

No DDI
expected

No DDI
expected

No DDI
expected

Monitor
PRE toxicity

No DDI
expected

No DDI
expected

Etoposide (ETO) Monitor ETO
toxicity

Monitor ETO
toxicity

Monitor ETO
toxicity

Monitor ETO
efficacy

Monitor ETO
efficacy

Monitor ETO
efficacy

No DDI
expected

No DDI
expected

No DDI
expected

Monitor
ETO toxicity

No DDI
expected

No DDI
expected

Bleomycin (BLE) No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

Brentuximab (BRE) Monitor BRE
toxicity

Monitor BRE
toxicity

Monitor BRE
toxicity

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

Monitor
BRE toxicity

No DDI
expected

No DDI
expected

Dacarbazine (DAC) Monitor
DAC toxicity

Monitor
DAC toxicity

Monitor
DAC toxicity

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

Nivolumab (NIV) No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

Pembrolizumab
(PEM)

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

Procarbazine (PRO) Monitor PRO
efficacy

Monitor PRO
efficacy

Monitor PRO
efficacy

Monitor PRO
efficacy

Monitor PRO
efficacy

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

Rituximab (RIT) No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

No DDI
expected

DRV/r: darunavir/ritonavir; DRV/c: darunavir/cobicistat; ATV/r: atazanavir/ritonavir; ATV/c: atazanavir/cobicistat;LPV/r: lopinavir/ritonavir; NVP: nevirapine; EFV: Efavirenz; ETR: etravirine; RPV:
rilpivirine; DOR: doravirine; RAL: raltegravir; EVG/c: elvitegravir/cobicistat; DTG: dolutegravir; BIC: bictegravir. * Coadministration of most of these drugs has not been studied. Potential DDI are based on
theoretical data. ** Monitor QT interval in the ECG with lopinavir/ritonavir, atazanavir and rilpivirine.

www.hiv-druginteractions.org
www.hivclinic.ca/main/drugs_interact.html
www.hivclinic.ca/main/drugs_interact.html
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A stable antiretroviral regimen can be modified before chemotherapy to avoid drug–
drug interactions, reduce toxicity, and improve adherence and tolerability. As abovemen-
tioned, discontinuation of ritonavir or cobicistat-containing regimens in favor of unboosted
INSTIs should be encouraged. However, the discontinuation of a single drug in the an-
tiretroviral regimen thought to interact with chemotherapy must be avoided, as this may
decrease the efficacy of cART and promote the development of viral resistance to the other
antiretrovirals that are to be continued. Changes in cART should be made in consulta-
tion with an HIV specialist, since knowledge of the patient’s complete treatment history,
including resistance data is crucial when designing alternative cART options. Therefore,
interdisciplinary collaboration for the optimal treatment of the oncologic process and HIV
infection is mandatory [22,121,122], and may result in better outcomes for PLWH with HL,
including better PFS rates (personal communication, unpublished).

7. Conclusions

The widespread use of cART initially produced an increase in the incidence of cHL in
PLWH. The etiopathogenesis of this lymphoma in the HIV-setting has some differential
characteristics due to HIV and EBV cooperation and the different composition of the
microenvironment compared to non-HIV patients. Although more aggressive clinical
features are still present in cHL affected PLWH, the prognosis has improved and is currently
similar to that of HIV-negative patients. The therapeutic approach for HIV-related cHL
should not differ from that for the general population. The standard strategies used
in the general population to treat cHL have been shown to be equally effective among
PLWH. Patients with HIV-related cHL should be placed or maintained on cART during
treatment. However, the concomitant administration of chemotherapy with cART may be
challenging due to drug–drug interactions and overlapping toxicity. Thus, interdisciplinary
collaboration between hemato-oncologists and HIV specialists is crucial for the optimal
treatment of both lymphoma and HIV infection while minimizing the risk of adverse
outcomes for the patient.
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