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Simple Summary: Epstein–Barr virus (EBV) is involved in lymphomagenesis, especially lymphomas
affecting populations with immunodeficiencies, such as people living with HIV (PLWH). The
pathogenic roles of EBV in lymphomas arising in PLWH are mediated by several viral proteins, as
well as cooperation between EBV and HIV. The presence of EBV in these lymphomas conditionate
some of their epidemiological, pathological, and clinical characteristics, as well as their prognosis. In
this article, the authors review the different EBV-associated lymphomas affecting PLWH, analyzing
the influence of EBV on the epidemiology, etiopathogenesis, clinical features, treatment, diagnosis
and prognosis of each lymphoma subtype. Furthermore, new EBV-targeted therapies currently under
development for some lymphomas are discussed.

Abstract: The incidence of lymphomas is increased in people living with HIV (PLWH). Aggressive
B-cell non-Hodgkin lymphomas (NHLs) are the most common and are considered an AIDS-defining
cancer (ADC). Although Hodgkin lymphoma (HL) is not considered an ADC, its incidence is also
increased in PLWH. Among all HIV-related lymphomas (HRL), the prevalence of Epstein–Barr virus
(EBV) is high. It has been shown that EBV is involved in different lymphomagenic mechanisms
mediated by some of its proteins, contributing to the development of different lymphoma subtypes.
Additionally, cooperation between both HIV and EBV can lead to the proliferation of aberrant B-cells,
thereby being an additional lymphomagenic mechanism in EBV-associated HRL. Despite the close
relationship between EBV and HRL, the impact of EBV on clinical aspects has not been extensively
studied. These lymphomas are treated with the same therapeutic regimens as the general population
in combination with cART. Nevertheless, new therapeutic strategies targeting EBV are promising
for these lymphomas. In this article, the different types of HRL are extensively reviewed, focusing
on the influence of EBV on the epidemiology, pathogenesis, clinical presentation, and pathological
characteristics of each lymphoma subtype. Moreover, novel therapies targeting EBV and future
strategies to treat HRL harboring EBV are discussed.

Keywords: Epstein–Barr virus; human immunodeficiency virus; HIV-related lymphomas

1. Introduction

People living with HIV (PLWH) are at higher risk of developing aggressive B-cell
lymphomas than the general population, and B-cell non-Hodgkin lymphoma (NHL) is
currently the most frequent AIDS-defining cancer (ADC) [1,2]. Among NHL, diffuse large
B-cell lymphoma (DLBCL) is the most common, including primary central nervous sys-
tem lymphoma (PCNSL), followed by Burkitt lymphoma (BL). The frequency of other
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lymphoma subtypes, such as plasmablastic lymphoma (PBL) and primary effusion lym-
phoma (PEL) is lower, but they more frequently affect PLWH [3]. While the incidence
of aggressive B-cell NHL has decreased in PLWH since the widespread use of combined
antiretroviral therapy (cART), lymphoma is still an important cause of morbidity and
mortality among this population [4,5]. On the other hand, although Hodgkin lymphoma
(HL) is not considered an ADC, its incidence increased among PLWH during the first years
after the introduction of cART [3,6], and eventually has remained stable or with only a
slight increase [7,8].

The pathogenesis of HIV-related lymphomas is complex and influenced by immuno-
suppression and coinfection with oncogenic viruses, mainly human herpes virus 8 (HHV-8)
and Epstein–Barr virus (EBV), two human γ-herpesviruses that establish latency in the host
B-cell nucleus. However, the prevalence of EBV is higher in HIV-related lymphomas (HRLs)
and is therefore implicated in the pathogenesis of these lymphomas [9–12]. Some compo-
nents of the virus related to the latent state, such as EBV latent membrane proteins (LMP1s
and LMP2A/B), EBV-nuclear antigens (EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C,
EBNA leader protein (EBNA-LP), EBV-encoded small RNAs (EBERs), and microRNAs
(miRNAs) play important roles in lymphomagenesis [13]. The EBV latency type differs
among HRLs, suggesting that EBV may regulate different processes related to B-cell trans-
formation and evasion of the immune system [14–19]. The EBV-encoded miRNAs have
a role in the lymphomagenesis, regulating different cellular pathways such as apoptosis,
proliferation, immune recognition, and microenvironment [20]. EBV-miRNAs are located
in two regions of the viral genome: the BamHI-A region rightward transcript (BART) and
BamHI-H rightward fragment 1 (BHRF1) [21]. The expression of viral miRNAs differs
according to the latency type; while BART miRNAs are expressed in all latency types
(mainly in latency I and II), BHRF1–3 miRNAs are expressed almost exclusively in the
latency III type [21]. During the latent state, EBV can intermittently reactivate, expressing
lytic genes that are also involved in lymphoma development [22].

Furthermore, cooperation between HIV and EBV in HRLs has been speculated, with
HIV likely contributing to the generation of a permissive microenvironment for EBV
infection, and the differentiation and survival of infected B-cells [18,23,24].

In addition to the presence of EBV in lymphoma tissue, the virus can be detected in
peripheral blood of patients with lymphoma. Some studies have suggested the usefulness
of EBV load as a lymphoma biomarker with diagnostic and prognostic implications in
PLWH [19,25–27].

There is great interest and a need to develop new EBV-targeted therapies for the
treatment of patients with EBV-driven lymphomas. Multiple EBV-target strategies have
been studied in HRLs in preclinical studies, but few clinical trials have been carried out [28].

This article is a review of the state of the art of the implications of EBV in different
clinical, epidemiological, and etiopathogenical aspects of HRL, as well as a description
of the EBV-targeted therapies currently under development for the treatment of these
lymphomas.

2. Implications of Epstein–Barr Virus in the Different HIV-Related Lymphoma Types
2.1. Diffuse Large B-Cell Lymphoma

Diffuse large B-cell lymphoma is an aggressive B-cell neoplasm that can be classified,
according to the cell-of-origin (COO), into germinal center B-cell (GCB) and activated
B-cell (ABC) [29]. Two entities have classically been considered, systemic DLBCL and
DLBCL with exclusive involvement of the central nervous system (Figure 1) [30]. Although
the WHO classification reserves the term primary DLBCL of the central nervous system
(PCNSL) for immunocompetent patients, PLWH typically have DLBCL with exclusive
involvement of the CNS, which is considered an AIDS-defining condition, thus the term
PCNSL is commonly found in the literature in the HIV setting [31].
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Figure 1. EBV-associated HIV-related lymphoma development during B-cell differentiation in the germinal center. Burkitt
lymphoma (BL) and germinal center B-cell diffuse large B-cell lymphoma (GCB-DLBCL) have a germinal center (GC) origin.
Primary central nervous system lymphoma (PCNSL) has a late B-cell origin with both ABC and GC B-cell features. Hodgkin
lymphoma (HL) is originated in a preapoptotic GC B-cell. ABC-DLBCL develops after the activation of the B-cell through the
interaction with antigen-presenting cells. After this event, cells can differentiate into memory B-cells or plasma cells. During
plasma cell differentiation, activated B-cells are first differentiated to plasmablast, which is the cell of origin of plasmablastic
lymphoma (PBL). Primary effusion lymphoma (PEL) is originated in post-GC B-cells with plasmablastic differentiation.

2.1.1. Epidemiology

Systemic DLBCL is the most common NHL in both PLWH and the general population.
Although its incidence in PLWH has diminished since the widespread use of cART, DLBCL
is still an important cause of morbidity and mortality among this population [15,32–34].
EBV infection is present in 30–50% of HIV-related DLBCL cases, a frequency higher than
that of the general population [15,19,35–38]. According to the COO, EBV is more frequently
found in ABC-DLBCL (44–74%) than in GCB-DLBCL (13–25%) [15,37,39]. To our knowl-
edge, in PLWH with DLBCL, no differences regarding age and gender have been reported
between EBV-positive and EBV-negative cases [19,37,39,40].

PCNSL is an infrequent lymphoma affecting 15 per 100,000 persons-year in PLWH [32].
HIV is considered a risk factor in this lymphoma, but its incidence has dramatically
decreased in the cART era [31,32,41,42]. Nearly all cases (80–100%) of HIV-related PCNSL
are associated with EBV [27,43–46].

2.1.2. Etiopathogenesis

As reported by Arvey et al., the frequency of EBV latency types differs in PLWH
depending on the DLBCL subtype [15]. They described that 76% of GCB-DLBCLs are
associated with latency type I (LMP1−, EBNA2−), 12% with latency type II (LMP1+,
EBNA2−), and 12% with latency III (LMP1+, EBNA2+) (Table 1). On the other hand, in
ABC-DLBCLs, either latency types II or III were found in 30% of cases each, and latency type
I in 37% of cases. These data suggest that EBV could be involved in different pathogenic
mechanisms depending on the DLBCL COO subtype.
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Table 1. Lymphomas affecting PLWH. The percentage of EBV, latency type, and the CD4+ lymphocyte
counts for each lymphoma are shown. BL: Burkitt lymphoma; PBL: plasmablastic lymphoma; DLBCL:
diffuse large B-cell lymphoma; EBV: Epstein–Barr virus; HL: Hodgkin lymphoma; PCNSL: primary
central nervous system lymphoma; PEL: primary effusion lymphoma.

Lymphoma EBV Frequency EBV Latency Type CD4+ Lymphocyte
Counts (Cells/µL)

DLBCL 30–50% I/II/III 100–223

PCNSL 80–100% III <50

BL 30–60% I 200–270

PBL 75–100% I 63–165

PEL 70–100% I 98–133

HL 90–100% II 150–200

HIV-related DLBCL associated with EBV also presents high expression of Blimp1,
a transcriptional repressor of TP53, which confers the capacity to escape from apoptosis
and deregulate B-cell differentiation [19]. Furthermore, EBV-positive HIV-related DLBCL
frequently expresses CD30, which is an NF-кB promoter [19]. It has been demonstrated
that LMP1 activates the NF-кB signaling pathway and induces chronic B-cell activation,
both being typical deregulated pathways in the ABC subtype [19,37,47]. Thus, EBV could
have a synergistic effect on the lymphomagenesis of the HIV-related ABC subtype.

The expression of miR-BHRF1–3 has been observed in an increased frequency in
primary cell lines and frozen samples from HIV-related DLBCL [48]. This miRNA targets
C-X-C motif chemokine ligand 11 (CXCL-11), providing the cells the ability to escape from
the immune system. The expression of different miR-BHRF1s have been also confirmed in
frozen samples of HIV-related DLBCL [49]. In addition, these patients showed an elevated
expression of miR-BARTs 15, 10-3p, 11-3p, and 14-3p compared with other EBV-related
lymphomas in immunocompetent individuals [49].

Additionally, miR-BHRF1–2 inhibits PRDM1, preventing apoptosis and cell cycle
arrest in lymphoblastoid cell lines (LCL) [50]. This EBV-miRNA could be a synergistic
mechanism of the downregulation of PRDM1 in GCB-DLBCL. Furthermore, some EBV-
miRNAs such as miR-BART3, miR-BART9, and miR-BART17-5p can downregulate BCL6,
an NF-кB repressor [51].

The expression of EBV-lytic genes has been also described in lymphomas, and emerg-
ing studies of its impact on the lymphomagenesis are in progress [22]. Cohen et al. have
reported an expression of the lytic proteins BZLF1, BHRF1, and BLLF1 in immunocom-
petent EBV-related DLBCL that could deregulate cellular pathways and contribute to the
lymphomagenesis [52].

Additionally, HIV could be involved in the pathogenesis of DLBCL in PLWH. In
this regard, Liapis et al. reported increased infiltration of CD8+ cytotoxic T-lymphocytes
(CTL) in DLBCL tumors with expression of LMP1 and the HIV-1 p24 protein, which is
related to active HIV replication [53]. Furthermore, it has been postulated that the HIV-
1-matrix protein p17 persists after antiretroviral drug suppression and acts as a cytokine
for T-cell activation and promotes angiogenesis [54,55]. In addition, p17 also can increase
the expression of LMP1 in primary EBV-infected B-cell lymphocytes, as described by
Martorelli et al. [16]. Both p17 and LMP1 are involved in the cell growth mediated by the
Akt/ERK and STAT signaling pathways, suggesting cooperation between HIV and EBV in
the proliferation of malignant B-cells and the lymphomagenesis of DLBCL [56].

In HIV-related PCNSL, EBV infection affects 80–100% of cases [57,58]. In these lym-
phomas, EBV latency III (including LMPs, EBNAs, and EBERs expression) is the most
frequent latency type [59]. This lymphoma usually affects PLWH at advanced stages of
immunosuppression, with very low CD4+ lymphocyte counts (median < 50 cells/µL) and
with loss of immune response mediated by CTLs [58,60]. Although EBV does not replicate
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in the tissue of the central nervous system (CNS), the lax immune response produced by
HIV facilitates EBV infection and the migration of infected B-cells to the CNS [58,61].

2.1.3. Impact of EBV on Clinical Features and Prognosis

Systemic HIV-related DLBCL usually has extranodal involvement and an advanced
stage at diagnosis (III or IV) [19]. These patients usually present median CD4+ lymphocyte
counts of 100–223 cells/µL [40,53,62]. The impact of EBV on the clinical features and prog-
nosis of DLBCL in PLWH have been scarcely studied. Chao et al. found no differences in
most of the clinical variables according to EBV status, but they found a significant reduction
in CD4+ lymphocyte counts in EBV-positive compared with EBV-negative cases (mean
128 cells/µL vs. 248 cells/µL). These authors found that the period of time between HIV
infection and the development of DLBCL tended to be shorter in EBV-positive compared
to EBV-negative cases [19]. In addition, there was a trend toward a higher frequency of
ABC cases in EBV-positive cases [19,63].

The impact of EBV on prognosis in HRL is a matter of controversy. In a study by
Chao et al., the presence of EBV in tumoral tissue was associated with a worse overall sur-
vival (OS) [19]. However, Chadburn et al. described that the presence of EBV in lymphoma
cells was not associated with poorer survival or low CD4+ lymphocyte counts [63].

PCNSL usually occurs in patients with advanced immunosuppressed status and low
CD4+ lymphocyte counts (<50 cells/µL), and frequently with an AIDS-defining illness
before lymphoma diagnosis [31,45,64–66]. In this regard, low CD4+ lymphocyte counts
and high HIV load are associated with a worse outcome in patients with PCNSL [31,42].
Given that EBV coinfection is detected in nearly all HIV-PCNSL patients, the detection of
EBV-DNA in cerebrospinal fluid (CSF) is a quick diagnostic tool for HIV-related PCNSL
diagnosis, having a high sensitivity and specificity [45,67]. Thus, the elevated frequency of
EBV infection and the advanced immunodeficiency conditions caused by HIV suggest that
EBV plays a relevant role in the lymphomagenesis of PCNSL.

2.1.4. Treatment

Patients with systemic HIV-related DLBCL are treated with the same regimens as the
general population. The gold standard treatment used in DLBCL is rituximab, cyclophos-
phamide, doxorubicin, vincristine, and prednisone (R-CHOP). Additionally, it is highly
recommended to add cART concomitantly with the immunochemotherapy because this
strategy has been demonstrated to improve the outcome of these patients [68,69]. The
recommended treatment for relapsed/resistant patients is the same as that used in the gen-
eral population, and therefore they should receive second-line regimens containing drugs
not included in the frontline treatment, followed by autologous stem cell transplantation
(ASCT) (Table 2) [70].

There is no gold standard treatment for patients with HIV-related PCNSL. Patients
with a good general condition currently receive induction treatment with high-dose
methotrexate-based polychemotherapy in combination with cART [71,72]. In some patients,
ASCT can be considered. Radiotherapy may be considered in patients without response to
chemotherapy treatments [73].
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Table 2. Current therapeutic regimens of HRL and EBV-targeted therapies. (A). Chemotherapeutic
regimens of 1st and 2nd line in combination with cART for the treatment of HRL associated with
EBV infection. (B). Diverse EBV-targeted therapeutic strategies in preclinical studies (left) and EBV-
targeted therapies tested in clinical trials in EBV-related lymphomas (right). ABVD: doxorubicin,
bleomycin, vinblastine, and dacarbazine; ASCT: autologous stem cell transplantation; AZT: azidotimi-
dine; BEACOPP: bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine,
prednisone; BL: Burkitt lymphoma; Burkimab: cyclophosphamide, methotrexate, dexamethasone,
ifosfamide, vincristine, etoposide, cytarabine, doxorubicin, vindesine; cART: combined antiretroviral
therapy; CAR-T: chimeric antigen receptor T-cells; CHOP: cyclophosphamide, doxorubicin, vin-
cristine, and prednisone; CODOX-M/IVAC: cyclophosphamide, doxorubicin, vincristine, methotrex-
ate/ifosfamide, etoposide, cytarabine; CTLs: cytotoxic T-lymphocytes; DA-EPOCH: dose-adjusted
etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin; DHAP: dexamethasone,
cytarabine, and cisplatin; DHAX: dexamethasone, cytarabine, and oxaliplatin; DLBCL: diffuse large
B-cell lymphoma; EBNA1: EBV-nuclear antigen 1; EBV: Epstein–Barr virus; EBVST: EBV-specific
T-cells; ESHAP: etoposide, cisplatin, methylprednisolone, and cytarabine; GCV: ganciclovir; GDP:
gemcitabine, dexamethasone, and oxaliplatin; GEMOX: gemcitabine and oxaliplatin; HDAC: hi-
stone deacetylase; HD-MTX: high dose methotrexate; HIV: human immunodeficiency virus; HL:
Hodgkin lymphoma; Hyper-CVAD: cyclophosphamide, doxorubicin, vincristine, dexamethasone
with methotrexate and high-dose cytarabine; ICE: ifosfamide, etoposide, and carboplatin; IC-HL:
immunocompetent Hodgkin lymphoma; LMP1: latent membrane protein-1; LMP2: latent membrane
protein-2; NHL: non-Hodgkin lymphoma; PBL: plasmablastic lymphoma; PCNSL: primary central
nervous system lymphoma; PD-1: programmed death 1; PD-L1: programmed death ligand 1; PEL:
primary effusion lymphoma; PTLD: post-transplant lymphoproliferative disorder; R: rituximab;
SAHA: suberoylanilide hydroxamic acid; SCT: stem cell transplantation; THP-COP: pirarubicin,
cyclophosphamide, vincristine, and prednisolone.

(A) Chemotherapeutic Treatment in HIV-Related Lymphomas
Lymphoma 1st Line 2nd Line
1-3 DLBCL R-CHOP R-ESHAP, R-ICE, R-GEMOX; followed by ASCT

PCNSL HD-MTX ASCT, Radiotherapy

BL

CODOX-M/IVAC
Burkimab

Hyper-CVAD
DA-EPOCH-R

R-DHAP, R-DHAX, R-GDP, R-GDP, R-GEMOX

PBL

CODOX- M/IVAC
Hyper-CVAD
DA-EPOCH-R

Bortezomib

THP-COP, ESHAP, ICE and ASCT

PEL DA-EPOCH
CHOP ASCT, radiotherapy, bortezomib

HL ABVD
BEACOPP ESHAP, DHAP, ICE; followed by ASCT

(B) EBV-Targeted Therapies
Preclinical Studies

Small molecule
inhibitors

• Targeting host factors and signaling pathways
• Targeting EBV antigens

Immunotherapy

• PD-1/PD-L1 antibodies
• Monoclonal antibodies
• EBVST
• T-cell receptor-modified T-cell therapy
• CAR-T
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Table 2. Cont.

(B) EBV-Targeted Therapies
Clinical Trials

Antiretroviral
drugs

• GCV and AZT in combination with immunomodulatory IL-2 and cART
in EBV+ HIV-related PCNSL

Induction of lytic
infection from
latency state

• Arginine butyrate in combination with GCV in refractory EBV-related
lymphomas
• Inhibition of histone deacetylase (HDAC), such as SAHA in HL and NHL

Inhibition of
PD-1/PD-L1 • Prembrolizumab in IC-HL

EBVST
• LMP1/LMP2- or LMP2-specific CTLs administered in EBV-related NHL
or HL
• EBNA-specific CTL in patients with EBV-related PTLD after SCT

2.2. Burkitt Lymphoma

Burkitt lymphoma is an aggressive NHL with a germinal center (GC) origin that can
be classified as follows depending on the epidemiological characteristics: endemic BL,
sporadic BL, and immunodeficiency-associated BL, which is mainly associated with HIV
infection (Figure 1) [29,74].

2.2.1. Epidemiology

Similar to DLBCL, PLWH have a higher incidence of BL than the general population,
and BL comprises 20–30% of HRL [29,75]. HIV-related BL is more frequent among men
(86.7%) with a median age of 39 years and is associated with EBV in 30–60% of cases [76–80].
This entity mainly develops in individuals at an early stage of HIV infection with a moder-
ate reduction of CD4+ lymphocyte counts (200–270 cells/µL) [77,81]. Unlike DLBCL, the
introduction of cART did not lead to a decrease in the number of BL cases diagnosed in
PLWH, and the incidence has remained stable in recent years [82,83]. Regarding pathologic
features, plasmacytoid differentiation is characteristic of HIV-related BL, and is found in
50–70% of EBV-infected cases [57,77,84].

2.2.2. Etiopathogenesis

The causes and mechanisms that lead to the development of BL have not been com-
pletely elucidated. The translocation of MYC with the immunoglobulin heavy-chain loci
(IgH) and inactivation of p53 are hallmarks of the pathogenesis of BL [80,85]. In HIV-
related BL, MYC translocations and TP53 mutations are detected in 90–100% and 60% of
cases, respectively [78,80]. The translocation of MYC leads to constitutive activation of
MYC, increasing proliferation, so these tumors are characterized by their high proliferative
rates [57].

Among cases with EBV coinfection, latency type I (EBERs+ and EBNA1+ expression)
is the most common EBV latency type (90%), although it is possible to find latency type
II (EBERs+, EBNA1+, LMP1+) in a few cases (10%) (Table 1) [15,59]. LMP1 and EBNA2
have antagonistic effects to Myc in the phenotype of BL B-cells. This could be the cause
of the reduced frequency of latency type II and the absence of latency type III in this
lymphoma [86].

The EBNA1 protein not only maintains the EBV episomal genome in the host cells
and regulates extrachromosomal replication, but may also deregulate host gene expres-
sion [17,87]. This protein has an antiapoptotic effect, since it decreases p53 stability and
thus favors the survival of tumoral cells [88,89]. Furthermore, Zhang et al. described a
hypermethylation of PRDM1 (the gene that encodes the Blimp1 protein) exclusively in
EBV-positive BL, inactivating this gene [90]. The overexpression of this gene results in
cell cycle arrest, thus the inactivation of PRDM1 could be beneficial for cell growth and
contribute to lymphomagenesis of BL in EBV-infected cases (Figure 2) [90].
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Figure 2. EBV genes and noncoding RNAs are involved in diverse lymphomagenic processes.
EBV can prevent apoptosis and promote cell growth and proliferation via latency and lytic genes,
miRNAs, and EBERs. These EBV components can also protect infected B-cells from the immune
cells’ recognition via latency genes, miRNAs, and EBERs. Moreover, miRNAs can also alter the
microenvironment, inducing the transformation of tumor-associated macrophages. Latency genes
and EBERs are also involved in activation and transformation of B-cells. EBV may also induce
chemoresistance mediated by lytic genes.

Additionally, MYC could alter immune system response by reducing the activity
of the NF-кB pathway. This effect, in combination with the poor antigenic property of
EBNA1, leads EBV-infected B-cells to acquire the ability to escape from immune system
recognition [75]. Moreover, the absence of the immunogenic proteins EBNA2 and LMP1 in
EBV-positive HIV-related BL could be a self-defense mechanism of the virus to remain in
host cells and escape the immune system [11,16].

The EBV lytic protein, BHRF1, confers protection from apoptosis in EBV-positive
BL cell lines, since it is a homolog of the antiapoptotic protein BCL-2 and negatively
regulates the proapoptotic protein Bim [91,92]. This phenomenon can avoid the cell death
associated with genetic alterations in MYC, being a cooperative mechanism of Myc-driven
lymphomagenesis and favoring the chemoresistance [92]. Another lytic protein, BZLF1,
directly inhibits p53 in BL cell lines and could be an alternative mechanism for the inhibition
of this protein, in addition to the inactivating mutations of TP53 [93].

Moreover, EBV-miR-BARTs are upregulated in EBV-positive HIV-related BL and could
deregulate the host gene and miRNA expression in these tumors [17]. In particular, EBV-
negative immunodeficiency-BL presents a downregulated expression of miR-BART6-3p
compared with EBV-positive cases. This miRNA may have an impact on the proliferation,
cell growth, and apoptosis in the BL cell line, downregulating the expression of PTEN, a
negative regulator of the Akt/PI3K signaling pathway [94,95]. In addition, miR-BART6-3p
regulates the expression of the IL-6 receptor (IL-6R), being able to contribute to immune
system evasion [94]. Furthermore, it has been postulated that EBV-miRNAs have a role in
the microenvironment regulation, reducing the innate and adaptative immune response in
EBV-positive tumors, similar to BL (Figure 2) [96].

Moreover, EBERs induce the IL-10 expression in EBV-BL cell lines, suggesting an EBV
involvement in the tumor growth [97]. They bind protein kinase RNA-activated (PKR), a
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protein involved in interferon-α (IFN-α)-mediated apoptosis, avoiding its phosphoryla-
tion [98]. Therefore, EBERs can be also involved in apoptosis resistance.

2.2.3. Impact of EBV on Clinical Features and Prognosis

To our knowledge, studies of the clinical features of EBV-positive BL specifically
focused on PLWH have not been carried out. However, HIV-related BL has been more
extensively studied. Patients usually develop BL early in HIV disease, and they still
maintain a moderate amount of CD4+ lymphocyte counts (greater than 200 cells/µL),
often without a history of opportunistic infections (Table 1) [81]. This lymphoma presents
an aggressive clinical behavior in advanced stages (III and IV), with nodal and bone
marrow involvement [29,99–101]. If relapse occurs, it is usually seen within the first year
after response and can be associated with CNS involvement [102]. In the cART era, the
prognosis of HIV-related BL has improved, and similar responses and survival probabilities
are now achieved compared with those of non-HIV-infected individuals [103,104].

2.2.4. Treatment

The treatment of HIV-related BL is based on intensive chemotherapeutic schemes
as in the general population, but in combination with cART [84]. The chemotherapeutic
strategies include cyclophosphamide, vincristine, doxorubicin, methotrexate/ifosfamide,
etoposide, cytarabine (CODOX-M/IVAC) [105]; cyclophosphamide, methotrexate, dex-
amethasone, ifosfamide, vincristine, etoposide, cytarabine, doxorubicin, and vindesine
in combination with rituximab (Burkimab) [103]; cyclophosphamide, vincristine, doxoru-
bicin, and dexamethasone with methotrexate and high-dose cytarabine (hyper-CVAD);
or dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin
with rituximab (DA-EPOCH-R) [106]. There is no standard second-line treatment for this
lymphoma, and the few refractory/relapsed patients should be treated with experimental
strategies (Table 2).

2.3. Plasmablastic Lymphoma

Plasmablastic lymphoma is a B-cell NHL that most commonly occurs in PLWH and is
characterized by loss of GC B-cell markers and the expression of plasma cell markers and
features of an activated B-cell (Figure 1) [29].

2.3.1. Epidemiology

PBL is an uncommon lymphoma with an aggressive clinical course, with a median OS
of 6–11 months [29,107]. This lymphoma presents more frequently in men (80%) with a
median age of 39–46 years. It is closely related to HIV infection, representing around 2–12%
of HRL [108–112] and in most cases the cells are also infected by EBV (75–100%) [113–115].

2.3.2. Etiopathogenesis

The genetic and molecular characterization of PBL has not been clearly described. Nev-
ertheless, recent studies have revealed that dysregulating mutations in the JAK-STAT and
RAS-MAPK pathways are genetic signatures of PBL. These mutations mostly affect STAT3,
TP53, and RAS family members, and with less frequency affect MYC, EP300, CARD11,
SOCS1, and TET2 [116–119]. Additionally, MYC translocation is the most frequent genetic
alteration found [114,120,121], being more frequent in HIV-related PBL than in PBL in
the general population (78% vs. 44%). In addition, it is more common in EBV-positive
than in EBV-negative PBL (57–74 vs. 20–43%) [118,121,122]. The high frequency of EBV
among HIV-related PBL reported in many studies indicates a strong association between
the two viruses, and EBV latency I is the most common pattern (Table 1), but the latency
III pattern has been observed as well [108,109,114,121,123,124]. Additionally, some studies
describe different genetic alterations depending on the EBV status. Mutations in TP53
are more frequent among EBV-negative compared with EBV-positive PBL [116,117], while
mutations in STAT3 and SOCS1 are more common in EBV-positive cases [116]. Garcia-
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Reyero et al. reported that EBV-related PBL cases presented greater genomic stability than
EBV-negative cases (87.5% vs. 54%), as well as a different mutational profile [118]. In this
regard, PRDM1 and STAT3 mutations are only detected in EBV-related PBL, and most are
also HIV-related [118]. Blimp1 is a transcriptional repressor of MYC in transformation of
a B-cell to a plasma cell, so coexpression of both proteins would not be expected in this
lymphoma [125]. However, both proteins are usually expressed in HIV-related PBL [122].
In this regard, Montes-Moreno et al. described that PRDM1 mutations affect functional
domains involved in the regulation of other genes, which could avoid the negative reg-
ulation of Myc, but not B-cell terminal differentiation. Thus, PRDM1 mutations would
reinforce Myc-driven lymphomagenesis [122]. This could also explain the discontinuation
of plasmacytic differentiation at the plasmablast stage [126].

Given the biological similarities shared between PBL and BL extramedullary plasma-
cytoma (EMPC), a recent study revealed different EBV-miRNAs expression among these
groups. A total of 38 EBV-miR-BARTs were upregulated in PBL compared with EMPC,
while 19 EBV-miR-BARTs were downregulated in PBL compared with BL, suggesting that
EBV-miRNAs could be useful for the differential diagnosis of PBL [127].

The expression of EBV lytic proteins in lymphomas could contribute to the lymphoma-
genesis. In this regard, PBL shows expression of EBV proteins related with lytic cycle
such as BZLF-1/ZEBRA, BHRF-1/Ea-R, and BMRF-1/Ea-D, but absence of BLLF1/gp50
expression [127]. Other authors have recently described a higher expression of the lytic
genes BALF4 and BALF5 in HIV-related PBL in EBV-positive cases [119].

EBV-related PBL shows an increased number of infiltrating T-cells, natural killer
(NK) cells, and protumorigenic M2-macrophages, compared to EBV-negative PBL, and
in turn presents higher activation of immune evasion mechanisms. In this regard, EBV-
related PBL present an overexpression of programmed cell death ligand 1 (PD-L1) that is
associated with immune evasion by tumoral cells [128]. These mechanisms could lead to
the construction of a favorable microenvironment for lymphoma development.

2.3.3. Impact of EBV on Clinical Features and Prognosis

Extranodal involvement is very frequent in PBL in PLWH (95% of cases) at di-
agnosis, and in these patients the lymphoma usually presents at advanced stages (III
or IV) [108,109,112,115,120,129]. The oral cavity is the most frequent extranodal site
(48–58%) [29,108,113,129]. Schommers et al. reported that some clinical features such
as age older than 60, high serum lactate dehydrogenase, an Eastern Cooperative Oncology
Group (ECOG) score > 2, and an International Prognostic Index (IPI) score of 2–5 are risk
factors associated with worse outcomes [26]. The translocation of MYC has been associated
with shorter OS compared to patients with non-rearranged MYC [114]. In one study, PLWL
with MYC gene rearrangements were associated with a 6-fold increased risk of death [130].
Patients with EBV-related PBL have a worse prognosis than EBV-negative cases [112]. The
elevated incidence of EBV infection could be useful for the differential diagnosis with other
B-cell neoplasm with similar features.

While the prognosis of PBL has improved since the introduction of cART, these
patients have a poor outcome, with a median OS of 10–15 months [107,108,129]. In this
regard, the median CD4+ lymphocyte count at diagnosis is 63–165 cells/µL, indicating
a status of important immunodeficiency (Table 1) [26,131,132]. Low CD4+ lymphocyte
counts and the absence of cART treatment prior to lymphoma are considered factors
of worse prognosis [112]. The impact of EBV on the prognosis of PBL is controversial,
with some studies not reporting an influence of EBV infection on OS [26,108,124,129],
whereas others have reported better outcomes in EBV-positive than in EBV-negative PBL
in PLWH [114,124,133].

2.3.4. Treatment

There is no standard treatment for PBL, although intensive treatment is recommended.
PLWH patients are currently treated with the same regimens as those of the general
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population, in combination with cART, such as CODOX-M/IVAC, hyper-CVAD, or DA-
EPOCH [112]. Plasmablastic differentiation of neoplastic cells has led to testing drugs
against multiple myeloma. The proteasome inhibitor bortezomib has been used alone and
in combination with other drugs. In this sense, the combination with DA-EPOCH has
shown good results in a retrospective series, with a 5-year OS of 63% [134].

The role of ASCT in the treatment of PBL has not been well studied. It could be used
as a first- or second-line treatment, although further studies are needed to confirm possible
beneficial effects (Table 2) [135,136].

2.4. Primary Effusion Lymphoma

Primary effusion lymphoma is a rare and aggressive NHL appearing mainly in HIV-
infected patients in the form of body cavity effusion, although there are also solid forms.
The lymphoma cells have a plasma cell phenotype and are positive for HHV-8 [29], and
elevated percentage of cases are also positive for EBV (Figure 1) [11,29,35,137,138]. The
presence of EBV in the cells is a useful diagnostic tool to differentiate this lymphoma
from HHV-8-positive DLBCL, not otherwise specified (NOS), a similar entity that overlaps
histological features, since this entity is EBV-negative [29].

2.4.1. Epidemiology

This lymphoma occurs mainly in men (90%) with a median age of 50–55 years and
advanced AIDS disease. Two-thirds of the patients are HIV-infected (representing 3–5%
of HIV-NHLs), and in this group the median age is 40–45 years, and around 70 years in
HIV-negative individuals [29,138–140]. In addition, it is also closely related to EBV, which
accounts for 70–100% of HIV-PEL [11,29,35,137,138].

This lymphoma also occurs in patients with other immunodeficiencies, such as liver
cirrhosis and recipients of solid organ transplants. Moreover, some cases of PEL have
been reported in elderly patients with positive serology for HHV-8 without any cause of
immunodeficiency [141].

Approximately one-third of the patients have another HHV-8-related disease, such as
Kaposi’s sarcoma, multicentric Castleman disease, or both [142].

2.4.2. Etiopathogenesis

The neoplastic cells of PEL show low expression of mature B-cell genes and high
expression of post-GC markers [29]. In addition, expression profile studies have revealed
overexpression of plasma cell genes, indicating that the COO is a post-GC B-cell at an
advanced stage of B-cell differentiation (Figure 1) [143].

HHV-8 is a DNA virus strongly implicated in the pathogenesis of PEL. This virus
prevents apoptosis and activates NF-кB, promoting proliferation and indicating that HHV-
8 is involved in PEL survival [144,145]. This virus has been related to the immune evasion
system since it can increase the expression of PD-L1 [142]. In addition, most individuals
with PEL are also coinfected by EBV. Latency I, with expression of EBNA1 and EBERs, is the
most frequent subtype (90–92%), although it is possible to detect latency II (8%) with LMP1
expression in some cases (Table 1) [11,15,138,140]. The role of EBV in the pathogenesis
of PEL remains unclear; however, the MAPK signaling pathway seems to differentiate
EBV-positive and EBV-negative PEL, and together with HHV-8, could contribute to the
proliferation and evasion of programmed cell death [10,57]. Curiously, Roy et al. have
reported that EBV-negative PEL cell lines present more copy number variations than EBV-
positive, thus indicating that EBV could maintain the genomic stability of host cells [146].
Nevertheless, the common expression of latency type I, without expression of immunogenic
EBV proteins, suggests that EBV is not the only mechanism responsible for the pathogenesis
of PEL [35,147,148]. In PEL cell lines, some EBV-miR-BARTs are expressed, but these
cells do not express EBV-miR-BHRF1s. This miRNAs expression pattern is characteristic
of EBV latency I [149]. It has been speculated that EBV cooperates with HHV-8 in the
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infection of B-cells, and HIV may contribute to lymphomagenesis, generating a permissive
microenvironment [150].

In a mice model with both HHV-8 and EBV infection, HHV-8 increases the expression
of EBV-lytic genes, especially BZLF1 and BALF2, which lead to increase tumor growth.
A high expression of EBV lytic genes has been also described in EBV and HHV-8 dual-
infected patients with lymphoproliferative disorders, including PEL [151]. On the other
hand, the EBV-protein EBNA-1 contributes to the survival of HHV-8 infected B-cells in
PEL [152]. These results suggest a cooperation of both viruses (HHV-8 and EBV) in the
lymphomagenesis of PEL.

2.4.3. Clinical Features and Prognosis

Effusion(s) of body cavities (pleural, peritoneal, and/or pericardial) without tumor
mass is the typical presentation of PEL [11,35]. By definition, all cases with this presentation
(effusion) are at stage IV [139,140,153,154]. In addition, these patients usually present
advanced AIDS disease with low CD4+ lymphocyte counts (median 98–133 cells/µL)
(Table 1) [137–139,155]. Patients present with symptoms related to the affected cavity, with
the pleura being the most frequent, followed by peritoneal and pericardial. Solid forms of
PEL present with symptoms related to the affected organ, with the gastrointestinal tract
being the most frequent [137,138].

The prognosis of PEL is poor, with a median OS of less than 12 months [29,137,154,156,157].
The prognostic factors of HIV-related PEL are controversial. Some authors report that the
administration of cART before PEL development is a prognostic factor, since patients that
received cART have a longer OS [137,158]. However, other authors did not observe this
prolonged OS with cART administration [84]. In this regard, Boulanger et al. studied
a series of 28 patients and reported that a bad performance status and absence of cART
before lymphoma diagnosis were factors that had a negative influence on prognosis [137].
Furthermore, Lurain et al. described, in HIV-related PEL, an association between elevated
interleukin-6 (IL-6) levels and shorter OS, while EBV infection correlated with longer
survival [159].

2.4.4. Treatment

There is no standard first-line treatment for PEL, and the available therapies present
very poor results. Treatment with CHOP has achieved responses of 20–50% [155], while
DA-EPOCH increases the complete response ratio and prolongs OS in patients with HIV-
related PEL [140,159,160]. There is no established second-line treatment, but ASCT can be
a therapeutic option, given the poor prognosis of this lymphoma [161,162]. Importantly, all
of these treatments should be administered in combination with cART (Table 2).

2.5. Hodgkin Lymphoma

Hodgkin lymphoma is divided into two subtypes with different morphological and
immunophenotypic features: nodular lymphocyte predominant HL and classic HL (cHL),
which is related to PLWH [29,163–165]. In this lymphoma, Hodgkin Reed–Sternberg cells
(HRS) are characteristically observed in a heterogeneous background of lymphocytes,
eosinophils, neutrophils, macrophages, and plasma cells.

2.5.1. Epidemiology

The incidence of HL in PLWH is around 50 per 100,000 cases/year, and has increased
since the introduction of cART, with the risk being 5–25 times higher than in the general
population [29,166]. The incidence of cHL has remained stable after the increase observed
in the first years of the cART era [7,8,167]. At cHL diagnosis, CD4+ lymphocyte counts
are moderately decreased (median between 150–260 cells/µL), indicating a non-severe
immunosuppression (Table 1) [6,8,167–171]. Coinfection with EBV occurs in 90–100% of
cases, compared to 30–40% in HIV-negative patients) [172]. In HIV-related cHL, mixed
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cellularity is the most common subtype, followed by lymphocyte depletion and nodular
sclerosis [29,35,173].

2.5.2. Etiopathogenesis

The malignant cells of cHL, which are HRS cells, seem to be GC-derived B-cells, as
they carry somatic hypermutations, and this phenomenon is performed exclusively in the
GC [174]. Therefore, aberrant mutations in BCR appear, and they are present in nearly
all cHL. Unlike what occurs in normal conditions, these cells can escape from apoptosis.
These events point to an origin in a preapoptotic GC-derived B-cell (Figure 1) [174,175].

Virtually all HIV-related cHLs are coinfected by EBV, and are latency II type, with expres-
sion of EBNA1, LMP1, and LMP2, as well as EBER and BART miRNAs. (Table 1) [176–179].
In this context, besides promoting cell cycle and inhibiting apoptosis, the LMP2 protein
mimics BCR signaling and enables the survival of these cells in the absence of functional
host BCR expression [179–182]. LMP1 promotes diverse signaling pathways involved
in cell cycle progression, proliferation, and apoptosis, such as NF-кB, MAPK, PI3K/Akt,
and JAK/STAT, and mimics CD40, a receptor necessary for B-cell activation [183,184].
In addition, EBV induces the overexpression of PD-L1 in HRS, leading to escape from
immune response [185,186]. All of these mechanisms contribute to the proliferation and
tumor progression of EBV-infected HRS. At the same time, HIV proteins such as gp120 and
Tat reinforce chronic B-cell activation and promote the production of cytokines involved in
the promotion of B-cell proliferation [187].

How the microenvironment influences the pathogenesis of cHL is not well understood.
EBV-positive cHL frequently presents mixed cellularity with increased infiltration of NK
cells, macrophages (M1 proinflammatory and M2 protumorigenic), CD4+ T-cells, and
CTLs [188]. Although this tumor exhibits an increased infiltration of CTLs, EBV could
inhibit their response by contributing to a permissive immunologic microenvironment [189].
Under immunodeficiency conditions, in cHL there is a depletion of CD4+ T-cells and an
increased infiltration of M1 macrophages, and hence, HIV may also contribute to this
permissive microenvironment [190]. Macrophage phenotypes could be regulated via EBV.
Although the role of EBV-miRNAs has been scarcely studied so far in HL, EBV-BART
miRNAs can be transferred to macrophages via exosomes, inducing the transformation
of macrophages into a proinflammatory phenotype [191]. EBV-BART13-3p is the most
expressed EBV-miRNA in HL, and this fact could transform macrophages and contribute
to lymphoma microenvironment (Figure 2) [49].

2.5.3. Impact of EBV on Clinical Features and Prognosis

Classical HL affecting PLWH is virtually always EBV-positive and is characterized
by aggressive clinical characteristics, such as advanced stages (III/IV), bone marrow and
multiple nodal involvement, and B symptoms. The proportion of males affected (80–98%)
is higher than in HIV-negative subjects, and some studies have shown that t he age at
diagnosis is higher in PLWH, with a median age of 40–44 years, than in the general
population [166,192–194].

The prognosis of HL in PLWH is similar to that of the general population using the
same therapeutic strategies in both groups. The presence of EBV in the lymphoma cells has
not been reported to have any impact on prognosis.

2.5.4. Treatment

The treatment of cHL in PLWH is the same as that of the general population, based
on chemotherapy with or without radiotherapy, in localized stages, and chemotherapy in
advanced stages. The treatments most currently used are doxorubicin, bleomycin, vinblas-
tine, and dacarbazine (ABVD) and bleomycin, etoposide, doxorubicin, cyclophosphamide,
vincristine, procarbazine, and prednisone (BEACOPP) [195,196]. Relapses of cHL in PLWH
can be treated with second-line drugs followed by ASCT (Table 2) [197,198].
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3. Implications of EBV Load in HIV-Related Lymphoma

Several studies have evaluated the impact of EBV load on the diagnosis and prognosis
of NHL and HL in the immunocompetent population [199,200]. In this regard, EBV loads
measured in plasma and peripheral blood mononuclear cells (PBMCs) can serve as a
diagnostic tool and could also have prognostic impact on lymphomas [201–207]. Fewer
studies have been performed measuring EBV in peripheral blood of PLWH to determine
its value as a diagnostic tool and prognostic factor. In this regard, the detection of EBV load
has been reported to be more frequent among lymphomas in PLWH than in the general
population [25,208,209]. Moreover, some studies, including ours, have suggested that EBV
load measured in plasma could be a useful tool for the diagnosis of NHL and HL in PLWH,
since EBV has been detected in plasma of these patients at lymphoma diagnosis [210,211].
This fact has also been demonstrated in PBMCs and serum in HRL [212]. In our recent study
by Muncunill et al., we reported a strong association between the detection of EBV load in
plasma and HIV-related lymphoma, since EBV was significantly less frequently detected
in both HIV-negative patients with lymphoma and HIV-infected individuals without
lymphoma [25,213]. This association has also been reported in whole blood (WB) [214].
Additionally, EBV loads measured either in plasma [25,210,211,214] or in PBMCs [215]
could be useful to anticipate the development of lymphoma in PLWH. In contrast, EBV
load measured in PBMCs was not useful for predicting the development of HIV-related
NHL (DLBCL included) in the study of Van Baarle et al. [216]. Different studies suggest
that EBV load measured in plasma [25,211,213,217], WB [217], PBMCs, and serum [212] can
be used as a follow-up biomarker in HRL. All these techniques can be used to detect the
presence of EBV in peripheral blood and have demonstrated to be useful for the follow-up
of lymphomas in PLWH.

Some studies have pointed out that the presence of EBV in peripheral blood could be
used as a prognostic factor in HRL. Individuals with high levels of EBV load in plasma have
shown worse OS [25,209–211]. In this regard, Muncunill et al. reported a negative impact
of high EBV load on the survival of HIV-related NHL treated without rituximab. However,
this difference in outcome was not observed in patients treated with rituximab [25]. On
the other hand, the impact of plasma EBV load in HL of PLWH remains controversial. In
an HIV-cohort published by Muncunill et al., high EBV load in plasma had a negative
influence on the prognosis of HL patients [25]. In contrast, in other cohorts the EBV plasma
load was not described as having any prognostic impact on the survival of HIV-related
HL [217–219].

In summary, the results of the different studies point out that the EBV load in periph-
eral blood may be a diagnostic tool and a biomarker for HRL. Further studies with larger
cohorts of NHL and HL in PLWH are needed to clarify the usefulness of EBV in peripheral
blood as a prognostic factor in these patients.

4. General Recommendations for the Treatment of Lymphomas in PLWH

Several studies have shown similar responses and prognoses in all lymphoma sub-
types, regardless of HIV infection, when patients are treated with standard therapies.
Therefore, the same chemotherapeutic strategies used in the general population are cur-
rently recommended for PLWH [168]. As previously stated in the different sections of
the article, EBV-positive lymphomas in PLWH are currently treated following the general
recommendations for lymphomas in these patients. Moreover, the same additional mea-
sures and supportive care recommended for treatment of lymphomas in PLWH should be
applied to EBV-positive cases.

Most authors recommend concomitant administration of cART during lymphoma treat-
ment due to the evidence that better outcomes are obtained with this approach [220]. Neverthe-
less, the synergistic toxicity and the drug–drug interactions between multiagent chemotherapy
and cART, especially protease inhibitors, should be considered before starting lymphoma
treatment [221–223]. Thus, interdisciplinary collaboration between hemato-oncologists and
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HIV specialists is the best way for the optimal treatment of both lymphoma and HIV infection
while minimizing the risk of adverse outcomes for the patients.

Although there is a lack of studies on the efficacy of CNS prophylaxis in lymphomas
affecting PLWH, patients with lymphomas at high risk of CNS involvement should receive
prophylaxis as recommended for the general population. Therefore, patients with BL, MYC-
rearranged high-grade lymphomas, PBL, as well as DLBCL with risk factors for meningeal
involvement, should receive additional intrathecal prophylaxis or high-dose methotrexate,
depending on the patient tolerability and the experience of the team [224–227].

Primary infectious prophylaxis using colony-stimulating factors, such as G-CSF given
after every cycle of chemotherapy, is highly recommended to prevent neutropenia and dose
reductions [73,228,229]. Moreover, common infections affecting PLWH should be prevented
because chemotherapy decreases the CD4+ lymphocyte. In this regard, prophylaxis against
Pneumocystis jirovecci [222,230,231] is recommended, and Mycobacterium avium complex
should also be prevented in patients with CD4+ lymphocytes lower than 50/µL [73,229,232].
Moreover, hepatitis B and C infections are common among HIV-infected individuals. In
these cases, concomitant treatment with antiviral therapy against HBV and HCV must be
considered [73,223].

5. EBV-Targeted Therapies

EBV status is currently not a differential factor for the choice of treatment in HRL, and
patients are treated with the same therapeutic strategies independently of the presence
of EBV in lymphoma. Nevertheless, given that EBV is involved in the pathogenesis of
HRL, different strategies targeting EBV could improve the treatment of these patients.
In this regard, preclinical studies have evaluated different strategies in lymphoma cell
lines based on protein inhibitors of signaling pathways deregulated by EBV, such as BCR
signaling, PI3K, JAK/STAT, MAPK, NF-кB, cell cycle, and apoptosis [28]. Other studies
have focused on the design of drugs against EBV antigens, such as EBNA1 [233,234].
Moreover, some strategies are based on immunotherapy, including PD-1/PD-L1 antibodies,
monoclonal antibodies, or T-cell receptor-modified T-cell therapies, among others [235–240].
Lastly, several studies attempting to develop a vaccine against EBV have been performed.
However, there is still no commercial vaccine against this virus [241].

Despite the extensive in vitro studies of EBV targets, we still have a long wait until
the development and approval of EBV-specific therapies in EBV-related lymphomas. Only
a few clinical trials on EBV-related lymphomas have been performed so far (Table 2). Some
have evaluated drugs based on the combination of nucleoside analogs that inhibits viral
DNA polymerase in the lytic phase of viral replication, such as ganciclovir (GCV) and
zidovudine (azidotimidine) in combination with immunomodulatory IL-2 and cART in
EBV-positive HIV-related PCNSL [242,243]. The results revealed better OS and could be
effective for the treatment of these patients. Specifically, GCV reduced the EBV-DNA load
in CSF of patients with HIV-PCNSL, improving survival [244]. Unfortunately, latent EBV
tumors do not express the EBV-thymidine kinase (TK), and for this reason, GCV may be
ineffective. Thus, other strategies are focused on the induction of the EBV lytic cycle and
EBV-TK [245]. In this regard, clinical trials using arginine butyrate in combination with
GCV in refractory EBV-related lymphomas have shown good tolerability and antitumoral
response (10 of 15 patients; 4 complete and 6 partial responses), although these results
should be confirmed in a larger cohort [246,247]. On the other hand, the inhibition of
histone deacetylases (HDACs) also may induce lytic infection from the latency state. Some
HDAC inhibitors such as vorinostat/suberoylanilide hydroxamic acid (SAHA) have been
tested in HL and NHL [248,249]. These studies showed that SAHA could have a positive
effect on HL and DLBCL, leading to partial response or stable disease, as well as a modest
effect on relapsed DLBCL, although these results require validation. Currently, an ongoing
phase I/II clinical trial is testing the combination of HDAC inhibitors and valganciclovir in
relapsed/refractory EBV-related lymphomas.
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Regarding immune evasion, PD-L1 is overexpressed in diverse EBV-related lym-
phomas, and therefore, strategies targeting PD-1/PD-L1 interaction are of great importance
and could be a very useful target for the treatment of EBV-related HRL. A clinical trial of
immunocompetent HL patients revealed that the blockage of PD-1, using the monoclonal
antibody pembrolizumab, could be useful for the treatment of HL [250]. Currently, sev-
eral clinical trials are evaluating the effect of PD-1/PD-L1 inhibitors, such as nivolumab,
pembrolizumab, toripalimab, and sintilimab, on EBV-related NHL.

Lastly, EBV-specific T-cells (EBVST) that recognize specific EBV antigens presented
by infected B-cells are another EBV-targeted therapeutic strategy. LMP1/LMP2- or LMP2-
specific CTLs administered to 50 patients with EBV-related NHL or HL showed promising
results in patients with risk or refractory/relapsed disease, with most achieving a 2-year
event-free survival. On the other hand, 62% of patients with active lymphoma achieved
complete or partial response with EBVST administration [251]. EBNA1-specific CTL admin-
istration in patients with post-transplant proliferative disease after stem cell transplantation
seems to restore T-cell immune response against EBV [252]. Transfusion of EBVST may
restore immune response in EBV-related lymphoma patients and results in a promising
therapy to eliminate EBV-infected B-cells and avoid possible relapses in EBV-positive HRL.

6. Conclusions

In summary, EBV is involved in the lymphomagenesis of the different HRL subtypes
mediated by several viral molecules. Close cooperation between EBV and HIV, as well as
HHV-8 in some lymphoma subtypes, seems to be an additional lymphomagenic mecha-
nism in which HIV may favor a permissive microenvironment for EBV infection and the
development of lymphoma. EBV load in peripheral blood can be used as a lymphoma
biomarker in PLWH. Diverse EBV-targeted therapies have reported promising results for
the treatment of EBV-related lymphomas. Nevertheless, most studies did not include
PLWH, and therefore further clinical trials are needed to confirm these results in HRL.
Given the postulated cooperation between EBV and HIV in the etiopathogenesis of these
lymphomas, the combination of new therapeutic strategies against both viruses should
be considered in order to improve the adverse outcomes that a great proportion of these
patients still have.
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