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Abstract

Immunotherapies provide effective treatments for previously untreatable tumors and identi-

fying tumor-specific epitopes can help elucidate the molecular determinants of therapy

response. Here, we describe a pipeline, ISOTOPE (ISOform-guided prediction of epiTOPEs

In Cancer), for the comprehensive identification of tumor-specific splicing-derived epitopes.

Using RNA sequencing and mass spectrometry for MHC-I associated proteins, ISOTOPE

identified neoepitopes from tumor-specific splicing events that are potentially presented by

MHC-I complexes. Analysis of multiple samples indicates that splicing alterations may affect

the production of self-epitopes and generate more candidate neoepitopes than somatic

mutations. Although there was no difference in the number of splicing-derived neoepitopes

between responders and non-responders to immune therapy, higher MHC-I binding affinity

was associated with a positive response. Our analyses highlight the diversity of the immuno-

genic impacts of tumor-specific splicing alterations and the importance of studying splicing

alterations to fully characterize tumors in the context of immunotherapies. ISOTOPE is

available at https://github.com/comprna/ISOTOPE.

Author summary

Immune cells have the ability to attack tumor cells upon the identification of tumor-spe-

cific peptides, i.e., epitopes, that are presented by the major histocompatibility complex

(MHC). New cancer immunotherapies that help trigger this process provide a promising

therapeutic strategy. One crucial aspect for their success is the ability to determine the

molecular properties of a tumor that are informative about the effectiveness of the ther-

apy. Alterations in the way genes are processed to express RNA molecules could lead to

the production of new peptides, with some of them potentially being presented as tumor

epitopes and facilitate the attack of immune cells. It is therefore essential to facilitate the
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identification of these splicing-derived epitopes. In this work, we describe a computational

pipeline that performs a comprehensive identification of splicing alterations in a tumor

and the potential epitopes that they would produce. Analysis of tumor samples with our

pipeline show that responders and non-responders to immune therapy do not show dif-

ferences in the number of splicing-derived epitopes, but splicing neoepitopes have higher

affinity to the MHC complex in responders. Our new pipeline facilitates the genome-scale

analysis of the role of splicing alterations in shaping the molecular properties that influ-

ence response to immunotherapy.

Introduction

Recent developments in the modulation of the immune system have revolutionized the clinical

management of previously untreatable tumors. In particular, therapies targeting negative regu-

lators of immune response, i.e. immune checkpoint inhibitors, have shown prolonged remis-

sion in several tumor types [1]. However, these therapies appear to be effective only for about

one third of the patients [2]. Thus, characterizing the molecular features driving response to

immune therapies is crucial to prospectively identify patients who are most likely to benefit

from these agents and avoid exposing resistant patients to unnecessary and potentially harmful

treatments.

The ability of the T-cells infiltrating the tumor tissue to identify and attack malignant cells

relies on tumor cells maintaining sufficient antigenicity. An approach to estimate the antige-

nicity of a tumor is through the calculation of the frequency of somatic mutations as a proxy

for the abundance of tumor neoantigens. This has led to the identification of an association

between response to checkpoint inhibitors and tumor mutation burden (TMB) in tumors such

as melanoma [3,4], urothelial carcinoma [5], and lung cancer [2,6]. Furthermore, analysis of

how somatic substitutions and indels impact the protein products in tumor cells has enabled

the identification of cancer-specific neoepitopes [7,8] that can trigger the attack of the immune

system against tumor cells during treatment with immune checkpoint inhibitors. However,

TMB or mutation-derived neoepitopes can only explain a fraction of the responders [9], and

hence, other molecular signatures and sources of neoepitopes need be identified.

Recently, tumor-specific transcriptome alterations have been shown to be a source of

neoantigens that can be presented by the MHC complexes and recognized by T-cells. These

include gene fusions [10], RNA editing [11], cryptic expression [12,13], and tumor-specific

splicing [12,14–16]. In particular, the aberrant selection of splice sites and exon-exon junctions

[14,15] or the retention of introns [12,16] in tumors represents an additional potential source

of cancer neoepitopes. However, it is not clear yet whether these splicing-derived neoepitopes

provide a mechanism to elicit cancer-specific immune responses and whether they may

improve patient response to immune therapies.

To address these questions and expand the analysis of splicing-derived neoepitopes in can-

cer, we developed ISOTOPE (ISOform-guided prediction of epiTOPEs in cancer), a pipeline

to exhaustively identify the immunogenic impacts from tumor-specific splicing alterations.

ISOTOPE identifies splicing alterations that are specific to each tumor sample in comparison

with a comprehensive set of normal samples and calculates the impact on the encoded proteins

and the candidate neoepitopes. ISOTOPE also calculates native epitopes that are not present in

the altered isoform, i.e., splicing-affected self-epitopes. Our analyses provide evidence that

splicing alterations can modify the repertoire of epitopes in tumors and potentially impact the
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response to immune therapy. ISOTOPE facilitates the study of splicing alterations to fully

characterize the determinants of response to immunotherapies.

Results

Comprehensive identification of tumor-specific splicing-derived epitopes

ISOTOPE identifies tumor-specific splicing alterations by generating a catalogue of all exon-

exon junctions calculated from RNA sequencing (RNA-seq) reads from each individual tumor

sample, filtering out those that appear in any of the samples from a comprehensive set of nor-

mal controls (Fig 1). The remaining junctions are classified into one of four possible types: de
novo exonization, new exon skipping event, alternative splice site, and intron retention. ISO-

TOPE performs an empirical test to establish the significance of each candidate splicing alter-

ation taking into account the read support of the event and the coverage and splicing variation

in the same gene locus. This test ensures the robustness of the events detected. Changes in the

protein products are predicted through the impact of the splicing alterations on the open read-

ing frames (ORF) of the reference transcriptome. This reference transcriptome is obtained by

Fig 1. ISOTOPE pipeline. Tumor-specific splicing alterations are defined as significant variations with respect to the exon-intron

structures expressed in normal samples and are classified into four different types: de novo exonization, new exon skipping

(neoskipping), alternative (5’/3’) splice site, and intron retention. ISOTOPE calculates the modified open reading frame (ORF) from

the reference ORF using the splicing alterations, and identifies the candidate splicing-derived neoepitopes and self-epitopes encoded

by the reference transcript that would not be present in the modified ORF as a consequence of the splicing alteration. These

candidate peptides are then tested for affinity with the MHC complexes (see Methods for details).

https://doi.org/10.1371/journal.pcbi.1009411.g001
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selecting from each gene the transcript with the highest mean expression in the control normal

samples. ISOTOPE identifies potential epitopes by calculating the binding affinity of the

encoded peptides to the major histocompatibility complex class I (MHC-I) or II (MHC-II)

using NetMHC-4.0.0 [17]. When the human leukocyte antigen (HLA) type for a patient is not

available, this is calculated directly from the tumor RNA-seq sample. ISOTOPE defines candi-

date splicing-derived neoepitopes as MHC binders that are expressed in the tumor sample but

not in the control normal samples, i.e., splicing-neoepitopes. Additionally, MHC binders that

are expressed in the control sample but are potentially removed by the change in the ORF

through the tumor-specific splicing alteration are also calculated and referred to as splicing-

affected self-epitopes, self-epitopes for short. Further details are provided in the Methods

section.

Detection of cancer-specific splicing-derived epitopes in MHC-I mass-

spectrometry

ISOTOPE operates on individual tumor samples, without necessarily having a matched nor-

mal sample. We thus first tested the accuracy of predicting HLA types directly from the tumor

RNA-seq. We calculated HLA-I and HLA-II types from RNA-seq reads from tumor and

matched normal samples for 24 small cell lung cancer (SCLC) patient samples [18] using

PHLAT [19] and Seq2HLA [20]. Both methods showed an overall agreement between the

HLA predictions from the tumor and the normal RNA-seq data (Fig 2A). However, PHLAT

showed greater consistency across most of the HLA types and recovered above 80% of cases

for HLA-I and between 65% and 90% for HLA-II types (S1 Table). We thus decided to use

PHLAT for further analyses with ISOTOPE.

To test the ability of ISOTOPE to identify potential neoepitopes, we analyzed RNA-seq data

and MHC-I associated proteomics data for the cancer cell lines CA46, HL-60 and THP-I

[21,22]. De novo exonization was the least common of all splicing event types, whereas new

junctions skipping one or more exons, i.e., neoskipping, aberrant splice-sites, and intron reten-

tions were more frequent (Fig 2B). Although most of the splicing alterations did not affect the

encoded ORF, neoskipping events impacted more frequently the ORF compared with the

other event types (Fig 2B).

In total we found 2108 genes with predicted alterations in the protein product due to cancer

cell specific splicing alterations, with a similar number of protein-affecting splicing changes in

each cell line CA46: 1368, HL-60: 1043, and THP-I: 1700. Moreover, the predicted HLA-types

from the RNA-seq data with PHLAT matched those previously reported [22]. We then pre-

dicted candidate MHC-I binding peptides (binding affinity� 500nM) with NetMHC on all

peptides, keeping only those splicing-derived peptides that were not encoded in the reference

transcriptome. This produced 830 (CA46), 461 (HL-60), and 2072 (THP-1) candidate neoepi-

topes (Fig 2C and S2 Table). Neoskipping events produced more candidate neoepitopes in all

cell lines compared with the other event types (Fig 2C). On the other hand, despite being less

frequent, de novo exonizations produced a similar number of neoepitopes compared to intron

retention events. Candidate self-epitopes that were affected by the splicing alteration were

more common than the splicing-epitopes (Fig 2C). Moreover, separation of these candidate

splicing-neoepitopes and self-epitopes according to HLA-types followed closely the results by

cell line (Fig 2D), indicating an agreement in the MHC affinity of the peptides found in the

cell lines and the HLA class predicted.

To test the potential therapeutic implications of these findings, we tested whether genes

from two databases of treatment-associated responses were significantly represented in the set

of genes with splicing-neoepitopes or splicing-affected self-epitopes. We observed genes linked
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with therapy response in lymphoma were significantly represented in the set of self-epitopes

(S3 Table). This result suggests a possible role of the splicing alterations detected in the

involvement of these genes in therapy response. To validate the candidate splicing-derived

neoepitopes we used MHC-1 associated mass-spectrometry (MS) data available for the same

cell lines [22]. We identified three neoepitopes, all of them generated by neoskipping events in

the genes TOP1 (KRFEPLGMQK), ERF (IPAPDHPAL) and IFRD2 (RTALGGMSW) (Fig 2E).

These are different from the three peptides detected previously using the same datasets but

only analyzing intron retention [16]. This disparity is possibly due to the different criteria used

in the selection of relevant events. We performed an empirical test to keep only events with sig-

nificant read support and considered other splicing alteration types beyond intron retention.

Our results indicate that new types of splicing alteration can potentially produce tumor

neoepitopes.

To further test ISOTOPE, we analyzed RNA-seq and MHC-I associated mass spectrometry

data from ten breast cancer cell lines (MCF7, T47D, LY2, BT549, CAMA1, HCC1395,

Fig 2. Initial testing of ISOTOPE. (A) Validation of the HLA type prediction from tumor RNA-seq data. We show the predictions for MHC

Class I (HLA-A, HLA-B, HLA-C) and II (HLA-DQA, HLA-DQB, HLA-DRB) with PHLAT (red) and SeqHLA (blue). Each bar corresponds to

the proportion of samples (over a total of 24 small cell lung cancer samples) for which the prediction on the tumor sample coincides with the

prediction on the matched normal sample (B) For each cell line, CA46, HL-60 and THP-1, we show the number of different splicing alterations

measured (dark blue) and the number of cases leading to a change in the encoded open reading frame (light blue). Alterations shown are

alternative (5’/3’) splice-site (A5_A3), de novo exonizations (Exonization), intron retentions (IR), and new exon skipping events (Neoskipping).

(C) Number of splicing-derived neoepitopes (splicing-neoepitopes) (red) and splicing-affected self-epitopes (self-epitopes) (blue) detected for

each of the splicing alterations in each of cell lines analyzed (CA46, HL-60 and THP-1). (D) as in (C) but separated by HLA-type. (E) Example

of a splicing-neoepitope validated with MHC-I associated mass spectrometry data and derived from a neoskipping event in the gene ERF. The

peptides are given in the same orientation as the 5’ to 3’ direction of the gene.

https://doi.org/10.1371/journal.pcbi.1009411.g002

PLOS COMPUTATIONAL BIOLOGY ISOform-guided prediction of epitopes in cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009411 September 16, 2021 5 / 22

https://doi.org/10.1371/journal.pcbi.1009411.g002
https://doi.org/10.1371/journal.pcbi.1009411


HCC1419, HCC1428, HCC1569, HCC1806) [21,23]. The most frequent splicing alterations

found were IR events, except for cell lines HCC1569 and LY2, for which neoskipping events

were the most frequent (Fig 3A). However, for all types, neoskipping events produced the larg-

est number of changes in ORFs in all cell lines. As before, we predicted the MHC-I binding

potential for candidate epitopes, either splicing-derived neoepitopes or splicing-affected self-

epitopes. Neoskipping events produced the largest number of neoepitopes (Fig 3B and S4

Table). As before, we observed more potentially affected self-epitopes than splicing-derived

neoepitopes. Separating by HLA-type, splicing-derived neoepitopes were more frequently

associated to HLA type A (Fig 3C). Additionally, we identified a significant association of

genes involved in treatment response in breast cancer with genes producing splicing-derived

neoepitopes (ERBB2, ESR1, TIMP1, ABCC3) or potentially depleted self-epitopes (AKT1,

CCNE1, RET, TFF3). Next we searched the MHC-I associated mass spectrometry data for the

same breast cancer cell lines [23] for the predicted neoepitopes. We only identified one

Fig 3. Splicing epitopes in ten breast cancer cell lines. (A) For each breast cancer cell line analyzed, the bar plots show the number

of splicing alterations measured and the number of cases leading to a change in the reference protein. Alterations shown are

alternative 5’ or 3’ splice-site (A5_A3), de novo exonizations (exonization), intron retentions (IR), and new exon skipping events

(neoskipping). (B) Number of splicing-derived neoepitopes (splicing-neoepitopes) (red) and splicing-affected self-epitopes (self-

epitopes) (blue) for each of the splicing alterations in each of the breast cancer cell lines tested. (C) as in (C) but separated by HLA-

type. (D) Example of a splicing-derived neoepitope from a neoskipping event in the gene SIL1 validated with MHC-I associated mass

spectrometry in the cell line BT549.

https://doi.org/10.1371/journal.pcbi.1009411.g003
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significant peptide match in the ten cell lines analyzed, which was generated by a neoskipping

event resulting in a frameshift in the gene SIL1 in BT549 (LPAAPLPLCPA, HLA-B) (Fig 3D).

Tumor-specific splicing alterations impact self-epitopes and leads to more

neoepitopes than mutations

We described above that tumor-specific splicing alterations potentially affect part of the open

reading frame expressed in normal samples that could function as a self-epitope. To further

investigate this, we analyzed a dataset of 123 small cell lung cancer (SCLC) patients [18,24–26].

SCLC is the most aggressive type of lung cancer, with a very early relapse after chemotherapy

treatment and an average survival of 5% after 5 years of diagnosis [27]. SCLC is one of the can-

cer types with the largest TMB, which has been associated with its response to immune therapy

[28]. Interestingly, SCLC presents a significantly higher density of mutations in introns com-

pared to exons (Fig 4A), which may associate with a widespread impact on RNA-processing.

Fig 4. Splicing epitopes in small cell lung cancer. (A) Mutation burden (y axis) calculated separately for introns (INTRON), coding

exons (CDS) and non-coding exonic regions in protein-coding genes (UTR) calculated from whole genome sequencing (WGS) data

for several tumor types (x axis), including small cell lung cancer (SCLC). We indicate the pairs of distributions that were significantly

different using a Wilcoxon test (� p-val<0.05, �� p-val<0.01, ��� p-val<0.001, ���� p-val<0.0001). (B) Number of splicing

alterations (y axis) according to event type (x axis), indicating all alterations and the subset that impact the open reading frame

(ORF). (C) Distribution of splicing-derived neoepitopes (splicing-neoepitopes) and splicing-affected self-epitopes (self-epitopes),

separated by splicing alteration type. (D) Same as (C) but separated by HLA-type.

https://doi.org/10.1371/journal.pcbi.1009411.g004
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Accordingly, SCLC represents an interesting tumor type to investigate how splicing alterations

may contribute to neoepitope burden in tumor cells.

We applied ISOTOPE to RNA-seq from 123 small cell lung cancer (SCLC) patients. We

derived an exhaustive compendium of SCLC-specific splicing alterations by filtering out all

SCLC junctions that appeared in a comprehensive dataset of normal splice junctions (S1

Fig). We found a total 14643 aberrant splice sites, 7039 intron retentions, 1311 neoskipping

events, and 290 de novo exonizations that were SCLC specific, and were affecting 2955, 149,

620, and 169 genes, respectively (Fig 4B and S5 Table). The identified SCLC-specific splic-

ing alterations distributed homogeneously across all samples and showed no association to

mutations on spliceosomal factors or overexpression of MYC genes (S2 Fig). We focused

on the SCLC-specific events that occurred within an ORF and could therefore alter the

protein product: 3890 (27%) of the aberrant splice sites, 804 (61%) of the new skipping

events, 753 (10%) of the intron retentions and 85 (29%) of the new exonizations (Fig 4B

and S3 Fig.

To evaluate the immunogenic impacts induced by these splicing alterations, we predicted

HLA-I and HLA-II types from the RNA-seq for the SCLC samples using PHLAT. We next

used the altered and reference ORFs and searched for candidate MHC-I binders (binding

affinity� 500nM) that were specific to SCLC. We identified a total of 47,088 candidate splic-

ing-derived neoepitopes, with the majority (60%) associated to intron retention events (S5

Table). On the other hand, we identified a total of 254,125 candidate splicing-affected self-epi-

topes (Fig 4C and 4D). This imbalance towards the potential elimination of self-epitopes

occurred at the level of the number of predicted immunogenic peptides as well as the number

of events producing immunogenic peptides. Moreover, this effect was not specific of any type

of splicing alteration or HLA-type (Fig 4C and 4D).

We could not detect any significant association with SCLC-specific response biomarkers

but did observe multiple significant associations of SCLC-specific splicing-derived neoepi-

topes with response biomarkers from other tissues (S3 Table). These results are especially

relevant in SCLC, for which no alteration has been yet described as therapeutically target-

able. We did not have access to MHC-I associated mass-spectrometry data for these SCLC

samples. However, using mass-spectrometry data for MHC-I associated proteins in lympho-

blasts [29] we were able to validate 1458 (11.7%) of the self-epitopes predicted to be poten-

tially depleted in the altered isoform. To test the significance of the association of the

predicted epitopes to the mass spectrometry data, we performed a randomized comparison.

We took 1000 random peptides predicted with high affinity (� 500nM) and 1000 peptides

from the entire set of self-epitopes and checked how many from these 2 random sets would

be validated by mass-spectrometry. We repeated this process 100 times and tested the differ-

ence of the two distributions. This analysis yielded a significantly higher number of valida-

tions for the candidate self-epitopes with high affinity (Kolmogorov-Smirnov p-value =

3.44e-13).

We further tested the association with tumor mutation burden (TMB). Overall, we found

no association between the TMB and the number of splicing alterations or the number of epi-

topes (splicing-neoepitopes or self-epitopes). However, there was some association for the

neoskipping events across all samples (S4 Fig). We next tested the association of splicing-

derived neoepitopes with mutational neoepitopes. In the subset of SCLC samples with whole

genome sequencing (WGS) data [24,25] there were more splicing- neoepitopes than muta-

tional ones, and there was a weak correlation between their numbers in patients (Spearman

rho = 0.397, p-value = 0.003) (S5 Fig). On the other hand, none of the splicing-neoepitopes

matched any of the mutational neoepitopes.
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Association of splicing-derived epitopes with response to immune

checkpoint inhibitors

To test whether tumor-specific splicing-derived neoepitopes may be associated to the patient

response to immune therapy, we applied ISOTOPE to RNA-seq data from two cohorts of mel-

anoma patient samples prior to treatment with anti-CTLA4 [4] or anti-PD1 [30] (S6 and S7

Tables). We calculated all the tumor-specific splicing alterations in each patient sample by

removing all events that also occurred in a large set of control normal samples analyzed. Intron

retention was the most abundant alteration but the impact on the encoded protein was not

equally abundant in both cohorts (Fig 5A). Despite these differences, there was an overall

decrease of the ORF lengths as a consequence of the splicing alterations (S6 Fig), in agreement

with previous studies showing a reduction of ORF lengths expressed in tumors [31].

As for other samples tested, the overall number of splicing-affected self-epitopes was overall

higher than the splicing-derived neoepitopes, with larger numbers of self-epitopes affected by

intron retention events in the anti-CTLA4 cohort (Fig 5B). Moreover, the anti-CTLA4 cohort

presented more epitopes from both classes for all HLA-types (Fig 5C). These results did not

change when we used�300nM to define the candidate epitopes (S7 Fig). We compared the

predicted neoepitopes in both sets with the annotated clinical response of the patient to the

immunotherapy: responder or non-responder [4,30]. The number of splicing-derived neoepi-

topes in responders and non-responders in anti-CTLA4 or anti-PD1 showed no significant dif-

ference (S8 Fig). Separating the splicing alterations by type, we found in general a higher

proportion of self-epitopes affected by splicing in all patients.

We did not observe any differences in the proportion of epitopes between responders and

non-responders to anti-CTLA4 (Fig 6A). However, responders to anti-PD1 therapy had more

splicing-affected self-epitopes from intron retention events compared to non-responders.

Other splicing alterations did not show any significant differences (Fig 6B). We found similar

results using the threshold 300nM to define candidates (S8 Fig). To further test the potential

role of splicing-derived neoepitopes and splicing-affected self-epitopes in the response to

Fig 5. Splicing epitopes in two melanoma cohorts. (A) Total number of events and subset of protein-affecting events in the melanoma cohorts

treated with anti-CTLA4 and with anti-PD1. (B) Distribution of the number of candidate tumor-specific splicing-derived neoepitopes (splicing-

epitopes) and self-epitopes that would be depleted in the altered isoform (self-epitopes). (C) Distribution of the number of candidate epitopes from

(B), separated by HLA-type.

https://doi.org/10.1371/journal.pcbi.1009411.g005
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immunotherapy, we studied their binding affinities. Splicing-derived neoepitopes showed

stronger MHC-I interaction (lower values of binding affinity) in responders. In particular,

splicing-derived neoepitopes from de novo exonizations (Fig 6C) and neoskipping events (Fig

6D) had stronger interactions in anti-PD1 responders, and those associated with intron-

Fig 6. Splicing epitopes and response to immune therapy. (A) Proportion of splicing-affected self-epitopes (self-epitopes) over the total of

epitopes, i.e., splicing-derived neoepitopes (splicing-neoepitopes) plus self-epitopes, (y axis) for patients treated with anti-CTLA4, separated

by type of splicing alteration (x axis) and by patient response: responder (green) or non-responder (red). (B) As in (A) but for a different

cohort of melanoma patients treated with anti-PD1. (C) Cumulative plots of the binding affinities (x axis) of splicing-neoepitopes in

melanoma tumors from exonization events separated in responders (green) and non-responders (red) to anti-PD1 therapy. Kolmogorov-

Smirnov test p-value (KS) = 0.0465 (D) As in (C), for splicing-derived neoepitopes from neoskipping events, KS = 0.0274. (E) Cumulative

plots of the affinities of splicing-neoepitopes in melanoma tumors from intron retention events separated in responders (green) and non-

responders (red) to anti-CTLA4 therapy, KS = 0.0016. (F) Frequency of splicing-neoepitopes represented according to the total number of

patients in which are predicted (x axis, total_patients_expressed) and to the absolute count-difference in responders and non-responders to

anti-PD1 therapy (y axis,Difference number patients each class). Epitopes are indicated in green if they are more frequent in responders, and

in red otherwise. The size of the point indicates the number of cases. (G) The same as in (F) but for responders and non-responders to anti-

CTLA4 therapy.

https://doi.org/10.1371/journal.pcbi.1009411.g006
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retention events had stronger interactions in anti-CTLA4 responders (Fig 6E). Incidentally,

splicing-affected self-epitopes from exonizations in anti-PD1 responders, and from new skip-

ping events and intron retentions in anti-CTLA4 responders also showed stronger MHC-I

binding (S9 Fig).

When we considered the threshold of 300nM to define candidates, not all comparisons

remained significant, but we observed similar trends (S10 Fig). We looked at various proper-

ties in the samples to test for possible confounding effects with the therapy response. The num-

ber of sequencing reads, and the overall distribution of transcript expression did not vary

significantly between responders and non-responders (S11 Fig). We also observed no general

association of response with the immune infiltration or purity of samples (S12 Fig). Moreover,

although we observed a significant association between response and estimated stromal con-

tent in the anti-PD1 cohort, there was no correlation between the number of splicing-neoepi-

topes and the estimated stromal content (S12 Fig).

Finally, to further assess the potential relevance of the candidate splicing-derived epitopes,

we studied whether the identified peptides occurred in multiple patients and in association

with response to the immunotherapy. The most frequent splicing-derived neoepitope pro-

duced in responders for anti-PD1 therapy was produced from an intron retention event in the

proto-oncogene PIM3 (SPGAWWLEA) and occurred in 4 out of 14 patients (29%), with HLA

type HLA-B0702 (2 of them), HLA-B5501 and HLA-B5601 (Fig 6F). The most frequent splic-

ing-derived neoepitopes in responders to anti-CTLA4 therapy occurred in 6 out of 18 cases

(33%) and were produced from intron retention events in the genes SPTAN1 (FHSFRWRRL)

and GNAS (VRAGSLCCL). All patients for both epitopes were of HLA type HLA-C0701

(Fig 6G).

Discussion

Our comprehensive analysis cancer-specific splicing alterations indicate that splicing changes

of any kind may potentially contribute to the immunopeptidome, hence they should be con-

sidered in studies of cancer and immunotherapy. Our approach, implemented in the pipeline

ISOTOPE (https://github.com/comprna/ISOTOPE), presents several novelties and advantages

with respect to previous approaches. It is exhaustive in the type of alterations tested, e.g., it

includes de novo exonizations, which have not been previously characterized. Thus, making

possible an assessment at unprecedented scale of candidate splicing-derived neoepitopes.

Although tumor-associated intron retention is quite common in tumors [32], we observed

that neoskipping events showed in greater proportion a disruption of the encoded proteins

and led to more potential candidate neoepitopes. Moreover, unlike previous studies [14–16],

our analysis describes tumor-specific alterations by comparing to a large compendium of nor-

mal samples and performs an empirical test to ensure that the cancer-specific splicing alter-

ation considered is supported by significantly more reads than any other splicing alterations in

the same locus. In our analyses we also tested potential MHC-II neo-epitopes. Although these

predictions are generally less reliable, MHC-II associated neo-epitopes may also be relevant

for immunotherapy [33,34]. Furthermore, ISOTOPE only requires RNA-seq data from a

tumor sample, and it is applicable in the absence of DNA sequencing data from the tumor and

without the need of RNA-seq data from a matched normal control. Additionally, unlike previ-

ous studies, we provide the software and instructions to run the complete ISOTOPE pipeline

in a single computer or in a computer cluster. This makes possible its application on individual

samples in a clinical setting, or on patient cohorts, similarly to the analyses presented. In sum-

mary, ISOTOPE enables a robust and exhaustive survey of the immunogenic impacts of splic-

ing in cancer.
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The low validation of splicing-neoepitopes with MHC-associated proteomics would suggest

that there is a small contribution of tumor-specific splicing to novel epitopes, in agreement

with previous studies. There are several possible reasons for that. The RNA-seq data used

might have not been of sufficient depth to be able to robustly identify all relevant splicing alter-

ations. This is suggested by the overall low recurrence of the tumor-specific splicing alterations

found across patients. Although many of these might be accidental transcripts produced in a

tumor, they still can change the identity of the tumor cell and shape their fitness. An additional

reason may be related to the analysis of the proteomics data. MHC-I associated mass spec-

trometry does not use the enzymatic digestion standard in unbiased proteomics. Thus, to

ensure that matches were reliably detected, we built a control dataset containing a large refer-

ence set of peptides, which could lead to a low detection rate. Additionally, we relied on candi-

date epitopes predicted from RNA-seq. However, a more sensitive approach might be based

on the identification of splicing-derived neoepitopes directly from the MHC-I associated mass

spectrometry. It is also possible that most peptides associated to the immune recognition of

tumor samples may be produced through other mechanisms or may not be novel from the

point of view of the expression pattern.

Recently, it was shown that for some tumor types, the occurrence of splicing alterations

associates with higher expression of PD1 and PD-L1 [14]. It was then suggested that these

tumors could benefit from immune checkpoint inhibitor therapy due to the presence of a

higher content of splicing-derived neoepitopes. However, in a recent study of neoepitopes

derived from intron retention [16], no association was found between neoepitope count and

the response to checkpoint inhibitors. Here, we extended this comparison to all other types of

splicing alterations. Using two cohorts of patients treated with immune checkpoint inhibitors

we found no differences in the number of splicing-derived neoepitopes between responders

and non-responders. However, we observed differences in the predicted affinity to the MHC-I

complex. Indeed, the overall interaction strength predicted for neoepitopes in responders was

larger, possibly indicating a better recognition of tumor cells in the immune response triggered

by the treatment. This raises the possibility that splicing-derived neoepitopes may contribute

to the positive response to the therapy. On the other hand, our analysis indicated a weak corre-

lation of the number of splicing-neoepitopes with tumor mutation burden, which has been

previously shown to correlate with immune therapy response. But splicing-neoepitopes were

generally more abundant than mutational neoepitopes and showed no overlap between them.

This suggests that splicing-neoepitopes may represent biomarkers of immunogenicity inde-

pendently of the mutational patterns. Further analyses in different cancer types will be needed

to further explore this exciting possibility.

We have also studied the possibility that splicing alterations could affect the open reading

frame in such a way that certain self-epitopes are no longer produced. This raises the interest-

ing question about the impacts that the lack of these self-epitopes might have. Although T-cell

selection in the thymus can remove some of these self-reactive specificities, it is known that

this could be incomplete or suboptimal [35]. Self-peptides might not bind equally well to

MHC molecules, which would then compromise the efficiency of negative selection of self-

reactive T-cells. As a consequence, potentially self-reactive T-cells can be found in circulation

in healthy individuals [36], and tolerance to some self-antigens could often rely on the addi-

tional control of regulatory T-cells expressing CTLA4 [37]. This suggests an intriguing possi-

bility. Upon treatment with immune-checkpoint inhibitors, among the immunocompetent T-

cells that are freed to act against the tumor cells, there may be some with self-reactive capabili-

ties. These may help destroying tumor cells but could also be a potential trigger of autoimmune

responses. Indeed, treatment with immune-checkpoint inhibitors has led to serious and some-

times fatal autoimmune reactions in patients [38–40]. T-cells may attack the tumor cells via
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neoepitopes as well as self-epitopes but could trigger immune responses through the reactivity

against self-epitopes in normal cells. On the other hand, a depletion of self-epitopes may lead

to a reduced response. We have observed that some melanoma patients with self-epitope

depletion show no response to the treatment. Also, when we characterized the splicing alter-

ations in small-cell lung cancer, a tumor type with low survival and with limited response to

immune therapy, self-epitope depletion occurs much more frequently than splicing-neoepi-

tope production, and we could validate many of them from MHC-associated mass spectrome-

try in lymphocytes. Thus, tumor-specific splicing alterations could generate neoepitopes, but

could also potentially deplete self-epitopes. These alterations may not necessarily prevent the

self-reactivity in normal cells but could reduce the recognition and destruction of tumor cells,

thereby hindering the effect of the immune therapy. This suggests the interesting hypothesis

that tumor-specific splicing alterations may contribute to the escape of tumor cells to

immune-checkpoint inhibitor treatment.

As the ability of the immune system to identify malignant cells relies on the tumor cells

maintaining sufficient antigenicity, it is thus essential to exhaustively explore all potential

immunogenic impacts, including the variety of splicing alterations that may arise in tumors.

Our method ISOTOPE facilitates this exploration in individual samples and in patient cohorts,

thereby helping in the identification of molecular markers of response to immunotherapy.

Methods

Datasets

RNA sequencing (RNA-seq) data for the cell lines analyzed was collected from the cancer cell

line encyclopedia (CCLE) [21] (GEO accession number GSE36139). We also collected RNA-

seq data from 38 melanoma patients pre anti-CTLA4 treatment classified as responder (18

cases) and non-responder (20 cases) [4], available from dbGAP (https://www.ncbi.nlm.nih.

gov/gap) under accession phs000452.v2.p1: and RNA-seq data from 27 melanoma patients pre

anti-PD1 treatment [30], available at SRA (https://www.ncbi.nlm.nih.gov/sra) under accession

SRP070710, also classified as responder (14 cases) or non-responder (13 cases). Additionally,

we gathered RNA-seq data from 123 SCLC patients [24] (EGA accession EGAS00001000925),

[18] (EGA accession EGAD00001000223), and [26]. For the SCLC patients from [18] we also

obtained the matched normal controls. Samples with more than 30% of junctions present in

other samples but with missing value in them, were filtered out. We estimated the stromal con-

tent, immune infiltrate, and tumor purity of every sample from gene expression information

using the ESTIMATE R package (v.1.0.13) [41].

Identification of tumor-specific splicing alterations

All RNA-seq samples were mapped to the genome (hg19) using STAR [42] and were processed

as described before [43]: Mapped spliced reads with at least a common splice site across two or

more samples were clustered with LeafCutter [44], with a minimum of 30 reads per cluster

and a minimum fraction of reads of 0.01 in a cluster supporting a junction. Read counts per

junction were normalized over the total of reads in a cluster. Junction clusters were defined

across all patients but normalized read counts were calculated per patient. Junctions were clas-

sified as novel if either or both of the splice-sites were not present in the human annotation

(Gencode v19) [45], they had at least 10 supporting reads in at least one tumor sample, and did

not appear in any of the normal samples from a comprehensive dataset collected from multiple

sources: 7859 normal samples from 18 tissues from the GTEX consortium [46], normal sam-

ples from Intropolis [47], CHESS 2.0 [48], and 24 matched normal samples from lung [18].
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ISOTOPE classifies the novel junctions in clusters as one of the following types: aberrant

splice-site, new exon skipping (neoskipping), or de novo exonization. To define exonizations,

we considered all pairs of spliced junctions that were not present in normal samples (see

above) that would define a potential new internal exon not longer than 500nt, with flanking

canonical splice site motifs (AG-GT). We kept only cases with more than 5 reads validating

each splice site. For tumor specific neoskippings, we considered those new junctions that

skipped known exons and defined new connections between exons. To define retained introns

(RIs) we used KMA [49] to extend the Gencode (v19) transcriptome with potential retained

introns (RIs), which we quantified in each RNA-seq sample with Kallisto [50]. To filter out RIs

that were not tumor specific, we calculated RI events with SUPPA [51] from the human Gen-

code [45] and the CHESS 2.0 [48] annotations, and removed KMA-predicted RIs that

appeared in the SUPPA RI annotations. To control for confounding effects due to defects in

pre-mRNA processing across the entire gene locus, for each splicing alteration we compared

the expression of the alterations with 100 randomly selected cases from the same gene using an

Empirical Cumulative Distribution Function (ECDF) test. Candidate junctions were com-

pared with other junctions, exonizations were compared with genic regions of similar length,

and retained introns were compared with other introns. Cell line data was processed in a simi-

lar way, but without removing the alterations in normal samples, as those tests were focused

on the presentation of splicing-derived neo-epitopes.

Protein impact of the splicing alterations

For each analyzed cohort, we built a reference transcriptome using the largest mean expression

per gene across samples, using only those cases with mean> 1 transcript per million (TPM).

Transcript abundance was calculated using Salmon [52]. A reference proteome was defined

from these reference transcripts. For each splicing alteration, a modified transcript was then

built using as scaffold the reference transcript exon-intron structure. Unless the splicing alter-

ation only affected the untranslated region (UTR), an altered protein was calculated from the

longest open reading frame (ORF) (start to stop) predicted on the modified transcript. Each

splicing alteration was considered only if an ORF was predicted. If the splicing alteration

deleted the region of the start codon, the closest downstream start codon was used. Further, if

the stop codon in the altered ORF was located further than 50nt from a downstream splice

site, the case was discarded as potential NMD target. Software to run this analysis and selection

of novel splicing junctions is available at http://github.com/comprna/ISOTOPE.

Prediction of splicing-derived neoepitopes

ISOTOPE calculates two types of epitopes. One type corresponds to tumor-specific splicing-

derived neoepitopes. These are peptides with affinity to the MHC-I complex that are not

encoded in the wild-type transcripts but are encoded in the altered ORF as a consequence of

the tumor-specific splicing alteration. The second type corresponds to splicing-affected self-

epitopes. These are peptides with affinity to the MHC-I complex that are encoded in the wild-

type transcripts but would not be encoded in the altered ORF, i.e. potentially depleted, as a

consequence of the tumor-specific splicing alteration.

Unless available, we inferred the HLA-type from the tumor RNA-seq using PHLAT [19].

From all proteins derived from the splicing alterations and from the reference proteome, we

predicted potential MHC-I binders with NetMHC-4.0.0 [17], and with NetMHCpan-4.0 [53]

for the classes missing in NetMHC-4.0.0. Those peptides in common between the reference

and the altered protein were discarded. Peptides in the altered protein with binding

affinity� 500nM, but not present in the reference proteome were considered candidate
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neo-epitopes. We performed the same analysis for MHC-II binders using predictions from

NetMHCII-2.3, and complementing them with the predictions from NetMHCIIpan-3.2 for

the missing types [54].

Validation of neoepitope prediction with MHC-I mass-spectrometry

MHC-I associated mass-spectrometry data was analyzed following the approach from [55].

We tested all the candidate neoepitopes using as a control database all candidate MHC-I bind-

ers from Uniprot. Using as a control all candidate MHC-I binders from the reference prote-

ome yielded similar results. Using candidate binders rather than the entire Uniprot reduces

the search space and takes into account that MHC-I proteomics involves unspecific digestion.

We matched the mass spectra to the joined set of control and candidate splicing neoepitopes,

and with the control set alone. Candidate matches for both sets were compared to calculate

their significance. For the analysis of the MHC-I associated data for the cell lines CA46, HL-60

and THP-I, we used the same procedures as described before for these datasets [16]. To test

the significance of the identification of the predicted epitopes in the mass-spectrometry data

from [29], a randomized comparison was performed. We took two random sets of 1000 ran-

dom predicted epitopes each, one set with cases of good affinity (� 500nM) and one set from

all the set of predicted neoepitopes (with or without good affinity). We then checked how

many of these 2 random sets are validated with mass-spectrometry data from [29]. We

repeated this process 100 times and tested with a Kolmogorov-Smirnov test whether the 2 dis-

tributions of the number of peptides validated were significantly different. For the self-epitopes

in SCLC was significant (p-value = 3.44e-13), whereas for splicing-neoepitopes there was no

significant difference.

Somatic mutation data and detection of mutation-derived neoepitopes

We used somatic mutations from whole genome sequencing for 505 tumor samples from 14

tumor types [56]: bladder carcinoma (BLCA) (21 samples), breast carcinoma (BRCA) (96 sam-

ples), colorectal carcinoma (CRC) (42 samples), glioblastoma multiforme (GBM) (27 samples),

head and neck squamous carcinoma (HNSC) (27 samples), kidney chromophobe (KICH) (15

samples), kidney renal carcinoma (KIRC) (29 samples), low grade glioma (LGG) (18 samples),

lung adenocarcinoma (LUAD) (46 samples), lung squamous cell carcinoma (LUSC) (45 sam-

ples), prostate adenocarcinoma (PRAD) (20 samples), skin carcinoma (SKCM) (38 samples),

thyroid carcinoma (THCA) (34 samples), and uterine corpus endometrial carcinoma (UCEC)

(47 samples). Additionally, we used whole-genome somatic mutation calls for SCLC from [24]

(EGA accession EGAS00001000925). We only used substitutions and discarded those that

overlapped with frequent (>1% allele frequency) SNPs (dbSNP 144).

Mutation-derived epitopes were calculated with pVACtools [57], using whole genome

sequencing data (WGS) for two SCLC cohorts [24,25]. The identification of splicing-derived

neoepitopes was carried out with ISOTOPE using the RNA-seq data from the same patient

samples. The candidate epitopes were calculated in both cases using the same tools, NetMHC

and NetMHCPan, with the same parameters, testing peptides with amino acid length from 8

to 11, and selecting candidates with binding affinities less or equal than 500nM.

Biomarker enrichment analysis

The Clinical Interpretation of Variants in Cancer (CIViC) [58] and the Cancer Genome Inter-

preter (CGI) [59] databases were used to identify biomarkers, in the form of genetic alter-

ations, associated to the treatment response to anti-cancer therapy. Genes with predicted
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splicing-neoepitopes or self-epitopes in each cohort were assessed for enrichment in biomark-

ers by means of a Fisher Test and multiple test correction (FDR estimation).

Supporting information

S1 Fig. Properties of the SCLC samples. Purity analysis of the small cell lung cancer (SCLC)

samples from each one of the three cohorts used for this study: George et al. [24] (A), Iwakawa

et al. [26] (B), and Rudin et al. [18] (C). In each case, we give the distribution of tumor purity

values (between 0 and 1) calculated with ESTIMATE [41]. Length distributions of the new

exons produced as a consequence of aberrant splice sites (D) or new exonizations (E). The

lengths follow extreme value distributions with mean values of 100, similar to known exons.

(PDF)

S2 Fig. SCLC-specific splicing alterations. From top to bottom, the number of mapped spliced

reads, the expression of the MYC genes (known to be amplified or overexpressed in SCLC and

to drive splicing alterations), mutations on core spliceosome factors, tumor mutation burden

and the number of the different event types detected by ISOTOPE for the SCLC samples (blue

from George et al. [24], red from Rudin et al. [18], green from Iwakawa et al. [26]).

(PDF)

S3 Fig. Splicing-derived epitopes and splicing-affected self-epitopes in SCLC patients.

(A) Upper panel: Number of intron retentions per SCLC sample that impact the open reading

frame. Lower panel: Number of candidate MHC-I binders per sample that are created (blue),

i.e., splicing-derived neoepitopes, or potentially removed from the ORF by the splicing alter-

ation (red) through exonizations. (B) Same as in (A) but for neoskipping events.

(PDF)

S4 Fig. Correlation of events and neoepitopes with the tumor mutation burden. (A) Corre-

lations between the number of splicing alterations detected and the tumor mutation burden

(TMB) for all the SCLC patients, separated by splicing alteration type. Although across all the

events types the correlation is low (Spearman ρ = 0.182), separately there was a statistically sig-

nificant correlation for Neoskipping events (ρ = 0.42). We show the same correlations separat-

ing splicing-derived neoepitopes (B) and splicing-affected self-epitopes. (C). Although

neoskipping events showed significant association, there was an overall low correlation across

all the event types between the TMB and the splicing-neoepitopes (ρ = 0.194) and self-epitopes

(ρ = 0.196).

(PDF)

S5 Fig. Comparison between splicing-derived neoepitopes and neoepitopes derived from

somatic mutations. (A) Comparison of the number of neoepitopes derived from somatic

mutations (red) and tumor-specific splicing-derived neoepitopes (blue) in the SCLC patient

cohorts from Peifer et al. [25] and from George et al. [24] (B) For each patient from the same

cohorts, we give the number of neoepitopes derived from somatic mutations (x axis) and the

number of neoepitopes derived from tumor-specific splicing alterations (y axis). Mutation-

derived epitopes were calculated with pVACtools, whereas splicing-derived neoepitopes were

calculated with ISOTOPE as described in the manuscript. The candidate epitopes were calcu-

lated in both cases using the same tools with the same parameters: NetMHC and NetMHCPan,

using the hg19 reference, testing peptides with amino acid length from 8 to 11, and selecting

candidates with binding affinities less or equal than 500nM. There were no overlaps between

candidates generated by both methods.

(PDF)
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S6 Fig. Length differences between the wild type (WT) open reading frame (ORF) and the

splicing altered ORF. We show the distributions of the length ratios between WT ORF and

the ORF affected by the splicing alteration for the anti-PD1 (A) and the anti-CTLA4 (B)

cohort. The ratios are plotted in log2 scale, i.e., log2(WT length/aberrant length). The plots are

separated according to whether the change involved the creation of a splicing-derived neoepi-

tope only (blue), the removal of a splicing-affected self-epitope only (green), or both (red). We

plot in the lower panels the proportion of the total corresponding to each case.

(PDF)

S7 Fig. Splicing-associated epitopes identified using�300nM. (A) Distribution of the num-

ber of candidate tumor-specific splicing-derived neoepitopes (splicing-epitopes) and splicing-

affected self-epitopes that would be depleted in the altered isoform (self-epitopes) using

�300nM to define candidate epitopes. (B) Distribution of the number of candidate epitopes

from (A), separated by HLA-type.

(PDF)

S8 Fig. Splicing-associated epitopes and immune therapy response. (A) Distribution of the

number of tumor-specific splicing-derived neoepitopes (splicing-epitopes) and splicing-

affected self-epitopes that would be depleted in the altered isoform (self-epitopes) using

�500nM to define candidate epitopes, separated by clinical outcome. The number of splicing-

derived neoepitopes in responders to anti-CTLA4 (mean 346) and non-responders (mean

375) were not significantly different. Similarly, the anti-PD1 cohort showed no significant dif-

ference between the total number of splicing-derived neoepitopes between responders (mean

46) and non-responders (mean 62.6) in the anti-PD1 cohort. (B) as in (A) but using�300nM

to define candidates. The number of tumor-specific splicing-derived epitopes in responders to

anti-CTLA4 (median 172) and non-responders (median 228) were not significantly different.

A similar result was found for the self-epitopes (2090 and 2159). We found the same for the

anti-PD1 cohort (splicing tumor-epitopes: 51.5 vs 79; splicing self-epitopes: 269 vs 287).

(C) Proportion of splicing-affected self-epitopes over the total of epitopes (splicing-affected

self-epitopes and tumor-specific splicing-derived neoepitopes) (y axis) for patients treated

with anti-CTLA4, separated by type of splicing alteration (x axis) and by patient response:

responder (green) or non-responder (red). In this plot, candidate epitopes were defined using

�300nM as threshold. (D) As in (B) but for melanoma patients treated with anti-PD1.

(PDF)

S9 Fig. Analysis of the epitope affinities in responders and non-responders using�500nM

to define candidates. (A) Cumulative plot of the binding affinities (x axis) of splicing-affected

self-epitopes in melanoma tumors from exonization events separated in responders (green)

and non-responders (red) to anti-PD1 therapy. Smaller values of binding affinity correspond

to a stronger interaction between the peptides and the MHC-I complex. We also give the Kol-

mogorov-Smirnov test p-value (KS) = 0.0074. (B) Cumulative plot of the binding affinities (x

axis) of splicing-affected self-epitopes in melanoma tumors from new skipping events (neos-

kipping) events separated in responders (green) and non-responders (red) to anti-CTLA4
therapy, KS = 0. (C) Cumulative plots of the affinities of splicing-affected self-epitopes in mela-

noma tumors from intron retention events separated in responders (green) and non-respond-

ers (red) to anti-CTLA4 therapy, KS = 0.

(PDF)

S10 Fig. Analysis of the epitope affinities in responders and non-responders using

�300nM to define candidates. (A) Cumulative plot of the binding affinities (x axis) of exoni-

zation-derived neoepitopes in melanoma tumors separated in responders (green) and
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non-responders (red) to anti-PD1 therapy. Smaller values of binding affinity correspond to a

stronger interaction between the peptides and the MHC-I complex. We also give the Kolmo-

gorov-Smirnov test p-value (KS). (B) Cumulative plot of the binding affinities (x axis) of neos-

kipping-derived neoepitopes in melanoma tumors from separated in responders (green) and

non-responders (red) to anti-PD1 therapy. (C) Cumulative plots of the affinities of intron-

retention-derived neoepitopes in melanoma tumors separated in responders (green) and non-

responders (red) to anti-CTLA4 therapy.

(PDF)

S11 Fig. Comparison of sample properties between responders and non-responders. We

show the number of mapped reads in responder and non-responder patients in the anti-

CTLA4 (A) and the anti-PD1 (B) cohorts. We also show the distribution of the transcript

expression values for each patient, represented as log2(TPM) (y axis) for the anti-CTLA4
(C) and for the anti-PD1 (D) cohorts.

(PDF)

S12 Fig. Stroma and Immune content comparisons between responders and non-respond-

ers. We show the stromal content (StromalScore), immune cell infiltration (ImmuneScore),

and overall score predicted with ESTIMATE separating patients according to the treatment

response in each cohort, anti-PD1 (A) and anti-CTLA4 (B). The only significant differences

detected was in relation to the stromal content in the anti-PD1 cohort (p-value ~ 0.05).

(C) Number of splicing neo-epitopes (y axis) as a function of the stromal score (x axis).

(PDF)
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