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Sarcoma classification by DNA methylation
profiling

Sarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and

children. They represent a morphologically heterogeneous class of tumours and some entities

lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened

with a high inter-observer variability and misclassification rate. Here, we demonstrate clas-

sification of soft tissue and bone tumours using a machine learning classifier algorithm based

on array-generated DNA methylation data. This sarcoma classifier is trained using a dataset

of 1077 methylation profiles from comprehensively pre-characterized cases comprising 62

tumour methylation classes constituting a broad range of soft tissue and bone sarcoma

subtypes across the entire age spectrum. The performance is validated in a cohort of

428 sarcomatous tumours, of which 322 cases were classified by the sarcoma classifier. Our

results demonstrate the potential of the DNA methylation-based sarcoma classification for

research and future diagnostic applications.
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Sarcomas are a heterogeneous group of tumours, which pose
challenges to pathologists. Many entities lack unequivocal
morphologic or molecular hallmarks and the overall rarity

of sarcomas result in a widespread lack of experience1,2. A high
inter-observer variability among pathologists is reflected in con-
siderable discrepancy rates between primary institutions and
specialized referral centres with access to comprehensive mole-
cular testing3,4. Pathologists often rely on the determination of
tumour specific molecular alterations if available4. While the
determination of characteristic molecular alterations most often
consisting of translocations that generate gene fusions has
become a diagnostic standard for many sarcoma types, approxi-
mately half of the sarcoma entities lack unequivocal molecular
hallmarks1. Even in some cases defined by specific gene fusions, it
may not be possible to identify adequately the fusion by FISH or
RNA-based methods for a variety of technical and specimen-
related limitations. Novel approaches are needed to fill these
diagnostic gaps5.

DNA methylation is a key epigenetic mark and plays important
roles in normal development and disease6. In cancer, DNA
methylation patterns reflect both the cell type of origin, as well as
acquired changes during tumour formation7. Profiling of human
brain tumours has demonstrated entity-specific methylation sig-
natures and has led to the identification of several novel and clini-
cally relevant subtypes8–13. On this basis, a comprehensive brain
tumour classifier has been developed14,15. Recently, we have
extended the principle of methylation-based tumour profiling to
small blue round cell sarcomas evading a definite histological
diagnosis, thereby resolving these cases into established sarcoma
entities16. Further, DNA methylation-based profiling showed diag-
nostic potential for soft tissue and bone sarcoma subtyping17–22. In
this work, we aimed at developing a DNA methylation-based clas-
sification tool for soft tissue and bone sarcomas representing a broad
range of subtypes and age groups.

Results
DNA methylation profiling of prototypical sarcomas. We
subjected prototypical cases of the most common soft tissue and
bone tumours, non-mesenchymal tumours that might mimic
mesenchymal differentiation, i.e. squamous cell carcinoma or
melanoma, and non-neoplastic control tissue to DNA methyla-
tion profiling using the Infinium HumanMethylation450K
BeadChip or EPIC array platform. Following quality control,
methylation data were analysed by unsupervised hierarchical
clustering and t-Distributed Stochastic Neighbour Embedding
(t-SNE)23 thereby identifying groups of tumours sharing
methylation patterns (methylation classes). To minimize potential
clustering artefacts at least seven cases were required for defining
a methylation class, which empirically proved sufficient for
training a classifier and allowed prediction14,15. Unsupervised
clustering, respecting the minimal number of seven cases per
group, led to the designation of 62 tumour methylation classes
belonging altogether to 54 histological types, and three non-
neoplastic control methylation classes (Fig. 1). Iterative random
down-sampling validated the stability of these methylation classes
(Supplementary Fig. 1), and potential confounding factors such as
sex, patients’ age, type of material, type of array and tumour
purity were excluded (Supplementary Fig. 2).

Based on 1077 tumour cases, methylation classes were assigned
to four categories relating to the WHO classification (Fig. 1a).
Category 1 represents methylation classes equaling a WHO
entity. Category 2 represents methylation classes corresponding
to a subgroup of a WHO entity. Category 3 represents
methylation classes that combine WHO entities. Category 4
represents methylation classes of novel entities which are not yet

defined by the WHO classification (Fig. 1a). 48 methylation
classes corresponded to distinct WHO entities (category 1)
comprising 45 mesenchymal tumour entities, cutaneous mela-
noma, cutaneous squamous cell carcinoma and Langerhans cell
histiocytosis. Nine methylation classes corresponded to subsets
within WHO entities (category 2) with conventional chondro-
sarcoma dividing into four methylation classes, rhabdomyosar-
coma with MYOD1 alteration, plexiform neurofibroma,
dedifferentiated chordoma and small blue round cell tumours
with either BCOR alteration or CIC alteration. Three methylation
classes combined WHO entities (category 3). The methylation
class angioleiomyoma/myopericytoma and the methylation class
atypical fibroxanthoma/pleomorphic dermal sarcoma each com-
bined two entities, while the methylation class undifferentiated
sarcoma contained undifferentiated (pleomorphic) sarcoma,
myxofibrosarcoma and a fraction of pleomorphic liposarcoma,
thereby providing further evidence that these sarcoma subtypes
probably fall into a morphologic continuum of a single entity as
suggested by previous genetic-based studies24–26. Two methyla-
tion classes point towards novel entities not yet defined by the
WHO (category 4)13,19. The methylation class SARC (RMS-like)
was identified in sarcomatous CNS tumours with various
morphologic patterns not matching established tumour cate-
gories. Unifying features of cases mapping to this class are
rhabdomyoblast-like cells and DICER1 mutations13. Methylation
class SARC (MPNST-like) was reported as a subset of malignant
peripheral nerve sheath tumours19. Cases assigning to SARC
(MPNST-like) present similar to MPNST, however, retain
trimethylation at histone 3 lysine 27 (H3K27me3). In addition,
based on 28 non-neoplastic tissue specimens methylation classes
were established for non-neoplastic skeletal muscle, reactive soft
tissue and leukocytes. Supplementary Data 1 provides basic
clinical information for each individual case of these methylation
classes. Supplementary Data 2 indicates characteristic clinical and
molecular features for each methylation class.

Development of the sarcoma classifier. We next developed a
classification tool, sarcoma classifier, using a Random Forest
machine learning classification algorithm as described14,27. Cross-
validation, an internal performance metric15, of the sarcoma
classifier provided an estimated error rate of 1.95% for raw scores
and a discriminating power of 99.9% by area under receiver
operating characteristic curve analysis. The low rate of mis-
classifications demonstrates the discriminating power of the
classifier algorithm (Fig. 2, Supplementary Data 2). The dis-
crepancies encountered at cross-validation predominantly
occurred between the four methylation classes of conventional
chondrosarcoma and between three methylation classes of sar-
comas associated with BCOR alterations. Similar to the brain
tumour classifier we introduced a methylation class family score
combining these closely related methylation classes by adding up
their respective prediction scores. This modification reduced the
error rate at cross-validation to 0.65% for the raw scores. We
employed a calibration algorithm transforming raw into cali-
brated scores thereby ensuring inter-class-comparability. This
further allowed definition of a general cut-off score of 0.9 as a
threshold for prediction to a specific methylation class (Supple-
mentary Fig. 3)14.

Classifier performance validated in a clinical cohort. Next, the
sarcoma classifier performance was validated on 428 additional
cases, mostly representing relapsed and refractory soft tissue and
bone tumours, enrolled in the MNP2.0, PTT2.0, INFORM or
NCT MASTER trials, which are focused on molecular analysis
(Supplementary Data 3)28–30. The predicted methylation class by

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20603-4

2 NATURE COMMUNICATIONS |          (2021) 12:498 | https://doi.org/10.1038/s41467-020-20603-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the sarcoma classifier was compared to institutional diagnoses
(Fig. 3). A calibrated score ≥0.9 was reached for 322 of 428 cases
(75%). The respective methylation class or -family matched with
the institutional diagnosis in 263/428 cases (61%). A discrepant
classifier prediction with a calibrated classifier prediction score
≥0.9 was encountered in 59/428 cases (14%). In these cases,
molecular data were screened for subtype-specific alterations. The
initial diagnosis was revised in favour of the predicted methyla-
tion class in 29/59 cases. In 26/59 cases the discrepancy between
histological diagnosis and classifier prediction could not be
resolved due to lack of entity specific mutations. The initial
diagnosis was retained against the predicted methylation class in
4/59 cases (Fig. 4). The reason for misleading methylation class
prediction in the latter cases, all passed the quality control steps,
remains unclear. The 0.9 threshold was not reached for 106 of 428
cases (25%). Consecutive t-SNE analysis demonstrated a position
of many of these cases peripheral or outside of the methylation
classes from the reference set. It is possible that some of these
tumours were contaminated with a higher amount of non-

neoplastic cells than estimated by histological examination,
although the mean value for tumour cell purity of 47,4% in non-
classifiable cases was only slightly lower compared to 51,3% in
classifiable cases (Fig. 5). However, because some sarcomas with
low calibrated classifier scores carried unique molecular altera-
tions such as ONECUT1-NUTM1 or EWSR1-TFCP2 gene fusions
we favour considering these as epigenetic subsets not yet covered
by the current classifier version31,32. A heatmap for the perfor-
mance of the classifier in the validation set is shown in Supple-
mentary Fig. 4.

Copy number profiling of sarcomas. Independent from the
methylation patterns used for classification, high-density DNA
methylation arrays allow for determining copy number altera-
tions, the detection of which is of major diagnostic relevance for
sarcomas25,26. We generated copy number variation (CNV) plots
from all sarcomas of the reference cohort as described14. Fre-
quently encountered alterations include MDM2 amplification
for well-/dedifferentiated liposarcomas, MYC amplification for

Fig. 1 Establishing the DNA methylation-based sarcoma reference cohort. a Overview of 62 tumour and three control DNA methylation classes included
in the sarcoma classifier reference cohort. The methylation classes are colour-coded and grouped according to the WHO scheme. The relation between
methylation classes and the WHO defined subtypes is categorised in 4 tiers: equivalent to a WHO entity (category 1); subgroup of a WHO entity (category
2); combining WHO entities (category 3); non-defined by WHO (category 4). b Visualisation of the reference cohort methylation profiles (n= 1,077) using
t-distributed stochastic neighbour embedding (t-SNE) dimensionality reduction. Individual samples are colour-coded in the respective class colour (n= 65)
as given in (a). Abbreviations: LIPO, lipoma; MLS, myxoid liposarcoma; WDLS/DDLS, well differentiated liposarcoma/dedifferentiated liposarcoma; NFA,
nodular fasciitis; MO, myositis ossificans; MP, myositis proliferans; DTFM, desmoid-type fibromatosis; DFSP, dermatofibrosarcoma protuberans; SFT,
solitary fibrous tumour; IMT, inflammatory myofibroblastic tumour; IFS, infantile fibrosarcoma; LGFMS, low-grade fibromyxoid sarcoma; SEF, sclerosing
epithelioid fibrosarcoma; LMO, leiomyoma; LMS, leiomyosarcoma; RMS (EMB), embryonal rhabdomyosarcoma; RMS (ALV), alveolar rhabdomyosarcoma;
RMS (MYOD1); rhabdomyosarcoma with MYOD1 mutation; ALMO/MPC, angioleiomyoma/myopericytoma; EHE, epithelioid haemangioendothelioma; AS,
angiosarcoma; GIST, gastrointestinal stromal tumour; SWN, schwannoma; NFB, neurofibroma; NFB (PLEX), plexiform neurofibroma; MPNST, malignant
peripheral nerve sheath tumour; AFX/PDS, atypical fibroxanthoma/pleomorphic dermal sarcoma; AFH, angiomatoid fibrous histiocytoma; OFMT, ossifying
fibromyxoid tumour; SYSA, synovial sarcoma; ES, epithelioid sarcoma; ASPS, alveolar soft part sarcoma; CCS, clear cell sarcoma of soft parts; EMCS,
extraskeletal myxoid chondrosarcoma; DSRCT, desmoplastic small round cell tumour; MRT, malignant rhabdoid tumour; USARC, undifferentiated sarcoma;
CCSK, clear cell sarcoma of the kidney; ESS (LG), low-grade endometrial stromal sarcoma; ESS (HG), high-grade endometrial stromal sarcoma; SCC (CUT),
cutaneous squamous cell carcinoma; MEL (CUT), cutaneous melanoma; SARC, sarcoma; CTRL, control; MUS, muscle tissue; REA, reactive tissue; CB,
chondroblastoma; CSA, chondrosarcoma; CSA (MES), mesenchymal chondrosarcoma; CSA (CC), clear cell chondrosarcoma; OB, osteoblastoma; OS
(HG), high-grade conventional osteosarcoma; SBRCT, small blue round cell tumour; GCTB, giant cell tumour of bone; CHORD, chordoma; DD,
dedifferentiated; FDY, fibrous dysplasia; LCH, Langerhans cell histiocytosis.
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radiation induced angiosarcoma or segmental chromosomal
deletions on chromosome 22q encompassing SMARCB1 for
rhabdoid tumours. While these alterations often are characteristic
for distinct sarcoma entities, they usually are not pathognomonic
because of their occasional occurrence also in other entities.
However, in combination with methylation profiles, CNV plots
frequently add to the diagnostic decision process. The frequency
of chromosomal or subchromosomal numerical alterations within
the methylation classes/entities can be depicted by summary
CNV plots (Supplementary Fig. 5). A systematic overview of
frequently observed copy number alterations is provided for each
methylation class (Supplementary Data 2). Molecular and clinical
characteristics of the predicted methylation class are provided in a
molecular classifier report (Supplementary Fig. 6).

Discussion
We established an open-access platform allowing categorization
of sarcomas based on machine generated methylation data and
algorithm driven analysis. Employing DNA methylation-based
categorization offers highly attractive features. Analyses can be
performed on DNA extracted from paraffin-embedded and

formalin-fixed tissues allowing integration in routine settings.
This represents a clear advantage over RNA expression profiling
dependent on fresh tumour tissue33. The detection of individual
methylation patterns for sarcoma entities is of special interest for
those entities lacking pathognomonic gene alterations such as
entity specific gene fusions. In the spectre of sarcomas currently
recognized by the classifier approximately one third of the entities
do not exhibit such specific mutational events.

Heterogeneity on DNA methylation level has been described
between different tumours, but also within individual tumours for
Ewing sarcoma34. On the other hand, that study also reported a
close to 100% accuracy of distinguishing Ewing sarcoma from
other cell types. Nevertheless, the observation of heterogeneity on
the methylation level within individual tumours contrasts with
the high stability of a parameter required for tumour classifica-
tion. We here describe a high stability of methylation profiles for
sarcoma entities. In addition, our selection process for CpG sites
included in the classification algorithm favours those with max-
imal distinction between tumour entities. A practical example for
the high stability of methylation profiles established by this
approach has been presented for ependymoma with demonstra-
tion of primary and recurrent tumours from same patients
neighbouring in almost all instances upon unsupervised
clustering9.

While conceptually highly attractive, the current version of the
sarcoma classifier could not assign approximately 25% of the
cases in the validation cohort to a DNA methylation class. This
can be explained: Foremost, in its current stage the sarcoma
classifier has not been trained to cover the entire spectrum of
sarcoma subtypes. This does account for a portion of the 106/428
unrecognized cases exhibiting a calibrated score <0.9 (Fig. 3).
Limited sample numbers for some entities will not allow identi-
fying methylation subclasses as done for the chondrosarcomas
splitting in four sub-categories. Future increase of the number of
cases in the reference set will very likely enable detection of more
methylation subgroups. A similar tendency has been observed in
pilocytic astrocytomas and medulloblastomas separating now into
several methylation subgroups with the clinical impact still
remaining unclear7,12,35. Moreover, the DNA methylation-based
approach is dependent on fairly high tumour cell content in the
samples. Our experience is best with 70% or more of all cells in a
sample constituting tumour cells36. Many sarcomas, however,
typically contain high proportions of non-neoplastic inflamma-
tory cells (Fig. 5). This circumstance might have contributed to
classifier output scores lower than the cut-off score of 0.9, con-
sequently prompting the tumour evaluation as unclassifiable. The
effect of tumour cell purity on the classifier performance is likely

Fig. 2 Cross-validation of the DNA methylation-based sarcoma classifier.
Heat map showing results of a threefold cross-validation of the Random
Forest classifier incorporating information of n= 1077 biologically
independent samples allocated to 65 methylation classes. Deviations from
the bisecting line represent misclassification errors (using the maximum
calibrated score for class prediction). Methylation class families (MCF) are
indicated by black squares. The colour code and abbreviations are identical
to Fig. 1a. Numbers of this figure are summarized in Supplementary Data 4.
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Fig. 3 Validation of the sarcoma classifier. In total, 426 independent sarcoma samples were analysed. 75% matched to an established DNA methylation
class with a classifier prediction cut-off score of ≥0.9. 25% reached a classifier prediction cut-off score of <0.9. Abbreviations are identical to Fig. 1a.
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to be dependent on the sarcoma subtype (Fig. 5). Future studies
with larger case numbers are required to elucidate the effect of
tumour purity on classifier performance. A possibility to over-
come this problem might be to subtract methylation patterns
typical for lymphocytes thereby accentuating patterns of the
respective sarcoma entities. And lastly, our validation cohort did
not receive a centralized pathological reference review. While
such centralized expert review would not affect the classifier

performance, it likely would reduce the number of discordant
cases as suggested by a recent study pointing to a reclassification
rate of 14% in sarcoma upon central review37.

In summary, we introduce a tool based on DNA methylation
data and on automated algorithm analysis using probability
measures for sarcoma classification. We developed a webpage for
the scientific community listing characteristic features for the
tumour methylation classes. This online platform also provides a
free upload service for locally generated methylation data, which
are analysed instantly and results are returned as molecular
classifier report with a prediction confidence score (Supplemen-
tary Fig. 6). While the current version of the sarcoma classifier
already includes some very rare entities, we acknowledge not to
cover the entire spectrum. Analysis of additional sarcoma sam-
ples, including uploaded data, subject to permission, will further
improve this tool by refining established and adding novel
methylation classes. The sarcoma classifier can be accessed at
www.molecularsarcomapathology.org.

Methods
Sample selection and quality control. All samples of the reference and validation
set are from individual/different patients. All cases of the reference set had
undergone rigorous morphological examination by pathologists specialized in
diagnosing sarcomas and also tumour-type specific molecular testing for identifi-
cation of the relevant alterations, whenever possible. For each specimen, we aimed
at a tumour cell content of ≥70%, with the caveat that microscopically estimated
tumour cell percentage is prone to being relatively imprecise. However, deter-
mining tumour cell content by random forest regression demonstrated that this
goal was not reached for many samples38. Our usual approach was the identifi-
cation of a representative region on an H&E section followed by taking a 1.5 mm
punch from the corresponding site in the formalin-fixed paraffin-embedded
(FFPE) block. The validation set included sarcomas enrolled in the INFORM,
NCT-MASTER, PPT and MNP2.0 studies28–30. Rare sarcoma entities have not
been over-represented. However, availability determined inclusion resulting in
over-representation of high-grade sarcomas in the validation set.

To exclude low-quality samples from the cohort, the on-chip quality metrics of
all samples were checked and compared to a set of 7,500 pairs of IDAT-files. In
addition, for each sample, an overall noise-level was computed using the R package
conumee version 1.6.0. Samples showing low quality values ranging in the 10th
percentile for at least one of the sample controls (‘BC conversion I C1, C2, C3’, ‘BC
conversion I C4, C5, C6’ or ‘BC conversion II 1, 2, 3, 4’) and showing an overall
noise level greater than 3, were excluded from this study.

Methylation array processing. All computational analyses were performed in R
version 3.4.4 (R Development Core Team, 2019). Raw signal intensities were
obtained from IDAT-files using the minfi Bioconductor package version 1.24.0.
Illumina EPIC and 450k samples were merged to a combined dataset by selecting
the intersection of probes present on both arrays (combineArrays function, minfi).
Each sample was individually normalized by performing a background correction
(shifting of the 5th percentile of negative control probe intensities to 0) and a dye-
bias correction (scaling of the mean of normalization control probe intensities to
10,000) for both colour channels. Subsequently, a correction for the type of
material tissue (FFPE/frozen) and array (450k/EPIC) was performed by fitting
univariate, linear models to the log2-transformed intensity values (removeBatch-
Effect function, limma package version 3.34.5). The methylated and unmethylated
signals were corrected individually. Beta-values were calculated from the retrans-
formed intensities using an offset of 100 (as recommended by Illumina).

Before further analysis was undertaken, the following filtering criteria were
applied: removal of probes targeting the X and Y chromosomes (n= 11,551),
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Fig. 4 Comparison of pathological diagnosis and methylation class
prediction. Classifier validation using sarcoma cases enrolled in the
MNP2.0, PTT2.0, INFORM or NCT MASTER trials. Institutional diagnosis
(left) and classifier prediction (right) of the 322 cases that received a
methylation class prediction ≥0.9. The institutional diagnosis of 263 cases
matched the classifier prediction (concordant; grey bars). In 59 cases the
classifier prediction differed from institutional diagnosis, with 29 cases
reclassified in favour of the methylation class prediction (discrepant—
reclassified; blue bars), 26 cases where molecular validation analysis was
inconclusive (discrepant; light blue bars), and four cases with a misleading
classifier result (discrepant – misleading; red bar).
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Fig. 5 Impact of tumour cell purity on classifier performance. a Unsupervised clustering of the combined reference (n= 1077) and diagnostic cohort (n=
428) using t-SNE dimensionality reduction. The reference set is indicated in the upper left plot. The diagnostic samples coded as classifiable (n= 318, grey
dots; upper right plot), non-classifiable (n= 106, blue dots; lower left plot) and misleading (n= 4, red dots; lower right plot). The classifiable cases show
high overlap with the reference cases. The non-classifiable cases frequently fall in the periphery of or are completely separate from the reference samples.
b Tumour cell purity histogram plots of the reference set and the validation set subdivided into classifiable and non-classifiable cases. The mean value is
indicated as dashed red line and provided as number [%]. c Tumour cell purity plotted against calibrated score for conventional osteosarcoma cases of the
validation set.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20603-4

6 NATURE COMMUNICATIONS |          (2021) 12:498 | https://doi.org/10.1038/s41467-020-20603-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


removal of probes containing a single-nucleotide polymorphism (dbSNP132
Common) within five base pairs of and including the targeted CpG-site (n= 7998),
probes not mapping uniquely to the human reference genome (hg19) allowing for
one mismatch (n= 3,965), and 450k array probes not included on the EPIC array.
In total, 428,230 probes were kept for downstream analysis.

Unsupervised analysis
t-SNE. To perform unsupervised non-linear dimension reduction, the 10,000 most
variable probes according to standard deviation were selected. The t-SNE plot was
then computed via the R package Rtsne (version 0.13) using 3000 iterations and a
perplexity value of 30. In addition, to assess the stability of the resulting projection,
we repeated the t-SNE 500 times for subsamples of 90% of the data, sampled
without replacement.

Hierarchical clustering. Unsupervised hierarchical clustering was performed using
the 20,000 most variably methylated CpG sites across the dataset according to
median absolute deviation, Euclidean distance and Ward’s linkage method.

Classifier development. Similar to the development of the brain tumour classifier14

the Random Forest27 algorithm (R package randomForest version 4.6-12) was
applied to generate 10,000 binary decision trees, incorporating genome-wide infor-
mation from all 1077 reference samples of the 65 methylation classes. We used the
10.000 CpGs with highest variable importance. In addition, to address unequal class
size we performed downsampling as described14. The distribution of these CpGs
position within the gene region and their regulatory feature group are indicated
(Supplementary Fig. 7). Each binary decision tree assigns a given sample to one of the
65 classes, resulting in aggregate raw scores. To enable the comparison of classifier
results between classes, these are transformed to a probability that measures the
confidence in the class assignment (the calibrated score) by a L2-penalized multi-
nomial logistic regression calibration model (R package glmnet version 2.0-18).
Cross-validation of the Random Forest classifier resulted in an estimated error rate of
1.95% for raw scores and 0.65% for calibrated scores and a multi-class area under
receiver operating characteristic curve39 of 0.99 and a Brier score40 of 0.05. This
indicates a high discriminating power. To be able to classify samples from biologically
closely related tumour classes, we introduced methylation class families. In those the
calibrated scores were added to one score for the methylation class family14.

Classifier calibration. To obtain classifier scores that are comparable between
classes and that are improved estimates of the certainty of individual predictions,
we performed a classification score recalibration by mapping the original scores to
more accurate class probabilities15. To find such a mapping, a L2-penalized,
multinomial, logistic regression model was fitted, which takes the methylation class
as the response variable and the Random Forest scores as explanatory variables.
The R package glmnet41 was used to fit this model. In addition, the model was
fitted by incorporating a small ridge-penalty (L2) on the likelihood to prevent
overfitting, as well as to stabilize estimation in situations in which classes are
perfectly separable. Independent Random Forest scores are needed to fit this
model, that is, the scores need to be generated by a Random Forest classifier that
was not trained using the same samples, otherwise the Random Forest scores would
be systematically biased and not comparable to scores of unseen cases. As such,
Random Forest scores generated by the threefold cross-validation are used. To
validate the class predictions generated by using the recalibrated scores of the
calibration model, a nested threefold cross-validation loop is incorporated into the
main threefold cross-validation that validates the Random Forest classifier15.
Within each cross-validation run this nested threefold cross-validation is applied to
generate independent Random Forest scores, which are then used to train a cali-
bration model. The predicted Random Forest scores resulting from predicting the
one-third test data of the outer cross-validation loop are then recalibrated by
applying the calibration model that was fitted on the Random Forest scores gen-
erated during the nested cross-validation.

Calibration model parameter tuning. To determine the optimal amount of L2-
penalization for a calibration model a parameter tuning is performed using a
resampling approach. To this end, each time a calibration model is fitted using raw
RF scores from training data to calibrate raw RF scores from test data, 500 random
data sets are generated by sampling 70% of the raw scores training data without
replacement. For each of these random data sets, L2-multinomial logistic regres-
sion models were fitted applying a range of reasonable penalization parameters
lambda. The remaining 30% scores were then calibrated by these models and
maximum of the calibrated scores over all methylation classes was used to generate
class predictions. Then a new binary class was defined, that is, predictions in
agreement with the actual true class were considered ‘classifiable’ and predictions
not in agreement were labelled ‘non-classifiable’. This new binary variable and the
accompanying maximum score over all class scores was then analysed by a receiver
operator characteristics (ROC), i.e. calculating the Youden index (Specificity+
Sensitivity− 1) for all possible thresholds. The final lambda was then determined
such that the average Youden index over all resampling iterations at the pre-
specified cut-off threshold of 0.9 is maximal15. By tuning the calibration model in
this way we can regulate the amount of calibration so that the scores perform well

at the prespecified common threshold of 0.9. This allows us to establish a common
threshold for all forthcoming updates of the proposed classifier, which facilitates
the communication with clinicians. A scheme summarizing the classifier algorithm
steps is provided in Supplementary Fig. 8.

Methylation class families. Misclassification errors mainly occurred within seven
groups of histologically and biologically closely related tumour methylation classes.
Therefore, we defined three ‘methylation class families’ (MCF) encompassing these
seven tumour groups. Calibrated MCF score were calculated by summing up the
calibrated class scores within one MCF.

Estimating tumour purity from DNA methylation data. The estimated tumour
purity for all reference cases was computed using the R package RF_Purify as
described38. For the illustrations, the predictions obtained with the method
‘ABSOLUTE’ were used.

Copy number profiling. Copy number alterations of genomic segments were
inferred from the methylation array data based on the R-package conumee after
additional baseline correction (https://github.com/dstichel/conumee). Summary
copy number profiles were created by summarizing these data in the respective set
of reference cases for each methylation class.

Validation analysis. Cases enrolled in INFORM and NCT MASTER were sub-
jected to total RNA and whole-exome sequencing; cases enrolled in MNP2.0 and
PTT2.0 were subjected to a customized gene panel NGS42 and total RNA
sequencing from FFPE material43, whenever necessary.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Methylation data required for building the sarcoma classifier (reference set) were
deposited at the public repository Gene Expression Omnibus under the accession
number GSE140686. Supplementary Data 1 indicates the IDAT file names for each case.
The remaining data are available within the Article, Supplementary Information or
available from the authors upon request.
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