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Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most
common cause of dementia in aging populations. Recently, the regulation of neurolipid-mediated
signaling and cerebral lipid species was shown in AD patients. The triple transgenic mouse model
(3xTg-AD), harboring βAPPSwe, PS1M146V, and tauP301L transgenes, mimics many critical aspects of
AD neuropathology and progressively develops neuropathological markers. Thus, in the present
study, 3xTg-AD mice have been used to test the involvement of the neurolipid-based signaling
by endocannabinoids (eCB), lysophosphatidic acid (LPA), and sphingosine 1-phosphate (S1P) in
relation to the lipid deregulation. [35S]GTPγS autoradiography was used in the presence of specific
agonists WIN55,212-2, LPA and CYM5442, to measure the activity mediated by CB1, LPA1, and
S1P1 Gi/0 coupled receptors, respectively. Consecutive slides were used to analyze the relative
intensities of multiple lipid species by MALDI Mass spectrometry imaging (MSI) with microscopic
anatomical resolution. The quantitative analysis of the astrocyte population was performed by
immunohistochemistry. CB1 receptor activity was decreased in the amygdala and motor cortex of
3xTg-AD mice, but LPA1 activity was increased in the corpus callosum, motor cortex, hippocampal
CA1 area, and striatum. Conversely, S1P1 activity was reduced in hippocampal areas. Moreover, the
observed modifications on PC, PA, SM, and PI intensities in different brain areas depend on their
fatty acid composition, including decrease of polyunsaturated fatty acid (PUFA) phospholipids and
increase of species containing saturated fatty acids (SFA). The regulation of some lipid species in
specific brain regions together with the modulation of the eCB, LPA, and S1P signaling in 3xTg-AD
mice indicate a neuroprotective adaptation to improve neurotransmission, relieve the myelination
dysfunction, and to attenuate astrocyte-mediated neuroinflammation. These results could contribute
to identify new therapeutic strategies based on the regulation of the lipid signaling in familial
AD patients.

Keywords: Alzheimer’s disease; functional autoradiography; cannabinoid receptors; LPA receptors;
sphingosine 1-phosphate; ligand binding; G protein; MALDI-MSI; [35S]GTPγS autoradiography;
3xTg-AD mice

1. Introduction

The progressive and irreversible deterioration of cognitive functions present in
Alzheimer’s disease (AD) include a chronic neurodegeneration characterized by patho-
logical hallmarks including the loss of synapses, the intracellular neurofibrillary tangles
(NFT) (mostly composed by hyperphosphorylated tau protein) [1], and extracellular neu-
ritic plaques (enriched in Aβ) [2,3]. AD often has comorbidities with other severe human
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diseases, for example, type 2 diabetes. Some common pathophysiological alterations and
signaling pathways may be involved in the association between these two disorders [4].
AD can be classified into sporadic AD, which accounts for the majority of the cases, and
familial early-onset form, accounting for 1–5% of all cases, in which mutations of genes,
for example, amyloid β precursor protein (APP) [5], and presenilin-1 and -2 have been
suggested to underlie the development of the disease [6–9]. Aβ deposition has been related
to neuroinflammatory responses, in which astrocytes and microglia play a key role [10,11].
Furthermore, the presence of NFTs has been accepted and used for postmortem diagnostic
criteria [12]. The AD is a complex neurodegenerative disease specific to humans involving
multiple factors, such as inflammation [13]. Thus, the best way to study the AD should
be directly in patients. However, some animal models have been developed and must be
compared to AD patients for their validation. In addition, the translational research based
on “omics” technologies (including lipidomics) are increasing our knowledge of AD for
the identification of early AD biomarkers [14].

The triple transgenic mouse model, 3xTg-AD, mimics many critical aspects of AD
neuropathology, harboring βAPPSwe, PS1M146V, and tauP301L transgenes [15–18]. These
mice progressively develop the neuropathological markers of AD [19]. At 6 months of
age, 3xTg-AD mice are characterized by diffuse amyloid plaques in neocortex, and in-
traneuronal Aβ accumulation in pyramidal neurons of the hippocampus, cortex, and
amygdala [20]. Other authors have described tau phosphorylation at pyramidal layers
of hippocampus [21]. This evidence suggests that tau protein dysfunction contributes
to AD-related pathophysiology in 3xTg-AD mice at early ages [19]. Moreover, synaptic
dysfunction and long-term potentiation deficits are already apparent at this age, although
no extracellular Aβ deposits are localized at the hippocampal region. Moreover, behavioral
age is an important factor in this 3xTg-AD mouse model [22,23]. Regarding the neuro-
chemical alterations observed in AD patients, cholinergic neurotransmission seems to
be one of the most characteristic alterations, including the loss of cholinergic neurons at
the basal nucleus of Meynert in AD patients [24]. However, neurodegeneration is not
limited to a specific neurotransmitter system; the glutamatergic [25], serotonergic [26],
noradrenergic [27], and peptidergic (e.g., galanin) [28] neurotransmitter systems are also
deregulated in AD [29].

Furthermore, we have recently demonstrated, in a rat lesion model of basal forebrain
cholinergic neurons that shows learning and memory impairment, the specific regula-
tion of phospholipids which is controlled by muscarinic receptor signaling [30]. Lipid
molecules dynamics, finely tuned by neurotransmitter systems, may play pivotal roles in
AD development. Thus, different changes occur in the composition of neural membrane
glycerophospholipid, sphingolipid, and cholesterol during neurodegeneration (e.g., AD,
Parkinson’s disease, and amyotrophic lateral sclerosis) [31–35]. These changes lead to
significant increases in glycerophospholipid, sphingolipid, and cholesterol-derived lipid
mediators at the plasma membrane and nuclear levels [36]. Lipid mediators are involved
in neural cell proliferation, migration, cell cycle, and angiogenesis, promoting cell survival
in physiological conditions [37–39].

As mentioned above, the study of brain lipids by lipidomic techniques, together with
the analysis of neurolipid-based signaling has emerged with important neuromodulatory
properties on different neurotransmitter systems in AD [30,40]. The main neurolipid sys-
tems identified so far are the endocannabinoid (eCB), and the lysophospholipid signaling
systems, including the lysophosphatidic acid (LPA) and the sphingosine 1-phosphate
(S1P) [41–43]. The endocannabinoid signaling is also modified during AD progression.
Some authors suggest reduced CB1 densities in the entorhinal cortex, hippocampus, and
caudate nucleus in advanced stages of AD patients [44]. Moreover, using immunohisto-
chemical techniques, decreased expression of CB1 receptor protein was demonstrated in
frontal cortex samples in AD patients [45]. Furthermore, CB1 receptors are up-regulated
in the early stages of AD, followed by a diminution of its availability during the progress
of the disease [40,46]. In contrast, other studies found no alteration of CB1 densities in
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AD brains including several cortical and hippocampal areas [47,48]. CB1 receptors play a
fundamental role in neuroprotection, controlling excitotoxicity events related to neurode-
generative and inflammatory processes [15,49,50]. Regarding lysophospholipid systems,
in vivo and in vitro studies have indicated that the neurophysiology of the LPA and S1P
is relevant for AD. For example, autotaxin, an enzyme involved in LPA production, with
antioxidative properties, is up-regulated in AD patients [51,52]. Moreover, LPA has been
implicated in the up-regulation of BACE1 expression [53]. LPA also activates the phospho-
rylation of GSK-3 enzyme; LPA-mediated activation of GSK-3 occurs in the Rho pathway
and may represent an important link between microtubule and microfilament dynamics in
AD [54,55]. In addition, LPA has been described as a novel potential mediator in myeli-
nation [56] which is disrupted in AD [57]. Finally, the neuroprotective effects of LPA on
Aβ 31–35 induced apoptosis in cultured cortical neurons have been reported [16].

The knowledge about the role of S1P-mediated signaling in AD is more recent, but
indicates decreased levels of its endogenous ligand in cortical and subcortical areas in
brain samples from AD patients [58] which, at least in the cortex, may be the consequence
of aberrant functionality or altered expression of the S1P-synthesizing and/or degrading
enzymes [59]. The S1P1 receptors have also been localized in astrocytes [60].

Thus, the present study analyzed the activities mediated by CB1, LPA1, and S1P1 recep-
tors, respectively, in 6-month-old 3xTg-AD transgenic mice using the functional [35S]GTPγS
autoradiography method. The receptor specificity was localized at the subcellular level by
microscopic immunofluorescent localization. These results are compared to the anatomical
distribution patterns of the lipid distribution in the brain of 3xTg-AD mice, obtained by
MALDI mass spectrometry imaging (MALDI-MSI).

2. Results

2.1. [35S]GTPγS Binding Assay in 3xTg-AD Mice Brain Sections

In order to assess changes between 3xTg-AD mice and age-matched wild type (WT)
mice, firstly, we examined the basal G protein activity in whole brain, which was quite
similar in 3xTg-AD and WT mice. The functional coupling induced by WIN55,212-2,
accounting mainly for CB1-mediated activity, was decreased in transgenic mice compared
to WT mice in the amygdala (3xTg-AD 112.8 ± 28.9% vs. WT 295.5 ± 41.7%; p < 0.01). This
CB1 activity was also decreased in the VI layer of the motor cortex (3xTg-AD 238.4 ± 22.9%
vs. WT 435.4 ± 58.2%; p < 0.01) (Figure 1, Table 1).

On the other hand, the [35S]GTPγS binding induced by LPA was increased in trans-
genic mice at the striatum (3xTg-AD 23.1 ± 3.8% vs. WT 3.3 ± 7.2%; p < 0.05), motor
cortex (3xTg-AD 26.1 ± 7.6% vs. WT 6.2 ± 12.4%; p < 0.05), corpus callosum (3xTg-AD
189.6 ± 17.4% vs. WT 90.8 ± 12.3%; p < 0.05), and hippocampal CA1 area (3xTg-AD
22.7 ± 4.4% vs. WT −18.7 ± 7.8%; p < 0.05) (Figure 2, Table 2).
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binding stimulated by WIN55,212-2 (10−5 M). Note the decrease of the CB1–mediated activity at layer VI of the cortex (Cx
Layer VI) and at the medial amygdala. Scale bar = 3 mm.
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Table 1. [35S]GTPγS basal binding in different areas of WT and 3xTg-AD mice brain (nCi/g t.e) and
induced by WIN55,212-2 (10 µM) expressed in percentage of stimulation over the basal. n (WT) = 12;
n (3xTg-AD) = 16. Data are mean ± SEM values.

Basal Binding (nCi/g t.e.) WIN55,212-2 Stimulation (%)

Brain Region WT 3xTg-AD WT 3xTg-AD

Amygdala
Anterior 234.9 ± 18.3 218.2 ± 20.9 204.5 ± 30.1 185.8 ± 37.7
Posterior 216.6 ± 14.6 266.4 ± 23.5 295.5 ± 41.7 112.8 ± 28.9 **

Internal capsule 143.1 ± 19.0 120.8 ± 9.8 52.9 ± 12.5 36.2 ± 11.1
Striatum 178.8 ± 8.4 187.4 ± 12.8 250.2 ± 27.7 226.1 ± 26.4
Cerebellum

White matter 60.2 ± 6.5 51.7 ± 5.7 66.1 ± 34.8 93.2 ± 19.6
Gray matter 54.7 ± 4.7 66.7 ± 7.3 814.8 ± 56.3 658.2 ± 49.2

Cortex
Cingular 164.2 ± 13.0 166.0 ± 12.4 308.4 ± 45.5 267.3 ± 38.2
Motor Layers I-VI 152.4 ± 7.9 178.4 ± 13.1 267.3 ± 25.6 228.6 ± 29.7

Layer VI 175.3 ± 55.4 190.8 ± 52.8 435.4 ± 58.2 238.4 ± 22.9 **
Corpus callosum 146.6 ± 11.8 127.2 ± 10.2 72.1 ± 13.1 84.6 ± 14.5
Globus pallidus 200.6 ± 12.3 204.7 ± 17.7 870.2 ± 69.4 872.5 ± 52.2
Hippocampus

CA1 132.3 ± 10.8 143.4 ± 9.9 314.8 ± 47.1 238.4 ± 27.1
Dentate gyrus 121.1 ± 15.4 143.5 ± 8.8 209.8 ± 38.9 202.5 ± 21.5

Hypothalamus 217.6 ± 16.6 243.3 ± 22.8 162.5 ± 20.8 169.3 ± 16.3
Thalamic nuclei

Anteroventral 113.7 ± 11.7 138.6 ± 10.2 128.5 ± 35.4 86.1 ± 30.3
Thalamus 89.8 ± 7.8 112.7 ± 9.9 109.3 ± 29.9 92.5 ± 15.6

Basal Nucleus 215.6 ± 14.7 227.3 ± 15.9 271.3 ± 39.1 274.9 ± 39.9
Substantia Nigra 190.1 ± 16.9 172.1 ± 8.1 1062.7 ± 79.8 979.3 ± 65.7

The p values were calculated by two-tailed Student’s t test ** p ≤ 0.01.

The functional coupling of S1P1 receptor to Gi/o proteins induced by the specific
agonist CYM5442 was consistently found to be reduced in the hippocampus, basal ganglia,
and rhinencephalon from 3xTg-AD mice. Thus, decreased activity was found in CA1 (3xTg-
AD 328 ± 29.2% vs. WT 542 ± 58.7%; p < 0.01) and CA3 fields (3xTg-AD 221 ± 11.6% vs.
WT 328± 33.4%; p < 0.01), in the dentate gyrus (3xTg-AD 439± 34.9% vs. WT 606 ± 58.8%;
p < 0.05), substantia nigra (3xTg-AD 544 ± 74.3% vs. WT 855 ± 116.8%; p < 0.05), granular
olfactory bulb (3xTg-AD 950 ± 65.9% vs. WT 1653 ± 156.9%; p < 0.01), and anterior
olfactory nucleus (3xTg-AD 804 ± 168.3 vs. WT 1255 ± 107.4%; p < 0.05) (Figure 3, Table 3).

2.2. Cannabinoid Receptor Density

Cannabinoid receptor density was quantified in 3xTg-AD mice (n = 16) and matched
WT mice (n = 12) using a specific radioligand; the [3H]CP55,940. Quantitative densitometry
showed that there is an increase in the density of CB1 receptors in 3xTg-AD mice at the hip-
pocampal CA1 area (3xTg-AD 284.6 ± 19.8 fmol/mg t.e. vs. WT 193.8 ± 33.8 fmol/mg t.e.;
p < 0.05) and cingular cortex (3xTg-AD 236.8 ± 17.1 fmol/mg t.e. vs. WT 166.8 ± 27.7
fmol/mg t.e.; p < 0.05). The density of CB1 receptors was also increased in 3xTg-AD mice at
the brain areas with the highest CB1 densities, such as the cerebellar gray matter (3xTg-AD
414.3 ± 17.3 fmol/mg t.e. vs. WT 299.5 ± 16.8 fmol/mg t.e.; p < 0.01) and the substantia
nigra (3xTg-AD 375.9 ± 25.2 fmol/mg t.e. vs. WT 263.8 ± 21.9 fmol/mg t.e.; p < 0.01)
(Supplementary Material Table S1, Figure S1).
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Figure 2. Representative autoradiograms of WT (A,C,E) and 3xTg-AD (B,D,F) mice in sagittal
sections that show [35S]GTPγS stimulated by LPA (10−5 M). The [35S]GTPγS binding induced by
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Figure 3. Representative autoradiograms of WT (A,C) and 3xTg-AD (B,D) mice in coronal brain sections that show
[35S]GTPγS binding evoked by CYM5442 (10−5 M), accounting for S1P1 receptor activity. The S1P1 receptor activity was
reduced in the rhinencephalon, hippocampus, and substantia nigra from 3xTg-AD mice. Scale bar = 4 mm. GrO: granular
olfactory bulb, AOn: Anterior olfactory nucleus, Hpc DG: hippocampus dentate gyrus, Hpc CA1: hippocampus CA1, Hpc
CA3: hippocampus CA3, SN: Substantia nigra.
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Table 2. [35S]GTPγS induced by LPA (10 µM) in different areas of WT and 3xTg-AD mice brain
expressed in percentage of stimulation over the basal. n (WT) = 12; n (3xTg-AD) = 16. Data are
mean ± SEM values.

LPA Stimulation (%)

Brain Region WT 3xTg-AD

Amygdala
Anterior 20.5 ± 11.7 13.0 ± 10.3
Posterior 28.8 ± 12.8 8.1 ± 15.9

Internal capsule 30.2 ± 9.6 32.8 ± 6.2
Striatum 3.3 ± 7.2 23.1 ± 3.8 *
Cerebellum

White matter 76.6 ± 18.4 111.3 ± 19.7
Gray matter 62.0 ± 15.7 82.9 ± 19.7

Cortex
Cingular 13.2 ± 7.2 20.8 ± 6.4
Motor 6.2 ± 12.4 26.7 ± 7.6 *

Corpus Callosum 90.8 ± 12.3 189.6 ± 17.4 *
Globus pallidus 22.1 ± 9.3 29.8 ± 6.9
Hippocampus

CA1 −18.7 ± 7.8 22.7 ± 4.4 *
Dentate gyrus 54.7 ± 11.0 49.5 ± 23.2

Hypothalamus 34.5 ± 19.9 22.6 ± 10.2
Thalamic nuclei

Anteroventral 22.6 ± 14.2 20.6 ± 8.2
Thalamus 20.6 ± 13.2 24.6 ± 11.1

Basal Nucleus 22.9 ± 10.7 39.8 ± 8.5
Substantia Nigra 23.1 ± 13.7 25.4 ± 7.8

The p values were calculated by two-tailed Student’s t test * p ≤ 0.05.

2.3. GPCR-Immunoreactivity and Astrocyte Density

The immunosignaling associated to CB1 and S1P1 receptors was observed in the gray
matter, whereas that associated to LPA1 receptor was mainly restricted to white matter
regions and only modestly to discrete regions of the gray matter (Figure 4). These observa-
tions are in accordance with the observed distribution of the different GPCR functional
activity in the autoradiographic studies. In 3xTg-AD mice, S1P1 immunoreactivity was
found to be decreased in the hippocampus, and LPA1 was increased in the corpus callosum,
which is in accordance with that observed in the functional coupling to Gi/o proteins
evoked by the different agonists. Collectively, autoradiographic and immunohistochemical
results demonstrate that the changes in the functional activity of these receptors may be
directly related to intrinsic variations in the density of these receptors in 3xTg-AD mice.

Some of these three neurolipid receptors have also been localized in astrocytes, mainly
the S1P1 receptor subtype. Therefore, the study of astroglial cells by immunofluorescence
was performed in those brain regions which showed marked differences in the functional
coupling of the analyzed GPCRs. Two different markers, glial fibrillary acidic protein
(GFAP) and S100B, were used to identify astrocytes directly in the tissue. The immunosignal
observed by using both markers exhibited different immunostaining patterns showing
that astrocytes were mainly distributed in the gray matter. GFAP immunoreactivity clearly
delineated the body and the processes of the astrocytes, whereas S100B immunosignal was
more restricted and mainly confined to the astrocyte body. The total density of Hoechst-
stained nuclei was not modified in transgenic mice. In this sense, both the density of
astrocytes and the total area stained with GFAP or S100B were normalized as percentages
of total nuclei or total Hoechst-stained area, respectively. Marked changes in density, as
well as in cell size, were found in hippocampal CA1 and dentate gyrus fields in 3xTg-AD
mice, demonstrating not only a decrease in the population of astrocytes, but also their
atrophy or shrinkage. These observations allowed us to clearly differentiate between
both genotypes depending on the astroglial-associated immunosignal. However, those
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differences were not statistically significant in other brain regions such as the granular
olfactory bulb (Figure 5).

Table 3. [35S]GTPγS induced by CYM5442 (10 µM) in different areas of WT and 3xTg-AD mice
brain expressed in percentage of stimulation over the basal. n (WT) = 7; n (3xTg-AD) = 7. Data are
mean ± SEM values.

CYM5442 Stimulation (%)

Brain Region WT 3xTg-AD

Amygdala
Anterior 487 ± 91.4 515 ± 91.7
Posterior 334 ± 33.9 397 ± 49.5

Internal capsule 193 ± 45.0 131 ± 16.0
Striatum 446 ± 58.9 375 ± 29.1
Cerebellum

White matter 183 ± 37.1 166 ± 19.5
Gray matter 329 ± 41.9 343 ± 52.3

Cortex
Cingular 789 ± 131.0 997 ± 173.0
Motor 690 ± 94.0 677 ± 79.0
Entorhinal 542 ± 104.0 387 ± 52.0
Frontal 475 ± 46.3 483 ± 56.0

Corpus callosum 243 ± 41.0 196 ± 29.0
Globus pallidus 468 ± 61.9 365 ± 41.3
Hippocampus

CA1 542 ± 58.7 328 ± 29.2 **
CA3 328 ± 33.4 221 ± 11.6 **

Dentate gyrus 606 ± 58.8 439 ± 34.9 *
Hypothalamus 178 ± 50.16 188 ± 37.2
Thalamic nuclei

Anteroventral 177 ± 35.2 204 ± 62.8
Thalamus 188 ± 48.7 209 ± 50.1

Basal Nucleus 448 ± 46.2 373 ± 23.9
Substantia Nigra 855 ± 116.8 544 ± 74.3 *
Granular olfactory bulb 1653 ± 156.9 950 ± 65.9 **
Anterior olfactory Nucleus 1255 ± 107.4 804 ± 168.3 *

The p values were calculated by two-tailed Student’s t test * p ≤ 0.05, ** p ≤ 0.01.
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Figure 5. Quantitative analyses of the astrocyte population according to the following; number of cells immunolabeled
with GFAP (A) or S100B (B) over the total cell nuclei (i), total area immunolabeled with GFAP or S100B over the total area
occupied by cell nuclei (ii). Quantitative analyses of the immunolabeled area with GFAP or S100B of individual cells show
the astrocyte size (µm2) in both genotypes (iii). * p < 0.05 vs. WT mice. CA1; hippocampus CA1, DG; hippocampus dentate
gyrus, OB; olfactory bulb, including granular and anterior. Hoechst staining of nuclei and double labeling of astrocytes in
brain tissue from WT and 3xTg-AD revealing particular immunostaining patterns observed with GFAP and S100B, which
stain astrocytic processes or cell bodies, respectively (Ci and Cii). Note the marked decrease in the density of astrocytes as
well as their atrophy in the transgenic genotype (3xTg-AD). Cii scale bar = 40 µm.

2.4. MALDI-MSI Assay in 3xTg-AD Mice Brain Sections

The most significant differences in positive ion detection mode between 3xTg-AD
and WT mice were found in the following lipid species: PA[(34:1) + K]+; cortex (3xTg-AD
25.0 ± 2.6% vs. WT 15.1 ± 1.5%, p < 0.01) and hippocampus (3xTg-AD 25.8 ± 2.9% vs. WT
17.4 ± 1.1%, p < 0.05). PC[16:0/16:0]+; cortex (3xTg-AD 76.9 ± 7.6% vs. WT 57.2 ± 4.1%,
p< 0.05) and amygdala (3xTg-AD 75.3± 5.9% vs. WT 58.0± 0.5%, p < 0.05). PC[16:0/18:1]+;
amygdala (3xTg-AD 78.8 ± 5.1% vs. WT 65.6 ± 1.0%, p < 0.05), SM[(d18:1/18:0) + K]+;
hippocampus (3xTg-AD 35.9 ± 1.4% vs. WT 30.9 ± 0.9%, p < 0.05). PC[36:4]+; amygdala
(3xTg-AD 36.2 ± 2.9% vs. WT 43.9 ± 1.6%, p < 0.05), PC[38:6]+; and cortex (3xTg-AD
10.5 ± 0.7% vs. WT 15.0 ± 0.2%, p < 0.01) (Table 4; Figure 6).
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Table 4. Percentage of the intensity of molecular lipid species in positive and negative mode in sagittal mice sections from WT (n = 6) compared to the 3xTg-AD (n = 6), as revealed by
MALDI-MSI. Data are mean ± SEM values.

Cortex Hippocampus Striatum Amygdala Cerebellum

Assignment m/z WT 3xTg-AD WT 3xTg-AD WT 3xTg-AD WT 3xTg-AD WT 3xTg-AD

PA(34:1)+K+ 713.4535 15.1 ± 1.5 25.0 ± 2.6 ** 17.4 ± 1.1 25.8 ± 2.9 * 13.7 ± 0.9 20.0 ± 2.4 * 22.7 ± 1.8 25.7 ± 3.3 14.1 ± 2.4 15.3 ± 2.2
PC(16:0/16:0)+ 734.5721 57.2 ± 4.1 76.9 ± 7.6 * 70.1 ± 4.3 71.8 ± 4.9 69.8 ± 3.4 69.2 ± 3.5 58.0 ± 0.5 75.3 ± 5.9 * 55.5 ± 4.3 70.9 ± 3.1 *
PC(16:0/18:1)+ 760.5658 82.3 ± 5.7 83.4 ± 4.8 86.1 ± 4.5 87.2 ± 4.8 88.7 ± 5.7 90.1 ± 6.9 65.6 ± 1.0 78.8 ± 5.1 * 96.0 ± 2.1 96.1 ± 2.1

SM(d18:1/18:0)+K+ 769.5656 38.0 ± 3.5 36.1 ± 1.5 30.9 ± 0.9 35.9 ± 1.4 * 23.3 ± 2.5 25.1 ± 1.6 34.8 ± 1.8 41.0 ± 1.5 * 25.1 ± 3.0 26.5 ± 2.0
PC(36:4)+ 782.5654 33.1 ± 2.9 30.7 ± 2.1 37.3 ± 1.7 35.4 ± 1.1 34.6 ± 1.1 32.7 ± 1.3 43.9 ± 1.6 36.2 ± 2.9 * 29.8 ± 0.8 24.9 ± 1.1 **
PC(38:6)+ 806.5711 15.0 ± 0.2 10.5 ± 0.7 ** 9.8 ± 0.9 9.3 ± 0.5 11.3 ± 0.8 10.7 ± 1.3 5.3 ± 0.8 6.4 ± 0.8 19.9 ± 1.1 13.1 ± 1.2 **

SM(d35:1)− 715.5764 26.2 ± 1.4 37.4 ± 3.7 * 50.2 ± 2.8 65.0 ± 5.9 * 35.4 ± 2.1 38.1 ± 2.9 55.5 ± 2.8 67.5 ± 3.1 * 41.2 ± 5.3 48.3 ± 6.0
PI(16:0/20:4)− 857.5190 22.7 ± 0.6 19.1 ± 0.3 ** 14.5 ± 0.5 11.1 ± 0.3 ** 12.1 ± 0.2 11.6 ± 0.2 10.5 ± 0.2 9.1 ± 0.6 10.8 ± 0.6 9.7 ± 1.1
CPI(40:2)+MBT 896.5779 11.2 ± 1.5 12.7 ± 2.8 23.8 ± 1.1 23.9 ± 2.1 15.3 ± 1.1 19.7 ± 3.1 25.5 ± 2.1 17.2 ± 2.0 * 20.9 ± 3.3 17.6 ± 2.5

PI(40:5)− 911.5411 14.7 ± 0.7 8.8 ± 1.7 ** 11.3 ± 0.7 9.9 ± 1.2 10.2 ± 0.6 10.3 ± 1.1 9.6 ± 1.1 8.7 ± 1.9 10.1 ± 0.8 8.2 ± 1.6
925.5556 14.8 ± 1.7 6.3 ± 2.8 * 11.8 ± 0.9 3.7 ± 2.1 ** 9.8 ± 1.5 7.5 ± 2.7 11.9 ± 0.9 5.7 ± 2.8 * 10.5 ± 1.3 8.1 ± 2.7

The p values were calculated by two-tailed Student’s t test * p ≤ 0.05, ** p ≤ 0.01. PA: phosphatidic acid, PC: phosphatidylcholine, SM: sphingomyelin, PI: phosphoinositol, CPI: ceramide phosphoinositol.
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The more significant differences in negative ion detection mode were for the follow-
ing lipid species: SM[d35:1]−; cortex (3xTg-AD 37.4 ± 3.7% vs. WT 26.2 ± 1.4%, p < 0.05),
PI[16:0/20:4]−; cortex (3xTg-AD 19.1 ± 0.3% vs. WT 22.7 ± 0.6%, p < 0.01) PI[40:5]−; cortex
(3xTg-AD 8.8 ± 1.7% vs. WT 14.7 ± 0.7%, p < 0.01), and one unidentified molecular species
at m/z: 925.5556 (Table 4, Figure 6).
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3. Discussion

The 3xTg-AD mouse model of AD is an experimental animal model that has been
employed for the examination and evaluation of the effects during the development of
some of the mechanisms that have been related to genetic familial forms of AD. The aim of
the present study was to analyze together the activity of the main receptors for neurolipids
present in the central nervous system (CNS): CB1, LPA1, and S1P1 in 3xTg-AD mice at
6 months. The results are discussed in the framework of the lipid composition of the brains
in these mice obtained by the MALDI-MSI technique for the in situ analysis, contributing
to understand the lipid changes already observed in AD patients and connect these results
with the possible adaptations in the activity induced by three different neurolipid-mediated
signaling systems: eCB, LPA, and S1P.

3.1. Modulation of CB1 Receptor Activity

Concerning the cannabinoid system, the activity of CB1 receptors, measured as
WIN55,212-2-induced [35S]GTPγS binding, was lower in the posterior amygdala and layer
VI of the motor cortex of 3xTg-AD mice when compared with age-matched WT animals.
The cerebral cortex and amygdala belong to the CNS emotional circuitry and contain high
levels of CB1 receptors [61]. It has been described that the cannabinoid signaling in the
prefrontal cortex can modulate the magnitude of neuronal emotional learning plasticity
and memory formation through functional inputs from the basolateral amygdala [62]. The
amygdala is a region of the temporal lobe that is affected by Aβ and neurofibrillary tangle
pathology at early stages of AD. In 3xTg-AD mice, an increase of anxiety and fear related be-
haviors has been observed and, at the time when Aβ is still localized intraneuronally, some
spatial memory deficits appear [63]. In 3xTg-AD mice, Aβ accumulation occurs preferably
inside the amygdaloid glutamatergic neurons, where CB1 receptors are also located.

Furthermore, we evaluated if the availability and distribution of the CB1 receptors
in 3xTg-AD mice could account for the above-described results. The analysis of the
[3H]CP55,940 binding sites in 3xTg-AD mice and age-matched control animals revealed a
significant increase of CB1 receptor densities in different areas of the 3xTg-AD mice such as
the substantia nigra, cerebellum gray matter, dorsal hippocampal CA1 area, and cingular
cortex. Studies of CB1 receptors in 6-month-old and 10-month-old AβPP/PS1 mice have
shown a decrease in CB1 receptors in the cortex and hippocampus, respectively [64,65].
Moreover, AβPP/PS1 mice presented higher levels of CB1 receptor in the cortex than
wild-type mice at 3 months of age [66,67]. Recent studies have reported high levels of CB1
mRNA and functional protein in 6-month-old and 7-month-old 3xTg-AD mouse brain in the
prefrontal cortex, dorsal hippocampus, and basolateral amygdala [68,69]. The data obtained
from the [3H]CP55,940 autoradiography did not correlate with the [35S]GTPγS binding
stimulated by WIN55,212-2, suggesting that receptor density and receptor efficiency can
be modulated separately and the contribution of CB1 receptors coupled to Gq proteins
could account for these discrepancies [70]. Previous studies based on human postmortem
brain samples suggested that CB1 receptors could be involved in the pathophysiology of
AD [45,46,48,71]. Our research group has observed in patients an increase in CB1 density
at layer VI of the frontal cortex and different areas of the hippocampus, such as pyramidal
layer during the moderate stages of the disease, but having a significant decrease at later
stages in the pyramidal layers of the different hippocampal areas and the inner layers of
the entorhinal cortex [40].

The decrease of the CB1 signaling in 3xTg-AD mice was detected in brain areas inner-
vated by basal forebrain cholinergic neurons, the posterior amygdala, and inner layers of
the motor cortex; therefore, a modulation in this pathway on demand of lipid precursors
for the further synthesis of eCB could be expected. The synthesis of eCB starts with the
release of cell membrane phospholipid precursors such as phosphatidylcholines to further
obtain N-arachidonoyl phosphatidylethanolamine or, phosphatidylinositols to further
obtain diacylglycerols, in order to synthesize either anandamide or 2-AG, respectively [72].
Interestingly, at least three lipid species which may contain an arachidonic acid (AA) (20:4)
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moiety were found to be consistently decreased throughout different brain regions includ-
ing the cortex, the hippocampus, the amygdala, and the cerebellum in the 3xTg-AD mice.
MALDI-MSI analyses showed that certain phospholipid species such as PI(16:0/20:4)− and
PC(38:6)+ which are decreased in the cortex and in the hippocampus, as well as PC(36:4)+

species, which is decreased in the amygdala and in the cerebellum, may be being exploited
from any membrane pool for this precise biosynthetic process as a physiological adaptation
for the observed dysregulation of the CB1-mediated signaling.

3.2. Modulation of LPA1 Receptor Activity

In the present study, an increase in LPA1 activity (LPA induced [35S]GTPγS binding)
was observed in the corpus callosum, motor cortex, hippocampal CA1 area, and striatum
of 3xTg-AD mice. Several studies have described that LPA1 receptors are expressed in most
cell types of the CNS, including neuronal progenitors [73], astrocytes [74], microglia [75,76],
and oligodendrocytes [17,77]. We have shown a decrease of microglia and astrocytes in
CA1 and DG hippocampal areas of triple transgenic mice, suggesting the increase in LPA1
receptor activity in this area could be a compensatory effect due to the decrease of microglia
and astrocytes [45]. However, there are other factors that could be related to that increase
in LPA1 receptor activity, such as myelination disruption. It has been described some
degree of myelination disruption in 6-month-old 3xTg-AD mice (early pathological stage)
in subregions of hippocampus and entorhinal cortex, together with hyperphosphorylated
tau, and a decline of myelin basic protein and 2’,3’-Cyclic-nucleotide 3’-phosphodiesterase
expression levels, which are myelin and oligodendrocytes major proteins [78]. Furthermore,
in 12-month-old APPSwe mice, myelination defects have also been described in the corpus
callosum [79]. Oligodendrocyte myelin sheath integrity is necessary for axon viability
and for the maintenance of axonal flow [80]. LPA1 receptor has been reported as a novel
marker for differentiated oligodendrocytes, suggesting that initiation of LPA1 expression
may contribute to the myelinating oligodendrocyte phenotype [56,81]. The increase of
LPA1 receptor activity that we observed at 6-month-old mice (initial stage of the disease)
might indicate a neuroprotective action mediated by LPA in response to initial white matter
damage. White matter dysfunction seems to appear prior to amyloid or tau pathology
in different AD mice models [78,82]. Myelination processes are a vulnerable target con-
tributing to early disease progression. Furthermore, the increased LPA1 receptor activity in
3xTg-AD mice at cortex and striatum coincides with the significant increase of PA(34:1)
lipid species in the same areas. This increase could be associated with LPA production
since LPA is generated on demand from PA by the phospholipase A2 enzyme. Interestingly,
LPA 18:1 is the most abundant LPA species in brain [83] and PA(34:1) is constituted by
oleic acid (18:1). Therefore, the increased LPA1 receptor activity could yield to adaptations
during the development of 3xTg-AD mice, increasing the demand of LPA endogenous
neurotransmitter and increasing the levels of lipid precursors such as PA(34:1) [84].

3.3. Modulation of S1P1 Receptor Activity

The subtype 1 of sphingosine-phosphate receptors (S1P1), a lysophospholipid Gi/o-
coupled GPCR, which is activated by the endogenous neurolipid S1P, was also analyzed.
We found an intense S1P1 activity in the CNS of both genotypes, but marked reductions
in the functional coupling to Gi/o proteins in the transgenic mice following the activation
with the specific S1P1 agonist CYM5442. The S1P1 activity was mainly restricted to gray
matter, and was even higher than that observed for CB1 receptor activity in several brain
regions. This S1P1 activity may be related to the modulation of neuroinflammatory pro-
cesses [85]. S1P1 receptors are highly expressed in astrocytes and the loss of hippocampal
S1P1-mediated signaling could be explained due to the loss and/or atrophic processes
on astrocytes. This phenomenon had previously been described in the entorhinal cortex
from 3xTg-AD mice, and explained as the loss of astrocyte-mediated anti-inflammatory
response to Aβ accumulation [86]. Accordingly, the present study shows a clear reduction
of S1P1 activity in hippocampal areas and a tendency to decrease in the entorhinal cortex
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from 3xTg-AD mice. The study of astrocytes carried out in the present work using dou-
ble immunofluorescence images of GFAP/S100B markers clearly demonstrated that both
dies are useful to detect and quantify astrocytes. Moreover, the images show particular
immunoreactivity patterns that confirm both the decrease of the astrocyte population and
their atrophy in the hippocampus. Together, these results are consistent with the idea that
following a reduction in the astrocyte-mediated response against the Aβ accumulation, de-
creased S1P1-mediated signaling could contributes to reduce neuroinflammatory responses
in this AD mice model. The role of S1P1-mediated signaling in AD remains poorly under-
stood, however, the lower expression of sphingosine kinase-1 (S1P-synthesizing enzyme)
together with enhanced expression of S1P lyase (S1P-degrading enzyme) lead to the loss of
the S1P endogenous ligand pool early in AD [58,59]. Since the use of drugs targeting S1P
signaling such as fingolimod (Gilenya®, Novartis Pharma AG, Basel, Switzerland), which
induces a functional antagonism of S1P1 receptors (i.e., reducing S1P1-mediated signaling),
was approved as immunotherapeutic drug for the treatment of multiple sclerosis, further
studies in AD models will contribute to explore the potential of S1P1 agonists also for AD
treatment. In this sense, the administration of fingolimod to a mouse model overexpressing
Aβ led to improve Aβ-associated pathology by attenuating the neuroinflammatory re-
sponse [85]. It is not clear if the general decrease of S1P1 signaling observed in 6-month-old
3xTg-AD mice is a compensatory mechanism to counteract neuroinflammatory events
or conversely, is contributing to worsen the pathology, but these evidences point to this
neurolipid signaling system as a promising pharmacological target for the treatment of
neurodegenerative diseases.

The SM lipid species represent the main phospholipid pool to further synthesize
S1P. The increase on the relative abundance of two particular species, SM(18:1/18:0) and
SM(d35:1) observed in the hippocampus, where the activity mediated by S1P1 receptor was
found to be decreased, may indicate a possible cause–effect relationship. The hypoactivity
of S1P1-mediated signaling in triple transgenic mice could result in the accumulation of
these particular SM species due to a lower requirement in the synthesis of S1P. On the other
hand, ceramides are well known intermediates in the metabolic pathways of sphingolipids
and one would expect to find a decrease in their levels. These ceramides were not detected
by MALDI-MSI analysis under the present experimental conditions, preventing a more
complete analysis of the metabolic turnover of sphingolipids in this model of AD. These
sphingolipids are implicated in the programmed cell death and are directly involved in neu-
rodegeneration, particularly in AD [87]. Interestingly, increased levels of SM(d18:1/18:0)
have been found in the hippocampal gray matter as well as in cerebrospinal fluid from AD
patients [88,89]. Recently, a relation between ceramide generation and a reduction in mito-
chondrial ATP release has been reported in astrocytes [90]. In agreement with the present
immunofluorescence study, increased levels of specific SM species could be involved in the
observed changes in astroglial density and size in 3xTg-AD mice and in relation with S1P
signaling. Nevertheless, additional correlational studies measuring the endogenous levels
of ceramides and S1P, the enzymatic machinery associated to sphingolipid metabolism, as
well as S1P1 receptor density will contribute to clarify this issue.

3.4. Anatomical Localization of Lipid Species in 3xTg-AD Mice Brain by MALDI-MSI Assay

The field of neurolipidomics tries to understand how dynamic changes in membrane
lipid composition are contributing to regulate brain cell function. Previous studies have
indicated that lipid molecules play a relevant role in AD, and some of these lipids have
frequently been reported at abnormal concentrations in AD tissue [35,91–93]. Although
several studies have been performed with AD transgenic models showing lipid impair-
ments [94–98], the present study is pioneer in achieving anatomical localization of lipid
species in 3xTg-AD mice brain by MALDI-MSI assay. We have observed modifications
on PC, PA, SM, and PI intensities in different brain areas. Moreover, the modulations of
PC and PI species depend on their fatty acid composition, i.e., decrease of polyunsatu-
rated fatty acid (PUFA) phospholipids and increase of phospholipid species containing
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saturated fatty acids (SFA). Similar results have been reported in serum and tissue of AD
patients [31–33,35] and also in another AD transgenic mice model [97,99]. The decrease
in phospholipids containing PUFA could be related to impairment of the cell membranes
during AD pathogenesis. Some morphological and neurofunctional damages have been
found to correlate with PUFA declines, including swollen astrocytes, deformed nerve cell
nuclei, reduced acetylcholine release, and modifications on the fluidity, structure, and
permeability of the cell membranes [100–102]. Furthermore, the increase in the PA(34:1)
species in 3xTg-AD mice brain, could be related with an increase in total phospholipase
D activity that has been reported in AD brain homogenates, using an in vitro enzymatic
assay [103]. In addition, decrease in PC species have been described as possible plasma
biomarkers for AD, even in patients before the onset of the disease [104]. In our study, we
have found a decrease in one of that PC species, that could be induced by upregulation of
PLA2 enzyme in AD [105,106]. In contrast, we have not found a decrease of glucosylce-
ramides or sulfatides as have been reported in the APP/PS1 and APP/tau transgenic mice
lineages or even in patients at the first stages of the disease [97,98,107].

In summary, the modulation of the main CNS receptors of the LPA, eCB, and S1P neu-
rolipid systems analyzed in the triple transgenic model of AD suggests a neuroprotective
adaptation during the development of these mice. The cannabinoid activity improving or
maintaining the neurotransmission, LPA activity trying to relieve the myelination dysfunc-
tion in the axons, and S1P1 activity attenuating astrocyte-mediated neuroinflammatory
response [108]. In addition, the observed changes on lipid species in the 3xTg-AD mice
in specific brain regions suggest a similar modulation in the cases of familial AD patients,
which are covered by this mouse model.

Further studies will help us to shed light on the relevance of the observed modifi-
cations and if they are indicating primary effects or are a physiological outcome of the
neurodegeneration. The complexity of the AD biochemistry in the brain is probably a
consequence of multiple causes that are converging in the observed clinical manifestations
that include the progressive dementia. The research on neurolipid signaling and their
control on the lipid homeostasis and modulation of other neurotransmitter systems has
been limited by the techniques used to anatomically identify the super-specialization on
lipid species in the brain, which reaches the highest levels in the human cortex. The MSI
used in the present study combined with other neuroanatomical methods will open new
perspectives in our ultimate goal of understanding the integration of energetic, structural,
and signaling functions mediated by lipid molecules in the brain that will contribute
to develop specific and effective treatments for neuropsychiatric and neurodegenerative
diseases, including AD.

4. Materials and Methods
4.1. Chemicals

[35S]GTPγS (initial specific activity 1250 Ci/mmol) and [3H]CP55,940 (initial specific
activity 144 Ci/mmol) were purchased from Perkin Elmer (Boston, MA, USA), Oleoyl-L-α-
lysophosphatidic acid sodium salt was obtained from Sigma-Aldrich (St. Louis, MO, USA),
WIN55,212-2 was purchased from Tocris, 2-mercaptobenzothiazole (MBT) was acquired
from Sigma-Aldrich (St. Louis, MO, USA). The [14C]-microscales used as standards
in the autoradiographic experiments were purchased from Amersham Biosciences (St.
Louis, MO, USA). Moreover, DL-dithiothreitol (DTT), guanosine-5′-diphosphate (GDP)
and guanosine-5′-o-3-trisphosphate were provided from Sigma (St. Louis, MO, USA), the
β-sensitive films Kodak Biomax MR were supplied from Sigma (St. Louis, MO, USA). Fi-
nally, for the preparation of the incubation buffers, the treatment of slides, re-crystallization
of the matrix and films developing, several different compounds supplied from different
companies were used, and all the compounds were of the highest commercially available
quality for the necessity of the neurochemical studies.
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4.2. Animals and Tissue Preparation

Triple transgenic mice (3xTg-AD) were obtained from Department of Psychiatry and
Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain, in collaboration
with Dr. Lydia Giménez-Llort. 3xTg-AD mice harboring PS1M146V, APPSwe and tauP301L
transgenes were genetically engineered at the University of California Irvine, as previously
described [19]. Briefly, two independent transgenes (encoding human APPSwe and human
tauP301L, both under control of the mouse Thy1.2 regulatory element) were co-injected into
single-cell embryos harvested from homozygous mutant PS1 M146V knock-in (PS1KI) mice.

Six-month-old male 3xTg-AD mice (n = 26) and WT mice with the same background
but without genetic modifications (n = 22) were used. The breeding program was es-
tablished at the Universitat Autònoma de Barcelona. All the animals were housed and
maintained under standard laboratory conditions (12 h light:dark, cycle starting light at
8:00 am, food and water available ad libitum, 22 ± 2 ◦C, 50–60% humidity). Animals were
transferred to the animal department of UPV/EHU, with the same standard housing condi-
tions, one month before the experimental procedures. All procedures were performed in ac-
cordance with European animal research laws (European Communities Council Directives
86/609/EEC, 98/81/CEE and 2003/65/CE; Commission Recommendation 2007/526/EC)
and the Spanish National Guidelines for Animal Experimentation and the Use of Geneti-
cally Modified Organisms (Real Decreto 1205/2005 and 178/2004; Ley 32/2007 and 9/2003).
Experimental protocols were approved by the Local Ethical Committee for Animal Research
at the University of the Basque Country (CEIAB/52&54/2018/Rodriguez Puertas).

4.3. Tissue Preparation

Mice were deeply anesthetized with ketamine/xylazine (90/10 mg kg−1; i.p.).
Fresh tissue. The brain samples were quickly removed by dissection, fresh frozen,

and kept at −80 ◦C. Later, the brains were cut on a Microm HM550 cryostat (Thermo
Fisher Scientific, Whaltham, MA, USA) to obtain 20 µm sections that were mounted onto
gelatin-coated slides and these were stored at −20 ◦C until used.

Fixed tissue. Three animals from each genotype were transcardially perfused via the
ascending aorta with 50 mL warm (37 ◦C), calcium-free Tyrode’s solution (0.15 M NaCl,
5 mM KCl, 1.5 mM MgCl2, 1 mM MgSO4, 1.5 mM NaH2PO4, 5.5 mM Glucose, 25 mM
NaHCO3; pH 7.4), 0.5% heparinized, followed by 4% paraformaldehyde and 3% picric
acid in 0.1M PB (4 ◦C) (100 mL/100 g b.w.). The brains were subsequently removed and
post-fixed in the same fixative solution for 90 min at 4 ◦C, followed by immersion in
20% sucrose in PB cryoprotective solution overnight at 4 ◦C. Then, the tissue was frozen
by immersion in isopentane and kept at −80 ◦C. The brains were coronally cut at 10 µm
sections using a Microm HM550 cryostat (Thermo Fisher Scientific, Whaltham, MA, USA)
equipped with a freezing-sliding microtome at −25 ◦C and mounted onto gelatin-coated
slides and stored at −25 ◦C until used.

4.4. [35S]GTPγS Binding Assay

The tissue sections were air-dried for 15 min. Then, slides containing the sections
were washed in a HEPES based buffer containing 50 mM HEPES, 100 mM NaCl, 3 mM
MgCl2 and 0.2 mM EGTA, 0.5% bovine serum albumin (BSA) at pH 7.4, for 30 min at
30 ◦C in a water bath. The pre-incubation was repeated a second time in new buffer
to ensure the washing of endogenous GPCR ligands. In a second step, the slides were
incubated for 2 h at 30 ◦C in a solution containing 2 mM guanosine diphosphate (GDP),
1 mM DL-dithiothreitol (DTT), adenosine deaminase (3 u/L) and 0.04 nM [35S]GTPγS. The
agonist-stimulated binding was measured under the same conditions but in the presence of
the specific GPCR agonists: LPA (10−5 M), WIN55,212-2 (10−5 M) and CYM5442 (10−5 M).
Ki16425 (10−5 M) was used together with LPA, AM251 (10−5 M) with WIN55,212-2, and
W146 (10−5 M) with CYM5442 as respective antagonists to validate that the assays were
specific of the receptor subtype. Non-specific binding was determined in the presence of
10 µM of non-labelled GTPγS. Sections were washed twice in an ice-cold HEPES buffer
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50 mM (pH 7.4), dipped in distilled water, and air-dried. Sections were exposed to Kodak
Biomax MR films (Sigma, St. Louis, MO, USA) together with 14C standards for 48 h at 4 ◦C.

4.5. Quantitative Image Analysis of Film Autoradiograms

Films were scanned and quantified by transforming the optical densities into nCi/g
tissue equivalent (nCi/g t.e.) and percentage of stimulation over the basal (%) was calcu-
lated using an image analysis system (NIH-IMAGE, Bethesda, MA, USA). (U.S National
Institutes of Health, http://rsb.info.nih.gov/nih-image/). This software defines the optical
density of an anatomical area from 0 (white) to 256 (black). The [14C] radioactive standards
that were co-exposed with the slides were used to calibrate the optical densities with the
level of radioactivity labeled to the sections. Experimental data were analyzed by using
the computer programs GraphPad Prism (v. 5.0, Graph Pad) and Microsoft office Excel
2007. Data were expressed as the mean values ± SEM. Differences between regions were
analyzed by unpaired two-tailed Student’s t test.

4.6. Immunofluorescence Studies

Prior to staining procedures, sections were air dried for 20 min, extensively rinsed
with 0.1M phosphate buffer (PBS, pH 7.4) and blocked with 4% normal goat serum in
PBS for 2 h at room temperature. To detect astrocytes, brain tissue sections were incu-
bated (4 ◦C, overnight) with a mixture of rabbit polyclonal anti S100B (1:800) (Millipore,
Temecula, CA, USA) and mouse monoclonal anti GFAP (1:1000) (Millipore, Temecula, CA,
USA) to detect both immature and more mature developmental stages. To detect S1P1
and LPA1 receptors, mouse monoclonal anti S1P1 (1:400) (Millipore, Temecula, CA, USA)
and rabbit polyclonal anti LPA1 (1:300) (Thermo Fisher Scientific, Whaltham, MA, USA)
antibodies were used in consecutive brain sections. Primary antibodies were diluted in
Triton X-100 (0.3%) in PBS with 5% BSA. The sections were then rinsed with PBS followed
by incubation with carbocyanine (Cy3)-conjugated donkey anti-rabbit IgG (1:250), (Cy3)-
conjugated donkey anti-mouse IgG (1:250) (Jackson Immunoresearch, PA) and FITC-goat
anti-mouse (1:80) (Jackson Immunoresearch Laboratories, Inc., West Grove, PA, USA) for
30 min at 37 ◦C in the darkness. Secondary antibodies were diluted in Triton X-100 (0.3%)
in PBS. To label CB1 receptors, the primary rabbit antiserum against the CB1 receptor,
PA1-743, (Affinity BioReagents, CO, USA) was diluted [1:500] in TBS (0.1 M Tris, 0.15 M
NaCl, pH 7.4) containing 0.5% milk powder. The tyramide signal amplification method
was used to amplify the signal associated with the CB1 receptor antiserum. Briefly, sections
were washed for 30 min in TNT buffer (0.05% Tween 20 in TBS, pH 7.4) and blocked in TNB
solution (10 mL TNT buffer, 0.05 g blocking reagent, (DuPont NEN, Boston, MA, USA)) for
1 h at room temperature. Later, the sections were incubated with horseradish peroxidase-
conjugated goat anti-rabbit secondary antibody (Perkin Elmer, Whaltham, MA, USA) for
1 h followed by tyramide fluorescein-based amplification process in complete darkness
for 10 min at room temperature. Sections were extensively rinsed in TBS. Then, in order to
stain nuclei, all sections were washed for 30 min by immersion in PBS and incubated with
bisbenzimide H33258 (Hoechst [1:106]) for 15 min at room temperature. Finally, sections
were extensively rinsed with PBS and mounted with p-phenylendiamine-glycerol (0.1%) in
PBS for immunofluorescence.

4.7. Quantitative Analyses of Astrocytes

Sections were inspected and immunofluorescence images from WT (n = 3) and 3xTg-
AD (n = 3) were used to quantify the astrocyte density; 400-fold magnification photomicro-
graphs (SPOT Flex Shifting Pixel CCD imaging camera) were acquired on an Axioskop 2
Plus epifluorescence microscope (Carl Zeiss, Oberkochen, Germany) in both hemispheres
under the same microscopic conditions. Using Image J software (NIH, Bethesda, MD, USA),
images were converted to a binary mode and different processes were performed in order
to identify single astrocytes and nuclei by applying the watershed option. The total number
of astrocytes and nuclei (N/mm2) were quantified, and the total area (in pixels) stained
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by astrocytes (S100B+ or GFAP+-immunoreactivity) or nuclei (Hoechst staining) and each
astrocyte and nuclei stained area (size in pixels) were calculated in each image. Hoechst
stained nuclei were used to normalize the number of GFAP or S100B positive cells in each
image (% of astrocytes of total nuclei). Hoechst stained area was used to normalize the
GFAP and/or S100B positive area in each image (% of GFAP or S100B immunopositive
area of total Hoechst-stained area).

4.8. Sample Preparation for MALDI-MSI

The original lipid composition and anatomical characteristics of the tissue must be
preserved throughout the sample-preparation process [109]. The brains were cut on a
Microm HM550 cryostat to obtain 20-µm sections and stored at −20 ◦C until the moment
of use.

Once the initial tissue preparation steps had been completed, the chemical matrix was
deposited on the tissue surface prior to analysis by sublimation. For tissue sections mounted
on glass slides, sublimation was performed using 300 mg of mercaptobenzothiazole (MBT),
by controlling the deposition time and temperature (30 min at 140 ◦C), making it possible
to control the thickness of the matrix layer and optimize the s/n ratio of the mass spectra,
avoiding lipid migration thanks to the lack of solvent. Finally, a re-crystallization of the
sample was performed, using a normal glass Petri plate (100 mm diameter × 15 mm depth
(Thermo Fisher Scientific, Whaltham, MA, USA)) as following. Thus, 1 mL of methanol
(99%) was deposited onto a piece of paper previously placed in the bottom of the Petri
plate in order to create a vapor atmosphere for the re-crystallization process on a hot plate
(1 min at 40 ◦C). This step allowed us to achieve a higher intensity in the detection of
the peaks [110].

4.9. Mass Spectrometer

A MALDI LTQ-XL-Orbitrap (Thermo Fisher, San Jose, CA) equipped with a nitrogen
laser (λ = 337 nm, rep. rate = 60 Hz, elliptical spot size = 80 × 120 µm2) was used for
mass analysis. Thermo’s ImageQuestTM 1.0.1 and XcaliburTM 3.1 software were used for
MALDI-MSI data acquisition. The images were acquired in both negative and positive
ion mode. The positive ion range was 500–1000 Da, with 10 laser shots per pixel at a laser
fluence of 15 µJ. The negative ion range was 400–1100 Da, with 10 laser shots per pixel at
laser fluence of 15 µJ. The target plate stepping distance was set to 150 µm for both the x-
and y-axes by the MSI image acquisition software. The mass resolution was 100,000 in both
positive and negative ion mode. The data were normalized using the total ion current to
avoid the displacement in masses along the tissue caused by irregularities on the surface or
other experimental artifacts.

4.10. Image and Spectra Analysis for MALDI-MSI

The MALDI images were generated using the ImageQuest software (Thermo Scientific,
San Jose, CA, USA). With this software, a m/z range is plotted for signal intensity for each
pixel (mass spectrum) across a given area (tissue section). The quality of the images
was improved during the image creation process by selecting the m/z range of interest
and doing a normalization as a ratio of total ion current (TIC) for each mass spectrum.
Different regions of interest (ROI) were analyzed including hippocampus, cortex, amygdala,
cerebellum, and striatum. The spectra intensity was further normalized as a ratio of the
peak or m/z value with the highest intensity, PC[(34 + 1) + K]+ in positive ion mode and
PI[18:0/20:4]− in negative ion mode and the average was calculated using the OriginPro
8 software. The most intense peak was considered the 100% and the intensity of the rest of
the peaks was calculated as a percentage. The two-tailed unpaired Student’s t-test was used
for the comparison of two groups. The results were considered significant when p ≤ 0.05.
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4.11. Peak Assignment

The assignment of the m/z values to specific molecules is complex in this type of
studies, usually containing a large number of lipids that share similar masses. There-
fore, the assignment of lipid species was facilitated using databases such as Lipid MAPS
(http://www.lipidmaps.org/ accessed on 9 November 2021), and different reported arti-
cles. A 5 ppm mass accuracy was used as the tolerance window. The glycerolipid species
numbers (x:y) denote the total lengths and the number of double bonds of the acyl chains,
while the sphingolipid and sulfatide species numbers correspond to the length and number
of double bonds of the acyl chain added to those of the attached sphing-4-enine (d18:1) or
sphinganine (d18:0) base.
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