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Abstract: Although frequently silent, mineral and bone disease (MBD) is one of the most precocious
complication of chronic kidney disease (CKD) and is omnipresent in patients with CKD stage 5.
Its pathophysiology is complex, but basically, disturbances in vitamin D, phosphate, and calcium
metabolism lead to a diverse range of clinical manifestations with secondary hyperparathyroidism
usually being the most frequent. With the decline in renal function, CKD-MBD may induce mi-
crostructural changes in bone, vascular system and soft tissues, which results in macrostructural
lesions, such as low bone mineral density (BMD) resulting in skeletal fractures, vascular and soft
tissue calcifications. Moreover, low BMD, fractures, and vascular calcifications are linked with
increased risk of cardiovascular mortality and all-cause mortality. Therefore, a better characterization
of CKD-MBD patterns, beyond biochemical markers, is helpful to adapt therapies and monitor
strategies as used in the general population. An in-depth characterization of bone health is required,
which includes an evaluation of cortical and trabecular bone structure and density and the degree of
bone remodeling through bone biomarkers. Standard radiological imaging is generally used for the
diagnosis of fracture or pseudo-fractures, vascular calcifications and other features of CKD-MBD.
However, bone fractures can also be diagnosed using computed tomography (CT) scan, magnetic
resonance (MR) imaging and vertebral fracture assessment (VFA). Fracture risk can be predicted by
bone densitometry using dual-energy X-ray absorptiometry (DXA), quantitative computed tomog-
raphy (QTC) and peripheral quantitative computed tomography (pQTC), quantitative ultrasound
(QUS) and most recently magnetic resonance micro-imaging. Quantitative methods to assess bone
consistency and strength complete the study and adjust the clinical management when integrated
with clinical factors. The aim of this review is to provide a brief and comprehensive update of
imaging techniques available for the diagnosis, prevention, treatment and monitoring of CKD-MBD.

Keywords: bone; fracture; bone mineral density; computed tomography; cortical bone; trabecular
bone; CKD-MBD; dual-energy X-ray absorptiometry

1. Introduction and Pathophysiology

The mineral and bone disorders associated with chronic kidney disease (CKD) are
often progressive in earlier stages of CKD but remain clinically silent until stages G3b-G4
(estimated glomerular filtration rate (eGFR) 30 to 44 or 15 to 29 mL/min/1.73 m2 of body
surface). Serum bone biomarkers are the earliest indicators of mineral bone diseases (MBD)
during CKD progression, starting with decreased circulating alpha klotho levels and an
increase of serum fibroblast growth factor 23 (FGF23). As CKD progresses, circulating
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1,25 dihydroxyvitamin D values decrease, serum parathyroid hormone (PTH) rises and
subsequent detectable alterations of serum calcium and phosphate metabolism occur [1].
The prevalence of CKD is still growing above other life-style diseases, affecting over
850 million people worldwide [2], and as patients get older and have a longer life expecta-
tion, the prevalence of CKD rises, together with the incidence of MBD. The combination of
CKD-related low or high rates of bone turnover, mineralization defects and reduced bone
mass has been termed renal osteodystrophy. However, seen more globally, bone disease
in CKD is the sum of CKD-specific risk factors, which are in turn dependent on CKD
progression, together with age- or sex-related bone loss. These complex and interacting
changes to bone require careful evaluation, including using imaging techniques [3].

In CKD stages 1 and 2 (eGFR >60 mL/min/1.73 m2), risk factors for bone fracture
are the same as in the general population and include a history of previous fracture,
female gender, older age, lower body mass index (BMI) and the use of corticosteroids
(Figure 1). As the majority of these are directly related to osteoporosis risk, screening tools
are similar. Similarly, in CKD stage 3b, the prevalence of osteopenia or osteoporosis is close
to that of the general population. However, as CKD advances, osteoporosis prevalence
increases [4] due to age-related bone loss in addition to the CKD-MBD related bone
disease (Figure 1), until ‘osteoporosis’ affects the majority of patients with CKD stage 5 [5].
However, the diagnosis of osteoporosis is based solely on bone mineral density (BMD)
measurement, whereas in patients with advanced CKD that diagnosis will include several
additional entities and BMD limited by the presence of abdominal aorta and vertebral
articular calcifications. A diagnosis of osteopenia or osteoporosis based on BMD will not
discriminate between high and low bone turnover (CKD related or not) or other diseases
with mineralization defects. On the other hand, the diagnosis of renal osteodystrophy
(ROD) has been based on bone biopsy, and a standard classification using the indices of
bone Turnover, Mineralization and Volume (TMV) was proposed, in order to improve
comparison between bone biopsy studies in patients with CKD, and to improve guideline
development for management and treatment. Whilst renal osteodystrophy is an integral
component of CKD-MBD and contributes to an increased risk for fracture, the entity of CKD-
MBD also includes biochemical abnormalities and vascular and soft tissue calcifications,
which result in heightened cardiovascular risk and mortality and reinforce the complexity
of the CKD patient (Figure 2) [3].

Skeletal fractures are frequent and are a major cause of CKD-related mortality and
mortality in general. Severe osteoporotic fractures affect the spine, which is mainly com-
posed of trabecular bone, and the hip and wrist, mainly composed of cortical bone. In CKD
stages 1 to 3a, fractures are assumed to be osteoporotic fractures as in the general popula-
tion, although they may be associated with mild secondary hyperparathyroidism (SHPT).
In CKD G3b to G5, there is a 6-fold increased risk of hip fracture when compared with
individuals with normal eGFR [6]. In addition, patients above 75 years with an eGFR of
<45 mL/ min/1.73 m2 have a 2-fold increase in hip-fracture-related mortality risk [7]. Bone
fractures, at any skeletal site occur more frequently in hemodialysis patients than in the
general population [8,9]. In the DOPPS cohort that included a total of 36,337 patients from
12 countries, a 1.5 to 8-fold increased rate of peripheral fractures was reported, together
with an increased risk of all-cause mortality [10]. The high mortality and hospitalization
costs related to fracture in patients on dialysis enhances the economic burden of bone
disease. After renal transplant, bone diseases remain a major cause of morbidity with a sig-
nificantly higher risk of fractures as well as increased health care costs, hospitalization, and
mortality [11]. An important change in the bone paradigm occurred after the publication of
the recent 2017 KDIGO CKD-MBD guidelines and it is now considered “time for action”.
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Figure 1. CKD progression: risks factors for bone fragility in CKD stages. In stage 3 
osteoporosis and osteopenia are more likely to affect bone fragility. On the other hand, in 
CKD stage 5, mineral and bone disorders(MBD) are likely to have a greater impact. 
Abbreviation : BMI, body mass index.
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Figure 1. CKD progression: risks factors for bone fragility in CKD stages. In stage 3 it is more likely to have a more relevant
contribution of osteoporosis to bone fragility. On the other hand, in stage 5 CKD-MBD and osteoporosis may have a more
relevant role. Abbreviation: BMI, body mass index.

Figure 2. Progression of CKD-MBD from asymptomatic disease to bone fracture, 
bone parameters and associated imaging techniques 

Silent Disease

Bone 
Fracture

Symptoms Volume

Shape

Quality

Growth
Strength

Bone 
Formation

Remodeling

Bone
resorption

Microdamage

Microarchitecture

Mineralization

Collagen structure
Bone proteins and Minerals

Marrow and Fat composition
Crystal size

Bone Turnover
Dynamic, 

Metabolic or 
Functional 
evaluation

Bone Density
Noninvasive  

and static 
evaluation

Radiography
DXA
RA 

TBS
QCT

HR-pQCT
MRI
PET

Figure 2. Progression of CKD-MBD from asymptomatic disease to bone fracture, bone parameters and associated
imaging techniques.

Skeletal fractures are a major clinical outcome, and in many cases they are easy to
evaluate using standard x-ray imaging, even if they are associated with few or no symptoms.
In the context of CKD-MBD, standard lateral spine x-rays should be protocolized to detect
vertebral fractures concurrently with evaluating the presence or absence of abdominal aortic
calcification (AAC), for which there are a number of semiquantitative scoring methods [12].
The VFA (vertebral fracture assessment), either using low radiation dose imaging of the
lateral spine with a bone densitometer, is another method with moderate sensitivity and
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high specificity for detecting vertebral fracture [13,14]. However, the early diagnosis of a
fracture that is not detected by conventional imaging techniques may be challenging and
require further careful investigation. This is the case of fatigue fractures or pseudo-fractures
that occur in the presence of mineralization defects. When evoked by pain, imaging
techniques offer guidance towards the type of CKD-MBD and often reveal prevalent
fractures or pseudo-fractures in addition to the severity assessment of bone fragility and
medical intervention monitoring.

The Kidney Disease Improving Global Outcomes (KDIGO) Guidelines highlight the
need for early evaluation of bone and in 2017 recommended assessing fracture risk in
patients using dual-energy X-ray absorptiometry (DXA) if the results can impact treatment
decisions [15,16]. Further studies are needed to determine when and what skeleton sites
should best be screened for MBD. Other techniques like CT [17] or peripheral high resolu-
tion computerized tomography (HRpQCT) provide individualized data on the cancellous
and cortical bone compartments, but so far they are still dedicated to research purposes and
have not been demonstrated to better predict fracture risk. Moreover, a more systematic
use of imaging techniques is not only required for early diagnostic but also for a better
monitoring of bone disease, because early interventions may ease adverse outcomes related
to bone and cardiovascular diseases [3]. The aim of this review is to provide a brief and
comprehensive update of the imaging modalities available for the diagnosis, prevention,
treatment and monitoring of CKD-MBD/osteoporosis complex in CKD patients.

2. Characteristics of Bone Structure

Eighty percent of the human skeleton is composed of cortical bone and the other 20%
is trabecular bone [18]. The proportion of cortical and trabecular bone differs according
to each skeletal site, so the information provided by imaging should be considered in
the light of this distribution. When evoked by pain, imaging techniques offer guidance
towards the type of CKD-MBD and may reveal prevalent fractures or pseudo-fractures.
Imaging can also provide information on bone fragility and monitor changes after a
medical intervention.

Due to its higher proportion of cortical bone, imaging of the proximal femur or femoral
neck sites reflect more accurately cortical BMD, which is correlated to femoral strength.
With age, cortical bone resorption accelerates, resulting in cortical thinning and increased
cortical porosity. Chronic metabolic changes such as high PTH in CKD patients further
enhance these features. By comparison, vertebrae are composed of 80% trabecular bone
structured in a 3-dimension network, which can change faster than cortical bone because
of its large surface exposed to remodeling [19]. Consequently, the rate of bone loss or
bone gain is more easily captured at this site [18]. Vertebral fractures are characteristic of
osteoporosis [20], and are less prone to mechanical traumatic fractures.

3. Bone and Soft Tissue Imaging

Medical imaging has provided a tremendous contribution to clinical decision-making [21].
Besides assessing pathological changes, the main thrust behind the development of bone
imaging has been the monitoring the use of anti-osteoporotic drugs including bisphospho-
nates, denosumab and others. Imaging has changed the clinical diagnosis of bone fragility
and contributed to the creation of treatment algorithms [21]. As mentioned before, the
specific challenge in CKD patients results from the superimposition of CKD-MBD-related
alterations, which influence the interpretation of imaging modalities.

Plain radiographs do not quantify bone loss, and consequently other techniques have
been developed such as radiographic absorptiometry, DXA, QUS, QCT, pQCT, HR-pQCT
and more recently quantitative magnetic resonance imaging (MRI). These methods facilitate
an analytic approach and may improve the distinction between differing bone pathologies
and fracture prediction in patients with CKD. The main limitation is the affordability of
some methods, and the need for validation in CKD populations before being suggested its
use in clinical practice (Table 1).
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Table 1. Different imaging techniques, underlying lesion mechanisms and localization and CKD stage in which it is
mostly used.

Type Mechanism Skeletal Site Type of Bone Disease CKD Stage

Plain Radiography
Bone resorption lesions
Bone cysts
Fractures

Sub-periosteal
Subchondral
Sub-tendinous
Extra-skeletal
calcifications
All skeleton

Secondary Hyperparathyroidism
Multiple Myeloma
Amyloidosis
Osteonecrosis
Osteoporosis
Calcific Uremic Arteriolopathy

All

DXA Areal BMD measurements Hip, distal radius, lumbar
spine, whole body

Osteopenia
Osteoporosis All

Vertebral Assessment
Fracture (VAF) Vertebral deformities Spine Vertebral fractures All

HR-pQCT Trabecular architecture
Volumetric BMD

Hip, distal radius, distal
tibia Secondary Hyperparathyroidism All and research

Bone Scintigraphy

Tracer accumulation
occurs in osteoblastic
activity, and to a lesser
extent, skeletal vascularity;
Systemic amyloid burden;

Whole body

Osteoarthritis
Metabolic Bone Disease:
-Hyperparathyroidism and vitamin D
deficiency
-Osteomalacia;
Fractures
Enthesopathies
Osteonecrosis
Rare Osteoarticular Diseases: Sarcoidosis
with bone involvement;
Amyloidosis: 123I SAP scintigraphy if
available—assess amyloid deposition in
liver, spleen, kidneys, adrenals, localized
soft tissue deposits and bones
131I-β2M amyloidosis

3–5

MRI

Cortical porosity
Marrow fat content and
composition
Marrow perfusion, and
molecular diffusion

Distal radius, distal tibia,
calcaneus, hip, spine
Whole skeleton

Secondary Hyperparathyroidism Research

PET

Bone formation rate,
osteoclast, osteoblast,
erosion and mineralized
surfaces

Lumbar region Low or high bone turnover disease All

US Cortical deterioration Tibia Secondary Hyperparathyroidism Research

DXA, Dual-energy X-ray Absorptiometry; BMD, Bone Mineral Density; HR-pQCT, High Resolution-peripheral Quantitative Computerized
Tomography; MRI, Magnetic Resonance Image; PET, Positron Energy Tomography; US, Ultrasounds Velocity.

3.1. Conventional Radiography

Radiography is widely available, affordable and the most used radiological imaging
method to characterize bone disease, including specific features of CKD (Figure 3). Plain
x-rays can provide information about high bone remodeling and mineralization failure. In
SHPT, macroscopic bone resorption is the most common finding, due to increased bone
turnover promoting high osteoclast activity. The bone resorption can affect trabecular,
endosteal and cortical bone envelopes, or structures close to joints located at subperiosteal,
subligamentous and sub-tendinous levels. Sub-periosteal resorption is commonly found
at terminal tufts of distal phalanges, subchondral resorption at acromioclavicular joints,
sternoclavicular joints and sacroiliac joints. Sub-ligamentous resorption is located at the
enthesis where ligaments are inserted to bone, such as at the coracoclavicular ligament and
sub-tendinous resorption occurs at the femoral trochanters and ischial tuberosities [22].
In addition, skull radiographs reveal a characteristic “salt-and-pepper” appearance, with
well-defined lucencies in the calvaria caused by resorption. Brown tumors are localized
osteoclast tumors, identified as well-limited lucent lesions with endosteal scalloping. They
are preferentially located in the pelvis, long bones or ribs. Due to their vascularized,
fibrous and necrotic and liquefied tissue nucleus, changes to these lesions are a surrogate
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for treatment response [23]. However, these classical features of SHPT are now rarely
seen worldwide.
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Figure 3. Standard Skeletal Radiography images: (A) Left lower arrow, sub periosteal resorption
of the distal phalanx of the middle finger, and at the intermediate phalanx of the index finger as
indicated by the right upper arrow in a hemodialysis patient, virtually pathognomonic of severe
secondary hyperparathyroidism. (B) Image of a “brown tumor” at the distal radius metaphyseal as
indicated by the arrow. It is a well-limited lytic lesion with endosteal scalloping, one of the possible
manifestations of severe secondary hyperparathyroidism. (C) Periarticular calcifications of the
glenohumeral ligaments, appearing as cloud-like densities that diffuse into the adjacent tenosynovial
tissues. (D) “Salt and pepper” aspect of the calvaria seen as well-defined lucencies suggesting bone
resorption. (E) Lateral spine X-ray can be used to assess vertebral fracture in a hemodialysis patient.
(F) Multiple oblique spiral fractures in the proximal, middle and distal third of the humerus in a
hemodialysis patient with osteomalacia.

Osteosclerosis is an additional feature of SHPT occurring predominantly in the axial
skeleton and often detected on lateral lumbar spine radiographs [24] affecting the superior
and inferior endplates (“rugger jersey spine”), this is mostly due to deposition of mineral
crystals and calcification in the collagenous portion of the endplates. Osteosclerosis can
also occur in the pelvis, ribs and clavicles [25] and these lesions may remain after the
regression of SHPT. In parallel, osteoblast activation may result in new periosteal bone
formation in long bones to increase cortical thickness. Of note, the periosteal reaction is
separated from the cortex by a linear lucency [25].

Plain radiographs can also reveal early features of osteomalacia before fracture oc-
currence. These pseudo-fractures or ‘Looser-Milkman zones’ appear as linear radiolucent
bands perpendicular to the cortex and are incomplete fractures. The pubis, femoral neck,
scapulae, ribs and long bones are their main location, corresponding to areas of mechanical
stress and the entry of blood vessels [25]. Skeletal deformations resulting from fractures of
the spine, ribs and long bones may be observed in any CKD-related bone pathology.

Conventional x-rays also identify extra-skeletal calcifications. Periarticular calcifica-
tions appear as cloud-like densities that can diffuse into the adjacent joint or tenosynovial
tissues, sometimes leading to erosions of adjacent bones and predisposing to fracture [25].
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Visceral calcifications are often due to an inflammatory response and are rarely seen in
plain radiographs, except when they are of large volume. Chondrocalcinosis may occur in
fibrocartilage and hyaline cartilage in large joints including knees or shoulders. Finally,
arterial calcifications can be seen as either patchy calcified atheromatous plaques or as ‘pipe
stem’ arteriosclerosis without prominent luminal involvement [25]. KDIGO guidelines
suggest that a lateral abdominal radiograph can be used to detect the presence or ab-
sence of vascular calcifications as reasonable alternatives to computed tomography-based
imaging, and that it is reasonable to use this information to guide the management of
CKD-MBD [26]. Both the Kauppila (lateral abdominal X-ray) [12] and the Adragao (hands
and pelvis X-rays) calcification-scores are validated means to assess cardiovascular risk in
patients with CKD [27].

Plain radiographs may also reveal the now rare entity of amyloid arthropathy, char-
acterized by subchondral erosions [28], often located in periarticular bone and at the site
of ligamentous insertions [29]. Advanced amyloid deposition is suggested by soft tissue
swelling and lytic lesions with sclerotic margins within cortical or medullary bone. The
main differential diagnosis is brown tumors associated with hyperparathyroidism. Com-
puterized tomography is mainly used to diagnose nonobvious fractures or lesions that
cannot be seen by conventional x-ray (Figure 4).
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Figure 4. Computerized tomography images: (A) The arrow shows a femoral metaphyseal stress
fracture distal to the lesser trochanter in a hemodialysis patient with osteomalacia. Computerized
tomography is mainly used to diagnose nonobvious fractures that can allow a non-surgical approach.
(B) Image of a “brown tumor” in the proximal zone of a metatarsal bone.

3.2. Dual-Energy X-ray Absorptiometry

DXA is valuable for the quantification of BMD and the evaluation of fracture risk [30].
Axial measurement of the lumbar spine and hip (central DXA) using a stationary scan table
is the most common modality. The technique produces little radiation and obtains a rapidly
acquired two-dimensional (areal) image with good resolution. The WHO international
reference standard for osteoporosis diagnosis is a DXA T-score of −2.5 or less at the femoral
neck. Osteoporosis may be diagnosed in postmenopausal women and in men age 50 and
older if the T-score at the lumbar spine, total hip, or femoral neck is −2.5 or less. An
important limitation of DXA is the potential interference from surrounding calcifications,
which may reduce the accuracy of areal BMD assessment. Hence, aortic calcifications,
ligamentous calcification, degenerative changes and scoliosis will all spuriously increase
BMD at the lumbar spine, leading to an overestimate of vertebral BMD.

With additional software, DXA BMD evaluation can also be combined with vertebral
fracture assessment (VFA), performed with lower radiation exposure than standard X-ray.
Using VFA, more patients with increased risk of fracture are identified than with DXA
alone [26] and vertebral fractures can be detected in 14% of patients with normal BMD [31].
The International Society for Clinical Densitometry (ISCD) recommends using VFA as a
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densitometric spine imaging to detect vertebral fractures when the T-score is <−1.0 and
if one or more of the following is present: women ≥ 70 years or men ≥ 80 years of age,
historical height loss >4 cm (>1.5 inches), self-reported but undocumented prior vertebral
fracture, or glucocorticoid therapy equivalent to ≥5 mg of prednisone or equivalent per
day for ≥3 months. Whole-body DXA can also be used to evaluate total body composition
(including fat mass, lean tissue mass and visceral adipose tissue mass), which can be used
in the assessment of cardiovascular risk [32].

In patients with CKD, DXA BMD is a measurement of both cortical and trabecular
bone at each individual site. A low BMD by DXA may indicate any combination of
osteopenia / osteoporosis and superimposed renal bone disease, but can nevertheless be
used as a baseline measure at the commencement of the treatment and to monitor treatment
response over time [30]. ISCD guidelines regarding VFA are applicable to patients with
CKD G4–G5D [15] and lateral DXA can also incorporate aortic calcification assessment for
AAC scoring. All-cause mortality and cardiovascular mortality are higher in patients on
dialysis and following transplantation having higher AAC scores [33,34].

BMD is predictive of fracture in CKD G3a to G5 when obtained by measuring distal
radius, femoral neck, femoral trochanter or total hip DXA [35–37]. The association between
DXA at ultradistal radius and bone histomorphometry parameters was demonstrated
in 16 patients with CKD stage 3–4 and in dialysis patients [38]. Low BMD in dialysis
patients is also associated with an increased risk of arteriosclerosis, coronary and vascular
calcification [39] and when measured by whole-body DXA is also associated with an
increased incidence of cardiovascular disease and all-cause mortality [40]. In addition,
a post hoc analysis of 426 incident dialysis patients (median age 56 years, 62% men)
revealed low head and pelvis BMD, and low total BMD, as assessed by whole-body
DXA, were independent predictors of increased risk of all-cause and CVD mortality [41].
BMD measured at total hip and ultradistal radius sites is generally lower in dialysis
patients [42] than in the general population. However, BMD at the lumbar spine is often
similar to that in non-CKD patients [43], probably due to the increased prevalence of
vascular calcification [43], the development of degenerative artefact in both CKD and
non-CKD elderly populations and also by a potential positive effect of a milder degree
of hyperparathyroidism.

BMD does not provide information about bone turnover or architecture, which are
adversely affected in CKD, and decisions to initiate treatment generally rely on additional
information. Nevertheless, a very low BMD is an indicator of bone fragility and should
prompt investigation of its causes, such as osteomalacia.

3.3. DXA-Derived Trabecular Bone Score (TBS)

The trabecular bone score (TBS) is another available and validated tool that evaluates
trabecular microarchitecture through BMD measures obtained at the lumbar spine by
DXA [44]. Lower lumbar spine TBS was associated with a higher risk of fragility frac-
ture in individuals with an eGFR <60 mL/min/1.73 m2 similarly to individuals with an
eGFR ≥60 mL/min/1.73 m2 [42] independently of BMD and/or other fracture clinical
risk factors [45]. An advantage of TBS is that overlapping vascular calcifications and
degenerative changes do not interfere with its measurement. Patients on hemodialy-
sis have a significantly lower TBS than controls without osteoporosis, and this is inde-
pendent of BMD or other covariates (1.15 ± 0.181 vs. 1.32 ± 0.123, p = 0.001, respec-
tively) [46]. In 59 hemodialysis patients, TBS had a good correlation with T and Z-scores
at the lumbar spine and proximal femur as measured by DXA [47]. TBS was also signif-
icantly lower (1.365 ± 0.129 vs. 1.406 ± 0.125, p < 0.001) in 327 kidney transplant recipi-
ents (mean age = 45.3 ± 12.4 years), when compared to 981 matched healthy individuals
(mean age = 45.4 ± 12.3 years) [48]. A low TBS was associated with the risk of fracture
independently of FRAX (adjusted hazard ratio per standard deviation decrease 1.55; 95%CI:
1.06–2.27) [48]. In 146 patients with CKD 5 and 5D (mean age = 48 ± 13 years) undergoing
DXA at the time of kidney (n = 114 patients) or simultaneous pancreas-kidney transplanta-
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tion (n = 33 patients) [49], 15% had a low TBS <1.23 and TBS did not significantly differ with
sex, age or prior dialysis duration. Low TBS values (≤1.31) were associated with prevalent
non-vertebral fracture, independently of femoral neck BMD. In another study, 40 kidney
transplant patients (mean age = 63.8 ± 11.1 years) were matched with 77 healthy controls
(mean age = 50.2 ± 16 years) 10 years after their kidney transplant surgery [50]. Although
BMD remained lower in the transplant recipients, TBS values were similar between the
groups suggesting that bone health might have been improved by the kidney transplan-
tation. In general, BMD measurement alone cannot always estimate the severity of bone
disease, for example, both high-turnover disease and low-turnover disease may have the
same BMD parameters [51] but there is an association between low TBS and CKD reflecting
trabecular micro-architecture and cortical width measured by bone histomorphometry [52],
including renal transplant patients. While some data now support an association between
TBS and fracture risk independent of bone density in patients with CKD, a recent European
consensus on the diagnosis and management of osteoporosis in CKD G4-G5D considered
that TBS, as well as other DXA-based bone texture measurements, need further evaluation
before their implementation in clinical practice can be advocated [15].

3.4. Radiographic Absorptiometry (RA)

DXA and TBS techniques may not be widely available because of their relatively
high capital cost and lack of expertise in many non-industrialized countries. In this
case, RA could be an alternative approach for the evaluation of BMD. RA is both rapid
and inexpensive because it does not require dedicated equipment. RA measures the
second metacarpal mid-shaft BMD by using X-ray radiographs, combined with digital
image processing (DIP) and a computed X-ray densitometer to improve the precision and
accuracy [53,54]. Several studies have shown that RA-based BMD assessment can reliably
be used for the estimation of fracture risk in post-menopausal women [55]. In hemodialysis
patients, a recent study in 456 hemodialysis patients demonstrate that lower metacarpal
BMD measured by DIP-assisted RA predicts the risk of osteoporotic fractures [56].

3.5. Quantitative Computerized Tomography

QCT allows in vivo assessment of trabecular architecture, volumetric BMD and bone
size, from which BMD can be estimated. QCT also provides a functional approach to bone
densitometry by measuring bone strength through biomechanical parameters. QCT imag-
ing can disclose pathological fractures and delineate joint lesions related to amyloidosis.
As QCT uses a high radiation dose in a small field of view, it can also be used to monitor
bone structural changes over time, disease progression and treatment efficacy. However,
In vivo applications are limited. Peripheral QCT (pQCT) limits radiation to the tibia and
distal radius.

3.6. High Resolution-Peripheral Quantitative Computerized Tomography (HR-pQCT)

HR-pQCT provides excellent spatial resolution, differentiating trabecular from cortical
bone and using a lower radiation dose (Figure 5). The distal radius and tibia contain
mainly cortical bone. In patients on dialysis, HR-pQCT was more closely associated with
prevalent fracture than DXA measurements [57]. HR-pQCT measures trabecular spacing,
with modest limitations in measuring trabecular number and thickness [17]. In a cross-
sectional study of patients on hemodialysis, women in particular were found to have
significant cortical microarchitectural deterioration and abnormal trabecular parameters,
compared to a normal matched population [58]. Bone microarchitecture alterations have
been associated with the severity of SHPT [52], while other studies demonstrated significant
cortical bone loss but no significant changes in trabecular density or microarchitecture
in CKD stages 2 to 5 assessed by HR-pQCT at the distal radius [42]. Cortical impairment
is reported to be associated with biochemical bone turnover markers, and may assist in
identifying CKD patients at risk of fractures [14].
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Figure 5. High resolution-peripheral quantitative computerized tomography (HR-pQCT): Analysis
of trabecular and cortical microarchitecture proximally and distally at ulnar and radial level.

Bone loss in CKD is partially due to cortical bone deterioration [42] through augmenta-
tion of the cortical porosity and thinning secondary to trabecularization of the endocortical
junction [5]. Changes at sites of predominant cortical bone may be a better determinant
of the ‘bone disease status’ than trabecular bone-rich sites. In a longitudinal study that
included 53 patients with CKD G2 to G5D, CKD patients assessed by HR-pQCT at the
distal radius had rapid cortical bone loss during 1.5 years of follow-up, with declines in
cortical area, density, and thickness and increases in porosity: −2.9% (95% CI −3.7 to −2.2),
−1.3% (95% CI −1.6 to −0.6), −2.8% (95% CI −3.6 to −1.9), and +4.2% (95% CI 2.0 to
6.4), respectively [42] whereas trabecular bone loss was not found. In patients with CKD
G2-G5D, TBS was independently associated with trabecular measures at the radius and
with cortical measures at the tibia by HR-pQCT [52] and was associated with trabecular
structural parameters assessed by the ‘gold standard’ of bone biopsy.

Fourteen patients undergoing kidney transplantation (n = 12) and parathyroidec-
tomy (n = 2) were evaluated in terms of histomorphometry by iliac crest bone biopsy and
micro-computed tomography on the core sample [59] showing a deterioration of cortical
microarchitecture despite predominantly normal trabecular parameters. By histomorphom-
etry analysis, high bone turnover was present in half the patients. Nevertheless, HR-pQCT
requires expensive equipment not readily available for clinical use and it is still confined to
examination of the distal forearm and leg. Additional limitations include individual length
difference when the radial or tibial bone are evaluated longitudinally [17].

3.7. Magnetic Resonance Imaging (MRI)

Whereas HR-pQCT is more limited to peripheral skeleton regions like the radius and
tibia, MRI can also image sites such as the proximal femur, but usually with lower spatial
resolution (Figure 6). It was used in the past for imaging trabecular architecture at the distal
radius, distal tibia and calcaneus, using photonic absorptiometry with iodine-125 (I-125)
and this was subsequently replaced by dual photonic absorptiometry using gadolinium-153,
and employed to study the axial skeleton (hip, spine and whole skeleton) [60]. Although
MRI does not use ionizing radiation, it has largely been replaced by HR-pQCT due to
rather complicated scan protocols not routinely available. Its main advantages are the
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direct acquisition of images in any plane and acquisition of functional information from
bone and bone marrow, beyond the mineralized component [17,61]. More recently, it has
been used to quantify cortical water and to differentiate bound water, a characteristic of
collagen, from free water, which is characteristic of cortical porosity. Another application is
imaging of marrow fat content and composition, marrow perfusion, and marrow molecular
diffusion [17]. Bone marrow fat measurement by magnetic resonance spectroscopy (MRS)
in eight CKD patients was 13.8% (95% CI 8.3–19.7) higher at L2–L4 when compared to
matched controls (age, sex and race), with no relation to variation in PTH [62]. Marrow
adiposity is higher in the lumbar spine of those with moderate to late CKD stages, compared
to those with normal kidney function.
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Figure 6. Magnetic Resonance Imaging: (A) Bilateral metaphyseal femoral fractures distal to the
lesser trochanter with reactional associated bone edema in a hemodialysis patient with osteomalacia.
(B) Osteoporotic lumbar spine compression fracture at T11, T12, L1, L3 and L4 vertebral body that is
hyperintense on T2 and shows vivid contrast enhancement with paravertebral soft tissue edema.

As described above, amyloidosis may cause articular and periarticular erosion, result-
ing in subtle radiographic signs, but amyloid deposits can be easily visualized directly on
MRI [63]. Advanced MRI techniques that allow a high spectral resolution such as diffu-
sion, perfusion and spectroscopy will most likely provide useful additional information in
the future.

3.8. Other Imaging Techniques

Nuclear imaging techniques based on radiotracer accumulation can be used for de-
termining the extent, progression and for monitoring of systemic diseases. Depending
on the radiolabeled tracer, several diseases may be identified; we will highlight three
tracers, 99mTc-penta-DMSA, 123I serum amyloid protein (SAP) and 131I-β2-microglobulin
(β2M). Regarding bone scintigraphy [64], skeletal uptake of 99mTc-labelled diphosphonate
depends primarily upon osteoblastic activity, and to a lesser extent, skeletal vascularity [65].
Patients with CKD-MBD with increased bone turnover have increased symmetric tracer
uptake throughout the skeleton, including calvaria and mandible, accentuating the contrast
between bone and soft tissue (Figure 7). It is also common to have a beading pattern at
the costochondral junctions, particularly at the sternum. Patients with osteomalacia may
present with the same pattern but may also show pseudo fractures. The bone scan is
particularly sensitive for identifying rib pseudo fractures, where conventional radiology
cannot detect them [65]. Globally, when compared to plain radiography, body scan seems
to be more sensitive for detecting changes of MBD. Osteosclerosis can also be seen, as
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linear areas of increased tracer uptake in the vertebral cortical borders. Bone scintigraphy
is not useful for the diagnosis of osteoporosis, but it may assist in determining if a vertebral
collapse is relatively recent or longstanding.
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Figure 7. Bone scintigraphy: skeletal uptake of 99mTc-labelled diphosphonate in a patient with
hyperparathyroidism. There is increased bone turnover shown by increased symmetric tracer uptake
throughout the skeleton, including calvaria, mandible, humeral head, accentuating the contrast
between bone and soft tissue, and a beading pattern at the costochondral junctions.

123I SAP binds to amyloid deposits, and detects A, L and transthyretin amyloidosis
with high sensitivity and specificity. It determines the extent and distribution of amyloid,
especially in visceral organs such as liver, spleen or kidneys, but has lower potential to
assess cardiac involvement [66]. Adverse events are uncommon with nuclear imaging,
but it is expensive and not readily available. The 131I-β2M tracer can be used to identify
the precursor protein of Aβ2M type amyloidosis in hemodialysis patients. The major
advantage of the use of 131I-β2M scanning in hemodialysis patients is its high specificity;
however, the tracer does not identify inflammatory changes in joints and in short-term
hemodialysis patients [67].

Positron energy tomography (PET) scanning is a noninvasive quantitative imaging
technique that estimates bone turnover [68] through the measurement of fluoride activity in
the bone. Bone formation rate [69], osteoclast, osteoblast, erosion and mineralized surfaces
correlate with the tracer intake. PET was superior to PTH in differentiating patients with
low from high bone turnover in 26 hemodialysis patients [68].

Ultrasound (US) velocity at the tibia was found to be significantly lower in 42 hemodial-
ysis patients when compared to the control group indicating cortical deterioration related to
the degree of SHPT [70]. More studies are needed to validate US as a screen and diagnosis
tool regarding the evaluation of CKD-MBD.

Finally, HR-MRI, Raman spectroscopy, Fourier transform infrared spectroscopy, and
quantitative backscatter electron imaging [71] are also currently being used in research
studies. To date, none of these techniques can be recommended for use in clinical care.

4. Cardiovascular Calcifications

In terms of cardiovascular calcification, there are four main described lesions in CKD
patients: (1) intimal calcification associated with the atherosclerotic process; (2) medial
calcification; (3) valvular calcification; (4) uremic calcific arteriolopathy (Table 2). In patients



Diagnostics 2021, 11, 772 13 of 17

with CKD, medial calcification and intimal calcification often coexist in coronary arteries,
peripheral arteries, and the aorta [72] and contribute to the high incidence of cardiovascular
disease and mortality [73].

Table 2. Major imaging techniques for the exploration of cardiovascular calcifications.

Vascular Involvement Clinical Imaging Research Imaging Clinical Outcomes

Carotid calcification Echography and Döppler
CT scan Pulse wave velocity Stroke

Arterial stiffness
Agatston CAC score

and
Volume CAC score

CT scan
Multi-slide CT

Electron beam CT
PET scan

CV mortality and all-cause mortality
Atherosclerotic events

Stroke

AAC
Plain radiography

CT scan
Vertebral Assessment Fracture

- Iliofemoral: renal graft failure
Arterial stiffness

Valvular Calcification Echocardiography and Döppler - Aortic stenosis
Mitral stenosis

UCA and other calcifications Plain radiography
Echography and doppler - Peripheral arterial disease

Arterio-venous fistula failure
Cardiac valves

Coronary arteries
Central and peripheral arteries

PET/MRI PET/MRI Detection of microcalcification within the aortic
valve, great vessels, and vulnerable coronary plaque

AAC, Abdominal Aortic Calcification; CAC, Coronary Artery Calcification; CT, Computerized Tomography; UCA, Uremic
Calcific Arteriolopathy.

The coronary artery calcification (CAC) score is a validated and easily accessible by CT
scan. It plays an important role in cardiovascular risk stratification, showing a significant
association with the medium and long-term occurrence of major cardiovascular events in
CKD patients, who as a group have much higher coronary artery calcium scores compared
to the general population [74]. The Agatston (surface) calcium score became the gold
standard endpoint for trials evaluating change in vascular calcification and, recently, a
volumetric CAC score is being increasingly used because of a potentially higher sensitiv-
ity [75]. The CRIC (Chronic Renal Insufficiency Cohort) trial [76] confirmed the association
between the CAC and a composite cardiovascular outcome (myocardial infarction, heart
failure, and stroke).

Abdominal aortic calcification (AAC) is independently associated with cardiovascular
events in the general population, but most importantly in hemodialysis patients [77]. The
Kauppila score, viewed on a lateral lumbar spine plain radiograph or with VFA [14], is a
semiquantitative scoring method that attributes an ordinal value to calcification (0 to 3)
at 8 sites along the abdominal aorta (total maximal score 24) [12] serving as a prognostic
indicator for cardiovascular mortality and all-cause mortality in patients on maintenance
hemodialysis (hazard ratio, 2.39; 95% confidence interval, 1.01 to 5.66; p < 0.05) [77].

The Adragão score involves a semiquantitative scoring of linear calcifications using
plain X-rays of the pelvis and hand and is the sum of the presence or absence of linear
calcification in each section; absence 0, unilateral 1 point or bilateral 2 points [78]. It
analyses calcification of the iliac, femoral, radial, and digital arteries.

Depending on resources, routine screening for cardiovascular calcification in CKD
patients is controversial [79] because of the lack of specific therapies proven to reverse or
attenuate vascular calcification in this population. Nevertheless, cardiovascular calcifica-
tion assessment should be performed in order to predict and modify clinical outcomes
especially in dialysis patients where some of the treatments used for CKD–MBD may
enhance vascular calcification progression [80]. The KDIGO guidelines propose an assess-
ment of vascular calcification in patients where it could modify therapeutic options [26].
Quantitative and/or qualitative knowledge of cardiovascular calcification could help to
optimize economic resources and to assign more expensive treatments to the patients with
greater expectations of improving their outcomes [81].

Finally, as vascular calcification is a product of an inflammatory process and can also
promote inflammation, the combination of PET/MRI should be considered when exploring
its pathophysiology [82–84].
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5. Conclusions

The more advanced CKD is the less consensus there is about CKD-MBD evaluation
and management. A more systematic use of imaging may assist in minimizing fracture
occurrence, further bone loss and calculating individual fracture risk. Early and systematic
identification of patients at risk may facilitate improved surveillance and timely interven-
tions that could ease the burden of bone fractures and cardiovascular disease [3]. The
increased availability of circulating biomarkers, in conjunction with old and novel quan-
titative imaging techniques and software tools to process and analyze the images may
also improve the management of CKD-MBD. Combining the expertise of clinicians from
various medical disciplines appears crucial to the more successful prevention of fracture in
these patients.
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