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Abstract

Interleukin 6 (IL-6) is a multifunctional cytokine with both pro- and anti-inflammatory properties with a heritability
estimate of up to 61%. The circulating levels of IL-6 in blood have been associated with an increased risk of complex disease
pathogenesis. We conducted a two-staged, discovery and replication meta genome-wide association study (GWAS) of
circulating serum IL-6 levels comprising up to 67 428 (ndiscovery = 52 654 and nreplication = 14 774) individuals of European
ancestry. The inverse variance fixed effects based discovery meta-analysis, followed by replication led to the identification
of two independent loci, IL1F10/IL1RN rs6734238 on chromosome (Chr) 2q14, (Pcombined = 1.8 × 10−11), HLA-DRB1/DRB5
rs660895 on Chr6p21 (Pcombined = 1.5 × 10−10) in the combined meta-analyses of all samples. We also replicated the IL6R
rs4537545 locus on Chr1q21 (Pcombined = 1.2 × 10−122). Our study identifies novel loci for circulating IL-6 levels uncovering
new immunological and inflammatory pathways that may influence IL-6 pathobiology.
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Introduction
Interleukin 6 (IL-6) is a multifunctional cytokine, which is
involved in a wide range of immunomodulatory processes, from
cellular migration and adhesion to proliferation and maturation
(1,2). Interleukins are involved in immune cell differentiation
and activation (3). IL-6 is synthesized by a variety of different
immune cells such as monocytes (4), B cells (5) and T cells (6) and
also non-immune cells such as epithelial and smooth muscle
cells (7), adipocytes (8), endothelial cells (9) and osteoblasts (10).

Several factors have been implicated in circulating IL-6
levels. We have previously demonstrated that IL-6 levels
decrease with age in children and increase with age in adults
(11). Also, increased levels of IL-6 have been observed in various
diseases, not surprisingly in autoimmune diseases such as
rheumatoid arthritis (12) and systemic juvenile idiopathic
arthritis (13), but also cardio-metabolic diseases like type 2
diabetes (14), heart failure, coronary heart disease (15) and
atherosclerosis (16), as well in cancers (17), atopic dermatitis
(18) and psychological disorders like depression (19). Due to
its implications in the pathogenesis of different disorders, Il-
6 has been used as an appropriate choice for drug targeting
and used as a monitoring biomarker of disease progression
and response to treatments (20). The most illustrious IL-6
inhibitor is tocilizumab (21), a monoclonal antibody binding
the IL-6 receptor, which is already in use for treating patients
with allergic asthma (22), and immune system disorders like
rheumatoid arthritis (23) and systemic juvenile idiopathic
arthritis (24), with high efficacy with some initial benefits
towards respiratory illnesses like COVID-19 (25).

IL-6 baseline levels are heritable with estimates from twin
studies ranging between 15 and 61% (26–29). However, efforts to
identify genetic variants associated with levels of IL-6 consti-
tuted relatively small-scale GWAS (30–33) or sequencing-based
candidate gene association studies (34). To date, variants in the
IL-6 receptor gene (IL-6R) and the gene encoding histo-blood
group ABO system transferase (ABO) have been identified as
statistically significant for an association to IL6-levels. Also, the
genetic risk score constructed of IL-6 variants identified in the
study by Shah and colleagues explained up to 2% of the variation
in IL-6 levels (33), leaving a substantial part of its heritability
unexplained. These seemingly sparse results and limited find-
ings could be due to limitations in the study power caused by low
sample size or a great inter-individual variability of IL-6 levels.
One may speculate a substantial increase in the study size by
increasing the number of participants, which would very likely
lead to the identification of additional variants explaining IL-6
levels (35–37).

The current study is the (till date) largest meta GWAS study
including 67 428 individuals of European ancestry to identify
genetic variants explaining the levels of circulating IL-6 and to
understand underlying genetic mechanisms implicated in the
pathophysiology of this cytokine.

Results
A total of 52 654 individuals of European descent from 26 cohorts
were included in the discovery GWAS meta-analysis with up to
2 454 025 autosomal SNPs passing quality control. Four cohorts
(ALSPAC, MONICA/KORA, NTR and SardiNIA) identified genome-
wide significant associations in the ABO region, whereas none of
the other 22 cohorts did, either individually or combined. These
cohorts conditioned their results on their relevant top-SNP in

ABO, the results of which were included in the discovery meta-
analyses. The overall genomic control inflation factor (λGC after
correction) at the discovery stage meta-analysis was 1.0.

We identified 94 variants that were genome-wide signif-
icantly (Pdiscovery < 5.0 × 10−8; Supplementary Material, Table
S1) associated with IL-6 levels, representing two independent
genetic loci on chromosomes 1q21 and 6p21. Two common SNPs
(rs4537545 and rs660895), one per locus, Chr. 1q21 (IL6R), and Chr.
6p21 (HLA-DRB1/HLA-DRB5), showed the most significant associ-
ation with IL-6 levels (index SNPs) and the third SNP (rs6734238)
mapped on Chr. 2q14 (IL1F10/IL1RN) locus showed suggestive
(5.0 × 10−8 < Pdiscovery < 1.0 × 10−5) association in addition to
5 other loci (LHFPL3, LZTS1, GPC5/GPC6, USP32/APPBP2, STAU1;
Supplementary Material, Table S2). Manhattan and QQ plots
have been depicted in Figures 1A and 1B.

The minor alleles of IL6R rs4537545∗T (β = 0.091; Pdiscovery

= 8.39 × 10−85), IL1F10/IL1RN rs6734238∗G (β = 0.025; Pdiscovery

= 1.45 × 10−7) and HLA-DRB1/5 rs660895∗G (β = 0.036; Pdiscovery

= 1.80 × 10−9) associated with increased circulating IL-6 levels
(Table 1). Two additional genome-wide significant SNPs in
the IL1R locus, rs11265618 (β = 0.047; Pdiscovery = 1.21 × 10−15)
and rs10796927 (β = 0.034; Pdiscovery = 1.24 × 10−11), in low LD
(r2 < 0.25) with the lead SNP rs4537545 were carried forward
for replication, and later conditional analysis as they seemed
potential candidates as independent signals.

Overall, 12 SNPs spanning over 9 loci at a Pdiscovery < 1 × 10−5 in
the discovery GWAS meta-analyses were selected for the repli-
cation stage (Supplementary Material, Table S2). This included
the three index SNPs, two additional SNPs from the 1q21 locus
(GWS but in low LD, r2 < 0.25 with index SNP) plus an addi-
tional set of seven statistically suggestive SNPs with a P-value of
5 × 10−8 < P < 1 × 10−5 in the discovery meta-analyses (either in
low LD, r2 < 0.25 with the index SNP or independent loci). Addi-
tionally, 3 SNPs as negative controls and 3 SNPs in LD (r2 > 0.25)
with the Chr.1 index SNP, to control for possible genotyping
errors of index SNP across replication cohorts, were also added
to the replication list, yielding 18 SNPs for replication stage
(Supplementary Material, Table S3).

Three loci including Chr.1q21 IL6R, Chr.6p21 HLA-DRB1/5
and Chr.2q14 ILF10/IL1RN replicated at Preplication < 0.05, reaching
GWS; 1q21 rs4537545, Pcombined = 1.20 × 10−122; 6p21 rs660895,
Pcombined = 1.55 × 10−10; and 2q14 rs6734238, Pcombined = 1.84 × 10−11

in the combined meta-analyses (Table 1 and Supplementary
Material, Table S3). Locus zoom plots available in Figures 1C,
1D, and 1E. The two additional signals at Chr.1q21 IL6R
locus were replicated at Preplication = 1.7 × 10−4 for rs11265618
and P = 0.03 for rs10796927, reaching Pcombined = 2.5 × 10−9 and
Pcombined = 4.1 × 10−13, respectively (Supplementary Material,
Table S3). The conditional analysis confirmed that rs11265618
and rs10796927 SNPs were not independent from (Supplemen-
tary Material, Table S4) but were driven by the index rs4537545
SNP.

In both, discovery and replication association analyses, the
effect directionality was generally consistent across individ-
ual studies for GWS variants, while there was some evidence
of borderline heterogeneity in one of the two novel loci (I2 (P
value) < 0.05) during the discovery and combined meta-analysis
(Table 1, Fig. 2). The imputation quality scores (r2) for the GWS
(index) SNPs for each cohort (discovery and replication) are avail-
able in Supplementary Material, Table S5. The other seven SNPs
that showed suggestive association in the discovery stage, and
expectedly the negative control SNPs did not reach GWS in the
combined meta-analyses (Supplementary Material, Table S3).
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The three GWAS index SNPs when combined explained
approximately 1.06% of the variance in circulating levels of IL-
6 using data from the NESDA cohort. The phenotypic variance
explained by all the common variants was estimated to be 4.45%
using the SumVg method (38).

Replication of other known/suggestive loci for IL-6

IL6R was the only IL6 known locus that we replicate at GWS.
IL1RN and HLA-DRB1, our primary findings have been reported as
suggestive loci (1 × 10−6 < P < 1 × 10−4) by Shah et al. while some
known/suggestive IL6 loci (ABO, BUD13, TRIB3 and SEZ6L) did not
replicate (Pdiscovery > 0.05) in the current study.

SNP functionality

We looked up SNPs in LD with the index SNPs from the
immunologically associated loci including IL-6R, rs4537545, 1q21;
IL1F10, IL1RN, rs6734238, 2q14, intergenic; and HLA-DRB1/DRB5,
rs660895, 6p21, intergenic. The search for functional/missense
variants in high LD (r2 > 0.8) with the lead SNPs led to the
identification of only one nonsynonymous rs2228145 SNP in LD
(r2 = 0.95) with the rs4537545 index SNP from the IL6R locus. We
used the Combined Annotation-Dependent Depletion (CADD)
database to identify the functionality, i.e. deleterious, disease
causal, pathogenicity, of rs2228145 in IL6R. CADD is an integrative
annotation based on multiple genomic features scored into a
single metric (39). IL6R missense the rs2228145 variant has a
CADD score of 15.98 (https://cadd.gs.washington.edu).

Associations with other traits and gene expression data

Genome-wide significant associations between IL6-associated
top SNPs and other traits, and gene expression, data were mined
using the Pheno Scanner v2 database (accessed, October 2020).

GWAS-based IL1F10/IL1RN rs6734238∗G allele has been asso-
ciated with increased levels of serum C-reactive protein (CRP)
and decreased fibrinogen levels, and blood cell traits in recent
GWAS reports (40,41) (PMID:27863252; Supplementary Material,
Table S6).

HLA-DRB1/DRB5 rs660895∗G allele is associated with increased
risk of rheumatoid arthritis (RA) in Europeans and Asians (42),
IgA nephropathy in Asians (43), while the decreased risk of
ulcerative colitis and inflammatory bowel disease (IBD) (44).
IL-6R rs4537545∗T allele has been associated with increased
circulating CRP levels (45), a decreased risk of RA (42) in mixed
ancestries, while an increased risk of diabetes and asthma from
the UK Biobank Neale’s lab rapid GWAS (See Web Resources;
Supplementary Material, Table S6). IL6R rs4537545T∗ allele is also
associated with C-reactive protein, allergic disease, rheumatoid
arthritis and coronary artery disease (Supplementary Material,
Table S6).

Gene expression. IL1F10/IL1RN rs6734238 is associated with
IL1F10/IL1RN expression levels in the skin, peripheral blood
and whole blood (P < 5.0 × 10−8; Supplementary Material, Table
S7). HLA-DRB1/DRB5 rs660895 has been associated with HLA-
DRB1/DRB5/DRB6/DQB1/DQB2 expression levels in multiple
tissues including peripheral blood, whole blood, monocytes,
adipose tissue, thyroid, tibial artery, coronary artery, heart, lung,
brain, colon, skeletal muscle, tibial nerve, skin and lymphoblas-
toid cell lines (P < 5.0 × 10−8; Supplementary Material, Table S7).
IL6R rs4537545 SNP is also associated with IL6R expression levels
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in peripheral and whole blood (P < 5.0 × 10−8; Supplementary
Material, Table S7).

Power estimates

Based on power calculator and assumptions mentioned under
methods section, the estimated power for the 2 novel index
SNPs was 98.3% rs6734238 (effect allele frequency, EAF: 0.42), and
76.9% rs660895 (EAF: 0.19), respectively.

Discussion
We performed the largest (to date) GWAS meta-analysis for
circulating IL-6 levels, which includes 66 341 individuals of Euro-
pean ancestry. We identified three loci associated with levels of
circulating of IL-6 in the general population amongst which two
are novel (Chr6p21, and Chr2q14), located in/nearby genes (HLA-
DRB1 and IL1RN/IL-38) with inflammatory roles explaining up to
1.06% variance.

The strongest associated SNP, interleukin 6 receptor (IL-6R)
rs4537545 at the 1q21 locus, is in high LD (r2 = 0.95) with a
missense IL-6R SNP rs2228145 (D358A) that results in an amino
acid substitution at position 358 (Asp → Ala) on the extracellular
domain of IL-6R and a high CADD score suggesting that the
variant is pathogenic or functional or deleterious (among top
10% variants of the genome). The missense SNP is known to
impair the responsiveness of cells targeted by IL-6 (46) by reduc-
ing IL-6R expression on cell surfaces (47), and increasing levels
of soluble IL-6R in individuals homozygous for this mutation
(48,49). Recently it has been demonstrated that increased levels
of sIL-6R induced by this variant can be explained by ectodomain
shedding off IL-6R, a mechanism in which membrane-associated
proteins are rapidly converted into soluble effectors whereby
simultaneously cell surface expression of the same protein is
reduced (50). Increased levels of sIL-6R may act as a counter-
balance to limit exaggerated IL-6 signaling and may explain the
protective effect of the 358A allele for various cardiovascular
diseases including coronary artery disease (CAD) (51–53), atrial
fibrillation (54), lung function in asthmatics (55) and abdominal
aortic aneurysm (56) as well as RA (57). However, in contrast
with this finding, the IL-6-sIL-6R complex itself is capable of
transducing IL-6 signaling to non-IL-6R expressing cells, known
as trans-signaling (58), and it is this mechanism, as opposed to
classic signaling, that is linked to chronic inflammatory disor-
ders including IBD and RA (59). Blocking IL-6 signaling cascades
can be achieved by using an IL-6R specific inhibitor in the form
of a monoclonal antibody, tocilizumab, which is a widely used
therapy in the treatment of RA. Several variants in IL-6R, includ-
ing rs2228145, may assist in the prediction of patient response to
tocilizumab in RA (60). The rs4537545∗T allele that is associated
with IL6 levels is known to associate with increased circulating
CRP levels (61) and a decreased risk of RA (42) in studies com-
prising mixed ancestries. Moreover, this SNP has been associated
with IL6R expression in peripheral blood, skin, brain and adipose
tissue (Supplementary Material, Table S7). The causal involve-
ment of IL-6 levels in disease remains to be elucidated, but a
recent study using a Mendelian randomisation (MR) approach
did demonstrate that by using this SNP as instrumental variable,
modelling the effects of tocilizumab, that IL-6R signalling has
a causal effect on CAD (52). On the other hand, pleiotropic
nature of the IL-6R locus, influencing IL-6, CRP and fibrinogen
levels, prohibits instrumental variable analysis and attribution
of causality to one particular intermediate. Finally, several other
genes encompass the 1q21 locus, including Src homology 2

domain containing E (SHE), and Tudor domain containing 10
(TDRD10), but have been ruled out to play a role at this locus (33).

At the identified chromosome 2 locus the lead SNP, rs6734238,
is intergenic and has also been associated with circulating
CRP and fibrinogen levels (40,41,62). The nearest genes to
this locus are the interleukin 1 family member 10 (IL1F10,
distance = 7.6 kb, currently known as IL-38) and interleukin 1
receptor antagonist (IL1RN, distance = 34.4 kb). IL1F10/IL-38 and
IL1RN variants (rs6759676 and rs4251961) in partial LD with the
lead SNP (r2

LD:0.10 and 0.61) have been recently reported to be
protective against the development of insulin resistance (63).
This further supports the molecular mechanisms behind IL-6-
mediated insulin secretion via glucagon-like peptide 1 (GLP-1)
(64) contributing to type 2 diabetes (T2D) pathophysiology. For
IL-6 specifically, it has been found that synthesis increases when
dendritic cells are stimulated by bacterial lipopolysaccharides
(LPS) in the presence of IL1F10 (65). IL-1RN is another member
of the interleukin 1 cytokine family, with suggestive evidence
for involvement in determining IL-6 levels in the blood. One
study found significant associations of IL-1RN rs4251961 with
plasma CRP and IL-6 levels, albeit not independently replicated
and not genome-wide significant (P = 1 × 10−4 and P = 0.004)
(66). Our lead SNP was not in high LD (r2 < 0.8) with variants
in either neighboring genes and therefore in conjunction with
its intergenic position, identifying a causal variant in this locus
remains non-trivial.

The 6p21 rs660895, which was identified, resides within the
HLA region, which forms one of the most complex genomic
regions to study due to its large LD blocks and sequence diver-
sity. This region has some population substructure in Euro-
peans, which may have influenced the results; however, (1)
each cohort population substructure adjustment was applied,
followed by genomic correction for overall discovery stage meta-
analyses. Thus, we reduced the chances that the population
substructure may have had on this locus. The nearest genes
to the index SNP, HLA-DRB1 (distance = 19.8 kb) and HLA-DQA1
(distance = 27.8 kb) are both histocompatibility complex genes
encoding proteins that form cell surface complexes for certain
immune system cells helping in antigen presentation to trigger
an immune response. It is noteworthy that variations at this
locus code for antigen-presenting complexes (APCs), which have
been previously associated with diseases having a dysfunctional
immune system; while we report for the first time that there
exists also a strong association of this locus with circulating
cytokine levels. Therefore, the association of this locus with
the disease may corroborate through its effect through IL6 lev-
els. One high-LD SNP (rs9272422, r2 = 0.82 with our index SNP,
rs660895) residing in the promoter region of HLA-DQA1 support
this hypothesis and has been identified previously for systemic
lupus erythematosus (67) and ulcerative colitis (68). rs660895∗G
allele is associated with increased risk of RA in Europeans and
Asians (42), IgA nephropathy in Asians (43), while the decreased
risk of ulcerative colitis and IBD. (44)

Various studies aimed to identify genetic variation underly-
ing levels of IL-6 (22–26) have found genome-wide significant
associations in the IL-6R and ABO genes. The study performed
by Shah and colleagues (33) found suggestive evidence (non-
GWS; P = 3.8 × 10−6, respectively) for additional loci, including
ABO, BUD13, TRIB3 and SEZ6L, none of which replicate in the
current study (Pdiscovery > 0.05) indicating that these might be
false-positive findings due to low sample size (∼7800) or loci with
sex-specific effects (associations based on women dominant
population) or due to technical shortcomings with measurement
assay (ABO locus).
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It is surprising that even with increased statistical power
(ndiscovery = 52 654; nreplication = 14 774) in the current study (com-
pared to the previous IL6 GWAS) (33), we could identify three
genetic loci (1q21, 2q14 and 6p21) accounting for ∼1% of the
genetic variance for circulating IL-6 levels. According to the cur-
rent estimates, the heritability levels for IL6 levels range between
15 and 61%, suggesting that an enormous increase in sample
sizes would be required to identify additional variants explain-
ing this remaining heritability. Multiple explanations for this so-
called missing heritability phenomenon have been proposed in
the past, which can be sought in rare or low frequency coding
variants as observed for a similar metabolic quantitative trait by
us (69) or can be explained by non-additive effects, which may
cause inflated estimates of heritability. Plausible evidence for
other sources of unexplained heritability that have been found
are epigenetic changes, and haplotypes of common SNPs.

Collectively, our results provided additional insights into the
biology of circulating IL-6. We identify new loci, limited by com-
mon variants in the Hap Map Reference panel. Albeit this is com-
parable to the 1000 genomes reference panel (70) but narrower
compared to some newly available panels that show greater vari-
ant coverage in numbers and frequency range. Future studies are
recommended to aim for identification of additional common
but also rare variants, by firstly using richer imputation panels,
such as UK10K project or the Haplotype Reference Consortium,
a strategy that holds great promise, and secondly by making
use of genetically isolated populations. Thirdly, we would like
to stress the importance of phenotype harmonization. As we
identified genome-wide variants in the ABO locus, in four stud-
ies participating in the discovery, but not in the remaining 22
cohorts, there is a strong indication that this locus may be assay
specific. However, a proper demonstration of this hypothesis
would require further testing, including repeating the GWAS in
ABO-positive cohorts using a different IL-6 assay. Indeed it is
emerging that the ABO locus has pleiotropic effects on many
different traits and diseases (71), which would suggest a more
thorough analysis before disregarding this signal. Also, conven-
tionally increasing sample sizes without correction for popula-
tion substructures may raise heterogeneity within populations
(72), likely concealing the SNPs that affect particular subgroups.
Future specific studies should counter the widely held assump-
tion of unconditional risk alleles of complex traits and focus
on the importance of studying more homogenous subgroups
to, for example, investigate the age-dependent effect of genetic
variants (73,74). Here, while further exploring the pleiotropic
effect of IL-6-related variants, we identified phenotypes differ-
entially regulated by diverse variants in the 1q21 locus. Bio-
logic systems are dynamic complex networks and are evolv-
ing through lifespan and investigating the interrelationships
existing between phenotypes as well as between genetic vari-
ations and phenotypic variations has the potential for uncov-
ering the complex mechanisms. This is the case here for IL-6
and tailored methodologies should be devoted to the study of
such traits, hopefully resulting in clinically significant break-
throughs. Future collaborative efforts therefore should strive to
use well-calibrated assays, z-standardized protocols for sample
handling, and processing (75), though this will be difficult to
achieve in practice. Lastly, we have attempted to perform formal
association-based causal analysis to identify the likely causal
loci, using the DEPICT approach; unfortunately, instead with only
2 novel GWS findings, our analyses were underpowered and thus
not included. We also mine the gene expression and eQTL data
for the identified SNPs using established databases; however, we
were unable control for random co-localization signals or other

confounders as we had limited access to summary level data.
In conclusion, we identify two novel common genetic variants
associated with circulating IL-6 levels that may influence the
pathophysiology of complex cardio-metabolic, psychiatric and
immunological traits, among individuals of European ancestry.
This is a step further towards unravelling new biological path-
ways and potential therapeutic targets that can be developed for
the IL-6-related disorders, while suggesting looking deeper into
the genome for coding variants (rare and common) having larger
individual effects (Figs 1 and 2).

Material and Methods
Discovery stage

Study populations. The overall study design (Supplementary
Material, Fig. S1) involved the discovery cohorts with 53 893
individuals. After overlapping individuals with available geno-
type and phenotype data, the discovery stage included 52 654
individuals from 26 cohorts of European ancestry listed under
Supplementary Material, Table S8, described in Supplementary
Text S1 and study summary characteristics in Supplementary
Material, Table S9. Only population-based samples or healthy
controls from case–control studies were included in the final
analyses.

Serum IL-6 measurements. Each study typically collected
venous blood samples stored below −80◦C until the time
of measurement using various types of immunoassays and
expressed as pg/ml as presented in Supplementary Material,
Table S10. The trait transformation and phenotype data quality
control (QC) were presented by Supplementary Material, Text
S3 (Supplementary Material, Text S3.1 and S3.2). In brief,
participating cohorts have checked for the percentage of
missingness in IL6 measurements and evaluated for indices
of QC (Supplementary Material, Text S3.2), yielded the final
number of participants with available validated IL6 levels, of
whom those with available genotype data were included in the
study as characterized in Supplementary Material, Table S9 and
in Supplementary Material, Text S1 and S2.

Genotyping and imputation. Each participating cohort per-
formed genome-wide genotyping using a variety of genotyping
platforms and applied a predefined quality control (QC) of
genotype data (Supplementary Material, Table S11) followed
by performing imputation of non-genotyped genetic variants,
on the backbone of haplotypes inferred from the Hapmap
Phase II reference panel (NCBI Build 36), and using statistical
software such as IMPUTE (75), MACH, Minimac (76) or BIMBAM
(77) (Supplementary Material, Table S11). Each cohort was
recommended a set of general SNP quality filters including
MAF < 0.01; Hardy Wienberg Equilibrium (HWE) P ≤ 10−6;
imputation quality r2 ≤ 0.3; and genotyping call rate <0.95
(Supplementary Material, Fig. S1). Once we received summary
results from each participating study, we ran a series of QC
checks. Firstly, these included a set standard checks, including
the imputation quality filters (basis the imputation program
used and/or r2

imputation < 0.3 were excluded), and then checks for
genomic inflation (quantile–quantile or QQ plots). We adapted
filter thresholds per cohort to reduce any observed deviation
from the null while missing SNP loss due to the QC process.
Finally, ∼2.45 million (2 454 025) common SNPs were part of the
discovery meta-analysis.
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Figure 1. Manhattan, QQ and LocusZoom plots of the discovery GWAS meta-analyses. (A) Manhattan plot showing the association of SNPs with IL-6. Loci coloured

in red or blue, three in total, represent those for which the lead SNPs reached genome-wide significance (P = 5 × 10−8). Horizontal axis: relative genomic position of

variants on the genome, vertical axis: −log10 P-value of each SNP; (B) Quantile–quantile plot for P-values obtained from the meta-analysis. The horizontal and vertical

axes represents the expected distribution of −log10 (P-values) under the null hypothesis of no association, whereas the vertical axis shows the observed −log10 (P-

values). The blue dashed line represents the null, and λGC value represents the genomic inflation factor lambda. Each data point represents the observed versus the

expected P-value of a variant included in the association analyses; (C–E) Regional association plots for each of the three genome-wide significant loci, 1q21, 2q14 and

6p21, respectively. Pairwise LD (r2) with the lead SNP is indicated following a color-coded scale. Horizontal axis: relative genomic position of variants within the locus,

vertical axis: −log10 P-value of each SNP.
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Figure 2. Combined discovery and replication forest plots for the GWAS Index SNPs. Forrest plots for (A) IL6R rs4537545 (chr. 1q21), (B) IL1RN rs6734238 (chr. 2q14), (C)

HLA-DRB5 rs660895 (chr. 6p21) with discovery, replication and combined effect estimates, 95% CI and weights based on the fixed effects inverse variance meta-analyses.

Statistical methods

GWAS analysis. Each study conducted an independent GWAS
analysis between SNPs and natural log-transformed values of
serum IL-6 levels following a predefined analysis plan (Sup-
plementary Material, Methods S4). Association analyses were
conducted using linear regression model, or linear mixed effect
models to account for familial correlation when warranted, with

additive genetic effects, accounting for imputation uncertainty
while adjusting for age, sex, population substructure (through
study-specific principal components) and/or study-specific site,
when necessary. GWAS summary result obtained from each
cohort underwent a series of QC checks using the QCGWAS pack-
age in R (78) (Supplementary Material, Text S3 and Supplemen-
tary Material, Fig. S1). Being aware of the potential false-positive
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Figure 2. Continued.

association in the ABO region on chromosome 9 (28,30), while
using an R&D systems high-sensitivity assay kit to measure IL6
levels (R&D systems, Minneapolis, MN, USA), four (out of 22)
discovery cohorts that observed genome-wide significant results
in the ABO locus were asked to rerun the GWAS analysis condi-
tional on the top ABO SNP (i.e. rs8176704) before including them

in the final discovery meta-analysis (Supplementary Material,
Text S3.3).

Discovery GWAS meta-analyses. Individual GWAS results from
26 European studies were meta-analyzed using the inverse vari-
ance weighted, fixed-effects method as implemented in GWAMA
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Figure 2. Continued.

while applying the double genomic control (GC) correction for
population stratification, i.e. first to each study individually and
subsequently also to the pooled results after meta-analysis (79).

Regional association plots for the discovered loci were gen-
erated through the LocusZoom (78) tool. We used the SNAP tool
(80) to perform the pairwise LD checks (HapMap release 22 data)
and to verify low LD with secondary signals. All SNPs selected
for the replication stage had to fulfill the following criteria: (1)
having an association Pdiscovery ≤ 1 × 10−5 and being in very low

LD with the index SNP (r2 < 0.2) and (2) available in at least 50%
of study cohorts.

Replication and combined meta-analysis

Study population, phenotyping and QC. The overall study
(Supplementary Material, Fig. S1) comprised 15 785 individuals
for replication. After removing individuals with missing data,
the replication analyses were performed using a combination
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of in silico and de novo genotyping in 14 774 individuals from 12
cohorts of European ancestry as described in Supplementary
Material, Text S2. Similar QC (Supplementary Material, Text S3
and Supplementary Material, Table S11) and statistical checks
were made as in the discovery stage.

Venous blood samples (serum or plasma) were collected
and stored at −80◦C. Serum/plasma IL-6 levels (pg/ml) were
measured using various immunoassay methods described in
Supplementary Material, Table S10. Each cohort tested the
selected SNPs using the same statistical model as for the
discovery association analyses (Supplementary Material, Fig.
S1). Effect size estimates of all replication SNPs from each
replication study were compared with the effect size estimates
from the discovery meta-analyses. When effect sizes from
individual cohorts did not align, we excluded these cohorts from
the replication meta-analyses (ncohorts = 3). To account for the
inter-study assay differences insensitivity, we combined results
across the replication studies using a fixed effect sample size
weighted Z-score meta-analysis as implemented in the METAL
package (https://genome.sph.umich.edu/wiki/METAL) (81).

The summary GWAS meta-analyses result from the discovery
and replication stages were then used to perform a combined
(discovery + replication) GWAS meta-analysis using a sample
size weighted Z-score method. Test for heterogeneity was also
performed as part of the meta-analysis package using METAL
where I2 statistic denoting the percentage of variation across
studies was estimated (I2 = 100% × (Q − df)/Q) where Q is the Chi-
Square statistic. Significance for heterogeneity was denoted by
the heterogeneity (or HetP) P values. Variants that were signif-
icant in the replication meta-analysis at P < 0.05 and had an
overall Pcombined < 5 × 10−8 in the combined meta-analysis were
considered statistically GWS. SNPs within the range of 1 Mb
(or 106 bases) on either side of the most significant (i.e. index)
SNP (with LD, r2 > 0.25) were considered part of the same locus,
whereas those in low LD (r2 < 0.25) were tested if they were
independent using conditional analysis.

Conditional analysis. We performed an approximate joint con-
ditional analysis to identify distinct signals in a specific chro-
mosomal region as implemented in GCTA (82) using high-quality
genome-wide genotyped/imputed reference data from two stud-
ies (NEtherlands Study of Depression and Anxiety (NESDA) from
the Netherlands and/or Genetics of Obesity in Young Adults
(GOYA) from Denmark) to estimate linkage disequilibrium (LD)
(83) between SNPs.

Conditional analysis for identification of independent signals
was performed on GWS SNPs ( ±1 Mb to the index SNP and
having low LD, r2 < 0.2 with the index SNP) using summary statis-
tics from the discovery GWAS meta-analysis data (—COJO option
in GCTA) after confirming the GWS loci from the combined
meta-analysis.

Heritability estimates. We approximated the variance explained
by all distinct lead SNPs from the meta-analysis using the follow-
ing formula:

n∑

i=1

β2
i · 2 · EAFi · (1 − EAFi)

σ 2
(
residuals

(
ln (IL6)

))

where EAF is the effect allele frequency, βi the effect size of
the individual variants, and n is the total number of lead vari-
ants. The current formula may overestimate the variance to a
small extent as some level of SNP correlation was existent (LD
r2 < 0.25). The variance of the residuals of ln (IL-6) was calculated
using data from the NESDA cohort (n = 2517). The total common
SNP heritability of serum IL-6 levels explained by all GWAS

variants was estimated using the observed Z-statistics from the
discovery analyses for a subset of pruned SNPs. Following the
original method (SumVg) (38), we pruned the imputed (based on
the 1000G Phase1 Integrated Release, Version 3, 2012.04.30 reference
panel) genotypes of the NESDA cohort using PLINK v1.07 (84), by
removing correlated SNPs at r2 > 0.25 within a 100-SNP sliding
window, and with a step size of 25 SNPs per forwarding slide.
This resulted in a pruned set of 163 459 SNPs.

SNP mapping and functionality. We searched for variants in high
LD (r2 > 0.8) within a 1 Mb region on either side of the lead
SNPs using 1000 Genomes sequence data (Phase1 Integrated
Release, Version 3, 2012.04.30), utilizing tools available in Liftover
(85), VCFtools (86) and clumping in PLINK (84). We subsequently
annotated these variants using ANNOVAR (87) with the RefSeq
(88) database for variant function and genic residence or dis-
tance. We used the Combined Annotation-Dependent Depletion
(CADD) database to identify the functionality, i.e. deleterious,
disease causal, pathogenicity, for the index SNPs.

Associations with other traits and gene expression data. Pheno
Scanner v2 (89) data mining tool was used (Access date Octo-
ber 2020) to identify existing GWS (at P < 5 × 10−8) associations
between IL6 identified SNPs and other traits, and gene expres-
sion/eQTLs data.

Power calculation

We used GWAs power estimator (see Web Resources) by assum-
ing a relative risk of 1.10 (or an effect estimate of 0.10), given
N = 66 000, alpha (P-value) = 5 × 10−8 (also GCTA power calculator,
Supplementary Text S3.5).

Supplementary Material
Supplementary Material is available at HMG online. GWAS sum-
mary statistics data is available upon request to corresponding
authors T.S.A. and/or B.Z.A.

Web Resources
QCGWAS, https://cran.r-project.org/web/packages/QCGWAS/i
ndex.html

GWAMA, http://www.well.ox.ac.uk/gwama/
METAL, http://csg.sph.umich.edu//abecasis/metal/
GCTA, http://www.complextraitgenomics.com/software/gcta/
LocusZoom, http://csg.sph.umich.edu/locuszoom/
1000 Genomes, ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/re

lease/20110521/
PLINK, http://pngu.mgh.harvard.edu/purcell/plink/
VCFtools, http://vcftools.sourceforge.net/
ANNOVAR, http://www.openbioinformatics.org/annovar/
PhenoScanner, http://www.phenoscanner.medschl.cam.ac.u

k/phenoscanner
Power calculations: http://csg.sph.umich.edu/abecasis/cats/

gas_power_calculator/index.html
The UK Biobank Neale’s lab rapid GWAS: (http://www.neale

lab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-
for-337000-samples-in-the-uk-biobank).
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