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Abstract

Previous results from our group and others have shown that urinary pellet expression of

miR155-5p and urinary CXCL-10 production could play a key role in the prognosis and diag-

nosis of acute rejection (AR) in kidney transplantation patients. Here, a logistic regression

model was developed using NONMEM to quantify the relationships of miR155-5p urinary

expression, CXCL-10 urinary concentration and tacrolimus and mycophenolic acid (MPA)

exposure with the probability of AR in adult kidney transplant patients during the early post-

transplant period. Owing to the contribution of therapeutic drug monitoring to achieving tar-

get exposure, neither tacrolimus nor MPA cumulative exposure was identified as a predictor

of AR in the studied population. Even though CXCL-10 urinary concentration showed a

trend, its effect on AR was not significant. In contrast, urinary miR155-5p expression was

prognostic of clinical outcome. Monitoring miR155-5p urinary pellet expression together

with immunosuppressive drug exposure could be very useful during routine clinical practice

to identify patients with a potential high risk of rejection at the early stages of the post-trans-

plant period. This early risk assessment would allow for the optimization of treatment and

improved prevention of AR.
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Introduction

Despite advances in immunosuppression, allograft rejection and clinical outcomes remain a

challenge in solid organ transplantation. The dosages of immunosuppressive drugs (ISDs) are

adjusted to achieve target concentrations and to prevent rejection or drug-related adverse

events. The combined pharmacokinetic monitoring of ISDs and immunological biomarkers

may provide patient risk stratification and allow for personalized therapy. The results from

several studies demonstrate the need to identify and validate noninvasive prognostic and diag-

nostic biomarkers for allograft rejection and to monitor the allograft condition at early time

points with the aim to achieve personal therapy adjustment before graft injury occurs [1–3].

In a previous study on kidney transplant recipients [4], our group identified miR155-5p

and interferon gamma inducible chemokine 10 (CXCL-10) as prognostic and diagnostic bio-

markers of rejection based on a receiver operating characteristic (ROC) curve data analysis.

These results are in agreement with those reported by Wilflingseder et al. and Soltaninejad
et al. in kidney transplant recipients [5,6].

MicroRNAs (miRs) are endogenous noncoding RNA molecules that regulate gene expres-

sion [7] at the post-transcriptional level and are involved in regulating several aspects of

inflammation [8] as well as affecting the immune response [9]. miR155-5p is a mediator of the

inflammatory response and a regulator of IFN-γ production in T-cells and NK-cells. This miR

participates in the regulation of adaptative immunity and antibody-related T-cell responses.

CXCL-10 is predominantly secreted by leukocytes in transplanted allografts and tubular

epithelial cells, and it binds CXC receptor 3 (CXCR3), which is predominantly expressed on T

lymphocytes [10]. CXCL-10 has been identified as a long- and short-term graft function [11]

and injury [12] biomarker in kidney transplant recipients.

In these previous studies, data analyses for drug exposure and biomarkers and their correla-

tion with rejection did not consider the most appropriate models, such as logistic regression

models [13], by means of the population approach.

This study aimed to develop a logistic regression model to investigate whether urinary

miR155-5p pellet expression and urinary CXCL-10 concentration may predict the probability

of rejection in adult kidney transplant recipients. Moreover, the utility of measuring tacroli-

mus and mycophenolic acid (MPA) cumulative exposures to reduce the risk of rejection was

also evaluated.

Material and methods

Ethical conduct of the study

The study was approved by the ethics committees of all participating centers (Charité: Ethik-

Kommission des Landes Berlin Landesamt für Gesundheit und Soziales Berlin Fehrbelliner

Platz 1 10707 Berlin; Heidelberg: Ethik-Kommission der Medizinischen Fakultät Heidelberg.

Alte Glockengießerei 11/1 D-69115 Heidelberg;Puigvert: Comité Ético de Investigación Clı́n-

ica (CEIC) Fundación Puigvert). All patients provided their written informed consent prior to

their inclusion in the study. In all centers, the medical costs were covered according to national

health insurance regulations. No cash payments were provided to donors or donors’ families.

Population

In a European multicenter prospective observational study coordinated and performed by our

group (EudraCT number: 2013-001817-33), 80 de novo adult kidney recipients from deceased

or living donor patients were recruited between 2014 and 2015 by three European centers:

Charité Universitäts Medizin, Berlin, (Germany), Universitätsklinikum, Heidelberg,
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(Germany) and Fundació Puigvert, Barcelona, (Spain) [4]. Living donors (relatives or well-

known donors) had undergone a strict evaluation both of the medical and psychological status

according to the guidelines and by the ethical board of each center. The cause of death of

deceased donors did not involve kidney injury but traumatic brain injury, hemorrhagic stroke,

ischemic stroke, cerebral anoxia or non-heartbeating, or controlled asystolia; these donors

were included through Eurotransplant regular allocation process.

Data from 58 out of 80 patients were included in the pharmacokinetic sub-study. Some of

the planned samples to be collected according to the protocol could not be obtained for differ-

ent reasons, all of them related to unavoidable difficulties frequently arising in the clinical

practice such as clotted blood samples, hemolysis occurrence, no attendance of patient to the

visit, difficulties in the blood extraction or sample loss during the analytical procedures,

among others. This issue led to less available tacrolimus and MPA concentration-time data for

the PK/PD analysis. Recipients who were older than 70 years old, hepatitis B or C positive,

human immunodeficiency virus (HIV) positive, or combined liver-kidney recipients were

excluded. The study was intended to cover the early post-transplantation stages spanning the

first 6 months. Patients had a total of five visits: 1st week, 1st month, 2nd month, 3rd month and

6th month after transplantation. The day of the 1st week visit varied from 1 to 11 days post-

transplant. The diagnosis of acute rejection (AR) was based on renal function impairment

detected by creatinine concentrations and glomerular filtration rate (GFR) by the modification

of Diet in Renal Disease (MDRD) method [14]. GFR was stratified based on Kidney Disease

Outcomes Quality Initiative guideline for evaluation, classification, and stratification of

chronic kidney disease (KDOQI CKD) classification as: chronic dialysis or need for re-trans-

plantation as end-stage kidney-failure; GFR<29 as severe decrease in renal function;

30<GF<59 as moderate decrease in kidney function; and 60<GF<90 mild decreases in kid-

ney function. A histological evaluation of graft biopsy (biopsy-proven acute rejection [BPAR])

according to the Banff 2011 [14] evaluation was used to confirm AR occurrence.

Treatment, blood sampling and analytical methods

Immunosuppressive treatment. All patients received the same immunosuppressive ther-

apy according to the clinical protocol of the IMAGEN study [4] and in line with the local stan-

dard of care. Immunosuppressive treatment consisted of tacrolimus (Prograf1, Astellas

Pharma), mycophenolate mofetil (Myfenax1, Teva Pharmaceuticals), and methylpredniso-

lone. All patients received an induction treatment of two 20-mg doses of basiliximab. From

each patient, blood samples were collected at 0, 0.5, 1, 1.5, 2, 3, 4, 6, 8 and 12 hours after drug

administration in the 1st week and at 0, 1.5, 2 and 4 hours after drug administration in the 1st,

2nd, 3rd and 6th months after transplantation. Drug analysis was performed in the respective

centers involved in the study. Tacrolimus concentrations were measured in whole blood by

liquid chromatography/tandem mass spectrometry, whereas MPA concentrations were deter-

mined in plasma by high-performance liquid chromatography with ultraviolet detection [15–

17].

Immunological biomarkers. First morning urine samples for biomarkers analysis were

withdrawn at the 1st week and the 1st, 2nd, 3rd and 6th months after transplantation. All samples

were shipped to the Pharmacology Laboratory of the Biomedical Diagnostic Center, Hospital

Clinic (Barcelona, Spain) for a centralized blinded fashion analysis.

CXCL-10 and miR155-5p were evaluated following the methods described in our previous

publication [4]; briefly, miR155-5p expression was analyzed from urinary pellets by quantita-

tive polymerase chain reaction (qPCR) as follows. Urine specimens were collected in the pres-

ence of EDTA RNAse at 4˚C. RNA was extracted using TRIzol™ reagent (Life Technologies),

PLOS ONE PKPD model predicting kidney acute rejection

PLOS ONE | https://doi.org/10.1371/journal.pone.0245880 January 22, 2021 3 / 20

https://doi.org/10.1371/journal.pone.0245880


according to the manufacturer’s instructions. Total RNA was reverse transcribed into cDNA,

and qPCR was performed using the miRCURY LNATM Universal RT microRNA PCR, Polya-

denylation and cDNA synthesis system (Exiqon, Denmark). Cq values for all samples were

determined, and the ΔCq was calculated as the difference in Cq values between the miRNA

target and the reference control. Relative expression levels of target miRNAs were then evalu-

ated within a sample according to the formula 2-ΔCq, where high values corresponded to higher

expression.

Urinary CXCL-10 concentrations were analyzed using a commercial enzyme-linked immu-

nosorbent assay kit (R&D Systems, Minneapolis, MN, USA) following the manufacturer’s rec-

ommendations. Urine samples were centrifuged at 3000 rpm for 10 min, and the supernatant

was stored at -70˚C. All samples were processed in duplicate. The minimum detectable con-

centration of CXCL-10 was 1.67 pg/mL.

Data analysis

Exploratory statistical analysis. A previous exploratory statistical analysis was performed

by comparing the mean values of trough concentrations and normalized to the dose trough

concentrations for each ISD between occasions (from week 1 to month 6) and between

patients who presented AR and those who did not over the period from week 1 to month 1

during which more rejections occurred. For that purpose, a two-way analysis of variance fol-

lowed by the Tukey’s multiple comparison test was applied. In the first analysis, the occasion

was considered as a fixed factor and the patient as a random factor. In the second case, the clin-

ical outcome (AR versus non rejection) was taken as a fixed factor and the patient as a random

factor nested within the clinical outcome variable.

Log-transformed data were used in all the cases. The significance was set at α = 0.05,

and the SPSS version 25 statistical package was used.

Pharmacokinetic-pharmacodynamic modeling

A sequential population pharmacokinetic–pharmacodynamic analysis was performed. First,

all concentration versus time data of either tacrolimus or MPA were simultaneously analyzed,

and their respective population pharmacokinetic models were developed. Then, the final phar-

macokinetic parameters were fixed in the model, and a logistic regression was built between

the individual predicted immunosuppressive drug (ISD) exposure values, observed biomarker

urinary expression levels and transplant rejection outcomes. Of note, for modeling purposes,

mycophenolate mofetil doses were transformed to MPA molar equivalents.

The nonlinear mixed effects models implemented in NONMEM version 7.4.1 software

(ICON Development Solutions, Ellicott City, MD, USA) were used. Phoenix WinNonlin1 6.4

[18], R 3.4.1 [19], Xpose 4.0 [20] R package, the visual predictive check (vpc) [21] R package,

and Perl-speaks-NONMEM (psn) 5.3.2 [22] were used for graphical diagnostics and model

evaluation. Pirana software [23] was used as a support tool throughout all building processes.

Pharmacokinetic models. Base model. In all the cases, the stochastic approximation

expectation maximization estimation method (SAEM) that provides the population parame-

ters converging toward the maximum of exact likelihood was used during all model building

processes. Because the OFV given by SAEM does not enable the assessment of minimization

due to its stochastic characteristics, the importance sampling (IMP) method was used for rela-

tive standard errors and objective function evaluation after the stochastic portion was com-

pleted [24]. MU-referenced coded parameters were used, as recommended, to gain efficiency

[25].
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One- and two-compartment models with linear elimination and first-order absorption kinet-

ics were tested. The modeling of enterohepatic circulation was also attempted on MPA data, as

previously reported [26]. The models were parameterized in terms of total clearance (CL),

absorption rate constant (Ka), apparent distribution volumes (Vn) and intercompartmental clear-

ance (Q). Lag time was modeled using the classical approach as well as the transit compartments

models (or erlang distribution) [27]. Distribution volumes and flow parameters were apparent

values, i.e., (CL/F), (Vn/F), (Q/F), because only concentrations after oral administration were

available. All disposition pharmacokinetic parameters were a priori scaled with body-weight

according to the allometry laws as proposed previously [28]. Fixed allometric exponents of 0.75

and 1 were applied to flow parameters and distribution volumes, respectively. This method is the

standard and more parsimonious approach to report PK parameters to understand differences

between humans of all ages. Although more physiological approaches are frequently used, no evi-

dence exists that a significative improvement of the fit can be achieved with respect to the stan-

dard approach of fixed allometric exponent of 0.75 for CL [29].

Between-subject variability (BSV) and interoccasion variability (IOV) [30] were both tested

in all parameters and described using exponential error models. First, the diagonal omega

matrix of the interindividual random effects was evaluated; then, the omega block structure

was explored, and the potential correlations among all the empirical Bayes estimates of the

interindividual random effects were examined. Omega block structure was retained if correla-

tions were found. Residual variability modeling was tested with untransformed and log-trans-

formed concentration data. Additive, proportional and combined (additive-proportional)

residual error models were tested for untransformed data and additively based on log-trans-

formed data if proceeded [31].

Covariate model. Once the base models were achieved, the individual predicted parameters

estimated from the population parameters and the empirical Bayes estimates of the interindi-

vidual random effects provided by SAEM were plotted versus all of the most physiologically

meaningful available covariates, i.e., age, sex, donor type (cadaveric or living), glomerular fil-

tration rate (GFR), donor age, cold ischemia time, time of dialysis, lymphocyte count and the

occurrence or absence of diabetes mellitus during the study to identify potential relationships.

The influence of dose was also investigated on CL/F and Vc/F to identify possible non-linear

behaviors either associated with the elimination process or erythrocytes (tacrolimus) or pro-

tein binding (MPA). Then, the influence of all of the covariates was tested on the correspond-

ing pharmacokinetic parameters by means of exponential, power and linear relationships. The

covariates were introduced first one at a time and then sequentially according to the stepwise

forward inclusion-backward elimination procedures [32].

Logistic regression model. A logistic regression model [33] was developed using the

Laplacian first-order conditional estimation method. Treated as a binary variable, AR occur-

rence was used as a response variable, with 0 indicating no event and 1 indicating AR. For

modeling purposes, rejection events were considered on the visit prior to their occurrence to

evaluate the prognostic capacity of the explanatory variables. The individual predicted expo-

sures to tacrolimus and MPA (given by either the cumulative area under the curve [AUC] or

mean trough concentrations) and the observed urinary expression of miR155-5p and CXCL-

10 were evaluated as possible factors influencing the response or explanatory variables. Indi-

vidual cumulative exposure values were predicted with NONMEM by integrating the drug

amounts in a “dummy” compartment according to the following equation:

AUC ¼
R t

0
C � dt ð1Þ
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The probability of AR occurrence was linked to explanatory variables through the logit

transformation to ensure that the estimated probability fell between 0 and 1. Given that Pi is

the probability of achieving an AR event, the model had the following structure:

LOGIT Pið Þ ¼ Ln
Pi

1 � Pi

� �

¼ yo þ yi � Xi ð2Þ

Pi ¼
expyoþyi�Xi

ð1þ expy0þi�XiÞ

� �

ð3Þ

where θ0 is the baseline or intercept term, θi is the coefficient corresponding to the effect

induced by Xi, where Xi is a given explanatory variable i (i = from 1 to n).

The same covariates considered in the pharmacokinetic models’ development were evalu-

ated in the logistic regression as additional explanatory variables.

Model selection. At all of the stages of model building, the goodness-of-fit of the models

to the data was evaluated as follows. To statistically distinguish between nested models, the

likelihood ratio test, based on a reduction in the minimum objective function value (MOFV),

was used (ΔMOFV: - 2 log likelihood, approximately χ2 distribution). A significance level of

p<0.005 corresponding to a ΔMOFV = -7.879 for one degree of freedom was used. For nonhi-

erarchical models, the most parsimonious model with the lowest MOFV according to the

Akaike information criterion (AIC) was chosen. A decrease in MOFV� 3.841 units (p<0.05)

was considered to retain a covariate in the model during the forward inclusion, whereas an

increase in MOFV�10.8 units (p<0.001) was considered to retain a covariate during the back-

ward elimination. Moreover, the stability of the developed models was explored by examina-

tion of the covariate matrix of the estimates to verify that no high correlation between

parameters existed. A condition number less than 1000 was always considered as a criterion of

non-ill conditioning.

The parameter precision expressed as the relative standard error (RSE%), reduction in BSV

associated with the parameters, model completion status, and visual inspection of goodness-

of-fit plots were also considered for model selection. Diagnostic plots of observed data versus

population predicted and individual predicted concentrations were evaluated for randomness

around the identity line. Plots of conditional weighted residuals (CWRES) versus time and

individual weighted residuals (IWRES) versus individual predictions were evaluated for ran-

domness around zero. η- and ε-shrinkage values (when appropriate) [34], were assessed to

know the feasibility of using the individual predicted parameter estimates by the models for

model diagnostics.

Model evaluation. Once the final models were developed, the corresponding predictive

capability was evaluated using a prediction-corrected visual predictive check (VPC) for contin-

uous data in the case of the population pharmacokinetic models and for categorical data for

the logistic regression models [35]. In both cases, 1000 simulations of the respective entire

original datasets including patient characteristics, dosing and sampling times were obtained,

and the distributions for observed and simulated data were compared [35]. Nonparametric

bootstraps were also performed to evaluate model stability and parameter precision. The ade-

quacy of the PK models was assessed through the inverse cumulative density function and nor-

malized prediction distribution errors (npde) [30]. Additionally, in the case of logistic

regression, a grouped-bar graphic was constructed by plotting the proportion of the observed

and predicted values of rejections versus the explanatory variable values, separated into 10

bins.
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Results

Population characteristics and clinical outcome

All patient baseline demographic, biochemical and clinical characteristics are summarized in

Table 1. Eight patients out of 58 (14%) developed at least one AR episode during the study.

The observed eight rejections were cellular rejections and were diagnosed by a histological

evaluation of graft biopsies (BPAR). Four episodes of rejection occurred during the 1st week

after transplantation, three at the end of the 1st month, and one during the 6th month. In all

patients who developed at least one AR event, urine for biomarker analysis was collected

before the immunosuppressive treatment modification to resolve the AR episode [4]. All

patients that rejected during the earliest post-transplant stages (week 1-month 1) had GFR

<25 ml/min except one. At these stages, the GFR for the patient that rejected at month 6 ran-

ged from 9.25 to 25.22 mL/min.

ISDs, exposures and biomarker expression levels

Neither ISDs nor biomarkers showed concentrations below the limit of quantification [4].

Mean global and per occasion values of observed trough concentrations for ISDs and for bio-

marker expression levels are summarized in Table 2. In general, for both ISDs, mean trough

concentrations tended to increase from week 1 to month 1; higher values compared with week

1 were maintained from month 2 to 3, and a slight decrease was observed at month 6, likely

due to dose reductions that occurred from months 3 to 6. No significant differences were

found in trough concentrations of MPA between any of the occasions (from week 1 to month

6). Conversely, significant differences were found between tacrolimus trough concentrations

at month 1 and those of the other occasions. Normalized by dose, trough concentrations

tended to increase with post-transplant time. Specifically for MPA, a significant increase was

observed from week 1 to month 1, and then exposure values were maintained similar. By con-

trast, for tacrolimus normalized by dose trough concentrations increased along all post-trans-

plant periods.

Regarding biomarker expression levels, miRNA155 expression increased from week 1 to

months 1–2, and then, a slight decrease occurred. CXCL-10 expression decreased from week 1

Table 1. Patient baseline, demographic, biochemical and clinical characteristics.

Units Median (IQR��)

Age years 48 (38–58)

Donor Age years 52 (45–60)

Sex (female/male) n 20/38

Donor type (living/cadaveric) n 30/28

Weight kg 73 (62.9–86.8)

Height cm 170 (163–177)

Body mass index kg/m2 24 (22–29)

Glomerular filtration rate mL/min 44 (15–55)

Infection occurrence n (%) � 34 (59%)

Acute rejection occurrence n (%) � 8 (14%)

Cytomegalovirus n (%) � 14 (24%)

BK virus n (%) � 9 (15%)

Diabetes mellitus n (%) � 5 (9%)

� Percentages estimated with respect to the total number of patients included in the population PK analysis, N = 58.

��IQR: inter-quartile range (25th and 75th percentiles).

https://doi.org/10.1371/journal.pone.0245880.t001
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up to month 2 and stabilized in months 3 and 6. In both cases, significant differences were

observed between week 1 and month 1 and on some of the other occasions (month 2 for

miRNA155 and months 2, 3, and 6 for CXCL-10).

Comparative mean values of trough concentrations in patients who underwent AR versus

those that who did not at the earliest post-transplant stages are displayed in Table 3. A trend

toward higher values of tacrolimus trough concentrations in patients who did not develop AR

Table 2. Global and per occasion mean values (IQR) of ISDs trough concentrations and biomarkers’ expression.

Parameters Units Mean� (IQR��)

Global Week 1 Month 1 Month 2 Month 3 Month 6

Tacrolimus
Dose mg 8.666 (6–10) 14.60 (13–18.5) 10.63 (9–16) 7.78 (6–11) 6.79 (5–10) 5.29 (4–7.75)

Ctrough ng/

mL

9.26 (7.4–12.0) 8.85# (6.49–11.95) 11.15 (8.78–14.17) 8.92# (7.10–12.41) 9.11# (7.67–11.06) 8.35# (7.22–10.46)

Ctrough/Dose - 1.28 (0.73–1.66) 0.61 (0.43–0.85) 1.05## (0.76–1.4) 1.14## (0.85–1.62) 1.36##& # (1.00–1.82) 1.63##&# (1.15–2.19)

MPA
Dose$ mg 1546.77 (1250–2000) 1875.91 (2000–

2000)

1655.41 (1500–2000) 1552.02 (1250–2000) 1402.64 (1000–2000) 1238.67 (1000–2000)

Ctrough μg/

mL

2.64 (1.76–3.90) 2.37 (1.44–3.88) 2.93 (1.91–4.46) 2.70 (1.92–3.51) 2.90 (1.99–4.35) 2.37 (1.64–3.59)

Ctrough/

Dose$
- 0.0021 (0.0013–

0.0025)

0.0013 (0.0008–

0.002)

0.0018## (0.0011–

0.0026)

0.0017 (0.0014–

0.0026)

0.0021## (0.0014–

0.0031)

0.0019## (0.0015–

0.0024)

Biomarkers
miR155-5p ΔCt 0.39 (0.03–0.55) 0.08 (0.03–0.23) 0.20## (0.05–0.96) 0.21## (0.06–0.81) 0.12 (0.04–0.40) 0.14 (0.04–0.61)

CXCL-10 pg/

mL

81.63 (22.26–107.55) 73.81 (37.98–

144.49)

38.04## (18.59–72.44) 36.65## (15.81–

66.12)

43.90## (23.65–86.83) 43.66## (20.19–107.53)

� Mean expressed as geometric mean.

��IQR: inter-quartile range (25th and 75th percentiles).
$ MMF daily dose of Myfenax.

# p<0.05 comparisons versus month 1.

## p<0.05 comparisons versus week 1 & p<0.05 comparisons versus month 2.

https://doi.org/10.1371/journal.pone.0245880.t002

Table 3. Mean values (IQR) of ISDs trough concentrations and biomarker expression levels for patients who pre-

sented AR and patients who did not from week 1 to month 1.

Parameters Units Mean� (IQR��)

Patients with AR Patients without AR

Tacrolimus
Dose mg 9.12 (8.5–14.5) 12.89 (10–16)

Ctrough ng/mL 7.37 (5.10–10.95) 10.10 (8.00–13.20)

Ctrough/Dose - 1.18 (0.43–1.52) 0.90 (0.53–1.10)

MPA
MMF Dose $ mg 2000 (2000–2000) 1740.9 (1500–2000)

Ctrough μg/mL 3.09 (2.55–5.13) 2.57 (1.58–3.97)

Ctrough/Dose$ - 0.0018 (0.0013–0.0026) 0.0019 (0.001–0.002)

Biomarkers
miR155-5p ΔCt 1.50 (1.15–1.85) 0.08 (0.03–0.23)

CXCL10 pg/mL 171.2 (148.09–206.64) 47.2 (23.83–92.52)

� Mean expressed as geometric mean.

��IQR: inter-quartile range (25th and 75th percentiles).
$ MMF daily dose of Myfenax.

https://doi.org/10.1371/journal.pone.0245880.t003
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versus those who did (p = 0.048) was evident, while the opposite trend was observed for MPA,

but without a significant difference (p>0.05). By contrast significant differences were found

between the expression of miRNA155 (p<0.001) and CXCL-10 (p = 0.004) in both groups,

with higher levels of both biomarkers in patients who presented AR compared with those who

did not.

Among patients who experienced rejection, only two had tacrolimus trough concentrations

below the recommended acceptable range (4 ng/mL– 11 ng/mL) [3] at the earliest post-trans-

plant stages (week 1-month 1); for two other patients, not coincident with the previous, MPA

trough concentrations were under the recommended therapeutic range (< 1.6 ng/mL) [36].

Of note, MPA concentrations lower than 1.6 ng/mL were also observed at week 1 in 17 patients

who did not develop acute rejection.

Population pharmacokinetic models

Tacrolimus. A total of 1102 concentration time points from 58 patients were included in

the analysis. A two-compartment model with lag time, first-order absorption and first-order

elimination fit the data best. A log transformation of the data stabilized the model. BSV was

only be associated with the whole blood clearance (CL), intercompartmental clearance (Q)

and central volume of distribution (VC).

Residual error was better described by an additive model on log-transformed data. The

final estimated PK parameters and their precisions (RSE), BSV effect on each parameter and

η-shrinkage and ε-shrinkage values were acceptable and are listed in Table 4.

The observed versus population predicted concentrations and conditional weighted residu-

als versus time plots displayed in S1 Fig confirmed that the final model adequately described

the study population as a whole, without appreciable bias. The low values of ε-shrinkage (5%)

Table 4. Estimated parameters and bootstrap results of the final population PK models.

Tacrolimus MPA

Parameter Units Value (RSE%) Bootstrap results� median (p2.5th—p97.5th) Value (RSE%) Bootstrap results� median (p2.5th—p97.5th)

Disposition Parameters

CL L/h/70 kg 16.5 (10) 16.0 (13.4–19.6) 11.8 (5) 11.7 (10.5–12.9)

VC L/70 kg 311 (9) 318.4 (258.8–362.5) 106 (22) 103.7 (48.5–162.5)

Q L/h/70 kg 20.5 (12) 21.1 (14.9–26.1) 37.1 (9) 39.1 (18.9–55.3)

VP L/70kg 56300 (8) 60038.6 (42571.5–70008.1) 800 FIX -

Absorption parameters

KA h-1 3.08 (39) 3.42 (2.54–3.62) 1.79 (16) 1.76 (1.25–2.33)

tLAG h 0.295 (22) 0.308 (0.24–0.35) 0.243 (29) 0.24 (0.18–0.30)

Between-subject

variability

Value (RSE%) SHR Bootstrap results� median (p2.5th—p97.5th) Value (RSE%) SHR Bootstrap results� median (p2.5th—p97.5th)

BSVCL % 57.6 (14) 7% 58.6 (40.4–70.8) 34.9 (11) 8% 35.2 (26.4–41.7)

BSVQ % 68.9 (13) 11% 68.9 (46.3–85.7) - - -

BSVVC % 55.6 (17) 6% 55.5 (32.7–71.5) 133.8 (15) 16% 136.2 (75.5–173.5)

BSVVP % - - - 164.6 (14) 22% 159.8 (88.8–215.0)

Residual error

Proportional % 36.6 (12) 5% 37.5 (33.0–42.2) 55.3 (6) 7% 55.5 (50–60)

Abbreviations: CL, whole blood (Tac) or plasma (MPA) clearance; VC and VP, central and peripheral volumes of distribution; Q, intercompartmental clearance between

compartments; KA, absorption rate constant; tLAG, lag time; BSV, between-subject variability; RSE, relative standard error; SHR, shrinkage, (-) Not estimated parameter.

� 1000 resamplings were performed.

https://doi.org/10.1371/journal.pone.0245880.t004
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allowed for the inspection of the observed versus individual predicted concentrations plots

with no evidence of misspecification.

Model evaluation. The pcVPC indicated that the model acceptably predicted the median

trend of the observed tacrolimus concentrations (Fig 1).The 2.5th, 50th and 97.5th percentiles

of the observed data lied within the 95% prediction intervals of the corresponding simulated

percentiles, although a slight underprediction was observed around the peak concentration.

The median and 2.5th and 97.5th percentiles obtained by the bootstrap method displayed

in Table 4 indicated that all the estimates of population parameters were within the 95% confi-

dence interval (CI), and the maximum relative deviation of the bootstrap median with respect

to the population value was 10%.

The distribution of the normalized prediction distribution errors (npde) of the observed

data overlapped with the distribution of the errors of the simulated data confirming that the

model can predict the median concentration in the overall dataset accurately (S2 Fig).

The stepwise covariate modeling did not identify any covariate as significant; therefore, the

results at this stage were considered the final model.

Mycophenolic acid

A total of 1071 concentration time points from 58 patients were used to develop a two-com-

partment model with time-lagged first-order absorption and first-order elimination. BSV

could be associated only with plasma CL, VC and VP. VP was fixed at referenced values taken

from the literature (800 L) to adequately estimate the rest of parameters.

Residual error was best described by a proportional error model. The estimated final

parameters and their precision, BSV effect on each parameter and η-shrinkage and ε-shrink-

age values were acceptable and are listed in Table 4.

Goodness-of-fit plots did not show any remarkable bias as shown in S3 Fig. The observed

versus population predicted concentrations plot suggested that the population prediction

described adequately the central tendency of the data. No model misspecification was detected

related to the structural part or residual error modeling when exploring the remaining plots.

Fig 1. Prediction-corrected visual predictive check for the final tacrolimus population pharmacokinetic model.

Blue shaded areas represent the 95% confidence interval of the 97.5th and 2.5th percentiles of the simulated data, and

red shaded areas represent the 95% confidence interval of the median of the simulated data. Red dotted lines represent

the 97.5th and 2.5th percentiles of the observed data, and the continuous red line is the median of the observed data.

https://doi.org/10.1371/journal.pone.0245880.g001
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Model evaluation. The pcVPC indicated that the final model had acceptable predictive

value (Fig 2) except around the absorption phase. Overall, the 97.5th, 2.5th and 50th percen-

tiles of the observed data were within the 95% prediction intervals of the corresponding per-

centiles for the simulated data.

The median and 2.5th and 97.5th percentiles obtained by the bootstrap method are shown

in Table 4. All parameters were within the 95% CI, and the relative deviation of the bootstrap

median with respect to the population value was lower than 6%.

The distribution of the normalized prediction distribution errors (npde) for the observed

data overlapped with the distribution of the errors for the simulated data (S4 Fig).

The base model was considered the final model because none of the tested covariates led to

a significant reduction in the MOFV value.

Logistic regression

The logistic regression model was built with a total of 183 observations/time points from 58

patients. The final model consisted of the linear combination of the baseline effect and the

effect of miR155-5p urinary pellet expression. None of the other tested explanatory variables

(tacrolimus and MPA estimated mean trough concentrations and cumulative exposures

[AUC] and CXCL-10 expression) adequately improved the model so they were not retained.

The parameter estimates and RSEs, bootstrap results and final model equations are presented

in Table 5.

Logistic regression model evaluation. The results of the VPC for the miR155-5p-AR

logistic regression model (Fig 3) showed that the simulated and the observed median lines

were superimposed except at high biomarker concentrations, likely due to the lack of sufficient

data. According to the grouped bar plot in Fig 4, the proportions of rejection occurrence for

simulated data at all biomarker concentrations were in agreement with those for observed

data.

Fig 2. Prediction-corrected visual predictive check for the final mycophenolic acid population pharmacokinetic

model. Blue shaded areas represent the 95% confidence interval of the 97.5th and 2.5th percentiles of the simulated

data, and red shaded areas represent the 95% confidence interval of the median of the simulated data. Red dotted lines

represent the 97.5th and 2.5th percentiles of the observed data, and the continuous red line is the median of the

observed data. Dark blue dots are the observation-time points.

https://doi.org/10.1371/journal.pone.0245880.g002
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The results of bootstrap analysis (Table 4) confirmed the accuracy of the final parameter

estimates and the stability of the model. The population parameters were all inside the 95%

bootstrap CI with a bias lower than 12%.

Discussion

To our knowledge, this study is the first of adult kidney transplant recipients where a popula-

tion logistic regression model was developed to identify the potential predictive factors of the

risk of AR, using a non-linear mixed effects analysis. Our major aim was to investigate the

Table 5. Final parameters of the miR155-5p expression -Acute rejection (AR) risk logistic regression model.

Parameter Values (RSE%) Bootstrap� mean (P2.5th-P97.5th)

ß0 -5.89 (15) -5.94 (-9.88 –-4.80)

ß1 3.51 (24) 3.45 (2.34–56.72)

LOGIT(Pi) = ß0 + ß1
�miR155-5p

Abbreviations: ß0, Baseline risk of rejection; ß1, Slope of explanatory variable effect; RSE%, relative standard error

expressed as %.

� 200 resamplings were performed.

https://doi.org/10.1371/journal.pone.0245880.t005

Fig 3. VPC of miR155-5p expression (ΔCt) -AR logistic regression model. Solid line: Median of observed AR proportion versus. miR155-5p

expression. Dotted line: Median of predicted AR proportion versus miR155-5p expression; shaded area: 95% prediction interval of AR versus

miR155-5p expression.

https://doi.org/10.1371/journal.pone.0245880.g003
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effect of biomarker expression and ISD exposure on AR. Thus, tacrolimus and MPA popula-

tion pharmacokinetic models were developed to predict precise exposures. Among the bio-

markers evaluated, only urinary miR155-5p expression was predictive of the clinical event.

Neither tacrolimus nor MPA individual predicted cumulative exposures (AUC) nor mean

observed trough concentrations where identified as predictive factors of AR. This was probably

due to the successful implementation of therapeutic drug monitoring overall post-transplant

period, even though at the earliest stages (from week 1 to month 1), patients who developed

AR showed a tendency toward a lower tacrolimus exposure than those who did not. Similarly

occurred with MPA, with comparable exposures between patients experiencing AR and those

who did not. These findings were in agreement with those of Sánchez-Fructuoso et Al. [36],

who found a significant relationship between lower MPA exposures in week 1 and AR occur-

rence during month 1 post-transplant in kidney recipients through a logistic regression analy-

sis. However, no statistically significant relationship was found in tacrolimus exposure due to

similar exposures between patients with AR and patients without. The low number of rejection

events could also have contributed to the lack of statistical significance between ISD and AR

occurrence of our study.

To our knowledge, this study is the first of adult kidney transplant recipients where a popu-

lation logistic regression model was developed to identify the potential predictive factors of the

risk of AR, using a non-linear mixed effects analysis. Our major aim was to investigate the

effect of biomarker expression and ISD exposure on AR. Thus, tacrolimus and MPA

Fig 4. Grouped bar graph of acute rejection proportions versus miR155-5p expression (ΔCt). The green and gray bars are the predicted and

observed proportions of rejection occurrence, respectively.

https://doi.org/10.1371/journal.pone.0245880.g004
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population pharmacokinetic models were developed to predict precise exposures. Among the

biomarkers evaluated, only urinary miR155-5p expression was predictive of the clinical event.

Neither tacrolimus nor MPA individual predicted cumulative exposure (AUC) nor mean

observed trough concentrations where identified as predictive factors of AR. The successful

implementation of therapeutic drug monitoring overall post-transplant period could explain

this lack of predictive ability, even though at the earliest post-transplant stages of the study

(from week 1 to month 1), patients who developed AR showed a tendency toward a lower

tacrolimus exposure than those who did not. Similarly occurred with MPA, with comparable

exposures between patients experiencing AR and those who did not. These findings were in

agreement with those of Sánchez-Fructuoso et Al. [36], who found a significant relationship

between lower MPA exposures in week 1 and AR occurrence during month 1 post-transplant

in kidney recipients, through a logistic regression analysis. However, no significant relation-

ship was found in the case of tacrolimus due to similar exposures between patients with AR

and those without. The low number of rejection events may also explain the lack of signifi-

cance between ISD and AR occurrence of our study.

As aforementioned, miR155-5p was a unique biomarker that predicted the probability of

AR in the target population. This finding is in agreement with the results of a previous study

by our group [4], where urinary miR155-5p pellet expression significantly increased before an

AR episode, demonstrating that miR155-5p expression could be effective as a prognostic bio-

marker. Anglicheau et al. [37] also identified miR155-5p biopsy expression as a diagnostic bio-

marker for AR in kidney transplant recipients.

The logistic regression model developed in the current study allowed us to confirm these

findings and provide a quantitative measure of the effect of changes of miR155-5p on AR risk.

Based on this model, an increase of 0.1 units in miR155-5p urinary expression can lead to a

10% increase in AR risk. These results suggest that miR155-5p expression may be considered

not only as a diagnostic but also a prognostic biomarker due to the early and progressive

increase in its expression before the occurrence of the clinical event.

Unlike miR155-5p expression, the significance between urinary concentration of CXCL-10

and the risk of AR could not be proven. Several published studies have addressed the influence

of the urinary concentration of CXCL-10 on the risk of kidney clinical outcomes, such as the

risk of tubulitis occurrence in adult transplanted kidney patients [38] or the risk of tubulitis

and acute T-cell-mediated rejection (TCMR) in pediatric renal transplantation [39]. In all of

these reports, a logistic regression analysis was performed that confirmed the statistical signifi-

cance of each relationship [39]. These findings suggest that additional studies should be per-

formed with CXCL-10 with a higher number of patients to confirm the previous results.

All of these results support the necessity of monitoring ISDs simultaneously with biomark-

ers in kidney transplant recipients for a rapid prognostic and diagnostic assessment of rejec-

tion, graft outcome and early personalized treatment adjustment, as reported by Millan et al.

[4].

The implementation of the measurement of urinary miR155-5p expression and CXCL-10

production in routine clinical practice is feasible, considering that the majority of medical cen-

ters involved in transplantation use standard methodologies in laboratories. Regarding the fre-

quency of monitoring of these biomarkers after kidney transplantation we and others suggest

to monitor them at the 1st week, 2nd week and 1st month post-transplantation (when the inci-

dence of AR is high) and during the process of identifying good candidate patients for ISD

treatment minimization (approximately the 3rd month after transplantation). Obviously, the

frequency of monitoring of these biomarkers requires further investigation in the context of

multicenter randomized clinical trials.
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As outlined above, accurate tacrolimus and MPA individual cumulative exposures to be

used in the logistic regression model were obtained from the respective population pharmaco-

kinetic models. Although a large number of pharmacokinetic models exist in the literature for

tacrolimus and MPA in renal transplant populations, very few of them used SAEM as parame-

ter estimation method. In our case, the efficient handle of full omega blocks of this method

provided better estimates of parameter standard errors than first-order conditional estimation

methods.

According to most of the previously reported models developed from more than only

trough concentrations, the pharmacokinetic profiles of tacrolimus [40,41] and MPA [26,42]

were best described by two-compartment models with first-order absorption. Also in agree-

ment with most studies [43], elimination was described by a first-order kinetics. No dose-

dependence related with the elimination process or erythrocyte (tacrolimus) or protein bind-

ing (MPA) saturation was found in any case.

The estimated CL/F value of tacrolimus was in line with those previously reported (CL/

F = 16.5 L/h [70 kg] versus 16.1 L/h [44], 16.5 L/h [45], and 16.3 L/h [40]). Although hemato-

crit values were not available, the tacrolimus CL/F was close to that expected for a standard

hematocrit level of 45% (16.1 L/h), as reported by Storset et al. [41]. Although previous studies

have reported the influence of metabolic mass in terms of BSA [46] or free fat mass [44] on

tacrolimus clearance, and other authors have estimated empirical allometry exponents for CL/

F and VC/F [47], we did not find statistical significance of size covariates on disposition

parameters, likely due the scarce number of overweight patients. However, the standard

approach used by others [48,49] for scaling body weight by using the fixed exponent values of

0.75 and 1 for flow parameters and distribution volumes, respectively, improved our model

predictions.

One of the limitations of our study was the difficulty encountered to properly describe the

absorption process in a more physiological way such as the erlang distribution or transit com-

partment models as others [45]. Unlike other studies [44], the classical lag-time modeling did

not allow us to adequately capture peak concentrations, affecting the central compartment dis-

tribution volume (Vc) estimated value. The VC of tacrolimus was slightly higher than the val-

ues obtained by Musuamba et al. (221 L) [50] and Ogasawara et al. (214 L) [51], but larger

differences were observed compared with studies that described the absorption process by

means of transit compartment models [45,52] or those with rich sampling designs during the

absorption phase [48].

Ka values (3.08 h-1) also reflected sensibility to the aforementioned points. We found a

higher value than those reported by other authors (1.01 h-1 [44], 0.47 h-1 [45], and 0.45 h-1

[40]) but similar to or lower to others that used erlang distribution or transit compartment

models [52], regardless of the classical lag-time or erlang distribution models were applied.

Basically, differences relied on the success of modeling the absorption phase that in turn

depended on the availability of sufficiently informative data.

Higher values of peripheral distribution volume (Vp) were found with respect to those

reported in other similar studies. Between-patient variability could not be included in this

parameter. Both facts could be attributed to the lack of sufficient data. The Vp prediction is

highly dependent on the concentration values associated with the post -distributive phase

where the sampling was scarce this probably leading to model overprediction.

The estimated CL/F value for MPA (CL = 11.8 L/h) was lower than that reported previously

(28.8 L/h [53]; 25 L/h [40]). Of note, these studies were performed at the earliest phase (9–15

days) of the transplantation period, when the presence of poor renal function could have

altered the MPA binding to albumin, resulting in higher clearance values. By contrast, our CL/

F value was similar to that calculated from free MPA CLu/F (410 L/h) in the study of Colom

PLOS ONE PKPD model predicting kidney acute rejection

PLOS ONE | https://doi.org/10.1371/journal.pone.0245880 January 22, 2021 15 / 20

https://doi.org/10.1371/journal.pone.0245880


et al. [54], taking into account the mean MPA unbound fraction found in that study

(fu = 0.023) (CL/F = fu�CLu/F = 9.43 L). It is noteworthy that most of the data analyzed in the

study of Colom et al. were obtained on different occasions during the first year post-transplan-

tation, as was almost the case of the present study (6 months).

Even though the MPA Ka value (Ka = 1.79 h-1) was close to that of previous studies

(Ka = 1.79 h-1 versus 1.22 h-1 [26] and 2.3 h-1 [40]), the lack of data hampered a more physio-

logical description of the absorption process, similar to tacrolimus.

Our study presents some other intrinsic limitations. First, the small sample size or low

number of patients having AR limited the investigation of tacrolimus exposure and of CXCL-

10 as potential predictors of AR. Second, the biomarker analytical determination was con-

ducted in the same laboratory (Pharmacology and Toxicology Laboratory of the Hospital

Clinic of Barcelona), and an interlaboratory validation to compare results is desirable. Finally,

the study was only performed in Caucasian patients, and additional studies in other races are

required.

Conclusions

A logistic regression model that shows the prognostic capability of miR155-5p for the risk of

AR has been developed. This model reinforces the promising results of miR155-5p as a prog-

nostic biomarker for rejection in adult kidney transplants. Indeed, monitoring of miR155-5p

could be very useful during routine clinical practice to identify potential patients at high risk of

rejection at the early stages of the post-transplant period. This information would allow for the

consequent optimization of their treatment. No significant effect of ISD exposures or CXCL-

10 on AR was evident, likely due to the low sample size. Therefore, additional multicentric ran-

domized studies are required to confirm the potential of miR155-5p and to further investigate

CXCL-10 as prognostic biomarkers of risk of rejection and as useful tools to complement

tacrolimus and MPA monitoring.

Supporting information

S1 Fig. Tacrolimus goodness of fit plots. Left upper panel: Observed versus population pre-

dicted concentrations (ng/mL). Right upper panel: Observed versus individual predicted con-

centrations (ng/mL). Left lower panel: Individual weighted residuals versus individual

predicted concentrations (ng/mL). Right lower panel: Conditional weighted residuals versus

time (h).

(PNG)

S2 Fig. Tacrolimus NPDE plots. Left upper panel: Quantile-quantile plot of the npde versus

the expected standard normal distribution. Right upper panel: Histogram of the npde with the

density of the standard normal distribution overlayed. Left lower panel: Scatterplot of the nor-

malized prediction distribution errors versus time (h). Right lower panel: Scatterplot of the

normalized prediction distribution errors versus predicted concentrations (ng/mL).

(PNG)

S3 Fig. MPA goodness of fit plots. Left upper panel: Observed versus population predicted

MPA concentrations (μg/mL). Right upper panel: Observed versus individual predicted MPA

concentrations(μg/mL). Left lower panel: Weighted residuals versus individual predicted MPA

concentrations (μg/mL). Right lower panel: Conditional weighted residuals versus time (h).
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S4 Fig. MPA NPDE plots. Left upper panel: Quantile-quantile plot of the npde versus the

expected standard normal distribution. Right upper panel: Histogram of the npde with the
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