
Journal of

Clinical Medicine

Review

The Clinical and Neuropathological Features of Sporadic
(Late-Onset) and Genetic Forms of Alzheimer’s Disease

Tanzil Rujeedawa 1, Eva Carrillo Félez 1, Isabel C. H. Clare 1,2 , Juan Fortea 3,4,5, Andre Strydom 6,7,
Anne-Sophie Rebillat 8 , Antonia Coppus 9, Johannes Levin 10,11,12 and Shahid H. Zaman 1,2,*

����������
�������

Citation: Rujeedawa, T.; Carrillo

Félez, E.; Clare, I.C.H.; Fortea, J.;

Strydom, A.; Rebillat, A.-S.; Coppus,

A.; Levin, J.; Zaman, S.H. The Clinical

and Neuropathological Features of

Sporadic (Late-Onset) and Genetic

Forms of Alzheimer’s Disease. J. Clin.

Med. 2021, 10, 4582. https://doi.org/

10.3390/jcm10194582

Academic Editors: Ann-Charlotte

Granholm, Melissa J. Alldred and

Alessandra C. Martini

Received: 31 July 2021

Accepted: 28 September 2021

Published: 3 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry,
University of Cambridge, Cambridge CB2 8PQ, UK; mtr38@cam.ac.uk (T.R.); ecarrife7@gmail.com (E.C.F.);
ichc2@medschl.cam.ac.uk (I.C.H.C.)

2 Cambridgeshire and Peterborough Foundation NHS Trust, Fulbourn CB21 5EF, UK
3 Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research

Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; JFortea@santpau.cat
4 Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED),

28031 Madrid, Spain
5 Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, 08029 Barcelona, Spain
6 Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and

Neuroscience, King’s College London, London SE5 8AF, UK; andre.strydom@kcl.ac.uk
7 South London and the Maudsley NHS Foundation Trust, The LonDowns Consortium, London SE5 8AZ, UK
8 Geriatrics, Institut Jérôme Lejeune, 75015 Paris, France; annesophie.rebillat@institutlejeune.org
9 Department of Primary and Community Care (149 ELG), Radboud University Nijmegen Medical Center,

P.O. Box 9101, 6525 GA Nijmegen, The Netherlands; tonnie.Coppus@radboudumc.nl
10 Department of Neurology, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;

johannes.levin@med.uni-muenchen
11 German Center for Neurodegenerative Diseases, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
12 Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
* Correspondence: shz10@medschl.cam.ac.uk

Abstract: The purpose of this review is to compare and highlight the clinical and pathological aspects
of genetic versus acquired Alzheimer’s disease: Down syndrome-associated Alzheimer’s disease in
(DSAD) and Autosomal Dominant Alzheimer’s disease (ADAD) are compared with the late-onset
form of the disease (LOAD). DSAD and ADAD present in a younger population and are more
likely to manifest with non-amnestic (such as dysexecutive function features) in the prodromal
phase or neurological features (such as seizures and paralysis) especially in ADAD. The very large
variety of mutations associated with ADAD explains the wider range of phenotypes. In the LOAD,
age-associated comorbidities explain many of the phenotypic differences.

Keywords: late-onset Alzheimer’s disease; down syndrome; autosomal dominant Alzheimer ’s
disease; clinical features; neuropathology

1. Introduction and Background

This review aims to highlight the similarities and differences between the clinical and
neuropathological manifestations of Alzheimer’s disease (AD) in sporadic (or late-onset
AD) and autosomal dominant AD (ADAD) and Down syndrome-associated AD (DSAD).

AD is a neurodegenerative disease that results in neuronal cell death, causing brain
atrophy. The neurodegeneration is thought to be due to the immediate or downstream
consequences of the abnormal accumulation of beta-amyloid (Aβ) and hyperphosphory-
lated Tau proteins that manifest as Aβ neuritic plaques and neurofibrillary tangles (NFTs),
respectively. Several other pathological processes also play a role, including the innate
immune system, the inflammatory response and mitochondrial dysfunction and the conse-
quent oxidative damage. It is associated with reactive astroglia [1], immune-responsive
microglia [2] and neurovascular issues [3]. AD is the most common form of dementia and
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is characterized by memory loss and cognitive decline in several modalities. In some cases,
it can also present with atypical symptoms. AD affects 30–35 million people worldwide
and as life expectancy increases, the prediction is that by 2030, it will be experienced by
82 million people at any one time [4].

Late-onset AD (LOAD) is also referred to as sporadic AD and clinically presents
in those aged over 65 years. However, there are different subtypes of LOAD and there
may be heterogeneities in both the clinical features and neuropathology they demonstrate.
AD presenting before 65 years of age is referred to as early onset AD (EOAD). Between
5–7% of all AD presents as EOAD [5]. Though estimates of EOAD usually do not include
people with DS, EOAD should comprise both Down syndrome associated AD (DSAD) and
autosomal dominant AD (ADAD). However, not all EOAD are DSAD or ADAD.

Amongst all live births, Down syndrome (DS) is the most common aneuploidy. In
c.95% of cases the cause is a full trisomy of chromosome 21-the rest are due to partial
trisomies, translocations or mosaicisms. DS is associated with growth delays, characteristic
facial features, intellectual disability and multiple comorbidities such as congenital heart
defects, thyroid dysfunction, autism spectrum disorder, sleep apnoea, hearing loss and
visual impairment [6]. All these features, together with the “accelerated ageing” phenotype,
used to result in a short life span: in the 1930s, most people with DS lived only up to 10
years of age [7]. This improved lifespan gradually increased to 35 years in the 1980s [8],
and nowadays people with DS live on average of 60 years [9]. The increase in longevity has
allowed the manifestation and study of AD in DS [10,11]. Virtually all adults with DS over
40 years of age present the typical AD-like neuropathological features of fibrillary (senile)
plaques and neurofibrillary tangles (NFTs) in their brains [12]. The prevalence of AD in
DS increases with ageing in a more pronounced way, and at a much earlier age than in
the general population, or among other groups of people with intellectual disabilities [13].
AD in people with DS is often diagnosed first in young adults and increases exponentially
until the majority have a clinical diagnosis of AD around the age of 60 [14–16]. According
to a twenty year longitudinal study following people with DS [16], 97.4% developed
dementia with the risk of dementia increasing from 23% at around 50 to 80% at age 65
and above. However, some people with DS who may have died younger because of other
co-morbidities will influence these estimates and so result in a survival bias of the figures.

Autosomal dominant AD (ADAD) is caused by fully penetrant mutations in one of the,
thus far recognised, three genes, amyloid precursor protein (APP) and presenilin (PSEN) 1
and 2, which follow a Mendelian autosomal dominant inheritance pattern. ADAD repre-
sents < 1% of all AD cases and the relative frequencies due to mutations in PSEN1, PSEN2
and APP are 69%, 2% and 13%, respectively [17]. The number of disease gene mutations
discovered is huge: over sixty, seventy and three hundred specific gene mutations are
associated with APP, PSEN1 and PSEN2, respectively; knowing the specific mutation for a
given case can help inform precision medicine approaches for patients.

APP is encoded on chromosome 21 and is pathological with respect to dementia when
it is duplicated(dupAPP) [18]. The dupAPP results in an increase in APP gene dosage,
similar to that of trisomy of chromosome 21 in DS.

APP is a transmembrane protein that is proteolytically cleaved at different specific
residues by secretases: the α-secretase, which is responsible for the products of the “non-
amyloidogenic” pathway, and the β- and γ-secretases that result in the products of the
“amyloidogenic” pathway. Cleavage via the β- and γ-secretases at different sites leads to
the formation of Aβ peptides of different sizes such as Aβ40 and Aβ42, which are 40 and
42 residues long, respectively. AD causing mutations in the APP gene are clustered around
the three cleavage sites, with most of them affecting the γ-secretase site of cleavage. The
positions of these mutation sites increases the generation of the Aβ42 which is more insolu-
ble and more prevalent in cored Aβ-plaques compared to the Aβ40 peptide [19]. PSEN is
one of the catalytic subunits of the γ-secretase complex [20]. Most PSEN mutations cause a
loss of function of γ-secretase and increase the Aβ42/Aβ40 ratio [20], thereby promoting
oligomer formation. Aβ peptides undergo a biophysical transformation from monomers
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to oligomers before being deposited in Aβ plaques. Consistent with the amyloid cascade
hypothesis [21], it is such monomers and oligomers that are thought to be particularly toxic
to brain tissue. Hereditary forms of AD provides strong support to the amyloid cascade
hypothesis as they show how alterations in the processing of APP with resulting aberrant
levels of Aβ42 represent a strong driver of synaptic and neuronal loss [20]. However, it is
noted that the amyloid cascade hypothesis hinges on neurodevelopmental processes and is
therefore best suited to genetic or chromosomal causes of dementia.

When considering ADAD, the phenotype variants between carriers of the different ge-
netic mutations, as well as between variants of the same gene need to be considered [20,22].
ADAD phenotypes are influenced by mutation position and causative gene [22]. The
different phenotypes are characterised not only by different clinical features and ages of
onset but also by aspects of underlying pathology. For example, APP Flemish and Dutch
mutations present with recurrent cerebrovascular events, due to amyloid accumulation
in the blood vessels rather than as parenchymal amyloid plaques [23]. In contrast, the
APP Icelandic mutation has a protective effect against AD and cognitive decline [24]. With
PSEN1, mutations before and after codon 200 are pathologically different [25] and have
different ages of onset [22]. PSEN2 mutation carriers show atypical presentations that
resemble dementia with Lewy bodies or frontotemporal dementia [26], when compared to
the other types of ADAD. The heterogeneity associated with different ADAD mutations is
therefore very important to consider.

The different forms of AD have many similarities and differences, understanding of
which can allow a deeper insight into the mechanisms of AD. Notably, it can clarify the role
that different genes, their mutations and proteins play in the development of the disease.
In addition, given the difficulty in the general population of predicting the transition from
preclinical to clinical AD, studies of EOAD are valuable as they are expected to increase
predictability, are very valuable. Clinical studies in DS have some advantages as there
is both a high risk and predictability of developing DSAD, and the AD neuropathology
seems more homogeneous than in LOAD. Moreover, in ADAD and DS, the earlier age of
onset reduces the impact of confounding factors associated with ageing, thereby allowing
the pathological characteristics of AD to be better discriminated. However, the triplicated
genes on chromosome 21 may limit the extrapolation of data from DS populations to other
populations, and neurodevelopmental factors need to be taken into account.

There are many factors associated with the development of AD. In the non-DS pop-
ulation, these factors include not only ageing, but also cardiovascular risk factors (17),
traumatic brain injury [27], number of years of education [28] and genetic risk factors [29].
Genetic risk factors include a family history of AD, including the ADAD mutations in
PSEN and APP and the possession of some SNPs or gene alleles that, through the genetic
analysis of large populations [30], have been linked with the disease. The possession of
the E4 allele of the apolipoprotein E (APOE) gene is one of the major factors that influence
the development of AD [31]. The evidence for APOE’s effect on the clinical presentation of
ADAD [22,32] and DSAD [33–35] is becoming clearer despite genetic mutations that cause
AD masking the effect of APOE. For instance, it has been found that the APOE ε4 allele
correlated with earlier clinical and biomarker changes of AD in DS [36]. It is also noted that
the Christchurch mutation, R136S in APOE3 (homozygous) in a PSEN1-E280A mutation
carrier, reported relatively little decline in cognition despite ageing and little evidence of
tau-deposition despite relatively greater amounts of amyloid being detected using PET
imaging [37].

In DS, an extra copy of APP is sufficient to cause AD [38]. However, there are other
genes on chromosome 21 [39] whose overexpression may enhance or modify the risk for
AD [40]. Some of these candidate pathogenesis gene modifiers include beta-secretase-2
(BACE2) [27] and DYRK1A [41,42], both of which are related to the calcineurin-NFAT
signaling pathway that is altered in AD [43]. Some studies however argue against the
activity of BACE2 in DS [44] as being pathological since it is able to cleave APP toward the
non-amyloidogenic pathway. Other studies have argued that BACE1 could instead play a
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greater role [45]. It is also possible that DS cells respond to the increased gene dosage by
enhancing DNA methylation [46] thereby accelerating epigenetic changes that are usually
associated with ageing [47]. This could account for the “accelerated ageing” phenotype
observed in DS.

Comparisons of dementia in LOAD and ADAD [19,48] and in LOAD and DSAD [49]
have been carried out. However, there is very limited literature comparing DSAD with
ADAD or all three conditions [50]. The aim of this review is to synthesise and present the
literature on all the three conditions.

2. Methods

A search through PubMed and the Cochrane library was performed to exclude the
existence of another review in this topic. Then, a structured review was undertaken
following the guidelines provided by PRISMA Protocols [51]. First, a search in PubMed was
carried out of the literature published about humans since 2000 and relating to Alzheimer’s
disease in Down syndrome, using the MeSH terms: (“Alzheimer Disease” [Mesh] AND
“Down Syndrome” [Mesh]). From the 482 results, 219 were assessed for eligibility based
on their relevance from their title and abstract, and from those, 133 were selected after a
full-text review. For the autosomal form, broader search methods were applied. As there is
no MeSH term for this condition, three searches were undertaken with the same parameters
as for Down syndrome: (“Alzheimer Disease” [Mesh] AND (clinical features [All Fields])),
this produced 340 results from which 27 were screened and 18 selected; (“Neuropathology”
[Mesh] AND “Alzheimer Disease” [Mesh]), with 19 results from which 2 were eligible but
excluded as duplicated; and (“Histology” [Mesh] AND “Alzheimer Disease” [Mesh]), with
161 results from which 2 were screened and 1 included. We included 36 articles from the
84 publications highlighted by the DIAN study in thie website [52] as their collection of
important publications was considered a valuable resource of information for ADAD. DIAN
stands for the Dominantly Inherited Alzheimer Network, a longitudinal observational
study to monitor individuals who carry one of the gene mutations known to cause ADAD
with the main goal of identifying changes and establish reliable biomarkers. For LOAD, no
special search was undertaken initially, as the information about this condition is implicit
in the articles from the two other conditions. However, some specific searches were carried
out to cover omissions in the information, adding a total of 6 articles.

The exclusion criteria applied to select the articles from their abstracts were the
following: (a) n = 1, (b) only the title or abstract available, (c) opinion articles, clinical
trials, novel test descriptions or protocol revisions, (d) no specific content about AD in
papers relating to Down syndrome (e) no specific reference to familial or genetic causes
for dementia in the search for ADAD. From the selected articles, we have finally included
those that did not fulfil any of the previous exclusion criteria nor, following a full-text
review contain any new information. Finally, reference lists of selected papers were also
searched for potentially relevant studies, adding 42 papers to the 75 included for Down
syndrome, 19 to the 30 included for the autosomal dominant form, and 21 papers to the 7
for the sporadic form of the disease-references from these papers also were examined (an
addition of 94). The search process is summarized in Figure 1.
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Figure 1. Search methodology undertaken for the review. AD, Alzheimer’s Disease; DS, Down
syndrome-associated; FAD (Familial Alzheimer’s Disease), DIAN, the Dominantly Inherited
Alzheimer Network.

3. Clinical Features

Several issues need to be considered for the critical review of the discussion presented
below. Comparing inherited and sporadic AD brings different problems, as survival and
clinical features are likely to be affected by the age of onset. Younger, healthier patients may
survive longer and until the later stages of the disease. Therefore, clinical features may be
more noticeable and easily detectable than in older patients with LOAD, who are generally
frailer, often with comorbidities that may or may not be related to AD, potentially causing
difficulty in diagnosis. Phenotypic heterogeneity, which is especially common in ADAD,
also needs to be considered. These differences may be biased by diagnostic issues. In
people with DS, there are difficulties arising from the presence of a large range of DS-related
comorbidities. There is also great baseline variability in cognitive and adaptive (day-to-day
living skills) functioning due to how the intellectual disability interferes with the ability
to reliably measure or recognise cognitive and functional decline and which makes the
application of standard clinical or neuropsychological tests for a dementia diagnosis harder.
In such cases, diagnosis, often based on the caregiver’s report, may be subjective or have
interpretative bias such as when more relevance is placed on some signs rather than on
others. Finally, first symptoms may pass unrecognized in LOAD while in the familial cases,
there can be an earlier awareness to the presentation of symptoms [20]. These factors are
critical to consider when comparing the clinical features of the different forms of AD.

3.1. Diagnosis

In the general population, there is no single test that allows us to accurately and
specifically predict the time of diagnosis of AD before the cognitive and functional decline
begins [53]. In fact, a focus of the research in AD is the search for biomarkers that may
predict the onset and impact of the disease [54]. However, in ADAD, the full penetrance of
the mutations allows the onset of AD to be more predictable. In DS, prevalence data can
give an estimate or probability of diagnosis at given age ranges.

3.2. Age of Onset

Multiple risk factors influence the age of onset in DS [55], such as certain SNPs
(single nucleotide polymorphisms) [56] and genetic variants [57] like APOE, PICALM [58]
and even TAU haplotypes [59,60]. Among this group, age of diagnosis is an important
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predictor of survival time along with severity of intellectual disability, socio-economic
status, anti-dementia medication status and history of epilepsy [61].

Among those with DSAD and LOAD, there are sex differences in age of onset, with
women at greater risk of developing the condition [62]. Longitudinal studies have sug-
gested that variants in the oestrogen receptor genes-β [63] and -α [64]. Subsequently, it has
been suggested that age at menopause increases the risk of AD in DSAD and in LOAD,
possibly menopausal oestrogen deficiency being a factor. The impact of oestrogen may be
important in familial AD too, since the risk of the condition is associated with in oestrogens
receptor-1 gene variants [65].

Figure 2 shows the age of onset of diagnosis and survival time for the different forms
of AD. Despite differences in age of onset, individuals with ADAD and LOAD have similar
survival times. Among those with DSAD, the time between diagnosis and death in DS may
reflect a bias from late diagnosis, or the impact of comorbidities. Such an explanation is
consistent with the clinical course of DSAD appearing similar to that of individuals with
an APP duplication (dupAPP).

Similarly, shorter survival times [32] are associated with ADAD with clinical symp-
toms appearing at an earlier or later age, rather than in midlife (between 35 and 65 years)
The duration of survival for younger people is likely to reflect the highly pathogenic nature
of the mutations [32], while for their older counterparts, it is likely to be limited by expected
lifespan. PSEN2 mutation carriers typically have a later onset than the other hereditary
cases as shown by a study of 1307 ADAD mutation carriers [32]. This may lead them to be
categorised as LOAD [66]. It is important to note that Figure 2 does not account for the
differences due to the different mutations that can occur a particular gene in ADAD. For
instance, PSEN1 mutations before codon 200 are usually associated with an earlier onset
[41.3± 7.2] than those with mutations at sites beyond [45.8± 6.4], as seen in a retrospective
analysis of 168 PSEN1 mutation carriers (p < 0.0001) [22].
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Figure 2. Schematic representation of the average duration of Alzheimer’s clinical course that has been reported for the
sporadic form of the disease (LOAD) [67], the familial one (PSEN1, PSEN2, APP and dAPP) [68]; and AD in the DS
population (DS) [61]. * The mean age of death for LOAD was calculated from the mean age at onset plus the average
survival; LOAD = Late-onset Alzheimer’s disease.

3.3. Vasculature

The vasculature plays a very important role in the pathology of dementia. In LOAD,
the association with vascular risk factors may be detrimental as it may accelerate dementia
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progression by reducing the clearance of Aβ40 across the endothelium [69]. In contrast,
in DS, vascular dementia, as well as other vascular pathologies such as infarcts, are un-
common (but see below), perhaps due to an absence of cardiovascular risk factors, such
as hypertension [70]. Hypercholesterolemia does not appear to be a risk factor for AD in
DS, according to a study of the total serum cholesterol levels of 179 persons with DS [71].
Nevertheless, prescribed statins (to reduce cholesterol) may be protective [72], possibly
because they have an anti-inflammatory action. Furthermore, in DS, the integrity of brain
blood vessels impacts on dementia pathology in DS [73]. Drachman et al. [73] for example,
found that microvascular numbers and endothelial integrity were similar in LOAD and
DS [73], thus not going against the microvasculature hypothesis of dementia. Importantly,
sleep apnoea and obesity, which are associated with DS, may increase the risk of cere-
brovascular pathology [70]. Moreover, some cerebrovascular disease biomarkers such as,
enlarged perivascular spaces and white matter hyperintensities are associated with DS in
adults [62]. These markers tend to increase as AD progresses, thereby leading us to believe
that AD may be associated with cerebrovascular disease. Similar observations are seen in
ADAD [74].

Cerebral Amyloid Angiopathy (CAA) is a condition where there are amyloid deposits
in the walls of brain vasculature. This can lead to cerebrovascular dysfunction, including
blood–brain barrier disruptions and microhaemorrhages, which have been associated with
cognitive decline and dementia [75]. CAA is common in LOAD, but it is more prevalent
and severe in hereditary cases of AD despite presenting at a younger age, as described
in a neuroimaging study [75,76]. The frequency of CAA in ADAD is similar to that in
DSAD [76], though this may differ depending on the mutations being compared (see below
for comparison with dupAPP). In ADAD, CAA is especially frequent in carriers of muta-
tions in PSEN1 after codon 200 [77]. It is also common in the Flemish APP mutation, which,
according to the study of 5 mutation carriers [78], is characterized by cerebrovascular events
probably reflecting the fact that in this familial form, senile plaques accumulate mainly on
blood vessels, as was seen by image and mass spectrometric Aβ peptide analyses of one
family [79]. In DS, CAA is particularly common, especially in middle aged persons [80].
DS provides a good model to study the relationship between AD and vascular problems as
certain vascular pathologies are normally rare in DS [81]. The higher frequency of CAA
in DS was observed in a study that compared post mortem brain tissue of 32 DS with
80 LOAD [75] and was later confirmed in another study [82]. The study of 5 families
showed that CAA is prevalent in people with duplications of the APP locus [83] who
present with frequent haemorrhagic events; even more so than in people with DS or APP
mutation. The CAA subtype was also different between dupAPP, mutated APP and DS,
with more extensive involvement in dupAPP carriers [84]. Conversely, plaque formation
was higher in carriers of mutated APP and DS compared to dupAPP [84]. The difference
between dupAPP and DS suggests potential protective factors in DS [76,81,83].

3.4. Amnestic Phenotypes

AD is characterized by memory problems from the earliest stage of its clinical course.
However, this initial feature is not uniform and heterogeneity has been reported to be
dependent on age of onset, according to a study of 7815 patients from various academic
centres [85].

In DS, the first clinical symptoms appear to be largely similar to those in AD [86] when
diagnostic criteria based on those for LOAD in the general population are used. Memory
features may be less obvious when diagnosis is wholly dependent on carer reports (see
below). In people with DS, early symptoms of AD may be mistaken as part of intellectual
disability [87] (‘diagnostic overshadowing’) or may be obscured by comorbidities such
as sleep apnoea or depression [88–90]. It has been suggested [91], that individuals with
higher level of cognitive functioning at baseline are at lower risk of AD but more studies,
with larger samples are required.
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Starting with a cross-sectional study of 68 institutionalised people with DS, it has been
found that one of the earliest signs of dementia is an impairment of recent memory in the
absence of loss of long-term memory [92]. The earliest stages of DSAD are characterised
by, episodic memory loss [93–97], similar to that of the mild cognitive impairment (MCI)
phase described in people with LOAD [98] and ADAD [20]. The loss of episodic mem-
ory precedes functional deterioration [99,100] by many years. Similarly, a retrospective
study of 449 PSEN E280A mutation carriers described an amnestic cognitive impairment
phase preceding the onset of dementia by up to two decades [101]. The loss of episodic
memory, measured by free recall correlates with pre-clinical accelerated hippocampal
atrophy (see the DIAN cohort studies; [102], and has been associated with early navigation
problems [103]. In later stages, a deterioration in cued recall is found [99].

The timeline of deterioration of skills depends on the particular form of AD. In a
10 year longitudinal prospective study of 19 people with ADAD, it was observed that in
the early stages, naming, spelling and visuo-perceptual skills were better preserved than in
LOAD [104]. Visual deficits occurred in the late stages [20], particularly in PSEN1 mutations
after codon 200 [68]. Similarly, for those with DS, loss of visuospatial skills occurs early [93–
97]. However, visuo-perceptual deficits, similar to those reported in LOAD [105], have also
been reported in people with DS without dementia using psychophysical tests [106] and
visual evoked potentials [107]. The mean ages of these DS cohorts were c. 40 years and 26
years, respectively. How these pre-dementia diagnossis changes in DS relate to age-related
decline is unclear.

In DS, attention deficits have been described in the early stages of AD [87,97,108],
while in ADAD, attention deficits are observed in the preclinical phases of the disease [109].
With regard to language, in DS, there is already a major neurodevelopmental effect on
expressive language, and cases of LOAD can also present with language deficits [110]. In
fact, assessment of language skills could potentially help in identifying earlier DSAD [111].
In ADAD, language deterioration has been associated with a specific PSEN2 [112] and
another PSEN1 mutation, whereas memory has been relatively well-preserved [113].

With AD progression in DS, amnestic symptoms increase [114]. Carers report general
slowness, greater effects on cognitive domains, and the loss of adaptive skills [49,115] over
time. In contrast, among DS individuals without dementia, a decline in functional skills is
much more common [116], perhaps reflecting better established skills in individuals who
do not have dementia and therefore not so demanding.

3.5. Non-Amnestic Phenotypes

In AD, non-amnestic phenotypes are rarer than amnestic phenotypes. Such atypical
presentations may be associated with the altered proteolytic processing of other substrates
rather than of APP. Both atypical and typical symptoms do not correlate well with Aβ
plaques but rather NFT pathology [117]. In the past, individuals with atypical pheno-
types were often diagnosed later but developments in biomarker testing is making earlier
diagnosis possible [118].

Executive dysfunction is a common characteristic of LOAD, and may affect up to two-
thirds of people with this diagnosis [119]; however, in a minority of case (possibly around
a quarter) atypical presentations occur [19,26]. As mentioned, non-amnestic phenotypes
also present in people with DS and they already perform more poorly pre-morbidly on
tasks of executive functioning than other people with intellectual disabilities [120]; further
among those with DSAD, performance is markedly poorer [121].

Personality changes, observed by carers [24], and often referred to as ‘behavioural
and psychological symptoms of dementia (BPSD)’ [122] may be one of the first signs of the
pre-clinical stages of DSAD [123]. BPSD comprises reduced empathy, emotional lability,
apathy and social withdrawal [49,124], but not necessarily depression. The constellation
of symptoms was first described in a longitudinal study of 108 individuals with DS, 68 of
whom later developed dementia [125]. Later studies have supported these findings for
example, personality changes were reported during the first stages of AD in a sample of
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participants (n = 331) from the DIAN cohort [24,126]. Changes in personality may, indeed,
frequently occur before a decline in memory during the clinical stage of DSAD [124].
Despite the appearance of BPSD, which affects daily functioning [86,127] and is therefore
easier to identify compared to memory changes, depression remains the major mental
health issue affecting adults with DS [128]. As with other groups, the symptoms of
depression may overlap with those of dementia [129].

The frequent presence of personality changes together with the executive dysfunction
in DS [121] have suggested an early impact of dementia on the frontal lobes and/or their
underlying neuronal circuits [130,131]. The pre-frontal cortex is an area that is underde-
veloped and may be more susceptible to neurodegeneration in people with intellectual
disability because of a reduction in cognitive reserve [132]. The findings of a neuroimaging
study of fractional anisotropy, involving 20 adults with DS, half of whom had a diagnosis
of DSAD, indicated a decrease in frontal white matter integrity that was associated with
a decline in cognition [133]. A different perspective is that personality changes, at least,
reflect the impact of negative life events, which are known to increase the risk of the
development of AD [134]. Some of the available evidence does not support this view. For
example, behavioural changes, such as disinhibition and problems in executive functioning
(e.g., in planning, sequencing) are seen in the early stages of DSAD, while apathy appears
more frequently only in the advanced stages [135]. In LOAD, in contrast, disinhibition is
not seen until dementia advanced [136]. Further studies that take into account the relative
underdevelopment of the frontal lobes in individuals are needed. Similarly, it will be
important to consider the heterogeneity of the DS population: in people with severe or
profound intellectual disabilities, early behavioural or personality changes are much more
readily identifiable than changes in memory [124].

Personality changes that are so marked that they present as psychosis have also been
reported among all groups with dementia. The symptoms affect about half of those with
LOAD [137] but their prevalence remains uncertain in DSAD and the hereditary forms
of dementia.

3.6. Neurological Symptoms

Neurological symptoms can present as the non-amnestic phenotype of AD. These tend
to be more prominent and occur earlier in DSAD than in LOAD as shown by a 14 years
longitudinal study of 77 persons with DS where it was found that neurological symptoms
were more prevalent in DS with dementia than in non-demented DS (p = 0.0075) [15].
Similarly, presenting neurological symptoms are more common in ADAD [19] than in
LOAD, especially in kindreds with a very early onset age of dementia (<40 years) [20].

The prevalence of neurological symptoms in ADAD was further corroborated by
Voglein et al., 2019 [138]: motor symptoms had a prevalence of about 30% in ADAD, with
increasing severity as the disease progresses [138]. In ADAD, there was a higher frequency
of motor findings than in LOAD (28.4% versus 12.8%; p < 0.001) and the severity was also
greater (mean UPDRS-III scores 2.0 versus 0.4; p < 0.001). Bradykinesia was particularly
common in ADAD [138]. In the same study it was also found that the frequency and
severity of the motor symptoms correlated positively with Aβ deposition within the
basal ganglia. Indeed, there was a greater amount of Aβ in ADAD compared to LOAD
(Pittsburgh compound B-standardized uptake value ratio 2.472 versus 1.928; p = 0.002).
The heterogeneity in ADAD is noted as the frequency and severity of the motor symptoms
were higher in PSEN1 mutations after codon 200 compared to those before codon 200 [138].

Some APP mutations in the Aβ coding domain (positions 692–694) have a clinical pre-
sentation at onset with epilepsy or resembling Dementia with Lewy Bodies [26]. Between
16% to 25% of PSEN1 mutation carriers, mainly with mutations in exon 8, after codon
200, show a non-amnestic phenotype [22,26] and present with behavioural and psychiatric
symptoms, aphasia, visual agnosia, neurological signs and dysexecutive syndrome [26]. A
retrospective study of 85 PSEN1 and 36 APP mutation carriers revealed the presence of
spastic paraparesis, extrapyramidal signs, cerebellar ataxia and myoclonus [22]; but this is
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a rare presentation. Myoclonus was the most common symptom and with an increased
the likelihood of developing seizures (p = 0.001 for PSEN1 and p = 0.036 for APP). Spastic
paraparesis in some PSEN1 mutation carriers have been reported in association with cotton
wool plaques [139,140], Lewy Body pathology (LBP) [26] or white matter and connectivity
defects [141].

Myoclonus and seizures have both been associated with an earlier age of onset and
more severe course of the disease in ADAD as reported in a systematic review [142]. A
study of 5 families with APP duplications found that seizures were common (reported in
12 out of 21 participants) for this genotype [143]. In DS, epilepsy occurs at a frequency of
up to 13% [144] and increases in those with AD diagnosis and up to 75% of adults with
DSAD having epilepsy [145,146]. In contrast, the prevalence of epilepsy is lower in both
LOAD (1.5–12.7%) and ADAD (2.8–41.7%) [147]. In a retrospective cohort study comparing
6430 individuals with DS to 19,176 controls, it was found that the incidence of epilepsy
is elevated at all ages (p < 0.001), at least in Western countries [148]. Seizures occur as a
bimodal distribution: early-onset epilepsy is associated with an absence of dementia, while
myoclonic epilepsy in the late fourth decade of life or later is associated with the onset
of AD [149]. In addition, seizures that had presented after the onset of dementia were
associated with an accelerated functional decline. Such findings are supported by a study
of 11 patients with DS or AD with myoclonic epilepsy [150]. Nevertheless, a review of the
symptoms of people with DS in Japan and China, where epilepsy is less prevalent among
all the population, indicates [150], high rates of epilepsy are not found always found. The
difference could potentially be explained by an environmental impact.

The cause of seizures remains uncertain. No association has been found with APOE
ε4 status in ADAD [22], but in mouse models, both TAU [151] and Aβ deposition [152]
have been related to epileptiform activity. Furthermore, as reviewed in [153], DS neurode-
velopmental abnormalities, including structural and biochemical alterations, may play a
role. It is also possible that the increased prevalence is actually due to an over-reporting
of the atypical symptoms for people with ADAD and DSAD or that their younger age at
onset allows them to survive until the more severe stages of the disease than in LOAD [20].
Another explanation is that this is related to increased plaque load due to Aβ42 deposition
which would explain common observation of seizures in DS, dupAPP and certain other
APP mutations [50]. Alternatively, seizures may be associated with a GABA/Glutamate (in-
hibition/excitation) imbalance. In fact, GABAergic dysfunction has been seen in AD [154]
and is altered in DS [155].

Another characteristic of DS are the musculoskeletal disorders which appear earlier
than in the general population, probably due to the accelerated ageing, and which can
trigger abnormal posture and unsteady gait. This decline has also been associated with
LOAD in its pre-clinical stage [156].

4. Neuroimaging and Neuropathology

A cross-sectional functional MRI connectivity study of 83 mutation carriers from
the DIAN cohort, harbouring either APP, PSEN1 or PSEN2 mutations, reported that the
clinical diagnosis of AD can be preceded by many years by functional disruptions of the
default mode network (DMN) in ADAD [157]. Similar changes in resting state network,
though occurring later, are found in LOAD [157,158]. Altered default mode connectivity
was also observed in adults with DS with detectable fibrillar Aβ as measured by positron
emission tomography (PET) using PiB as the tracer [159]. There are different explanations
for the functional changes described. In ADAD, pre-clinical white matter degeneration
may contribute to DMN disruption [160]. A similar explanation may be applicable to
DS [12]. In DSAD, the preclinical stage could be characterised by different compensatory
responses [161]. For example, an increase in glucose uptake was described in a cross-
sectional PET study that compared the regional cerebral glucose metabolic rates (GMR) of
17 DS with both demented (n = 10) and non-demented controls (n = 24) during a cognitive
task [162].
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In AD, a classification or staging of the disease using biomarkers has been devel-
oped: the A/T (N) system which describes the presence or absence of Aβ (A), tau (T)
and neurodegeneration (N) without taking into account the order of onset of biomarker
change. [163,164]. In order to unify criteria among research centres, the application of the
A/T/N system has been examined. Using this description of the pathological process,
it has been established that the biochemical changes in DSAD, ADAD and LOAD are
similar both in direction and magnitude. In addition, the three types of dementia have
similar atrophy, hypometabolic and Aβ deposition maps. Figure 3 (taken from Fortea
et al., 2017 [165]) shows changes in several metrics in DSAD. The pattern of changes in
neuroimaging and biomarkers, which is similar in LOAD and ADHD [166,167] indicates
the following order: an increase in amyloid deposition, followed by a decrease in glucose
metabolism, and finally atrophy, across many cortical regions. In all three conditions, this
similarity in the order of change of biomarkers is referred to as the “Jack curve” [168]. The
findings indicate that the A/T/N system has potential as a screening tool in AD.

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 11 of 29 
 

 

sponses [161]. For example, an increase in glucose uptake was described in a cross-sec-

tional PET study that compared the regional cerebral glucose metabolic rates (GMR) of 17 

DS with both demented (n = 10) and non-demented controls (n = 24) during a cognitive 

task [162]. 

In AD, a classification or staging of the disease using biomarkers has been developed:  

the A/T (N) system which describes the presence or absence of Aβ (A), tau (T) and neuro-

degeneration (N) without taking into account the order of onset of biomarker change. 

[163,164]. In order to unify criteria among research centres, the application of the A/T/N 

system has been examined. Using this description of the pathological process, it has been 

established that the biochemical changes in DSAD, ADAD and LOAD are similar both in 

direction and magnitude. In addition, the three types of dementia have similar atrophy, 

hypometabolic and Aβ deposition maps. Figure 3 (taken from Fortea et al. 2017 [165]) 

shows changes in several metrics in DSAD. The pattern of changes in neuroimaging and 

biomarkers, which is similar in LOAD and ADHD [166,167] indicates the following order: 

an increase in amyloid deposition, followed by a decrease in glucose metabolism, and 

finally atrophy, across many cortical regions. In all three conditions, this similarity in the 

order of change of biomarkers is referred to as the “Jack curve” [168]. The findings indicate 

that the A/T/N system has potential as a screening tool in AD. 

 

Figure 3. Integrated model of the natural history of AD in individuals with DS. Changes in struc-

tural, metabolic, and biochemical biomarker parameters as a function of age by use of the standard-

ised differences between participants with DS and cognitively healthy controls fitted with a locally 

estimated scatterplot smoothing curve. Positive standardised differences represent higher bi-

omarker values in participants with DS than in euploid controls, and negative values represent 

lower biomarker values. The vertical dashed line at 50·2 years represents the age at the expected 

symptom onset (median age of prodromal Alzheimer’s disease diagnosis). CAMCOG-DS (Cam-

bridge Cognitive Examination for Older Adults with Down Syndrome) comprises brief neuropsy-

chological tests used to measure cognitive decline. NFL = neurofilament light chain. p-tau = tau 

phosphorylated at threonine 181. From Fortea et al.,[165] 2020 . CSF (cerebrospinal fluid).   

Figure 3. Integrated model of the natural history of AD in individuals with DS. Changes in structural,
metabolic, and biochemical biomarker parameters as a function of age by use of the standardised dif-
ferences between participants with DS and cognitively healthy controls fitted with a locally estimated
scatterplot smoothing curve. Positive standardised differences represent higher biomarker values in
participants with DS than in euploid controls, and negative values represent lower biomarker values.
The vertical dashed line at 50·2 years represents the age at the expected symptom onset (median age
of prodromal Alzheimer’s disease diagnosis). CAMCOG-DS (Cambridge Cognitive Examination
for Older Adults with Down Syndrome) comprises brief neuropsychological tests used to measure
cognitive decline. NFL = neurofilament light chain. p-tau = tau phosphorylated at threonine 181.
From Fortea et al. [165] 2020. CSF (cerebrospinal fluid).

The Thal Aβ phases (or staging), show the progression of Aβ deposition in the brains
of AD patients at different points in the disease. In AD, the deposition of Aβ increases as a
function of estimated years from expected symptom onset, with a characteristic cortical
deposition in LOAD that is shared by ADAD, though it does not follow the exact same
pattern [167]. A PIB-PET study of 128 ADAD mutation carriers found an early deposition
in the precuneus [169] and in the posterior cingulate gyrus [170,171], that is greater in
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those with PSEN1 mutations after codon 200, as well as for those carrying an ε4 allele [20].
Similar brain amyloid deposition patterns are seen in DSAD, whereby there are neuritic
plaques in the parieto-temporal, precuneus, posterior cingulate, and frontal regions similar
to LOAD [172]. A (18F) FDDNP PET amyloid study showed that plaque density was higher
in the brains of 19 adults with DS without dementia when compared with 10 patients with
LOAD, and its deposition was greater in the frontal and parietal cortex [173].

In LOAD, there is no initial striatal deposition as measured by PET amyloid-ligands.
Diverging from LOAD, 11C-PIB-PET imaging studies of 49 adults with DS [174], and
of 346 ADAD individuals [167] have report that, in genetic AD there is an increased
Aβ deposition in subcortical regions, especially in the striatum. The significance of this
observation, which is universal in ADAD and in DSAD, however, is unclear. It could
potentially be a consequence of reduced clearance mechanisms in the striatum in genetic
AD. Figure 4 shows a map of the progression of Aβ binding to different areas of the brain.
As in the E280A PSEN1 mutation there seemed to be no binding to the striatum [171],
which highlights the heterogeneity of ADAD. The degeneration pattern is not equally
followed in all brain areas in ADAD, as some regions show different susceptibility in a
mutation-dependent way [166,167]. Whilst there is no initial striatal Aβ deposition in
LOAD, as the disease progresses, there will eventually be deposition of Aβ there [175,176].
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Figure 4. A schematic brain map of numbered Brodmann areas and subcortical regions of interest
colored according to the PIB staging model in DS, where shade 1 denotes the area affected first (i.e.,
the striatum) and shade 9 the area affected latest (the amygdala). Abbreviations: thal, thalamus;
amyamyg- dala; PIB, Pittsburgh compound–B. From, Annus et al., 2016 [174].

The increased Aβ is associated with the allele ε4 is seen in the general population [177],
but its role in ADAD [142] and DS was controversial when comparing the results obtained
by the previously cited studies [178–180]. However, Bejanin et al. [36] demonstrated in a
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DS cohort of 464 that the ε4 allele does indeed influence the earlier onset of the presence of
amyloid biomarkers.

Aβ42 plaques are more prevalent than Aβ40 plaques at all ages in ADAD and
DS [12,181]. In DS, concentrations of Aβ40 and Aβ42 are higher compared to LOAD [182].
However, the Aβ42/Aβ40 ratio shows no difference between the two conditions, demon-
strating similar processing and deposition of Aβ40 and Aβ42 [182] during the “transition”
phase to greater plaque numbers. Novel mass spectrometry techniques that accurately
detect Aβ in LOAD have not yet been reported in DS [183]. In ADAD, a study comparing
18 children with the PSEN1 E280A mutations with 19 noncarriers showed that ADAD muta-
tion carriers had increased plasma Aβ42 levels when compared to controls (p < 0.001) [171].
Exceptions, however, are notable. For instance, in the APP mutations—Dutch mutation
E693Q or the Italian mutation E693K—the Aβ42/40 ratio is reduced [50]. These exceptions
may, at first sight, seem to contradict the amyloid hypothesis. However, a reduction in the
ratio does not necessarily mean a reduction in the absolute level of Aβ. A reduction in
the ratio can be due to increases in Aβ40 and/or reduction in Aβ42, but with an overall
increase in total Aβ.

Different studies have reported a range of associations between changes in Aβ levels
and dementia status. A prospective study of 530 individuals found a positive association
between AD and alterations in the concentration of Aβ42 but not Aβ40 [184], a 10-year
follow-up case–cohort study of 6713 participants found that both concentrations were
affected [185] and a longitudinal study of 237 ADAD [186] reported no changes in Aβ
concentration. These different results are also seen in DSAD [12]. A prospective study of 204
adults with DS found alterations just in Aβ42 concentration related to AD [179]. Another
project with 225 adults with DS found an increased Aβ42 and decreased Aβ40 [187].
Similarly, lower levels of Aβ40 were found in 44 participants with DS and dementia
compared with 83 individuals with DS and no dementia [188]. A study of 506 DS found
increases in both peptides [189]. In a meta-analysis Alhajraf et al., 2019 [190] showed that
Aβ40 levels in the plasma increased and that plasma Aβ40 levels could potentially act as a
marker for predicting AD in DS. Some studies reported no changes in Aβ concentration as
was the case reported in a longitudinal study with 78 DS participants [178], and another
study with 60 [180]. It is critical to point out, however, that is no agreement about the best
kind of plasma biomarker assay. The contradictory findings may reflect the use of different
assays in different studies.

CSF soluble Aβ42 levels in ADAD [186] and DS [191] are high early in life and then
decline rapidly as they presumably start depositing into plaques [192]. ADAD mutations,
an ApoE ε4 allele and the chromosome 21 trisomy have been for a long time associated with
a higher density of plaques, as described by in a report of the distribution of senile plaques
in AD [193]. In a post-mortem study of 60 patients with ADAD, neuritic plaques were
found at a higher level compared to 120 participants with LOAD [77]. In PSEN1 mutations,
particularly those after codon 200, cotton-wool plaques seem to be more frequent [194].
In DS, a histological study described that, not only the density of plaques is altered, but
also its form: for 12 DS cases, amyloid plaques were larger and had a more amorphous
morphology than those present in 10 LOAD cases [195]. However, certain studies have
shown that Aβ plaques and neurofibrillary tangles in DSAD are similar in appearance to
LOAD [196].

Following Aβ deposition metabolic deficits start; in a retrospective study of 146 with
DS metabolism was associated with a tendency from aerobic (lower lactic acid levels)
towards more glycolysis and subsequent lactic acid fermentation metabolism [197]. Hy-
pometabolism drives widespread cell stress that leads to neuronal loss, especially in the
precuneus of ADAD mutation carriers, as described by a FDG-PET study of 20 ADAD
versus 20 LOAD subjects and in the posterior cingulated cortices of ADAD [198] and
DS [162]. The hypometabolism pattern in DS is similar to that in LOAD involving the
parietal, precuneus and posterior cingulate [199,200]. Some studies have reported hyper-
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metabolism in DS, especially in young adults as a consequence of less efficient glycolysis
or potential compensatory mechanisms [162,201,202].

Atrophy tends to occur in AD. Serial MRI scans of 66 ADAD participants compared to
28 controls [102] showed that approaching the age of onset of dementia, there is increased
ventricular volume and hippocampal atrophy. In comparison with LOAD, a prospective
MRI study of 12 patients showed that atrophy has an accelerated course in ADAD [203].
Atrophy was also seen in the Down Syndrome Biomarker Initiative, in which 12 DS adults
took part for the volumetric study [204]. The atrophy pattern in DS is similar to that
in LOAD, involving posterior dominant cortical thinning with atrophy of hippocampus,
thalamus, and striatum [205,206]. At this stage, the brain reserve is not sufficient to
compensate for the deficits, and the symptoms that characterise and are associated with
a clinical diagnosis of dementia become evident. In DS, atrophy seems to be less intense
perhaps suggesting that chromosome 21 may encode a gene that is neuroprotective when
triplicated [40]. Another possibility, however, is that the more limited atrophy may simply
reflect smaller whole brain volume in DS, as described in a study from 1991 of 7 adults
with DS [207].

Moreover, the regional distribution of tau (both from PET studies and histopathology)
is broadly similar in DS and LOAD [208]. The pattern accords with the tau Braak staging
system [209,210]. Braak staging shows the distribution of tau within the brain at different
points in AD. Amyloid deposition precedes tau pathology in the cerebral cortex and
subcortical nuclei of the forebrain, akin to LOAD [208]. In addition, and as in LOAD, tau
pathology is first seen in the entorhinal cortex of the temporal lobe [208]. Importantly,
the early involvement of brainstem monoamine producing neuron systems has also been
described in DS [208]. The distribution of tau in ADAD is also similar to that in LOAD
with the areas of high tau PET binding overlapping with those in LOAD [211]. Similar to
LOAD, tau is present in the temporal and parietal regions [211]. However, despite similar
cognitive impairment in the two conditions, there seems to be greater cortical involvement
and higher levels of binding in ADAD [211].

Later in life, there is an increase in CSF tau concentration levels in LOAD [212] and
DS [192], while in ADAD, there is a decrease in its levels, according to a longitudinal study
of 411 individuals [213]. In fact, CSF and plasma biomarkers, notably neurofilament light
and tau181, have been shown to have good potential for predicting AD in DS [165,214,215].
As plaques continue to develop, tangles form, supporting the hypothesis of Aβ as the
driving force in AD [216]. The time lag between Aβ pathology and NFT pathology is
similar in ADAD and DS [217]. The distribution of plaques and NFT is similar between the
three groups [40] and in a 15 year prospective study of 92 hospitalised adults with DS, it was
shown that NFTs also correlate better with dementia than with amyloid deposition [218].

The different subtypes of LOAD and the neuroimaging findings and biomarker
changes for these subtypes reveal respective differences [219]. For instance, four dis-
tinct trajectories of tau deposition have been demonstrated in LOAD [220], and in terms
of the temporal complexity, three subtypes can be classified [221]. In discussing the neu-
roimaging and neuropathology of LOAD, the focus throughout this review has been on
the LOAD that presents with amnestic symptoms.

5. Co-Pathologies

AD is often associated with co-pathologies such as Lewy body pathology (LBP) and
TDP-43 pathology [219]. The number of co-pathologies increases with age [222]. These
can affect both diagnosis and disease progression. Although they are not the focus of this
review, they are briefly considered here.

5.1. Lewy Body Pathology

Lewy bodies (LB) are pathological aggregates of proteins in the brain. In an autopsy
study, it was found that the number of LB deposits in DS increases with age [223]. Clinically,
this can manifest as LB dementia but it is rare in DS, but the first case was reported in
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2010 [224]. In both LOAD and ADAD, LB dementia is a frequent comorbidity as has
been reported in both the ADNI and DIAN cohorts [225]. In ADAD, LB dementia is more
common than might be expected to occur in a young population; we speculate this may
also be true in DS. The explanation may lie in APP mismetabolism [77], following the
hypothesis that LB could be induced by the accumulation of Aβ [20]. LB are less extensive
in ADAD compared to LOAD [77], with the prevalence in LOAD being between 6 and
39% [226].

5.2. TDP-43 Pathology

TDP-43 pathology co-occurs in all three forms of AD and seems to be associated with
the development of amnestic phenotypes [227]. The distribution of TDP-43 affects the
amygdala and hippocampus more than the neocortical regions, where there is an absence
of TDP-43 [228]. However, the frequency at which TDP-43 pathology cooccurance in the
three forms differs. TDP-43 pathology seems to be more prevalent in LOAD compared to
ADAD and DS [227]. In LOAD, limbic predominant age-related TDP-43 encephalopathy
neuropathological change (LATE-NC) occurred in 57% of cases and correlated with faster
disease progression and cognitive impairment [229]. This, and similar, findings have led
to the hypothesis that TDP-43 pathology may be a side effect of ageing rather than of
AD [227].

6. Other Similarities and Differences

There are other similarities and differences observed in neuropathology between the
LOAD and in DS that have not yet been thoroughly examined. These include impairments
of the noradrenergic [230] and immune systems [231], NGF metabolism [232,233], enhanced
inflammation, and increased oxidative stress [231]. Such features warrant further inves-
tigation since although APP plays an important role, there are many oxidative [234,235]
and inflammatory [236] genes on chromosome 21 that overexpressed in DS. These genes
may cause a neuroinflammatory states that as in LOAD, may result in a self-amplifying
cycle that leads to the development and/or maintenance of AD [237]. In common with
LOAD [238], DS shows upregulation of inflammatory response, as seen by elevated lev-
els of cytokines [239] or the association of proteins of the complement cascade to Aβ
plaques [240]. Moreover, in DS, there is also increased microglial activation with increased
age compared with healthy controls [241]. Nevertheless, there appear to be differences: for
example, reflecting the distinct profile of microglial states in LOAD, the neuroinflammatory
phenotypes of the two conditions are not the same [242].

There are other areas to investigate. First, there is neopterin, a marker for cell-mediated
immune activation and inflammation. Higher plasma concentrations have been found
in individuals with DSAD compared with those with DS without dementia [243]. At the
same time, neopterin levels in urine predict cognitive decline in people with DS over
time [244]. A different focus is IL1β. Levels of IL1β levels were higher in DS compared
to LOAD [182]. Moreover, IL1β was correlated with t-tau, suggesting that it may be
associated with neurodegeneration [182]. It should be noted, however, that high levels
of IL1β in DS may simply reflect increased prevalence of autoimmune conditions and/or
heightened vulnerability to infections in people with the condition [182], presenting as
autoimmune diseases [245] such as hypothyroidism [246]. Secondly, the development of
DSAD may also be facilitated by increased vulnerability to certain infections. For example,
the severe immunodeficiency in the salivary IgA for DS [247] along with the increased
susceptibility for impairments of DS’s gingival fibroblasts [248] may be related to the higher
prevalence of severe early-onset periodontal diseases in DS [249]. Periodontitis caused by
Porphyromonas gingivalis has been linked to an increased risk of developing AD [250,251].

In DS, mitochondrial dysfunction and its consequent higher levels of reactive oxygen
species (ROS) have been reported [12]. Oxidative stress is enhanced in DS compared to the
general population and may contribute to increased lipid and protein peroxidation that
promotes increase in DSAD [252]. Moreover, the level of superoxide dismutase enzymes,
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which are antioxidant enzymes, could predict memory decline over time in DS [253]. Fur-
ther corroborating the relationship between AD and oxidative stress is the suggestion that
changes in iPF2α, a marker of oxidative stress, are correlated with cognitive decline [254].
Increased oxidation has also been linked with increased Aβ production [255,256]. Moreover,
as in LOAD, the mitochondrial DNA (mtDNA) mutation rate is particularly high in the
brains of people with DSAD [257]. All these processes could contribute to accelerating the
onset of dementia in DS [235]. It has been suggested however that other researchers suggest
that the systemic accumulation of Aβ or the lipid peroxidation may alter the mitochondria
integrity with the resulting dysfunction leading to a self-amplifying loop [234].

7. Conclusions

In the genetic cases of AD (DSAD and ADAD), there are life-long neuropathological
changes that are not present in the general population until the early stages of AD. In the
majority of cases in all the three groups compared, the clinical appearance of dementia
starts with memory deficits. However, in ADAD and DS, there are more non-amnestic
phenotypes. Moreover, in those with DS and most forms of ADAD, there is also more
severe CAA and increased neurological symptoms compared to LOAD. Both people with
DS and carriers of ADAD mutations show a higher and earlier brain Aβ load, as well as an
increased accumulation of Aβ plaques and NFTs. The increased Aβ deposition probably
accounts for the early age of onset described in these hereditary AD cases. Though the
magnitude and direction of changes in the three conditions are generally similar, there
are some differences. In contrast to LOAD, ADAD and DSAD have an increased initial
accumulation in the subcortical regions, particularly in the striatum. Table 1 recapitulates
the similarities and differences between the three forms of AD, highlighting the hetero-
geneities, particularly in ADAD and age associated comorbidities There remain gaps in
our understanding the reasons for the differences in clinical presentation and the genotype-
phenotype relations of these conditions. With on-going large longitudinal clinical studies
of DS, ADAD and LOAD (all funded by the National Institutes of Health), namely ABC-
DS (Alzheimer’s Biomarkers Consortium-DS), DIAN and ADNI, respectively, data from
these studies are beginning to provide a fine-grained characterisation and understanding
of AD. Concurrently, biochemical and cellular understanding is being made possible by
studying known mutations of the genetic forms of the disease aided by the use of induced
pluripotent stem cells, organoids and gene-editing techniques. Importantly, a multi-scale
understanding (for example, molecular changes and their impact on tissue pathology or
cognition) and the generation of new hypotheses is likely when individual case studies are
comprehensively investigated.

There were multiple difficulties encountered throughout this review. The main lim-
itation was the lack of head-to-head comparisons. It is also important to highlight that
many features of DSAD, especially those defined decades ago have not been replicated. It
is difficult to extrapolate which features belong to ADAD in general, rather than to specific
mutations. For the mutations in a particular gene or from the same kindred, we cannot
discard that the characteristics studied belong to the specific mutation of those patients,
as would happen with a case-report, rather than being a shared feature of mutations in
that gene. This is especially the case in PSEN2, which is rare and so cohorts studied tend
to be small. Taking all these considerations into account, we consider that much is left
to be explored and more research is a must. Understanding the pathology behind the
different forms of AD and the differences and similarities with LOAD will hopefully allow
us a deeper insight into the causes of AD and potentially lead to the development of new
targeted and personalised therapies.
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Table 1. Summary of the comparison between the three forms of AD.

LOAD ADAD DSAD

Clinical Features

Mean age of onset 80.2 ± 6
PSEN1 PSEN2 APP dAPP

55.8 ± 6.29
43.3 ± 8.6 58.1 ± 9.5 47.6 ± 7.1 51.5 ± 5.3

Mean age of death 86.1 ± 7.04 50.5 ± 9.7 71.8 ± 10.6 58 ± 8.4 60.4 ± 6.2 59.98 ± 5.98

Cerebral Amyloid
Angiopathy Low High (with higher prevalence in dAPP) High

Amnestic phenotypes

Early episodic
memory loss
Early loss of

visuoperceptual skills
Attention deficits

Language
deterioration

Early episodic memory loss
Late loss of visuoperceptual skills

Attention deficits
Language deterioration (depending on the

particular mutation)

Early episodic
memory loss
Early loss of

visuoperceptual skills
Attention deficits

Language
deterioration

Decline in functional
skills

Non amnestic
phenotypes

(e.g: behavioural
changes and executive

dysfunction)

Less Common More Common More Common

Neurological symptoms
(e.g: epilepsy,

myoclonus, spastic
paraparesis, cerebellar

signs)

Less Common More Common More Common

Neuroimaging and
Neuropathology

Altered default mode
connectivity Present Present Present

Biochemical changes Similar in magnitude
and direction Similar in magnitude and direction Similar in magnitude

and direction

Aβ deposition map Similar Similar Similar

Initial Striatal Aβ Absent Present Present

Hypometabolism map Similar Similar Similar

Atrophy map Similar Similar (but accelerated) Similar

Distribution of tau Similar Similar Similar

CO-PATHOLOGIES

Lewy body pathology Common Most common Rare

TDP-43 Pathology More common
Similar distribution

Less Common
Similar distribution

Less Common
Similar distribution

AD, Alzheimer’s disease; LOAD, Late-onset Alzheimer’s disease; ADAD, Autosomal Dominant Alzheimer’s disease; DSAD, Down
syndrome-associated Alzheimer’s disease.
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