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Abstract: This study aims to assess the feasibility of delineating and identifying mineral ores from
hyperspectral images of tin–tungsten mine excavation faces using machine learning classification. We
compiled a set of hand samples of minerals of interest from a tin–tungsten mine and analyzed two
types of hyperspectral images: (1) images acquired with a laboratory set-up under close-to-optimal
conditions, and (2) a scan of a simulated mine face using a field set-up, under conditions closer
to those in the gallery. We have analyzed the following minerals: cassiterite (tin ore), wolframite
(tungsten ore), chalcopyrite, malachite, muscovite, and quartz. Classification (Linear Discriminant
Analysis, Singular Vector Machines and Random Forest) of laboratory spectra had a very high
overall accuracy rate (98%), slightly lower if the 450–950 nm and 950–1650 nm ranges are considered
independently, and much lower (74.5%) for simulated conventional RGB imagery. Classification
accuracy for the simulation was lower than in the laboratory but still high (85%), likely a consequence
of the lower spatial resolution. All three classification methods performed similarly in this case, with
Random Forest producing results of slightly higher accuracy. The user’s accuracy for wolframite
was 85%, but cassiterite was often confused with wolframite (user’s accuracy: 70%). A lumped ore
category achieved 94.9% user’s accuracy. Our study confirms the suitability of hyperspectral imaging
to record the spatial distribution of ore mineralization in progressing tungsten–tin mine faces.

Keywords: hyperspectral imaging; machine learning; spectral geology

1. Introduction

Hyperspectral images produced by imaging spectrometers are 3D arrays in which
each voxel holds a radiance spectrum that is processed to reflectance [1,2]. The acquisition
of single reflectance spectra with spectrometers in the visible, near-infrared, and short-
wave infrared wavelength domains (400–2500 nm) is a relatively simple and non-invasive
technique that has been used in the laboratory and the field for decades ago [3,4]. The
particular optical and electronic properties of each material result, under illumination
results in specific spectral features that are often diagnostic of given minerals and rocks [5–
7], although the influence of variations in illumination and viewing geometry, the macro-
structure of the sample, and the presence of mixtures in the field-of-view, tend to reduce the
diagnostic power of reflectance spectra. Extending point readings to a hyperspectral image
has two main advantages. First, the 2D result allows considering the spatial distribution of
different materials in the imaged scene. Second, in case of a crude identification, being able
to delimit a given uncertain material facilitates an accurate sampling for complementary
techniques such as X-ray diffraction (XRD) or X-ray fluorescence (XRF).
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Most hyperspectral images have been remotely acquired from airborne sensors and a
few satellites and, in the context of the mining industry, common applications of remotely-
sensed hyperspectral images are mineral exploration (see examples in [8–12]) and the
environmental impact [13–15]. Currently, close-range hyperspectral images of hand sam-
ples and/or drill cores [16–19], along with ground-based panoramic hyperspectral imaging
of semi-vertical outcrops [20–24], are increasingly used as hyperspectral imaging systems
become more portable and widespread. Multi- and hyperspectral image systems have
also been developed for ore microscopy [25–28] with the aim of achieving a quantitative
mineralogical analysis. In their extensive review, Krupnik and Khan [24] organize very
recent articles (most of them published after 2010) reporting close-range hyperspectral
imaging applications, which mainly deal with the analysis of economically valued mate-
rials (32 studies, of which 13 focus on the validation of spectral identification methods),
and environmental impact (13 studies). Horizontal and oblique ground-based hyperspec-
tral imaging of vertical structures (cliffs, road cuts, open-pit walls . . . ) can be integrated
with digital topography, which can be retrieved from either terrestrial LiDAR data [29] or
Structure from Motion (SfM) processing of conventional photographs [30,31].

An extended panoply of methods has been developed for the analysis of remotely
sensed hyperspectral images, (e.g., [32–34]), which are also being applied to close-range
hyperspectral images, and few multi-scale studies have been undergone [17,35] (Amigo [2]
compiles a number of modern methods that can be applied to both remote and close-range
hyperspectral imagery. Machine learning methods, in particular supervised classification
methods, have become common for the analysis of hyperspectral images [36–38]), and
are starting to be applied to close-range imagery for the automatic identification and
mapping of different materials within the imaged sample. Murphy et al. [20] acquired both
point spectra and ground-based hyperspectral images of vertical faces in an iron-ore mine
from a distance of 30 m in the visible and near-infrared (VISNIR) and short-wave infrared
(SWIR). The authors compared spectral angle mapping (SAM) and support vector machines
(SVM) to classify materials such as shale, manganiferous-shale, goethite, martite, and chert,
taking shadowing effects into account. While SVM outperformed SAM under uniform
illumination conditions, SAM was more robust to the presence of shadows unless shadowed
training spectra were provided to the SVM classifier. Additionally, SAM performed better
than SVM if training spectra were selected from a spectral library, instead of from within
the image itself. Krupnik and Khan [24] also presented their own case studies of close-range
hyperspectral panoramic imaging for the characterization of semi-vertical outcrops (faults,
pits, roadcuts and quarry settings). They applied SVM and the Multi-range Spectral Feature
Fitting (SFF) to produce classified images of materials such as limestone, siltstone, shale,
hematitic siltstone, calcite, illite, jarosite, iron oxides, and dolomite. They also obtained
considerable geological information from mapping the wavelength and depth of absorption
features in selected wavelength ranges, which they applied as well later [39] to analyze
hyperspectral images of small, laboratory-prepared mixtures of limestone minerals (calcite,
dolomite, and chert), with results that were consistent to those provided by point count.
The same study reports a successful mapping of mixtures in hyperspectral images of small
rock chips by applying machine learning methods and using the spectra of known mixtures
as references. López-Benito et al. [28] applied classification methods for the analysis of
microscope hyperspectral images in the VISNIR (350–1000 nm) range for the automated
identification of metallic ore species, which was achieved with a very high accuracy.

Building and updating 3D models to quantitatively characterize the distribution and
heterogeneity of ore grade, vein thickness, orientation, and network geometry are critical
for the mining industry as it provides a better understanding of the mineralization with
important benefits for the management and optimization of the exploitation; thus, reducing
the environmental impact. Typically, these 3D models are based on knowledge of the
site’s structural geology, with geophysical exploration contributing to provide a better
understanding of the deposit. Image data acquired from the mine excavation itself could
be used to confirm or update these models, monitoring the ore grade and distribution. In
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this regard, we aim at integrating proximal ground-based conventional and hyperspectral
imaging of the mine excavation face to provide the ore grade and 2D geometry of the
mineralization in the section. Ideally, a 3D tomography could be derived from these 2D
planes as the excavation front progresses.

Deployment and operation of hyperspectral imaging systems in the field is always
involved and doing so under gallery mine conditions is challenging. As a previous step
to actually acquire, process and analyze hyperspectral images of a mine excavation face,
here we explore the feasibility and interest of such an approach by using hand samples
that feature the minerals of interest. For this purpose, we conducted the following studies:

1. Laboratory imaging spectrometry. We scanned the hand samples using hyperspectral
cameras on a laboratory set-up to assess spectral separability and evaluate machine
learning classification methods under close-to-optimal conditions.

2. Simulation of hyperspectral imaging of the mine face. We scanned the whole set of
hand samples with the same field set-up, illumination, and distance to object that
are expected to be used in the mine gallery, evaluating machine learning methods to
identify and map the distribution of materials in the resulting image.

2. Geological Settings

The studied samples were collected in the San Finx tin–tungsten mine, which is located
in Lousame, A Coruña, Galicia, NW Spain (Figure 1). San Finx is a typical case of Late
Palaeozoic, granite-related hydrothermal deposit, associated with the European metallo-
genic belt. Tin–tungsten ore is directly related to granites formed from Late Devonian to
Permian during the Variscan or the so-called Hercynian orogeny, resulting from the conti-
nental collision of Laurussia and Gondwana [40]. The San Finx mineralization consists of a
subvertical set of quartz lodes prevalent in the N 50◦ E direction, which at its eastern end
shows pegmatitic features (e.g., the occurrence of K-feldspar). This lode field reaches more
than 1 km in length, and the lode thickness varies between 0.5 and 1.5 m [41]. Host rocks
consist of schists, migmatites and granites, while the metallogenesis consists of Sn–W–Ta–
Nb–Mo–Cu–As–Au–A–Bi. The exploited ore minerals are cassiterite and wolframite. Other
minerals occurring in the quartz lodes are arsenopyrite, pyrite, scheelite, chalcopyrite,
molybdenite columbite-tantalite, muscovite, and tourmaline, among others [42,43].
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3. Materials and Methods

See methods flowchart (Figure 2).
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Figure 2. Workflow of the methodology.

3.1. Laboratory Imaging Spectrometry

In order to achieve close-to-optimal conditions, we scanned samples from the mine
with Specim FX10 and FX17 cameras (Table 1) consecutively mounted on the same Specim
LabScanner Setup 40 × 20 and with care not to move the samples between each scan. We
used Specim’s Lumo software for scanning, which renders hyperspectral images of radiance
for the whole scanned area, and two images of, respectively, the dark (internal shutter) and
white references, which we used to calculate images of spectral reflectance for each camera.
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Table 1. Specifications of images acquired with Specim cameras FX10 and FX17. FWHM: full width
height maximum; FOV: field of view; SNR: signal to noise ratio.

FX10 FX17 FX10_FX17

Spectral range (nm) 397–1004 936–1720 397–1720
Spectral bands 448 224 628

Spectral FWHM (nm) 1.34–1.41 3.46–3.48 1.34–3.48
Pixels/line 1024 640 1024

FOV (◦) 38◦ 38◦

SNR 600:1 1000:1

We co-registered the FX17 reflectance images to their FX10 counterparts based on
bands corresponding to the common part of the wavelength range and stacked the resulting
FX10 and FX17 co-registered reflectance images into one single reflectance image of 628
bands for each sample and spatial resolution of 0.224 mm/pixel. In order to perform
reflectance calculation, co-registration, band stacking, and cropping, we developed in-
house software consisting of R [45] scripts (packages raster [46], rgdal [47], RStoolbox [48],
gdalUtilities [49] and link2GI [50], which call commands of GDAL [51], OTB [52] and
pktools [53]). The co-registration processing proceeded in two steps. First, we ran a
first-order polynomial warp with homologous points automatically extracted by the SIFT
method (HomologousPointExtraction in OTB [54]). Second, the co-registration was refined
by calculating subtle local X and Y shifts that optimized local correlation between the
corresponding bands of both cameras (FineRegistration in OTB). Geometric transformations
were calculated using corresponding bands of the same wavelength in both cameras and
then applied to all bands of FX17 (GridBasedImageResampling in OTB). We discarded
some bands at the extremes of each camera because of noisy appearance, and left the
hyperspectral data to be in the 450–950 nm (FX10) and 950–1650 nm (FX17) ranges.

Hyperspectral images were displayed and sets of pixel spectra (a total of 110) were
interactively extracted for each mineral with the EnMAP Box plugin [55] of QGIS [56],
which required combining photo-interpretation and direct visual inspection of the samples.
Different color composites, including those combining different PCs, were used to empha-
size limits among materials and facilitate pixel selection. Finally, we imported the spectra
into R, where we created comparative graphics along with reference spectra extracted from
spectral libraries by USGS [57] and JPL [58,59] and ran statistical analysis. We calculated
matrices of dissimilarities using the Jeffries–Matusita metric [60] to measure the spectral
resolving power of each camera (FX10, FX17, and combined FX10_FX17). We also simu-
lated the RGB values of a conventional camera (Canon 60D) from the FX10 values using
camera spectral sensitivity curves [61] and calculated the RGB dissimilarity matrix with
these values as well to evaluate the power of conventional photos to identify the minerals
of interest. Finally, we ran three different classification methods: Linear Discriminant
Analysis (LDA), Singular Vector Machines (SVM), and Random Forest (RF) for each of
the four datasets (FX10, FX17, combined FX10_FX17, and Canon 60D), whose basics are
briefly introduced in Section 3.3. To this end, we used R packages MASS [62], e1071 [63],
randomForest [64], and caret [65].

3.2. Ground-Based Panoramic Hyperspectral Imaging of Simulated Mine Face

In order to prepare for the deployment of the hyperspectral equipment and analyze
hyperspectral imagery acquired under conditions closer to those in the mine, we assembled
a panel of 52 cm × 57 cm with the samples, along with a white reference (Sphere Optics SG
3141 95%), a Multi-Component Wavelength Standard reference (Labsphere WCS-MC-020)
and a color chart (Figure 3). The image was acquired in a dark room by a Specim FX17
camera mounted on a Specim Rotary scanner on top of a tripod at a distance of 2.5 m
from the lens to the panel. This distance was selected as a realistic choice in the gallery.
Illumination was provided by a Fresnel Filmgear 650 w 3200 k studio light with a diffuser
behind and above the camera. All systems were powered by batteries as they would be
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under gallery mine conditions. Image resolution was 2.6 mm/pixel and covered an area
of 166.4 cm (height) × 106.1 cm (width), from which the subscene corresponding to the
samples in the panel was extracted. In brief, we used, under indoor conditions, the same
equipment, geometry, and illumination as would be used in the real mine gallery, for which
our imagery is a close simulation of that acquired in the mine itself.
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Figure 3. (a) Field set-up for the simulation of gallery conditions. (b) Conventional digital RGB
photograph of the panel of samples. (c) Color composite of the first three principal components of
the hyperspectral image.

Despite the diffuser, some illumination unevenness could be appreciated, which we
solved by applying a Rolling Ball Background Subtraction [66] in Fiji [67] to the first
Principal Component (PC-1) and then by applying the inverse transformation. As in
the case of laboratory images, the resulting hyperspectral image was displayed in QGIS
making use of different color composites, which included combinations of PCs. Sets of
pixel spectra (a total of 2450) for each mineral and other targets (Supplementary, Table
S1) were extracted by interactively digitizing training and validation polygons, a task
that required direct visual inspection of the samples as well. Finally, we input the file of
polygons along with the PC-transformed hyperspectral image to the classifiers (LDA, SVM,
and RF) and their respective accuracy assessments. In this case, we kept 12 components
(accounting for 99.85% of the total variance) as higher components appeared too noisy. Each
classifier produced a predicted map of the panel materials according to the pre-defined
set of categories (Supplementary, Table S1). We used tools in EnMAP Box [34], which
are based on scikit-learning, for SVM and RF classification, while R packages MASS [62]
and raster [46] were used for PCA and LDA as in the case of the laboratory spectra. As
combining results of different methods produces more robust results, we also combined
the classifications by selecting, for each pixel, the class that had been predicted by most
methods. For those pixels, in which each method was predicting a different class, we
selected the class predicted by the classifier with the highest accuracy.

3.3. Classification Processing
3.3.1. Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis, such as Principal Component Analysis (PCA), is often
used as a dimensionality reduction technique before machine learning applications. LDA
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seeks to project the dataset in a space of fewer dimensions with maximum separability
among classes, by maximizing the relationship between the within-class variance and the
among classes variance. Unlike PCA, which is an unsupervised algorithm (it does not
require training polygons for each class as it maximizes total variance for each principal
component), LDA is supervised: it transforms the original space into components that
linearly maximize the separation among classes, based on estimates of the mean and
covariance matrix of each class, which are calculated on a training set of labelled observa-
tions [60,68]. Classification is performed by applying a Bayes rule assuming multi-variate
Gaussian distributions of common variance, which simplifies to the nearest centroid rule
modulo the prior class probabilities in the transformed space, as the covariance matrix be-
comes the identity matrix. For the present work, we performed LDA using R with package
MASS [62] for both the laboratory spectra and the hyperspectral image of the panel.

3.3.2. Support Vector Machines (SVM)

As comprehensively explained in [68], SVM are a generalization of the Maximal
Margin Classifier (MMC). Given a p-dimensional space of descriptors and a simple binary
(2 classes) problem with n training observations (the method can be generalized to >2
classes), the MMC seeks an n-1 hyperplane that linearly separates the two classes with
the maximum margin (that is: with the maximum distance from the nearest point of each
class to the hyperplane). Maximizing the margin increases the chances of having a correct
classification of the rest of the observations (those not included in the training set). On
some occasions, the distribution of the observations is such that the correct separation
of the 2 classes according to MMC implies that the maximal margin hyperplane still lies
very close to some observations and the distance between margins is very narrow. In
these cases, a more tolerant approach defining a wider margin even at the expense of
some errors in the classification of the training set would result in fewer errors with newer
observations. This method is named Support Vectors Classification (SVC) by [68] and
linearSVC in the scikit-learn library [69]. The degree of tolerance is based on the relative
distances from observations to their class margin: observations at the correct side of their
margin or on the margin itself are at a distance 0; observations beyond the margin of their
respective class but within the limit of the hyperplane are at distances 0 < e < 1, while those
at the wrong side of the hyperplane are at distances > 1. The user sets the total tolerance
(named “regularization” in the SVM jargon), that is, the allowed sum of all distances from
observations to margins. For C = 0 there is no tolerance, so hyperplane and margins are set
according to MMC. At increasing values of C, the margins can be progressively widened,
with progressively more observations being left at the wrong side of the margin or even at
the wrong side of the hyperplane and, actually, the hyperplane itself changes as different
observations are included. Parameter C, thus, controls the number of observations that are
actually involved in computing the hyperplane and its margins. It is important to note
that unlike other classification approaches such as LDA, SVM classification depends only
on those observations lying on the margins or beyond them, and these observations are
known as support vectors (as each observation is a vector of p descriptors). An optimal
value for C is calculated by k-fold cross-validation in the training set for a predefined range
of C values.

There are cases in which no hyperplane can separate the classes, no matter the value of
C. In these cases, rather than fitting non-linear functions, the SVM approach is to increase
the dimensionality by adding new dimensions that are non-linear transforms of the p
original ones. As the parameters defining the hyperplane in SVC (or linear SVC) are found
based on the inner product between all pairs of training observations, SVM classification
(named SVC in scikit-learn) uses a kernel-based approach for this purpose. Popular kernels
in SVM classification are the polynomial and, in particular, the radial basis function (RBF),
which was used in this study because of its flexibility. For RBF, we had, for any two training
observations x, y (vectors in space of p descriptors):

z = exp(γ|| x − y ||2)
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where γ is a positive constant that can be thought of as the inverse of the variance: for low
values of γ the class will be very wide, and for small values the class will be narrow. As for
the case of C, γ can be set by cross-validation within a grid-search strategy as is the case
of EnMAP Box. R package caret, instead, uses an analytical formula to obtain reasonable
estimates of γ and fix it to that value [65].

3.3.3. Random Forest

Random forest classification [70] is a development of classification trees. Classification
trees are produced by binary and hierarchically splitting the training set by thresholding the
descriptors [68]. At each level, all descriptors are sequentially tried and the best threshold
for the best predictor is selected to optimize a class purity metric such as the Gini index.
Once the tree is grown in the top-down direction, it is then simplified (“pruned” in the
classification trees jargon) in the bottom-up direction according to an error minimization
rule. One problem with classification trees is that while the fit to the training set can be
very good, the prediction of new cases is very dependent upon the specific training set that
was used.

Results are greatly improved by Random Forests, which introduce two modifications:
a set of n trees is constructed (with no pruning) instead of just one, and only a subset of
m descriptors is used. The training set is resampled with replacement in n bootstrapped
sets and a classification tree is produced for each set, but only a random selection of m
descriptors is considered at each level. Each tree is then applied to the test data, which yields
as many predictions as bootstrapped training sets, and the final result is the set of most
commonly selected (“voted”) class. A value of m = sqrt(p) is a common recommendation,
and the number of trees (n) should be large enough to ensure that all descriptors were
considered. In our case, we used 500 trees with the laboratory FX10FX17 dataset, while a
search between 300 and 1000 selected 350 as the best number of trees for the FX17 image of
the panel.

3.3.4. Validation

Validation was conducted through the analysis of confusion matrices, which were
built by cross-validation: leave-one-out in the case of LDA and 10-fold cross validation in
the case of SVM and RF. We calculated standard metrics from the confusion matrices using
R package caret: overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA),
and F1 (which is the harmonic mean of user’s and producer’s accuracy [71–73]. Specifically,
considering pixels in the digitized polygons,

OA =
Total number of Correctly Classified pixels

Total number of pixels

PA(i) =
Number of Correctly Classified pixels in class i

Number of pixels classified as class i

UA(i) =
Number of Correctly Classified pixels in class i

Actual number of pixels in class i (“ground truth”)

F1(i) =
2 × UA(i)× PA(i)

UA(i) + PA(i)

4. Results
4.1. Laboratory Imaging Spectrometry

Reflectance spectra of single-mineral polygons of cassiterite, malachite, and muscovite
measured in this work were similar to those found in the reference spectral libraries (Figure
4). Those of quartz targets were highly variable (as in the case of spectral libraries) because
these spectra were very dependent upon the presence of other minerals or fluid inclusions
as well as the effect on the optical properties of quartz of impurities and crystalline disorder.
In the case of chalcopyrite, a set of spectra was much brighter than the rest of the studied



Remote Sens. 2021, 13, 3258 9 of 18

minerals, and also than those from the spectral libraries. This was probably because of
specular reflection from well-developed crystals. No reference spectra of wolframite could
be found in the spectral libraries. In some cases, the spectra unveiled errors in the “de
visu” identification of minerals in the hand samples. These spectra were discarded after
the re-examination of the samples confirmed the erroneous original labelling.
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Figure 4. Spectra retrieved from hyperspectral images acquired by scanning samples with Specim cameras FX10 and
FX17 in the laboratory (blue). Reference spectra from spectral libraries USGS [57] and JPL [58,59] represented in light gray
whenever available.

Spectral separability (Jeffries–Matusita index) among combined spectra of both cam-
eras (450–1650 nm) was very high (>1.99) for all mineral pairs. In accordance, the LDA
classification had a very high accuracy (98%, Table 2), a maximum that was achieved with
15 components. Spectral differences were well mapped in the LDA space (Figure 5), in
which spectral samples were well ordinated in consistency with their respective mineral
identity. Note that, while spectra of wolframite and cassiterite overlapped in the plane
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of the first two components, they were clearly separated by the 4th component. Only
two spectral samples had conflicting labelling between the “de visu” inspection and the
LDA classification.
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Table 2. Accuracy values of classifications by Linear Discriminant Analysis using laboratory spectra
with different spectral ranges.

Camera Spectral
Range (nm)

Overall
Accuracy

Average
Producer’s
Accuracy

Average
User’s

Accuracy

FX10_FX17 450–1650 0.982 0.982 0.978
FX10 450–950 0.954 0.939 0.964
FX17 950–1650 0.945 0.934 0.941

Canon 60D 0.745 0.662 0.828

Classification accuracy was very high with data from the hyperspectral cameras,
slightly lower when spectra of each camera were taken separately (Table 3): 95% for the
FX10 (450–950 nm) and 94% for the FX17 (950–1650 nm). Instead, the classification accuracy
was much lower (0.745) if only simulated RGB values were used. Confusion among
minerals (Table 3) slightly increased for chalcopyrite, cassiterite, and malachite if only the
FX10 spectra were considered, and for cassiterite and muscovite if only the FX17 spectra
were considered. Confusion significantly increased if only RGB values were considered,
in particular for cassiterite, which was always confused with wolframite, but also for
chalcopyrite and wolframite. Interestingly, more modern classification methods such as
SVM and RF achieved similar or even slightly lower performance than LDA (Table 4).
Maximum accuracy of SVM was achieved with a dataset of nine components, sigma held
constant to 0.1099153 and C = 32. Maximum accuracy of RF was achieved with a dataset of
10 PCs, with a subset of four (searched between 2 and 10) randomly selected at each node.

Table 3. Confusion matrix of LDA classifications using laboratory spectra. Each value corresponds to the number of spectra
observed as the mineral indicated by the row and predicted as indicated by the column. Spectral ranges: FX10_FX17:
combined spectra (450–1650 nm); FX10 (450–950 nm); FX17 (950–1650 nm); RGB: Canon D60. Overall accuracies were 98.2%,
95.4%, 94.5%, and 72.7% in the same order. Acronyms in the columns correspond to the full names in the rows.

Predicted

Observed

Instrument ChalB Chal Css Mal Mus Qtz Wlf Prod.
Acc.

Usr.
Acc. F1

Bright
chalcopyrite

FX10_FX17 15 0 0 0 0 0 0 1.00 1.00 1.00
FX10 15 0 0 0 0 0 0 1.00 1.00 1.00
FX17 15 0 0 0 0 0 0 1.00 1.00 1.00
RGB 13 0 0 0 0 2 0 0.87 1.00 0.93

Chalcopyrite

FX10_FX17 0 15 0 0 0 0 0 1.00 0.94 0.97
FX10 0 15 0 0 0 0 0 1.00 0.75 0.86
FX17 0 13 2 0 0 0 0 0.87 0.87 0.87
RGB 0 3 0 0 0 0 12 0.20 0.43 0.27

Cassiterite

FX10_FX17 0 0 10 0 0 0 0 1.00 0.91 0.95
FX10 0 2 8 0 0 0 0 0.80 1.00 0.89
FX17 0 1 9 0 0 0 0 0.90 0.75 0.82
RGB 0 0 0 0 0 0 10 0.00 0/0 0/0

Malachite

FX10_FX17 0 1 0 9 0 0 0 0.90 1.00 0.95
FX10 0 2 0 8 0 0 0 0.80 1.00 0.89
FX17 0 0 0 10 0 0 0 1.00 1.00 1.00
RGB 0 4 0 6 0 0 0 0.60 1.00 0.75

Muscovite

FX10_FX17 0 0 0 0 10 0 0 1.00 1.00 1.00
FX10 0 0 0 0 10 0 0 1.00 1.00 1.00
FX17 0 1 0 0 8 0 1 0.80 1.00 0.89
RGB 0 0 0 0 8 1 1 0.80 1.00 0.89

Quartz

FX10_FX17 0 0 0 0 0 15 0 1.00 1.00 1.00
FX10 0 0 0 0 0 15 0 1.00 1.00 1.00
FX17 0 0 0 0 0 15 0 1.00 1.00 1.00
RGB 0 0 0 0 0 15 0 1.00 0.83 0.91

Wolframite

FX10_FX17 0 0 1 0 0 0 34 0.97 1.00 0.99
FX10 0 1 0 0 0 0 34 0.97 1.00 0.99
FX17 0 0 1 0 0 0 34 0.97 0.97 0.97
RGB 0 0 0 0 0 0 35 1.00 0.60 0.75
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Table 4. Accuracy values of different classification methods applied to laboratory spectra using the
combined FX10FX17 dataset (450 nm–1650 nm). LDA, Linear Discriminant Analysis; SVM, Singular
Vector Machine; RF, Random Forest.

Classification
Method

Overall
Accuracy

Average
Producer’s
Accuracy

Average
User’s

Accuracy

LDA 0.982 0.982 0.978
SVM 0.982 0.987 0.971
RF 0.964 0.958 0.952

4.2. Ground-Based Panoramic Hyperspectral Imaging of Simulated Mine Face

The grid search ran with EnMAP Box achieved a maximum accuracy for SVM with
sigma = 0.1 and C = 1000, and with 350 trees and a subset of four randomly selected
components at each node for RF. Each classification method applied to the FX17 hyper-
spectral image of the panel produced a map of the distribution of surface materials in the
panel. Classification accuracy was lower than in the case of the laboratory spectra, but still
high (Table 5): 90.6–91.4% if all classes were considered (Supplementary, Table S2), and
81.3–84.9% if only relevant materials (Table 6; 1163 pixels) were included. Overall accuracy
was highest with the RF classifier.

Table 5. Overall accuracy values of different classification methods applied to the FX17 hyperspectral
image of the panel of hand samples. LDA, Linear Discriminant Analysis; SVM, Singular Vector
Machines; RF, Random Forest. See the identity of “All classes” in Supplementary, Table S2 and of
“Relevant classes” in Table 6.

Classification
Method All Classes Relevant Classes

LDA 0.906 0.845
SVM 0.908 0.813
RF 0.914 0.849

Table 6. Confusion matrix of main minerals in the Random Forest classification of the FX17 (950–1650 nm) hyperspectral
image of the panel of hand samples. Each value corresponds to the number of spectra observed as the mineral indicated
by the row and predicted as indicated by the column. Overall accuracy was 84.9% See Supplementary, Table S1 for the
complete table.

Observed

Pr
ed

ic
te

d

Css Chal Mal Mus Wlf Smg Oxd Qtz User’s
Accuracy

Producer’s
Accuracy F1

Cassiterite 54 0 0 0 14 2 0 4 0.701 0.519 0.597

Chalcopyrite 3 19 0 0 6 7 0 0 0.528 0.613 0.567

Malachite 0 0 30 0 0 0 0 0 1.000 1.000 1.000

Muscovite 0 0 0 19 0 10 0 0 0.655 0.594 0.623

Wolframite 39 3 0 0 311 0 0 0 0.854 0.912 0.882

Small
grains 3 8 0 10 4 109 0 0 0.741 0.813 0.776

Oxide 0 0 0 0 0 0 33 0 0.868 0.805 0.835

Quartz 3 0 0 0 4 0 2 351 0.975 0.989 0.981

The confusion matrices (Table 6 and Supplementary, Table S2) revealed that, while
a high accuracy was achieved for wolframite, cassiterite was too often confused with the
former (in the case of the RF classification, a 37.5% of the all actual Cassiterite pixels were
labelled as wolframite), but more rarely confused with any other material (10.6%). In other
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words, while the identification of wolframite was reliable, pixels identified as cassiterite
could actually be either cassiterite or wolframite. As cassiterite and wolframite are the
main ores in this mine, an operationally interesting product can result by lumping together
both minerals in an “ore” category that reaches 94.8% of user’s accuracy and 93.9% of
producer’s accuracy.

Figure 6 displays the combined result: all three classification methods agree on 53.8%
of the study area, while at least two methods agreed in 87.5% of the study area. Within the
training/validation polygons, the results of the three classifiers agreed in 90% of the area
and, in that case, the agreed class was always correct.
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5. Discussion

An initial concern in this study was the fact that the used imaging hyperspectral
systems were not covering the spectral range 2000–2500 nm, which is diagnostic for many
geological materials (see, e.g., [4,9]). Imaging systems covering a wider spectral range have
been used to acquire panoramic images in open pit mines [21–24,29,74–76]. To mention
the most recent, Barton et al. [75] mapped different mixtures of carbonates, mica-rich
muscovite mica, kaolinite, and gypsum in highwalls and outcrops using a system with
640 bands that integrates two sensors to cover from 400 to 2500 nm. Thiele et al. [76]
used an equivalent (albeit much heavier) system to map an open-pit mine face in terms
of oxidized materials, massive sulfides, Mg- and Fe-rich chlorite, two sericitic units, and
shales. Nevertheless, our laboratory results very clearly indicated the strong discriminant
power of the spectral ranges and signal quality of the much affordable FX10 and FX17
systems for the particular minerals of interest in this case of study. Undoubtedly, confusion
could raise in the future with other, not considered, materials, but the ones we have
included are those most common in the San Finx mine. Under these circumstances, the
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logistic criteria such as price, compactness, and robustness vs. extended spectral coverage
must be considered in regard to deployment in a difficult environment such as a gallery
mine. While a full system covering a wide spectral range is best for scientific research,
practical applications call for the simplest system with the minimal set of characteristics for
being successful in the given application. Actually, and according to our results, what is of
more concern here is the fact that the 450–950 nm range was ignored in the field system
that we tested for deployment in the actual gallery.

Three factors can be called to explain the decrease in accuracy between results ob-
tained in the laboratory and in the simulation of gallery conditions: a narrower spectral
range (from 450 to 1650 nm in the laboratory to 950–1650 nm in the gallery simulation),
poorer illumination (dedicated illumination system in the laboratory stand vs. standard
photography lighting system in the gallery simulation), and a coarser pixel size (0.224 mm
vs. 2.6 mm) due to an increased camera–target distance. The narrower spectral range was a
consequence of the logistic requirement of using one single hyperspectral imaging system
in the gallery. While scanning with a compact system covering the 450 nm–1650 nm range
(or more) would be better, our laboratory results indicated that, in this study, this was not a
substantial factor. Illumination could be more challenging in the actual gallery than in the
simulated conditions, but our experience in this study indicated that no parts of the image
were critically under-illuminated, and that our methods to adjust moderate illumination
unevenness were successful. Coarser pixels, instead, appear to be more responsible for
the observed decreased accuracy. Large and uniform targets such as those of the standard
reference have a crown of incorrect labels that put in evidence the effect of mixed pixels.
While not so conspicuously, this effect was certainly present in other targets and must be
more pervasive in those targets of smaller size, as in the case of cassiterite. Fragmentation
probably makes the average size of ore minerals in the hand samples smaller than in the
actual mine walls and, thus, the effect of pixel coarseness at producing spurious mixtures
might have been over-emphasized in this study. Notwithstanding, the fact that the min-
imum size of ore patches being worth extracting can be as small as 1 cm2, indicates the
interest of using a hyperspectral system with a higher spatial resolution for forthcoming
studies in the actual mine gallery.

Spatial resolution can also be improved by the co-registration of hyperspectral images
to conventional digital photography (“RGB”) and subsequent image fusion. Actually, a
crude co-registration using 2D coordinates only was used in this study as an aid for photo-
interpretation, but the correct co-registration requires 3D coordinates and, thus, generating
a digital surface model [30,31,76], an involved task that will be worth addressing in the
forthcoming study of the actual mine excavation face.

The co-registered RGB images of high resolution were also useful to add textural in-
formation to the classification processing, which usually involves a previous segmentation
step. Texture is an important property to visually identify geological materials. Adding
texture to the spectral information represents an opportunity to add image features to
the pixel-based spectra; thus, taking better advantage of imaging systems for the identi-
fication of geological materials. Computing textural metrics in hyperspectral imagery is
challenging, but specific methods are currently being developed [77–79].

6. Conclusions

Our results demonstrated the feasibility and interest of mapping materials of gallery
mines in Sn–W deposits by analyzing hyperspectral images in the 950–1650 nm range
through machine learning methods. In the laboratory study, spectral separability and
overall accuracy were very high (95.4% with the 450–950 nm system; 94.5% with the
950–1650 nm system; 98.2% with the combined 450–1650 nm system). Results of three
classification methods using the 450–1650 nm data were all very accurate: 98.2% for LDA
and SVM, and 96.4% for RF. Instead, classification with a simulated RGB dataset resulted
in high confusion among targets.
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Our study of a simulated excavation face resulted in a classification map with a lower
accuracy than in the laboratory, but still high: the RF method had the highest overall
accuracy (84.9%), raising to 87.5% in a map combining all three classification methods.
Cassiterite was too often confused with wolframite (user’s accuracy: 70%), but a lumped
ore category (“wolframite or cassiterite”) achieved 94.9% user’s accuracy. These results
encourage forthcoming studies deploying ground-based hyperspectral systems in the
actual mine gallery to map the excavation face. A sequence of these maps at given time
intervals as the excavation progress would improve the orebody assessment and document
the structure of the deposit as a tomography, opening the way to detailed studies of
the spatial distribution of ore mineralization and the evaluation of geologic models of
the deposit.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13163258/s1, Table S1: Description of target types in the panel of hand samples, Table S2:
Accuracy metrics of all panel materials: LDA, SVM and RF classifications.
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