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ABSTRACT (150 words max) 

Until now, the field of primate genomics has focused on two major themes: 

understanding human evolution and advancing biomedical research. We propose that it is now 

time for a third theme to receive attention: conservation genomics. As a result of anthropogenic 

effects, the majority of primate species have become threatened with extinction. A more robust 

primate conservation genomics will allow for genetically informed population management. 

Thanks to a steady decline in the cost of sequencing, it has now become feasible to sequence 

whole primate genomes at the population level. Furthermore, technological advances in non-

invasive genomic methods have made it possible to acquire genome scale data from non-invasive 

biomaterials. Here, we review recent advances in the analysis of primate diversity, with a focus 

on genomic datasets across the radiation.  



 

INTRODUCTION: The three themes of primate genomics 

The field of non-human primate (NHP) genomics began 15 years ago with the release of 

the initial sequence assembly of the chimpanzee genome(1). As our closest extant evolutionary 

relative, it was hoped that this species offered the potential to expand our understanding of the 

genetic underpinnings of many characteristics that distinguish us from other primates. Among 

the objectives of sequencing the chimpanzee’s genome was to catalogue the molecular 

differences with humans, and therefore offer a potential avenue to interrogate the genetics 

underlying human specific traits such as large brains and the associated higher cognitive 

capacity, habitual bipedalism, or the ability to produce and understand speech(2). The 

availability of a genome sequence for a close evolutionary relative has proven invaluable to our 

understanding of the human condition, both from biological and cultural perspectives (e.g. 

Kitzmiller v. Dover). Its initial comparative analysis showed marked differences in genes 

relating to inflammatory response, apoptotic mediators, parasite resistance, and sialic acid 

metabolism, among other traits. Our curiosity to better understand the evolutionary trajectory of 

our own species was among the main driving forces to fund such studies, and understanding 

human evolution remains a major theme of NHP genomic research(1, 3).  

Beyond the chimpanzee, genomic resources for all ape genera followed in a first wave of 

NHP genomes. The initial assemblies for the orangutan(4), gorilla(5) and bonobo(6) and 

gibbon(7) reference genomes helped clarify our understanding of the evolutionary relationship of 

these species and humans on the molecular level. This includes marked differences in mobile 

element insertion rate and structural genomic rearrangements(4), significant proportions of 

incomplete lineage sorting between human-chimpanzee-gorilla(5), as well as human-



chimpanzee-bonobo(6), and a clear molecular phylogeny of the relationship between extend 

great apes(5), including humans. These initial comparisons were mainly based on single base 

differences in protein coding regions, as well as small insertions and deletions, mainly because of 

the limited resolution and quality that early whole genome shotgun assemblies provided. 

However, given that the human and chimpanzee genomes are on average 99% identical, and a 

small portion of it comprises protein coding regions, few examples of simple protein coding 

human specific innovations have been found. Nevertheless, several important human innovations 

seem to lay in regions of accelerated evolution and rapid structural change such as segmental 

duplications(8), a particularly important source of variation in the African great ape lineage(9, 

10). For example, human accelerated regions (HARs), i.e. small regions that are conserved 

throughout other evolutionary branches but underwent accelerated evolution in humans, have 

been shown to be important regulators of genes involved in neural development, cognition, and 

social behavior, and their disruption has been associated with symptoms of autism spectrum 

disorders(11, 12). Another example is NPAS3, a neural transcription factor that is regulated by 

enhancers highly enriched in HARs, whose disruption has been associated with 

schizophrenia(13). Furthermore, several different genes within human specific segmental 

duplications such as SRGAP2, ARHGAP11B, and TBC1D3 are involved in the development of 

the neocortex and its complex folding(14–17). Analogous to HARs, human conserved deletions 

are regions that are conserved throughout other branches, but have been deleted specifically in 

the human lineage. Examples include the loss of a forebrain subventricular zone enhancer that 

regulates GADD45G, a gene associated with repressed cell proliferation whose down regulation 

might therefore be responsible for the enlarged human neocortex(18). Another example is the 

loss of an enhancer that regulates an androgen receptor responsible for the development of penile 



spines, which have been lost specifically in the human lineage(18). The above examples not only 

highlight the fundamental importance of generating NHP genome assemblies, which are 

crucially driving these discoveries and our understanding of human biology(18, 19). They also 

underline the necessity of having accurate, high quality reference assemblies available to 

perform comparative analysis of structurally challenging regions of the genome, several of which 

underlies some of the key features that make us unique (19, 20). 

The second major motivation to develop NHP reference assemblies has been to 

characterize the genomics of biomedically relevant model species. This approach is based on the 

assumption that the genetics underlying clinically relevant traits in NHPs would be useful for 

translational research into human health amelioration(21). Given the evolutionary proximity and 

phenotypically similarity between humans and NHPs, several species had been widely used for 

decades as human disease proxies, albeit without explicit reference to their genetics. This is 

particularly true for studies relating to neurobiology. The most extensively characterized species 

in this context is the rhesus macaque, whose impact on biomedical research was immortalized in 

1937 by lending its name to the blood rhesus factor(22). Rhesus and cynomolgus macaques, have 

been a focus of biomedical research on infectious diseases such as Influenza and HIV/AIDS, 

cardiovascular diseases, diabetes, and other maladies; their importance as such led to the early 

generation of reference assemblies for both species(23, 24). Other examples of biomedically 

relevant NHPs include species of baboons(25), vervet monkeys(26), and common 

marmosets(27), the latter of which have become an important neurobiological model species. It 

is also important to recognize that many NHPs inhabit wide geographic ranges and have high 

degrees of intraspecific variation. For example, rhesus macaques from China and India are 

known to show different disease progressions and viral load upon infection with SIV(28). 



Perhaps the most impactful emerging biomedical possibility is the directed genetic engineering 

of primate models. While transgenic primate models have been around for some time, systems 

such as CRISPR-Cas9 offer a new approach that uniquely benefits from detailed knowledge of 

genome architecture to genetically engineer animal models at specific targets(29). Finally, it 

should also be noted that an ancillary benefit of the aforementioned genomes being generated for 

biomedical purposes was their invaluable contribution to comparative and evolutionary 

genomics. The rhesus macaque and common marmoset assemblies allowed for the first glances 

at the genomics of monkeys (23, 27). They also served as critical outgroups to the great apes, 

enabling the detection of lineage specific differences between humans and chimpanzees.  

Expanding our understanding of human evolution and conducting biomedical research 

are both legitimate foci of attention for primate genomics; however, we propose that an emerging 

third theme merits attention at an accelerated pace: conservation genomics. Currently, around 

60% of the over 500 described primate species are threatened with extinction, 75% have 

declining population sizes, and several are expected to vanish in the very near future(30). This 

enduring extinction crisis is caused by anthropogenic factors, and the study of genomes from 

several primate species has already revealed reductions in genetic diversity, both in historical and 

recent times, some of which likely represent recent human impacts (31–36). The study of 

evolutionary processes and the genomics of different primate populations has the potential to 

beneficially impact conservation by providing information on the “genetic health” of a species, 

population, or individual. Furthermore, it might allow for directed actions that assess extinction 

risk by identifying the potential of a species to adapt to ongoing environmental changes. It is 

becoming increasingly clear that genetically informed conservation management could mitigate 

the loss of biodiversity(37, 38). This is not only the case on a population level, by estimating 



parameters such as genetic diversity, effective population size or inbreeding, but also at the 

individual level by upon performing interventions such as genetic rescue. Correctly 

understanding the genetic makeup of species and individuals can be crucial for the management, 

particularly for species with small effective population sizes, as uninformed conservation 

actions, even when taken with the best of intentions, can have perilous outcomes(37). 

As the global loss of biodiversity proceeds at an accelerating rate, conservation efforts are 

more critical than ever. It is often claimed that the high cost of genomic analysis renders 

conservation genomics an unjustifiable alternative to traditional “boots on the ground” 

approaches. However, a recent, dramatic decline in sequencing costs, coupled with advances in 

noninvasive molecular techniques facilitating whole genomic analysis, have changed the 

dynamic of this situation. We are at the beginning of an era of cost-effective conservation 

genomics, and have the opportunity to help mitigate the worst outcomes of the coming extinction 

crisis. The comprehensive study of base levels of diversity and its determinants across the 

primate radiation is not only timely and important, but for the first time realistic. We have 

structured this review to provide the reader with a primer on the current and future state of 

primate conservation genomics, as follows: 1) Primate diversity and biogeography, 2) Primate 

conservation; 3) The current state of knowledge in primate genomics; 4) The major limitations 

and challenges of primate genomics; 5) Methodological advances for non-invasive genomics; 6) 

The future of primate genomics. 

 

PRIMATE DIVERSITY AND BIOGEOGRAPHY 

Primates are members of the Euarchonta grandorder, which also includes tree shrews, and 

colugos. Molecular evidence places colugos as the sister taxon to primates(39, 40), likely 



splitting during the late Cretaceous (~ 86 Ma(40)). Adaptive explanations for euprimate 

(primates of modern aspect) origins began with “the arboreal theory” of Smith(41)and Jones(42). 

They proposed that a terrestrial euprimate ancestor with generalized morphology (i.e. lacking the 

specializations of the primate body plan) transitioned to arboreality, undergoing selection for 

morphological characteristics that facilitated life in this new niche. Most modern explanations 

for euprimates origins (43–47) derive from the arboreal theory, but focus on adaptation to a fine 

(terminal) branch niche. It has been proposed that terminal branch life, along with a dietary shift 

toward predation on insects at night(44), a relaxation of terrestrial selective pressures (45), and 

coevolution with angiosperms and consumption of newly available foods(43) enforced a gradient 

selecting for the evolution of the primate morphotype, which features grasping prehensility and 

stereoscopic vision. 

Extant primates are distributed across 90 countries in South and Central America, Africa, 

and Asia, with two thirds of species located in tropical regions of Brazil, Indonesia, Madagascar, 

and The Democratic Republic of Congo(30) (Figure 1). To a large extent, primate species 

diversity is associated with latitude and rainfall patterns, both of which influence availability of 

tropical forest habitat and abundance of food resources(48, 49). The geographic breadth of a 

primate species often results from local niche effects, such as the degree of ecological 

specialization in dietary breadth and habitat use(48, 49). The global distribution of primates has 

been influenced heavily by historical biogeographic effects, such as vicariance, dispersal, and 

refugia. For instance, the overwater dispersals of primates from Africa into the Americas(50–52) 

and Madagascar(53, 54) allowed for rapid adaptive radiation into previously unfilled niche 

space. Presently, 504 species of primates have been classified into 79 genera, and 16 families(30) 

(Figure 2). At the broadest level, primates comprise two semiorders: Strepsirrhini and 



Haplorhini. Nominally, this distinction refers to the presence of a wet nose with a split lip versus 

a dry nose with an intact lip, respectively, although other morphological characteristics (e.g. 

postorbital bar/closure, presence of a tapetum lucidum, vomeronasal organ, and relative brain 

size) coincide with this division, which is strongly supported by molecular evidence(55). For the 

sake of consistency with the literature, we follow the widely-cited taxonomic framework of 

Estrada et al.(30), which relies on classification by the International Union for Conservation of 

Nature (IUCN). We acknowledge that the number of primate species changes rapidly, and some 

primatologists propose deviations from these numbers. 

 

Strepsirrhini 

The 137 Strepsirrhini species are composed of two infraorders: lemuriformes and 

lorisiformes, accounting for 7 of 16 primate families. The origin of strepsirrhines remains a 

subject of debate, but they are often considered to be descendants of or a sister taxa to the 

Eocene adapiform primates(56). The lemuriformes (colloquially “lemurs”) are endemic to 

Madagascar. After splitting from the lorisiformes as early 65 Ma(57) in mainland Africa and 

dispersing across the Mozambique channel(53, 54), ancestral lemurs encountered an ecosystem 

that was not only relatively free of competitors and predators, but also profoundly 

environmentally heterogeneous, which led to a remarkable adaptive radiation of 103 extant 

species and 5 families (cheirogaleidae, dwarf and mouse lemurs; daubentoniidae, aye-ayes; 

lemuridae, “true” lemurs; lepilemuridae, sportives; and indriidae, indri, wooly lemurs, and 

sifakas)(58). Extant lemurs range widely in size from diminutive mouse lemurs (Microcebus 

berthae) to the medium-bodied indri (Indri indri), and display a wide range of activity patterns, 

lomotor specializations, diets, and social structures. Many lemurs are distinguished from other 



primates by peculiar phenotypes such as a dental tooth comb, vertical-clinging and leaping 

locomotion, torpor, female dominance, and nocturnality(55, 59). However, prior to the arrival of 

humans on Madagascar ~2 Ka, the radiation of Malagasy primates was even broader, when 

several groups of now extinct subfossil lemurs occupied a wider niche space(60). Many of these 

subfossil taxa were larger (e.g. 200 kg Archaeoindris), diurnal, and slower (e.g. “sloth lemurs” 

such as Paleopropithecus), rendering them easier hunting targets(55, 60). The lorisiformes, while 

more broadly distributed than the lemuriformes, are a substantially less diverse radiation (29 

species and 2 families) inhabiting Africa and Asia. They are generally characterized as nocturnal, 

small-bodied, arboreal, solitary foragers; however, the two families diverge ecologically. The 

lorisidae (lorises, pottos, and agwantibos) have low metabolic and developmental rates and a 

cautious, slow moving locomotion, whereas the galagidae (galagos/bushbabies) are highly agile 

leapers with a faster life history(61, 62). 

 

Haplorhini 

367 species and 8 families of Haplorhini are classified into three main groups: 

tarsiiformes, platyrrhini, and catarrhini (the latter of two of which can be lumped together as 

anthropoidea). The haplorhini are widely distributed across the globe, occupying all primate 

habitat countries, with the exception of Madagascar. The great majority of haplorhini are 

anthropoid primates (monkeys and apes), which are subdivided into two infraorders: platyrrhini 

(monkeys in the Americas), and catarrhini (monkeys and apes in Africa and Asia). Anthropoids 

(monkeys and apes) can be distinguished by numerous anatomical features, most notably a fused 

mandible, postorbital closure, nails on all digits, absence of the stapedial artery, and large 

brains(55). The extant tarsiiformes (tarsiers) are a single lineage with 11 species that until 



recently, was classified as a one genus, Tarsius. Tarsiers are endemic to the islands of 

Sundaland, predominantly Greater Mindanao (Carlito), Sumatra and Borneo (Cephalopachus), 

and Sulawesi (Tarsius)(63). Phenotypically, tarsiers present a mosaic of traits common to 

strepsirrhini and anthropoidea, and resemble the Eocene Omomyidae(55). Tarsiers are small 

bodied, nocturnal, faunivores, characterized by extreme morphological adaptations to arboreal 

leaping and enormous eyes (each larger than their brains)(63, 64). This phenotypic mosaicism is 

of particular interest, given that tarsiers diverged from anthropoids 58 Ma, shortly after the 

strepsirrhine/haplorrhine split(65). 

The platyrrhines are composed of 171 species in 5 families of monkeys (callitrichidae, 

marmosets and tamarins; cebidae, capuchin and squirrel monkeys; aotidae, owl monkeys; 

pitheciidae, titis, sakis and uakaris; and atelidae, spiders, howlers, woolies, and muriquis). Extant 

platyrrhines occupy a wide range of habitats (tropical rainforest, subtropical rainforests, tropical 

dry forest, and savannah) from southern Mexico through northern Argentina, but are most widely 

distributed throughout Amazonia(66). Platyrrhines are remarkably speciose, but in some respects 

ecologically limited in comparison to strepsirrhines and catarrhines. Platyrrhines have small to 

medium body sizes, and are almost exclusively diurnal arboreal quadrupeds(55). However, 

platyrrhines do display a range of dietary regimes and social/mating systems, and in some cases 

have uniquely or independently evolved traits including prehensile tails (cebidae and 

atelidae)(67), secondarily evolved claw-like nails (callitrichidae)(68), nocturnality (owl 

monkeys)(69), routine trichromatic color vision (howlers)(70), and tool use (cebidae)(71). The 

lineages and origins of platyrrhines have been notoriously difficult to explain, although the 

morphological affinity between Eocene/Oligocene platyrrhines and contemporaneous north 

African anthropoids, supports the hypothesis that the first platyrrhines rafted to South America in 



a trans-Atlantic vicariance event and radiated rapidly(50–52). Several fossil and subfossil 

platyrrhines dating to the Miocene through Holocene have also been found in the Caribbean, 

from species likely to have been extirpated by humans(72). 

Extant catarrhines include 185 species in 3 families of monkeys and apes from Africa and 

Asia. Compared to other primates, catarrhini tend to have larger body masses, brain sizes, 

extended life histories, more terrestrial locomotion, greater evidence of sexual selection, and 

routine trichromatic vision(55, 73). The vast majority of catarrhini are monkeys of the family 

cercopithecidae (160 species), which is composed of two distinct subfamilies: the 

cercopithecinae (baboons, geladas, kipunji, macaques, guenons, vervets, mangabeys, mandrills, 

etc.) and colobinae (colobus monkeys, langurs, and odd-nosed monkeys). The cercopithecidae 

have the broadest geographic range of any non-human primate--macaques alone ranging from 

North Africa to India, Sundaland, and Japan--and are increasingly found at the interface with 

human settlements(55, 74). Some also occupy geographic and climatic extremes, such as the 

Yunnan snub-nosed monkey, which has adapted to high-altitude and low temperatures at 4,500 

m in the Tibetan plateau(75, 76). The cercopithecidae often have complex, hierarchical social 

systems, which are particularly well-studied in the baboons(77). Guenons often form 

multispecies groups and display a remarkable variety of coloration and facial patterning, likely 

signaling for species discrimination(78). The colobinae have adapted to a highly folivorous diet, 

evolving a sacculated stomach allowing for foregut fermentation of cellulose(32). The 

hominoidea (apes) comprise 25 species in 3 families. The apes are substantially less speciose 

than the monkeys, although, a wide array of apes lived during the Miocene, predominantly in 

Europe and Africa(55, 79). Extant apes are somewhat biogeographically restricted, only being 

found in southeast Asia and sub-Saharan Africa. The unifying trait of apes is the lack of a tail, 



however, they typically have more orthograde body postures, large brains, and slow life 

histories(55, 80–82). The hylobatidae (small apes, or gibbons) are the substantially more species 

rich family (19 species), but are restricted to southeast Asia. Gibbons are dedicated arborealists 

that have adapted morphologically to a distinct form of arm-swing suspensory locomotion 

(brachiation)(83). They sing complex vocal duets and while long mischaracterized as 

monogamous, substantial social/mating system diversity exists across gibbon species(84). The 

hominidae (great apes) include bonobos (gracile chimpanzees), common (robust) chimpanzees, 

humans, gorillas, and orangutans. Relative to other primates, great apes have been 

extraordinarily well studied; they have complex social systems, long lives, high intelligence, the 

capacity for tools use, and large body masses.(73, 85–87). Given their morphological and 

geographic range, identifying the lineages leading to gibbons, great apes, and humans in African 

and Asia remains a subject of debate(79, 81). 

 

PRIMATE CONSERVATION 

As it stands today, the world’s primates are in peril(88). Despite the widespread 

distribution of primates, human activities will likely cause the extinction of most species if 

present trends continue unabated. The IUCN quantifies extinction risk using species data on 

population decline, population size, range area, and quantitative population viability 

analysis(89). Ordinal IUCN extinction risk levels range from least concern to critically 

endangered. Of 504 primate species from which data could be assembled reliably by the IUCN in 

2017, about 60% are threatened with extinction; broken down by major biogeographic areas, this 

accounts for 87% of primates in Madagascar, 73% in Asia, 37% in mainland Africa, and 36% in 

the Americas(30) (Figure 1). Members of all 16 primate families are threatened, and for 10 



families at least half of species are threatened(30). The risk is of particular concern for the 

lemuroidea and hominoidea, and to a lesser extent the cercopithecidae and tarsiidae. While many 

of the platyrrhini and lorisoidea remain at high risk, the threat is less immediate at the family 

level. The overarching threats to primates are anthropogenic habitat loss (primarily deforestation 

and fragmentation resulting from agriculture, logging, and livestock), hunting pressure for the 

bushmeat trade, and to a lesser degree mining, civil unrest, capture for medicinal uses, and 

climate change(30, 90, 91). For any given species, the immediate causes of these risk levels vary 

in accordance with local pressures, as well as innate biological traits such as life history, body 

mass, and trophic level(92). Nonetheless, the root concern remains human population growth and 

development, often facilitated by the expansion of roads into previously inaccessible areas(90). 

Addressing the realities of primate conservation in the 21st century remains an ongoing 

challenge. Isolating large stretches of forest from human activity (fortress conservation) is a 

colonial perspective that often conflicts with the basic human rights of indigenous peoples(93, 

94). Efforts that embrace ethnoprimatological perspectives(95, 96) by partnering with people 

who occupy and surround primate habitat are vital to future conservation management.  

It is also important to acknowledge the role that species delimitation plays in 

conservation assessment and management, as the number of taxonomic groups has increased 

sharply in recent years (38). This increasing species richness is not primarily the result of 

previously unknown primates being discovered in unsurveyed forests. Rather, the trend toward 

taxonomic splitting stems from improving molecular data that allow for phylogenetic 

discrimination among cryptic taxa, and conservation pressures to classify threatened populations 

as distinct; whether each species is valid depends upon the species concept employed (38). Of 

particular use is the General Lineage Species Concept(97), which defines a species as a 



metapopulation lineage that is separately evolving. Under this framework, the co-occurrence of 

species delimiting criteria (e.g. reproductive isolation, phenotypic cohesion, morphological 

distinction, reciprocal monophyly, etc.) provide increasing confidence that lineages are separate 

species. Given the ambiguities of species as a taxonomic unit, some authors propose the use of 

conservation or evolutionarily significant units(98, 99), which can allow for a more flexible 

degree of diagnostic differentiation for conservation management purposes. There remains 

ongoing debate as to what constitutes a unit of conservation(99), given the realities of cryptic 

speciation and variable degrees of genetic differentiation in populations. Analyzing whole 

genomes opens the possibility to assess the ancestry of given genomic segments, and thus to 

potentially make more informed decisions about which populations merit more focus.  

 

PRIMATE POPULATION GENOMICS 

Despite ever improving access to genomic methods, there are still comparatively few 

population genomic scale studies of primates. Several genomic datasets have been produced with 

a focus on human evolutionary genomics and biomedical research, but the vast majority of 

species remain unexamined. Given the dire circumstances facing many primates, a broad 

expansion of population genomics across the order focusing on underrepresented taxa could have 

profound conservation implications. As an example, WGS data can be used to reconstruct the 

demographic history of a species by assessing fluctuations of effective population sizes over time 

via coalescence based methods (100–102). Such an approach has the potential to determine 

whether the reduced genetic diversity observed in a given species is the result of an historical 

bottleneck, and to assess the impact of drift on future viability. Furthermore, it can be used to 

measure the extent of runs of homozygosity and their overall track length, which provide insight 



on the amount and timing of inbreeding within a species (103). WGS also allows for the 

assessment of the functional significance and impact of genetic variation, such as putatively 

deleterious alleles, and their frequency within a population or species (33). Together, these 

measurements allow us to take a snapshot of the “genomic health” of a species, and inform 

potential further actions. Here, we review the whole genome sequencing literature across the 

primate radiation and highlight potential implications for conservation. 

 

Apes 

Among the first group of primate species to be studied at the whole genome level were 

the great apes. In the last decade, whole genome analysis has revealed a 3-fold range of genetic 

diversity among great ape species, as well as ample support of inbreeding within wild 

populations of several species. Within the great ape lineage, non-African humans, western 

chimpanzees, bonobos and eastern lowland gorillas, were initially found to exhibit the lowest 

levels of genetic diversity, whereas Sumatran orangutans show the highest, despite a significant 

recent population collapse(31). Early analysis of the genomes of six great ape species (including 

humans) showed a detailed picture of their recent evolutionary history, revealing periods of past 

expansions and contractions of effective population sizes and evidence of gene-flow between 

different subspecies of common chimpanzees(31). Subsequent analysis of additional chimpanzee 

genomes demonstrated that ancient gene-flow was not limited to subspecies of common 

chimpanzees, but also occurred between common chimpanzees and bonobos (36), as well as 

from an extinct ghost lineage into bonobos(104). Genomic assessments of gorillas have also had 

substantial conservation implications, particularly for mountain gorillas, the iconic subspecies 

made famous through the work of Diane Fossey. Mountain gorillas are among the most 



endangered great apes--although they have recovered to a census size of ~1000 individuals 

thanks to intensive conservation efforts(33, 105)--and have the lowest levels of genomic 

diversity among the great apes. They show evidence of long term population decline, with levels 

of genetic diversity reaching less than ⅓ of that in eastern lowland gorillas and most recent 

estimates of an effective population size sum to only ~270 individuals(33). Their genomes are 

covered in megabase-scale runs of homozygosity that amount to over ⅓ of the total length, 

evidencing long term inbreeding within their small population. Nevertheless, despite the 

diminished genetic diversity there does not seem to be an excess of deleterious variation within 

their genomes. Furthermore, detailed analyses of temporal changes in allelic diversity over the 

last 100 years have been performed using museum samples from both mountain and Grauer’s 

gorillas(35). Grauer’s gorillas have experienced a population decline of ~80% over the last 20 

years, whereas mountain gorillas seem to have had more stable populations overall in that time 

period, albeit very small ones. Correspondingly, the temporal sequence of samples provided 

evidence for a significant decrease in allelic diversity with an associated increase in mutational 

load for the Grauer's gorilla. Contrary to the example of gorillas, recent genetic and 

morphometric analysis of orangutan genomes revealed high levels of diversity leading to the 

definition of a new species, the critically endangered Tapanuli orangutan, which was previously 

lumped together with Sumatran orangutans. This species has an estimated census size of only 

800 individuals, the lowest of any great ape and thus immediately became a major focus for 

conservation efforts(34). 

Gibbons are the most species rich family of apes, with four genera that encompass 19 

currently recognized species. With the exception of the eastern hoolock gibbon all of them are 

categorized as endangered or critically endangered by the IUCN, some of which are among the 



most threatened of all primates. For example, the Hainan gibbon has an estimated ~25 

individuals left in the wild, making it the rarest known primate(106). Five species of gibbons 

have whole genome sequences available, and genetic diversity within them ranges roughly 2-fold 

from 0.0008 in the pileated gibbon to 0.002 in the northern white-cheeked gibbon. However, 

these are point estimates, based on at most 2 individuals per species(7, 107). The four gibbon 

genera underwent a nearly instantaneous radiation, with large amounts of incomplete lineage 

sorting and potential gene-flow, which makes it particularly challenging to determine their 

precise phylogenetic relationship, and no clear overall topology based on the nuclear genome has 

been established. Population scale-resequencing data might be able to address these issues, and 

thus may also help to delimit and define potential units of conservation in more pressing need of 

focused interventions within the somewhat blurred species delimitations of this family. 

 

Cercopithecidae 

The six species of baboons have complex phylogenetic relationships with lineages that 

formed through a series of divergence and introgression events(25, 108). The most dramatic 

example is the Kinda baboon, a species that was formed by the hybridization of chacma and 

hamadryas baboons, resulting in a genomic makeup in which both parental species contributed 

almost exactly half to its genome(25). Chacma baboons are furthermore currently the only NHP 

species for which an ancient genome exists. This provides a time estimate of genomic diversity 

for chacmas, showing no significant loss thereof over the last ~6000 years, as well as a stable 

population of high continuity within southern Africa(109).  

Despite the importance of rhesus macaques for biomedical research and the fact they are 

among the most well studied NHP, few fine-grained analysis of genomic variation and 



comparisons of individuals from different populations based on whole genome sequences exist, 

especially for wild individuals(110–112). The recent analysis of 133 genomes from captive 

colonies of predominantly Indian origin consolidated a divergence estimate of ~200k years ago 

between Indian and Chinese populations, with a subsequent bottleneck in the Indian population 

likely coinciding with its westwards expansion(111). Estimates of their genomic diversity overall 

are roughly twice as high as in humans, and Indian individuals show slightly lower levels than 

those of Chinese origin. Furthermore, the comparison of 81 whole genomes of wild-born 

Chinese rhesus macaques from four different subspecies showed marked population 

differentiation among them. There seem to be several local adaptations within the different 

subspecies that potentially affect biomedically relevant traits(111). Rhesus macaques have been 

found to harbor segregating variants that are putatively disease causing in humans(111, 112). 

These facts underline the importance of understanding the genomic makeup of individuals that 

are used in a biomedical context, as responses to specific experiments might differ between 

individuals from different populations, as well as between the model species and humans 

themselves. Rhesus macaques share a broad geographic distribution and adaptation to a wide 

range of ecological backgrounds with humans, and are among the only primates to do so. With 

large effective and census populations sizes, and low levels of deleterious variation they are 

currently of limited concern. However, the capture of wild animals for export to foreign research 

colonies at rates of ~50.000 individuals per year has led to severe population declines in India in 

the past(113). A similar situation might lead to a rapid extinction of a species, despite large 

population sizes(114). The crab eating macaque has also been the target of genomic analysis, 

much for the same reasons as the rhesus macaque, although to a lesser extent. Most genomic 



variation data from this species focuses on a colony on Mauritius, and might therefore represent 

an underestimation of the diversity in the natural species range(24).  

Vervet monkeys are an important natural host for SIV with specific adaptations to cope 

with its infection, and as such have emerged as a model species to study HIV. Currently, six 

species are recognized, which generally exhibit high genetic diversity, and have large effective 

populations sizes that have been comparatively stable over time(26, 115). The recent analysis of 

163 whole genomes of 5 vervet species showed ample evidence of interbreeding between 

different members of the genus. Most vervets are of limited conservation concern, with only one 

species currently being classified as vulnerable. However, vervet genomic data have informed 

recent analysis of an endangered guenon sister taxon, the dryas monkey. The analysis of the 

dryas genome revealed bidirectional gene flow between itself and several vervet species in the 

past(116). It shows high genetic diversity and little genetic load, hinting at good chances of long-

term survival of the species despite a low census size (~250 individuals), given adequate 

conservation measures. A mitochondrial phylogeny groups the dryas monkey together with the 

vervets, whereas a nuclear one clearly positions them as a sister taxa. This also underlines the 

importance of having genome sequences for species of little concern available, as they can be 

highly informative when trying to understand the demographic history and population dynamics 

of species of higher concern. 

Snub-nosed monkeys are among the few colobines to have their genomes sequenced. 

Analysis of 4 species revealed serial bottlenecks resulting in very low levels of genetic diversity 

within present day populations. Some species are also characterized by large amounts of 

homozygosity, such as the Myanmar snub-nosed monkey, in which ~⅓. of the genome is 



covered by runs of homozygosity (27). The more recent analysis of 9 langur species also showed 

low long term effective population sizes for several of them (117). 

 

Platyrrhini 

Although a comparatively low proportion of apes and cercopithecidae have been included 

in genomic analysis, their numbers are high relative to the remaining clades of primates. 

Platyrrhines for example, are the most species rich group of primates, yet they are severely 

underrepresented in genomic analysis. Currently, reference assemblies for 11 species exist 

(Kuderna et al., 2020 in press), yet there is little genomic information of wildborn populations 

available. The genome of the common marmoset has been sequenced and characterized, as this 

species is an emerging model for neurobiological research(27). While the study also assessed 

polymorphism data by resequencing 9 additional individuals, they are all derived from captive 

research colonies(27) The situation is similar for Owl monkeys(118). Recently, white-faced 

capuchin genomes from Costa Rica showed moderately low levels of genetic diversity and 

inbreeding, with small effective population sizes that have declined in the past(119).  

 

Strepsirrhini 

The most underrepresented clade in terms of genomic resources are the strepsirhines, and 

within them the lemurs of Madagascar. This island alone is home to roughly 20% of primate 

species, more than 90% of which are threatened with extinction(30). Some reference assemblies 

for lemurs have been generated, but as the radiation of the clade is much older than that of 

haplorhines, the strategy of using the assemblies of different species, which can be highly 

informative(31), is much more challenging to apply(120, 121). Levels of genetic diversity span a 



broad range within the clade, and are lowest within the aye-aye, likely as an effect of its large 

home ranging size and low population densities(122, 123). Recent analysis of four dwarf lemur 

species unveiled recent population declines and partially high levels of inbreeding in some 

species, combined with ancient gene-flow events across them(124). Population declines have 

also been observed in greater bamboo lemurs(125). Lastly, several recently extinct lineages of 

lemurs have remains in the form of sub-fossils that are in theory within the technological time-

range of ancient DNA studies. While there are not yet any successful efforts to generate whole 

genome sequences of these species, they could be informative on the demographic history of 

primates on the island, and the potential impact humans have had on them.  

 

MAJOR LIMITATIONS OF PRIMATE GENOMICS 

The primary limitation of primate genomics remains the inability to acquire a large 

number of high-quality samples from multiple individuals across broad geographic distributions. 

Blood and tissue samples can be readily obtained from captive breeding populations and medical 

facilities, and to a lesser extent, zoos and rehabilitation centers. However, this represents a 

vanishingly small proportion of primate species diversity and an exceptionally small number of 

individuals per species. Most zoos only house a subset of charismatic primates, and little 

verifiable information about the biogeographic origin and pedigree of the animals is often 

known(126). Collecting blood or tissue samples from free ranging primates is challenging. 

Trapping or darting primates is possible in some conditions(127), but is under increasing scrutiny 

as managers of protected reserves seek to avoid non-essential health and behavioral 

consequences to protected species. Tissue samples can be collected from bushmeat 

markets(128), sustainable partnerships with indigenous hunters(96), or opportunistically when 



deceased individuals are discovered by field biologists, but these situations only arise 

extraordinary circumstances. Wherever possible, induced pluripotent stem cells should be 

generated from high-quality tissue samples for future conservation research (eg. San Diego 

Frozen Zoo and Barcelona Cryo-Zoo cryofacilities) (129).  

As a consequence of these challenges, molecular primatology has prioritized non-

invasive sampling, particularly of feces (130–132) and to a lesser extent hair(133) and 

urine(134). Collecting non-invasive samples is not without its own set of challenges. The 

primary determinant of success in non-invasive sampling is often whether or not a given primate 

group is habituated to human observers. When a population of primates has undergone long term 

study, individuals are less likely to scatter in human presence, and can often be identified by 

distinctive facial features. In such cases it can be possible to collect multiple fecal samples from 

a large number of individuals over multiple years(135). For species of particular interest, 

research consortia can pool resources to assemble near species-wide sampling, but such cases are 

truly exceptional and not representative for most primates. While an impressive number of 

primates species have undergone field observation, almost all free-ranging primates are not 

habituated to human presence. Collecting samples from unhabituated primates is notoriously 

challenging. Such sampling is possible in cases where primates assemble in large, terrestrial 

groups(136), but rare for arboreal and cryptic taxa.  

 Once non-invasive samples have been collected, several challenges must be overcome for 

population genetics/genomic research. First, non-invasive samples need to be properly preserved 

for long-term storage, given that primates often reside in remote regions with high temperature 

and humidity. This usually involves storage in a transportation medium or desiccant (e.g. 

ethanol, RNAlater, or silica) for weeks or months until they can be frozen. Once samples have 



made it to the lab, one must acquire an adequate amount of input DNA. Hair and urine both 

contain low amounts of total DNA, which can result in poor PCR amplification, allelic dropout, 

and the inability to generate genomic libraries. In absolute terms, DNA is highly abundant in 

feces, although the vast majority of it comes from non-endogenous sources such as gut microbes 

and dietary components(131). Until very recently (see below) working with fecal DNA required 

the development of highly specific PCR primers to amplify a small number of genetic markers, 

which often suffered from the same difficulties as other non-invasive biomaterials. Additionally, 

fecal DNA is usually highly fragmented and degraded, increasing the difficulty of amplification 

of large targets. Cross-contamination of biomaterial is also a significant problem. In some cases a 

single hair sample can include hairs from multiple individuals, and fecal samples can come in 

contact with each other when primates defecate in group settings. 

 As a result of the considerable difficulty in working with non-invasive biomaterials, the 

vast majority of such research has focused on primate molecular ecology in the past 20 years, 

relying upon the amplification of microsatellites, mtDNA, and single genes of interest. While the 

results of these studies have improved our understanding of conservation concerns, population 

structure, phylogeography, and adaptation, they remain inherently limited. mtDNA has been 

invaluable for phylogenetics, but the mitochondrial genome is just a single, uniparentally 

inherited locus. Microsatellites can be highly informative in the analysis of population structure, 

landscape genetics, inbreeding, and relatedness, and their fast mutation (slippage) rate allows for 

the identification of population genetic effects on extremely short time scales (>5 

generations(137)). However, in the absence of genomic resources, dozens of microsatellite 

primers need to be screened for amplification success in a species of interest. Furthermore, the 

allelic dropout introduced by low endogenous DNA and PCR inhibition, requires that 



microsatellites be amplified at least 5 times for accurate fecal genotypes(138). Ultimately, the 

future of primate conservation genomics will rely on the advancement of nascent laboratory 

techniques and the coming availability of new genomic resources. 

 

METHODOLOGICAL ADVANCES FOR NON-INVASIVE GENOMICS 

The coming advances in primate genomics will to a large degree depend on advances in 

molecular laboratory techniques for working with degraded and low-quality biomaterials (see 

Lawler (38) for a similar discussion). The latest extraction and library preparation techniques use 

single-strand and single-tube approaches that maximize yields from remarkably low inputs(139, 

140). Genomic bait-and-capture of endogenous DNA from feces has become an increasingly 

viable approach to primate genomics(108, 131, 132, 141). This technique involves the generation 

of DNA or RNA baits, which are hybridized to targeted regions of a primate genome in fecal (i.e. 

metagenomic) DNA. The resultant “captured” DNA is substantially enriched for endogenous 

content. While the proportion of non-duplicative on-target reads remains low in comparison to 

high quality biomaterials like blood and tissue, it allows for the cost-effective genomic 

sequencing of individual chromosomes or exomes(131, 132, 142). Another promising 

enrichment technique takes advantage of the different CpG-methylation density between 

vertebrate and bacterial DNA to selectively capture primate DNA in feces without baits(130), 

yielding enrichment rates that are comparable to those of bait-and-capture approaches. 

Methylation-based enrichment has recently been used to analyze genome-wide ancestry and 

introgression in Kinda and chacma baboons across a hybridation zone(136). Restriction site-

associated DNA sequencing (RAD-seq) has been used to reduce genomic complexity for SNP 

generation in multiple species of primates(136, 143, 144) to study phylogeography, speciation, 



and hybridization. Finally, fluorescence-activated cell sorting has recently been used to isolate 

primate epithelial cells directly from the fecal samples to study population structure and local 

adaptation in capuchin monkeys(119). In contrast to other techniques, the direct isolation of cells 

allows for extraction, library preparation, and high-coverage sequencing without any enrichment, 

and is a promising alternative. Lastly, recent developments have made it possible to selectively 

sequence in-silico target enriched regions using a handheld portable sequencing device (145, 

146). While this technology is still under development, the possibility to perform target 

enrichment and sequence analysis directly in the field holds tremendous potential. 

While the difficulty of obtaining non-invasive samples from unhabituated primates 

remains, new approaches for sample acquisition have shown substantial promise. Detection dogs 

have been employed to locate and identify large numbers of fecal samples from multiple species 

of monkeys and apes(147, 148). These dogs offer the ability to search for the feces of cryptic 

species without having to locate or disturb the animals themselves, and can be trained in 

collaboration with police in habitat countries using scat from species of interest(147). The ability 

to preserve field collected biomaterials has until now required preservation methods that 

typically yield low quality DNA. Recently, feces collected from free ranging gorillas in the 

Central African Republic were preserved in situ using a portable freezer attached to a solar 

powered battery, which allowed for the study of gene expression with RNA-seq(149). Such an 

approach could also be used to preserve other biomaterials for molecular work that requires high 

quality DNA. In addition to fecal sampling, progress has been made in the use of alternative 

biomaterials. In particular, urine shows exceptional promise(134) for primate genomics. Unlike 

feces, the DNA derived from urine is almost entirely of an endogenous source. Ozga et al.(134) 

successfully sampled urine from chimpanzees at Gombe, which after the application of genomic 



capture methods, mapped with high efficiency to a chimpanzee reference genome. Sampling 

protocols can also be tailored to the behavior of the target species. For example, Aye-ayes forage 

for larvae by gnawing and digging into trunks and branches of trees. Aylward et al.(150) 

successfully harvested saliva from these feeding traces for population genetic monitoring. 

Further creative advances in non-invasive sampling are undoubtedly on the horizon. 

 

THE FUTURE OF PRIMATE CONSERVATION GENOMICS 

Primate conservation genomics is at the dawn of a new era. Developments in field and 

laboratory biology are being fueled by the rapid expansion of low-cost genome sequencing 

options. As these recent methodological advances demonstrate, the technical foundations for 

robust and widespread primate conservation genomics are present. However, the extent to which 

these approaches have been implemented has been hindered by the limited availability of 

genomic resources and the high cost of sequencing. Given that the cost-prohibitive barrier of 

genome sequencing has been broken, we expect that in the near-term future the release of new 

primate reference genomes across the primate order will be coupled with expansive blood- and 

tissue-based resequencing efforts. Assuredly, this forthcoming first wave will reveal tantalizing 

new insights into genomic diversity, population history, genetic load, species boundaries, and 

adaptation across the primate order.  

However, it remains the case that the vast majority of the world’s primate genomic 

diversity exists within free-ranging primates and is only accessible via non-invasive means. The 

key to unlocking genome-informed primate conservation will be the integration of new non-

invasive techniques with newly available genomic resources and low cost sequencing. As such, 

we expect that a second wave of primate conservation genomics will bring about the sequencing 



of large populations of primates from multiple sites and different ecological settings. This new 

reality will allow for fine-grained assessments of population genetic diversity, gene flow, and 

inbreeding across variable geographic scales. We also expect that it will become more common 

to couple the sequencing of modern genomes with those derived from historical and museum 

specimens. Genomic capture approaches are suitable for both types of biomaterials in the 

absence of low-cost brute force sequencing. Such an approach allows for a deeper understanding 

of how genomic diversity has been shaped and lost within species over the course of population 

declines that are likely the result of anthropogenic effects. Depending on the quality of museum 

records, it can also be possible to target a modern/historic approach to a fine scale within specific 

geographic regions. Further studies could examine the role of local adaptation in population 

viability. Most primates occupy highly fragmented habitats, and/or belong to small populations. 

As such, drift could be having exaggerated effects in some populations or species thereby 

influencing survival.  

Given the coming extinction crisis faced by the world’s primates, we suggest that the 

wide scale application of genomics to primate conservation is not only possible, it is essential. 

The availability of cheap sequencing has now made it possible for genomics to facilitate 

informed conservation cost-effectively. However, it will be critical to apply these new tools 

rapidly and targeted toward the areas and species of greatest need. We call particular attention to 

the primates of Madagascar where habitat fragmentation and deforestation have put a staggering 

87% of species at risk of extinction. Furthermore, given their phylogenetic distance from 

humans, they have received only limited attention from the genomics community. In spite of 

this, lemurs are extraordinarily diverse not just taxonomically, but also morphologically and 

behaviorally. A deeper understanding of lemur genomics would not only have conservation 



merit, but also provide a major new source of biomedical and evolutionary information relevant 

to humans. 
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FIGURES 
 

 
 

Figure 1: Top: Global map of primate species richness in 0.5° grids. Species range data from 

IUCN red list version 6.2. Bottom: Proportion of species that are threatened according to the 

IUCN (VU,EN,CR). 

 



 
 

Figure 2: Left: cladogram of primate families. Right: Number of species per family present in 

each of the four major primates geographic ranges, with data from (30). *Major groups of 

cercopithecidae include Baboons, Geladas, Swamp Monkey, Talapoins, Patas, Vervets, 

Mangabeys, Geladas, Guenons, Kipunji, Drill/Mandrill, Macaques, Langurs, Doucs, Snub-

Noses, Proboscis, Colobus, Langurs, and Surilis. Silhouettes acquired from Phylopic.org used 

under a creative commons license  

 


