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 24 

Structured abstract 25 

Purpose of review: We seek to establish whether high-density lipoprotein HDL 26 

metabolism and reverse cholesterol transport (RCT) impairment is an intrinsic feature of 27 

familial hypercholesterolemia (FH).  28 

Recent findings: RCT from macrophages (m-RCT), a vascular cell type of major 29 

influence on atherosclerosis, is impaired in FH due to defective low-density lipoprotein 30 

receptor (LDLR) function via both the HDL- and LDL-mediated pathways. Potential 31 

mechanisms include impaired HDL metabolism, which is linked to increased LDL levels, 32 

as well as the increased transport of cellular unesterified cholesterol to LDL, which 33 

presents a defective catabolism. 34 

Summary: RCT dysfunction is a consistent finding in the literature and thus an intrinsic 35 

feature of mutation-positive FH linked to decreased HDL levels as well as impaired HDL 36 

remodeling and LDLR function. It remains to be explored whether these alterations are 37 

also present in less well-characterized forms of FH, such as cases with no identified 38 

mutations, and whether they are fully corrected by current standard treatments.  39 
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ABBREVIATIONS 40 

ABC, ATP binding cassette transporter 41 

APO, apolipoprotein 42 

CE, cholesterol ester 43 

CEC, cholesterol efflux capacity 44 

CETP, cholesteryl ester transfer protein 45 

CVD, cardiovascular disease 46 

FH, familial hypercholesterolemia 47 

HDL, high-density lipoprotein 48 

HDL-c, HDL cholesterol 49 

LCAT, lecithin:cholesterol acyltransferase 50 

LDL, low-density lipoprotein 51 

LDL-c, LDL cholesterol 52 

LDLR, LDL receptor 53 

LXR, liver X receptor 54 

miRNA, micro RNA 55 

m-RCT, macrophage-specific reverse cholesterol transport 56 

PCSK9 proprotein convertase subtilisin/kexin type 9 PLTP, phospholipid transfer protein  57 

RCT, reverse cholesterol transport 58 

SR-BI, scavenger receptor BI 59 

SREBP, sterol response element-binding protein 60 

TICE, transintestinal cholesterol excretion 61 

UC, unesterified cholesterol 62 
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VLDL, very low-density lipoprotein 63 

64 



5 
 

Introduction 65 

Familial hypercholesterolemia (FH) is classically defined as an autosomal codominant 66 

disease characterized by elevated plasma low-density lipoprotein (LDL) cholesterol 67 

(LDL-c) and a high risk of premature cardiovascular disease (CVD) [1]. It is mainly due 68 

to the loss of function variants in the LDL receptor gene (LDLR). FH cases with no 69 

detected LDLR mutations might be due to pathogenic variants in other genes encoding 70 

proteins that interact with the LDLR, such as the LDLR ligand, apolipoprotein B-100 71 

(APOB), and proprotein convertase subtilisin/kexin type 9 (PCSK9). Recently, some 72 

studies using different weighted LDL-c gene scores showed that 20 to 80% of mutation-73 

negative FH patients exhibited a high score, suggesting potential forms of polygenic FH 74 

[2, 3]. 75 

Recent reviews have critically addressed the role of high-density lipoprotein (HDL) in 76 

atherosclerosis development, highlighting the potential rapid movement of unesterified 77 

cholesterol (UC) from cells and triglyceride-rich particles to HDL as well as from HDL to 78 

LDL or tissues [4, 5]. There is also evidence indicating that HDL remodeling, 79 

metabolism, and function, including its ability to induce macrophage cholesterol efflux, 80 

are impaired in the monogenic forms of FH [6-10]. Whether this impairment is intrinsic to 81 

the disease and influences the entire reverse cholesterol transport (RCT) pathway and 82 

cardiovascular risk and is corrected by current treatments is not yet well-established. 83 

 84 

  85 
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HDL content and remodeling alterations in FH 86 

The HDL particle composition is determined by the presence of a diversity of proteins, 87 

enzymes, lipids, and microRNAs (miRNAs) that confer specific functions to HDL. The 88 

physicochemical composition of HDL may vary and determine the particle shape, 89 

density, size, charge, and biological activity. Indeed, HDL composition is a key 90 

atheroprotective determinant. Decreased levels of HDL-cholesterol (HDL-C) have been 91 

consistently observed in both heterozygous FH and homozygous FH in association with 92 

HDL structural and functional abnormalities [6-10].  93 

In an early study of heterozygous FH patients, HDL particles were found to be smaller 94 

than those of control subjects [11]. Patients with type IIa hypercholesterolemia 95 

displayed reduced HDL3 production and enhanced fractional catabolic rates 96 

concomitantly with  decreased apolipoprotein (APO) A1 (APOA1) levels [9, 12, 13]. 97 

Additionally, FH patients exhibited elevated concentrations of small nascent preβ1-HDL 98 

particles [9, 14, 15] but reduced levels of large HDL2 particles when compared to 99 

normolipidemic subjects [9]. Other studies—but not all [8]—have demonstrated 100 

hypoalphalipoproteinemia due to increased catabolic rates in FH [16, 17]. Interestingly, 101 

elevations in plasma APOE have been reported in FH patients [13, 18], and the APOE 102 

genotype might influence the plasma HDL-C levels in these patients [19]. Another 103 

apolipoprotein differentially expressed in FH is APOL1, which has been proposed as a 104 

predictor of CVD events and mortality [20]. Additionally, a decrease in 105 

lecithin:cholesterol acyltransferase (LCAT) content in FH patients suggested significant 106 

modifications of HDL atheroprotective properties [20]. Indeed, the HDL3 particles of FH 107 

patients have been reported to have diminished antioxidant and anti-inflammatory 108 
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functions [12]. HDL particles from FH patients are enriched with cholesteryl esters (CE), 109 

depleted in phospholipids, and have an increased sphingomyelin/phosphatidylcholine 110 

ratio [9]. In a recent study from our group, different lipid transfer proteins and enzymes 111 

associated with HDL remodeling were evaluated in non-treated FH patients with an 112 

identified LDLR mutation and compared to normolipidemic patients similar in age [14]. 113 

The adult FH patients had lower levels of APOA1 and HDL-C but higher HDL APOA2 114 

and APOE content. Interestingly, cholesteryl ester transfer protein (CETP) and 115 

phospholipid transfer protein (PLTP) activities were found to be higher in the non-116 

treated FH patients along with reduced LCAT activity [14]. Therefore, these changes 117 

might explain, at least in part, the increased content of preβ-HDL particles as well as the 118 

decrease in the amount of mature HDL particles in FH [14]. All these changes were also 119 

found in LDLR-deficient mice as well as in human APOB100 transgenic mice (it is 120 

noteworthy that mice do not express CETP) [21]. The latter mouse model also exhibited 121 

hypercholesterolemia due to elevated LDL but also a functional LDLR, indicating that 122 

hypercholesterolemia might be directly linked to altered HDL remodeling independently 123 

of CETP and LDLR. Although the mechanisms involved in these biochemical changes 124 

are largely unknown, they could be related to the accumulation of cholesterol-125 

derivatives activating the liver X receptor (LXR), which may increase CETP and PTLP 126 

gene expression [22, 23]. We suggest that increased CETP may not promote RCT in 127 

cases with reduced LDLR function, and increased PTPL-mediated remodeling may not 128 

be effective in generating more mature HDL particles in the context of low LCAT action.  129 

 130 

 131 
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HDL- and plasma-mediated macrophage cholesterol efflux is impaired in FH 132 

The cholesterol efflux capacity (CEC) of HDL represents the first step in the reverse 133 

cholesterol transport (RCT) pathway. This functional property of HDL has been 134 

associated with atherosclerotic cardiovascular disease independently of HDL-C [24, 25]. 135 

As previously mentioned, compelling evidence supports the notion that an altered HDL 136 

metabolism and remodeling underlies a defective CEC mediated by HDL in FH patients. 137 

Indeed, HDL2 isolated from the plasma of FH patients presented a lesser CEC from 138 

cholesterol-loaded macrophages, which was mediated through both scavenger receptor 139 

class B type I (SR-BI) and ATP-binding cassette (ABC) transporter G1 (ABCG1), when 140 

compared to non-FH subjects [9]. In this same study, HDL3-mediated, SR-BI-dependent 141 

(but not ABCG1) CEC was also reduced [9]. In line with these findings, FH-derived 142 

HDL3 with a high triglyceride content also showed a reduced CEC from lipid-loaded 143 

macrophages in an independent study [26]. The reduced concentrations of HDL2 and 144 

HDL3  [9, 12], along with the altered activities of remodeling enzymes and lipid transfer 145 

proteins [14], may conceivably explain the lower CEC rates promoted by APOB-146 

depleted plasmas or serums in both treated and untreated FH patients [14, 27]. It is 147 

noteworthy that CEC of APOB-depleted serum was inversely and independently 148 

associated with the carotid intima-media thickness of FH patients treated with a lipid-149 

lowering therapy, although this association was weaker following adjustment for HDL-C 150 

and APOA1 levels [27]. We also reported a significant reduction in the amount of 151 

macrophage-derived cholesterol accumulated in HDL when the CEC of FH plasmas 152 

was evaluated  [21]. Taken together, these observations identify the significant 153 
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alteration of HDL-mediated CEC as a feature of FH patients with signs of atherosclerotic 154 

cardiovascular disease—even after adjustment for classical risk factors. 155 

Several large prospective studies have measured CEC promoted by either APOB-156 

depleted serum or plasma as a surrogate of HDL functionality related to the risk of 157 

atherosclerotic cardiovascular disease [24, 25, 28]. However, the CEC of APOB-158 

depleted serum does not always correlate with that of the whole serum, which is likely 159 

because the latter contains more physiological cholesterol acceptors [29]. Significant 160 

evidence indicates that LDL also contributes to macrophage CEC [30]. We recently 161 

reported that CEC induced from the plasma of untreated FH patients (with an identified 162 

LDLR mutation) was significantly impaired compared to that of normolipidemic 163 

volunteers. Further, our results also indicated that isolated LDL particles were major 164 

acceptors of the macrophage-derived radiolabeled cholesterol in both normolipidemic 165 

and FH plasmas [21]. Importantly, most of the transferred cholesterol in the LDL was 166 

unesterified, thereby indicating the marginal role of CETP and LCAT in this process 167 

[21]. Overall, these observations reveal that LDL enhances the efflux of cholesterol 168 

directly and indirectly by acting as a sink for cholesterol released from cells by HDL, 169 

which is in line with previous observations [30]. However, the transport of cholesterol 170 

from HDL to LDL and its slow return into the circulation for LCAT esterification (if the 171 

LDL is not previously removed from the circulation by the cell LDLR, as is often the case 172 

in FH) may not be representative of the exchanges that happen at the arterial intima 173 

level. Indeed, at this location, LDL is trapped by interactions with proteoglycans, and the 174 

UC transferred into LDL would likely accumulate at the intima lesion sites [30].    175 
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CETP could also be driving CE transfer from HDL to LDL in the plasma of FH patients, 176 

promoting the formation and vascular accumulation of atherogenic LDL [31]. Very low-177 

density lipoproteins (VLDL) lipolysis, albumin, and a number of enzymes and transfer 178 

proteins activities may also be relevant factors associated with plasma CEC [32, 33]. 179 

While VLDL do not show significant CEC [21], the transfer of UC from triglyceride-rich 180 

lipoproteins to HDL during lipolysis could compete with that from macrophages [4].  181 

Taken together, plasma elevations of LDL-C in FH subjects would appear directly 182 

related to the existence of dysfunctional HDL, which are characterized by both an 183 

altered remodeling and impaired CEC from macrophages. However, such a decreased 184 

cellular cholesterol efflux could also be in part due to a lower macrophage transporter 185 

activity. Indeed, ABCA1 expression has been shown to be downregulated in the 186 

monocytes of FH patients with genetic defects in LDLR [34]. In this regard, compelling 187 

evidence suggests that these transporters also can be regulated by microRNAs 188 

(miRNA). Also, many studies over the past years have identified miRNAs as important 189 

regulators of HDL metabolism [35, 36]. Furthermore, it has been shown that miRNAs 190 

can be transported in the plasma and delivered to recipient cells by HDL, thus directly 191 

influencing gene expression [37]. The most abundant miRNAs associated with HDL in 192 

FH patients are miR-223, -105, and -106a [37]. The incubation of human cultured 193 

hepatocytes (Huh7 cells) with HDL isolated from FH patients, that contained increased 194 

miR-223 and miR-105 levels, induced downregulation of several of their putative target 195 

genes [37]. Furthermore, in silico target prediction identified mRNAs that were 196 

conserved putative target of 22 differentially abundant miRNAS on FH HDL [38, 39]. In 197 

addition to its anti-inflammatory role, miR223 may influence systemic and hepatic 198 
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cholesterol metabolism. Indeed, miR233 overexpression attenuates SR-BI protein 199 

expression and liver HDL-C uptake [40]. Consistently, the genetic ablation of miR-223 200 

enhances hepatic SR-BI expression and HDL-C uptake [41]. Interestingly, miR-223 also 201 

prevents cholesterol biosynthesis through directly repressing the sterol enzyme, 3-202 

hydroxy-3-methylglutaryl-coA synthase 1 (HGMCS1), expression [41]. Moreover, the 203 

overexpression of miR-223 also enhances ABCA1 expression in Huh7 cells, and thus 204 

promotes cholesterol efflux through the repression of transcription factor Sp3. Overall, 205 

these studies highlight the role of miR-223 in regulating cholesterol homeostasis, albeit 206 

further studies are needed to specifically establish its role in regulating FH macrophage 207 

transporters. 208 

On the other hand, several studies measuring circulating miRNAs in FH children have 209 

shown that miR-33a/b and miR-200c were upregulated [42, 43]. However, whether 210 

these circulating miRNAs were associated with HDL has not been reported [44-46]. Like 211 

many intronic miRNAs, miR-33a is co-transcribed with its host gene sterol response 212 

element-binding protein (SREBP) 2, which targets genes involved in cholesterol export, 213 

including ABCA1.  214 

 215 

  216 
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m-RCT is impaired in FH caused by LDLR-mediated function 217 

The entire RCT transport from cells, such as macrophages, loaded with radiolabeled 218 

cholesterol to feces, also called macrophage-specific RCT (m-RCT), has been 219 

assessed in experimental animals. Genetically modified mice resembling a human 220 

monogenic FH mutation, usually in homozygosis, have been used in these experiments. 221 

We recently found that [3H]cholesterol derived from labeled macrophages injected into 222 

the peritoneal cavity of FH mouse models (i.e., LDLR-deficient mice or PCSK9-223 

overexpressing mice) was rapidly transferred to the hypercholesterolemic plasma and 224 

mostly associated with LDL. However, the fecal excretion of macrophage-derived 225 

cholesterol was significantly impaired in these mice, thereby indicating that that LDLR 226 

was essential in supporting the last step of the m-RCT route [21]. In line with these 227 

findings, a reduction in the liver and adrenal gland uptake of radiolabeled CE in HDL 228 

was previously noted in LDLR-deficient mice [47]. More importantly, both radiolabeled 229 

LDL- and HDL-cholesterol showed an impaired clearance in LDLR-deficient mice, and 230 

this was concomitant with a lower transfer of cholesterol from both lipoproteins to the 231 

feces [21]. Although these mice were homozygous lacking LDLR, there is no reason to 232 

believe that the defective m-RCT would not occur in heterozygous animals—albeit 233 

presumably at a lower scale. In contrast, the m-RCT rate remained unchanged in 234 

human APOB100 transgenic mice with fully functional LDLR despite increased levels of 235 

plasma APOB-containing lipoproteins and a higher accumulation of macrophage-236 

derived cholesterol in the LDL fraction [21]. Since the APOB100 transgenic mice 237 

presented with HDL remodeling impairment, it can be suggested that LDLR is needed to 238 

maintain m-RCT rate.  239 
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Overall, these findings strongly indicate that monogenic FH due to LDLR functionality 240 

impairment in mice does present with defective m-RCT. FH patients may present a 241 

more intense impairment, because their CETP activity could enhance the transfer of 242 

HDL-CE (formed by the LCAT action) to LDL and be subjected to a slower transfer to 243 

the liver. Indeed, CETP enhanced the amount of macrophage-derived cholesterol in 244 

LDL and the overall flux of [3H]cholesterol to the feces in mice, but failed at promoting 245 

the m-RCT rate in the absence of LDLR [48].  246 

It should be noted that LDL provides a significant amount of cholesterol for 247 

transintestinal cholesterol excretion (TICE) in human and mouse jejunal explants at its 248 

basolateral side [49]. Interestingly, TICE was increased in PCSK9-deficient mice 249 

whereas decreased upon an acute injection of PCSK9 [49]. However, TICE tended to 250 

be higher in LDLR-deficient mice [49], suggesting the activation of alternative 251 

compensatory mechanism(s) in conditions of chronic LDLR deficiency. 252 

 253 

Experimental and clinical therapeutic strategies 254 

Early reports demonstrated that LDL-apheresis was highly efficient in reducing not only 255 

LDL-C in severe FH patients but also large APOE-containing HDL and preβ-HDL 256 

particles [50]. This transitorily reduced the ability of these plasmas to induce 257 

macrophage cholesterol efflux [51]. In line with these findings, a recent report found that 258 

HDL from FH patients had increased malondialdehyde-APOA1 adducts, which was in 259 

close association with a defective CEC induced by APOB-depleted serum; this 260 

functional HDL alteration was not improved by LDL-apheresis [52]. Interestingly, 261 

dicarbonyl scavenging with 2-hydroxybenzylamine was able to prevent atherosclerosis 262 
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and foam cell formation by improving HDL CEC in LDLR-deficient mice [52]. Several 263 

therapeutic approaches have also failed to induce macrophage cholesterol efflux in FH 264 

patients. Indeed, lomitapide treatment was found to reduce the amount of large-buoyant 265 

HDL and preβ-HDL particles in homozygous FH patients, and, consistently, the ABCA1-266 

mediated CEC of APOB-depleted serum was impaired after this treatment [53]. 267 

Furthermore, a recent study reported that an antibody to PCSK9, evolocumab, did not 268 

affect either plasma HDL subclasses nor macrophage cholesterol efflux [54]. However, 269 

this study  was conducted in only three FH patients who had been under apheresis 270 

treatment for 11 years [54]. It should be noted that human PCSK9 reduced ABCA1-271 

dependent macrophage cholesterol efflux to APOA1 induced by the activation of the 272 

LXR/RXR pathway; this effect was fully abrogated by an anti-PCSK9 antibody or LDLR 273 

deficiency [55]. Non-treated FH children displayed alterations in HDL, such as an 274 

increase in HDL3-C and large HDL with respect to healthy controls. Interestingly, the 275 

smaller HDL particles were enriched in CE and had lower UC and phospholipid content 276 

[56]. The amount of very large HDL was normalized in statin-treated FH children [56], 277 

but whether this affected macrophage cholesterol efflux is unknown. In this context, we 278 

found that statin treatment was not able to normalize the ability of adolescent FH 279 

plasmas to induce macrophage cholesterol efflux (unpublished data). However, the 280 

lipoprotein distribution of macrophage-derived radiolabeled cholesterol was in part 281 

increased in HDL following statin treatment, whereas that of LDL was reduced 282 

concomitantly (unpublished data). Of note, rosuvastatin—but not atorvastatin—induced 283 

ABCA1-dependent macrophage cholesterol efflux and promoted m-RCT in wild-type 284 

mice [57]. Clearly, more studies are needed to clarify the potential of PCSK9 inhibitors 285 
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and statins in regulating HDL-mediated macrophage cholesterol efflux and their impact 286 

on the entire RCT pathway in FH.  287 

Another therapeutic approach is the injection of recombinant HDL particles, such as 288 

CER-001, which has been shown to enhance macrophage cholesterol efflux, fecal 289 

cholesterol excretion, and atherosclerosis regression in LDLR-deficient mice [58]. CER-290 

001 reduced the mean vessel wall area measured by magnetic resonance imaging in 291 

homozygous FH patients [59], thereby indicating that targeting HDL-mediated 292 

cholesterol efflux may represent a successful strategy for regressing atherosclerotic 293 

plaque. However, CER-001 did not favorably influence the carotid atherosclerosis of 294 

patients with HDL deficiencies despite significant elevations in plasma CEC after CER-295 

001 infusion [60]; whether the activity of this compound in patients is disease-dependent 296 

remains to be seen.  297 

 298 

Conclusions 299 

There is a notable consensus that points to an altered HDL remodeling and composition 300 

and impaired m-RCT in FH. This impairment can be captured, at least in part, in 301 

cholesterol efflux experiments in FH patients and the m-RCT experiments in genetically 302 

modified mice. These functional alterations have been reported at different steps of the 303 

RCT pathway (summarized in Figure 1) and seem to be especially dependent on the 304 

existence of increased LDL and LDLR function. Whether this FH feature is critical for 305 

atherosclerosis development and is ameliorated by current standard treatments for the 306 

disease needs to be further investigated. Although the latter could be anticipated 307 

considering the potential of current treatments to achieve important reductions in LDL-308 
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C, the data currently available would support a rather incomplete improvement in HDL 309 

and CEC in FH patients treated with statins. Future research should also compare the 310 

effect of different pharmacological treatments in CEC in both mutation-detected FH and 311 

mutation-negative FH cases. 312 
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Figure legend 331 
 332 

Figure 1. Macrophage reverse cholesterol transport (RCT) pathway is impaired in 333 

familiar hypercholesterolemia (FH). The functional alterations of the HDL-mediated RCT 334 

pathway detected at the different steps are based on results from human studies and 335 

FH mouse models. The first step of reverse unesterified cholesterol (UC) transport is 336 

initiated in macrophage foam cells. FH patients display increased cholesteryl ester 337 

transfer protein (CETP) and phospholipid transfer protein (PLTP) activities but reduced 338 

lecithin-cholesterol acyltransferase (LCAT) activity. These changes are associated with 339 

lower α-HDL cholesterol and APOA1 levels along with significant alterations in the α-340 

HDL composition and higher levels of nascent preβ-HDL particles. UC efflux from 341 

macrophages to HDL particles, promoted by both the transmembrane cholesterol ATP 342 

binding cassette transporters (ABC), A1 and G1, is impaired in FH patients. A significant 343 

part of macrophage-derived UC present on the surface of preβ-HDL and α-HDL 344 

particles and can be rapidly transferred to LDL into the circulation. This process appears 345 

to be independent of CETP. It should be noted that, based on whether cholesterol efflux 346 

from macrophages takes place in the arterial intima, LDL could be trapped by 347 

interactions with proteoglycans, and the UC transferred into LDL at this location would 348 

be finally accumulated at the intima lesion sites. Circulating CETP in FH patients can 349 

also drive the transfer of esterified cholesterol (EC) from HDL toward the core of LDL. In 350 

experimental models of FH, LDLs, carrying their load of macrophage-derived 351 

cholesterol, cannot be correctly internalized by the hepatic LDL receptor (LDLR). 352 

Hepatic cholesterol is ultimately secreted into the bile and to the intestine by ABCG5/G8 353 

as UC, thereby completing the hepatobiliary RCT route. Overall, under the genetic 354 
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absence of the LDLR, or under conditions leading to its dysfunctionality, the rate of this 355 

macrophage-derived UC reverse transport to feces is decreased. Although LDLR-356 

deficiency does not show clear effects on transintestinal cholesterol export (TICE), the 357 

acute injection of PCSK9 may regulate TICE in vivo. 358 

359 
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