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Structured abstract

Purpose of review: We seek to establish whether high-density lipoprotein HDL
metabolism and reverse cholesterol transport (RCT) impairment is an intrinsic feature of
familial hypercholesterolemia (FH).

Recent findings: RCT from macrophages (m-RCT), a vascular cell type of major
influence on atherosclerosis, is impaired in FH due to defective low-density lipoprotein
receptor (LDLR) function via both the HDL- and LDL-mediated pathways. Potential
mechanisms include impaired HDL metabolism, which is linked to increased LDL levels,
as well as the increased transport of cellular unesterified cholesterol to LDL, which
presents a defective catabolism.

Summary: RCT dysfunction is a consistent finding in the literature and thus an intrinsic
feature of mutation-positive FH linked to decreased HDL levels as well as impaired HDL
remodeling and LDLR function. It remains to be explored whether these alterations are
also present in less well-characterized forms of FH, such as cases with no identified

mutations, and whether they are fully corrected by current standard treatments.
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ABBREVIATIONS

ABC, ATP binding cassette transporter
APO, apolipoprotein

CE, cholesterol ester

CEC, cholesterol efflux capacity

CETP, cholesteryl ester transfer protein
CVD, cardiovascular disease

FH, familial hypercholesterolemia

HDL, high-density lipoprotein

HDL-c, HDL cholesterol

LCAT, lecithin:cholesterol acyltransferase
LDL, low-density lipoprotein

LDL-c, LDL cholesterol

LDLR, LDL receptor

LXR, liver X receptor

miRNA, micro RNA

m-RCT, macrophage-specific reverse cholesterol transport

PCSKO proprotein convertase subtilisin/kexin type 9 PLTP, phospholipid transfer protein

RCT, reverse cholesterol transport

SR-BI, scavenger receptor Bl

SREBP, sterol response element-binding protein

TICE, transintestinal cholesterol excretion

UC, unesterified cholesterol
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Introduction

Familial hypercholesterolemia (FH) is classically defined as an autosomal codominant
disease characterized by elevated plasma low-density lipoprotein (LDL) cholesterol
(LDL-c) and a high risk of premature cardiovascular disease (CVD) [1]. It is mainly due
to the loss of function variants in the LDL receptor gene (LDLR). FH cases with no
detected LDLR mutations might be due to pathogenic variants in other genes encoding
proteins that interact with the LDLR, such as the LDLR ligand, apolipoprotein B-100
(APOB), and proprotein convertase subtilisin/kexin type 9 (PCSK9). Recently, some
studies using different weighted LDL-c gene scores showed that 20 to 80% of mutation-
negative FH patients exhibited a high score, suggesting potential forms of polygenic FH
[2, 3].

Recent reviews have critically addressed the role of high-density lipoprotein (HDL) in
atherosclerosis development, highlighting the potential rapid movement of unesterified
cholesterol (UC) from cells and triglyceride-rich particles to HDL as well as from HDL to
LDL or tissues [4, 5]. There is also evidence indicating that HDL remodeling,
metabolism, and function, including its ability to induce macrophage cholesterol efflux,
are impaired in the monogenic forms of FH [6-10]. Whether this impairment is intrinsic to
the disease and influences the entire reverse cholesterol transport (RCT) pathway and

cardiovascular risk and is corrected by current treatments is not yet well-established.
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HDL content and remodeling alterations in FH

The HDL particle composition is determined by the presence of a diversity of proteins,
enzymes, lipids, and microRNAs (miRNAs) that confer specific functions to HDL. The
physicochemical composition of HDL may vary and determine the particle shape,
density, size, charge, and biological activity. Indeed, HDL composition is a key
atheroprotective determinant. Decreased levels of HDL-cholesterol (HDL-C) have been
consistently observed in both heterozygous FH and homozygous FH in association with

HDL structural and functional abnormalities [6-10].

In an early study of heterozygous FH patients, HDL particles were found to be smaller
than those of control subjects [11]. Patients with type lla hypercholesterolemia
displayed reduced HDL3 production and enhanced fractional catabolic rates
concomitantly with decreased apolipoprotein (APO) Al (APOA1) levels [9, 12, 13].
Additionally, FH patients exhibited elevated concentrations of small nascent pre1-HDL
particles [9, 14, 15] but reduced levels of large HDL2 particles when compared to
normolipidemic subjects [9]. Other studies—but not all [8]—have demonstrated
hypoalphalipoproteinemia due to increased catabolic rates in FH [16, 17]. Interestingly,
elevations in plasma APOE have been reported in FH patients [13, 18], and the APOE
genotype might influence the plasma HDL-C levels in these patients [19]. Another
apolipoprotein differentially expressed in FH is APOL1, which has been proposed as a
predictor of CVD events and mortality [20]. Additionally, a decrease in
lecithin:cholesterol acyltransferase (LCAT) content in FH patients suggested significant
modifications of HDL atheroprotective properties [20]. Indeed, the HDL3 particles of FH

patients have been reported to have diminished antioxidant and anti-inflammatory
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functions [12]. HDL patrticles from FH patients are enriched with cholesteryl esters (CE),
depleted in phospholipids, and have an increased sphingomyelin/phosphatidylcholine
ratio [9]. In a recent study from our group, different lipid transfer proteins and enzymes
associated with HDL remodeling were evaluated in non-treated FH patients with an
identified LDLR mutation and compared to normolipidemic patients similar in age [14].
The adult FH patients had lower levels of APOA1 and HDL-C but higher HDL APOA2
and APOE content. Interestingly, cholesteryl ester transfer protein (CETP) and
phospholipid transfer protein (PLTP) activities were found to be higher in the non-
treated FH patients along with reduced LCAT activity [14]. Therefore, these changes
might explain, at least in part, the increased content of pre-HDL particles as well as the
decrease in the amount of mature HDL particles in FH [14]. All these changes were also
found in LDLR-deficient mice as well as in human APOB100 transgenic mice (it is
noteworthy that mice do not express CETP) [21]. The latter mouse model also exhibited
hypercholesterolemia due to elevated LDL but also a functional LDLR, indicating that
hypercholesterolemia might be directly linked to altered HDL remodeling independently
of CETP and LDLR. Although the mechanisms involved in these biochemical changes
are largely unknown, they could be related to the accumulation of cholesterol-
derivatives activating the liver X receptor (LXR), which may increase CETP and PTLP
gene expression [22, 23]. We suggest that increased CETP may not promote RCT in
cases with reduced LDLR function, and increased PTPL-mediated remodeling may not

be effective in generating more mature HDL particles in the context of low LCAT action.
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HDL- and plasma-mediated macrophage cholesterol efflux is impaired in FH

The cholesterol efflux capacity (CEC) of HDL represents the first step in the reverse
cholesterol transport (RCT) pathway. This functional property of HDL has been
associated with atherosclerotic cardiovascular disease independently of HDL-C [24, 25].
As previously mentioned, compelling evidence supports the notion that an altered HDL
metabolism and remodeling underlies a defective CEC mediated by HDL in FH patients.
Indeed, HDL2 isolated from the plasma of FH patients presented a lesser CEC from
cholesterol-loaded macrophages, which was mediated through both scavenger receptor
class B type | (SR-BI) and ATP-binding cassette (ABC) transporter G1 (ABCGL1), when
compared to non-FH subjects [9]. In this same study, HDL3-mediated, SR-Bl-dependent
(but not ABCG1) CEC was also reduced [9]. In line with these findings, FH-derived
HDL3 with a high triglyceride content also showed a reduced CEC from lipid-loaded
macrophages in an independent study [26]. The reduced concentrations of HDL2 and
HDL3 [9, 12], along with the altered activities of remodeling enzymes and lipid transfer
proteins [14], may conceivably explain the lower CEC rates promoted by APOB-
depleted plasmas or serums in both treated and untreated FH patients [14, 27]. It is
noteworthy that CEC of APOB-depleted serum was inversely and independently
associated with the carotid intima-media thickness of FH patients treated with a lipid-
lowering therapy, although this association was weaker following adjustment for HDL-C
and APOAL1 levels [27]. We also reported a significant reduction in the amount of
macrophage-derived cholesterol accumulated in HDL when the CEC of FH plasmas

was evaluated [21]. Taken together, these observations identify the significant
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alteration of HDL-mediated CEC as a feature of FH patients with signs of atherosclerotic

cardiovascular disease—even after adjustment for classical risk factors.

Several large prospective studies have measured CEC promoted by either APOB-
depleted serum or plasma as a surrogate of HDL functionality related to the risk of
atherosclerotic cardiovascular disease [24, 25, 28]. However, the CEC of APOB-
depleted serum does not always correlate with that of the whole serum, which is likely
because the latter contains more physiological cholesterol acceptors [29]. Significant
evidence indicates that LDL also contributes to macrophage CEC [30]. We recently
reported that CEC induced from the plasma of untreated FH patients (with an identified
LDLR mutation) was significantly impaired compared to that of normolipidemic
volunteers. Further, our results also indicated that isolated LDL particles were major
acceptors of the macrophage-derived radiolabeled cholesterol in both normolipidemic
and FH plasmas [21]. Importantly, most of the transferred cholesterol in the LDL was
unesterified, thereby indicating the marginal role of CETP and LCAT in this process
[21]. Overall, these observations reveal that LDL enhances the efflux of cholesterol
directly and indirectly by acting as a sink for cholesterol released from cells by HDL,
which is in line with previous observations [30]. However, the transport of cholesterol
from HDL to LDL and its slow return into the circulation for LCAT esterification (if the
LDL is not previously removed from the circulation by the cell LDLR, as is often the case
in FH) may not be representative of the exchanges that happen at the arterial intima
level. Indeed, at this location, LDL is trapped by interactions with proteoglycans, and the

UC transferred into LDL would likely accumulate at the intima lesion sites [30].
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CETP could also be driving CE transfer from HDL to LDL in the plasma of FH patients,
promoting the formation and vascular accumulation of atherogenic LDL [31]. Very low-
density lipoproteins (VLDL) lipolysis, albumin, and a number of enzymes and transfer
proteins activities may also be relevant factors associated with plasma CEC [32, 33].
While VLDL do not show significant CEC [21], the transfer of UC from triglyceride-rich

lipoproteins to HDL during lipolysis could compete with that from macrophages [4].

Taken together, plasma elevations of LDL-C in FH subjects would appear directly
related to the existence of dysfunctional HDL, which are characterized by both an
altered remodeling and impaired CEC from macrophages. However, such a decreased
cellular cholesterol efflux could also be in part due to a lower macrophage transporter
activity. Indeed, ABCA1l expression has been shown to be downregulated in the
monocytes of FH patients with genetic defects in LDLR [34]. In this regard, compelling
evidence suggests that these transporters also can be regulated by microRNAs
(miRNA). Also, many studies over the past years have identified miRNAs as important
regulators of HDL metabolism [35, 36]. Furthermore, it has been shown that miRNAs
can be transported in the plasma and delivered to recipient cells by HDL, thus directly
influencing gene expression [37]. The most abundant miRNAs associated with HDL in
FH patients are miR-223, -105, and -106a [37]. The incubation of human cultured
hepatocytes (Huh7 cells) with HDL isolated from FH patients, that contained increased
miR-223 and miR-105 levels, induced downregulation of several of their putative target
genes [37]. Furthermore, in silico target prediction identified mRNAs that were
conserved putative target of 22 differentially abundant miRNAS on FH HDL [38, 39]. In

addition to its anti-inflammatory role, miR223 may influence systemic and hepatic
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cholesterol metabolism. Indeed, miR233 overexpression attenuates SR-Bl protein
expression and liver HDL-C uptake [40]. Consistently, the genetic ablation of miR-223
enhances hepatic SR-BI expression and HDL-C uptake [41]. Interestingly, miR-223 also
prevents cholesterol biosynthesis through directly repressing the sterol enzyme, 3-
hydroxy-3-methylglutaryl-coA synthase 1 (HGMCS1), expression [41]. Moreover, the
overexpression of miR-223 also enhances ABCA1 expression in Huh7 cells, and thus
promotes cholesterol efflux through the repression of transcription factor Sp3. Overall,
these studies highlight the role of miR-223 in regulating cholesterol homeostasis, albeit
further studies are needed to specifically establish its role in regulating FH macrophage
transporters.

On the other hand, several studies measuring circulating miRNAs in FH children have
shown that miR-33a/b and miR-200c were upregulated [42, 43]. However, whether
these circulating miRNAs were associated with HDL has not been reported [44-46]. Like
many intronic MiRNAs, miR-33a is co-transcribed with its host gene sterol response
element-binding protein (SREBP) 2, which targets genes involved in cholesterol export,

including ABCAL1.
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m-RCT is impaired in FH caused by LDLR-mediated function

The entire RCT transport from cells, such as macrophages, loaded with radiolabeled
cholesterol to feces, also called macrophage-specific RCT (m-RCT), has been
assessed in experimental animals. Genetically modified mice resembling a human
monogenic FH mutation, usually in homozygosis, have been used in these experiments.
We recently found that [*H]cholesterol derived from labeled macrophages injected into
the peritoneal cavity of FH mouse models (i.e., LDLR-deficient mice or PCSKO9-
overexpressing mice) was rapidly transferred to the hypercholesterolemic plasma and
mostly associated with LDL. However, the fecal excretion of macrophage-derived
cholesterol was significantly impaired in these mice, thereby indicating that that LDLR
was essential in supporting the last step of the m-RCT route [21]. In line with these
findings, a reduction in the liver and adrenal gland uptake of radiolabeled CE in HDL
was previously noted in LDLR-deficient mice [47]. More importantly, both radiolabeled
LDL- and HDL-cholesterol showed an impaired clearance in LDLR-deficient mice, and
this was concomitant with a lower transfer of cholesterol from both lipoproteins to the
feces [21]. Although these mice were homozygous lacking LDLR, there is no reason to
believe that the defective m-RCT would not occur in heterozygous animals—albeit
presumably at a lower scale. In contrast, the m-RCT rate remained unchanged in
human APOB100 transgenic mice with fully functional LDLR despite increased levels of
plasma APOB-containing lipoproteins and a higher accumulation of macrophage-
derived cholesterol in the LDL fraction [21]. Since the APOB100 transgenic mice
presented with HDL remodeling impairment, it can be suggested that LDLR is needed to

maintain m-RCT rate.
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Overall, these findings strongly indicate that monogenic FH due to LDLR functionality
impairment in mice does present with defective m-RCT. FH patients may present a
more intense impairment, because their CETP activity could enhance the transfer of
HDL-CE (formed by the LCAT action) to LDL and be subjected to a slower transfer to
the liver. Indeed, CETP enhanced the amount of macrophage-derived cholesterol in
LDL and the overall flux of [*H]cholesterol to the feces in mice, but failed at promoting

the m-RCT rate in the absence of LDLR [48].

It should be noted that LDL provides a significant amount of cholesterol for
transintestinal cholesterol excretion (TICE) in human and mouse jejunal explants at its
basolateral side [49]. Interestingly, TICE was increased in PCSK9-deficient mice
whereas decreased upon an acute injection of PCSK9 [49]. However, TICE tended to
be higher in LDLR-deficient mice [49], suggesting the activation of alternative

compensatory mechanism(s) in conditions of chronic LDLR deficiency.

Experimental and clinical therapeutic strategies

Early reports demonstrated that LDL-apheresis was highly efficient in reducing not only
LDL-C in severe FH patients but also large APOE-containing HDL and prep-HDL
particles [50]. This transitorily reduced the ability of these plasmas to induce
macrophage cholesterol efflux [51]. In line with these findings, a recent report found that
HDL from FH patients had increased malondialdehyde-APOA1 adducts, which was in
close association with a defective CEC induced by APOB-depleted serum; this
functional HDL alteration was not improved by LDL-apheresis [52]. Interestingly,

dicarbonyl scavenging with 2-hydroxybenzylamine was able to prevent atherosclerosis
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and foam cell formation by improving HDL CEC in LDLR-deficient mice [52]. Several
therapeutic approaches have also failed to induce macrophage cholesterol efflux in FH
patients. Indeed, lomitapide treatment was found to reduce the amount of large-buoyant
HDL and prep-HDL patrticles in homozygous FH patients, and, consistently, the ABCA1-
mediated CEC of APOB-depleted serum was impaired after this treatment [53].
Furthermore, a recent study reported that an antibody to PCSK9, evolocumab, did not
affect either plasma HDL subclasses nor macrophage cholesterol efflux [54]. However,
this study was conducted in only three FH patients who had been under apheresis
treatment for 11 years [54]. It should be noted that human PCSK9 reduced ABCA1-
dependent macrophage cholesterol efflux to APOAL induced by the activation of the
LXR/RXR pathway; this effect was fully abrogated by an anti-PCSK9 antibody or LDLR
deficiency [55]. Non-treated FH children displayed alterations in HDL, such as an
increase in HDL3-C and large HDL with respect to healthy controls. Interestingly, the
smaller HDL particles were enriched in CE and had lower UC and phospholipid content
[56]. The amount of very large HDL was normalized in statin-treated FH children [56],
but whether this affected macrophage cholesterol efflux is unknown. In this context, we
found that statin treatment was not able to normalize the ability of adolescent FH
plasmas to induce macrophage cholesterol efflux (unpublished data). However, the
lipoprotein distribution of macrophage-derived radiolabeled cholesterol was in part
increased in HDL following statin treatment, whereas that of LDL was reduced
concomitantly (unpublished data). Of note, rosuvastatin—but not atorvastatin—induced
ABCA1-dependent macrophage cholesterol efflux and promoted m-RCT in wild-type

mice [57]. Clearly, more studies are needed to clarify the potential of PCSK9 inhibitors
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and statins in regulating HDL-mediated macrophage cholesterol efflux and their impact
on the entire RCT pathway in FH.

Another therapeutic approach is the injection of recombinant HDL particles, such as
CER-001, which has been shown to enhance macrophage cholesterol efflux, fecal
cholesterol excretion, and atherosclerosis regression in LDLR-deficient mice [58]. CER-
001 reduced the mean vessel wall area measured by magnetic resonance imaging in
homozygous FH patients [59], thereby indicating that targeting HDL-mediated
cholesterol efflux may represent a successful strategy for regressing atherosclerotic
plague. However, CER-001 did not favorably influence the carotid atherosclerosis of
patients with HDL deficiencies despite significant elevations in plasma CEC after CER-
001 infusion [60]; whether the activity of this compound in patients is disease-dependent

remains to be seen.

Conclusions

There is a notable consensus that points to an altered HDL remodeling and composition
and impaired m-RCT in FH. This impairment can be captured, at least in part, in
cholesterol efflux experiments in FH patients and the m-RCT experiments in genetically
modified mice. These functional alterations have been reported at different steps of the
RCT pathway (summarized in Figure 1) and seem to be especially dependent on the
existence of increased LDL and LDLR function. Whether this FH feature is critical for
atherosclerosis development and is ameliorated by current standard treatments for the
disease needs to be further investigated. Although the latter could be anticipated

considering the potential of current treatments to achieve important reductions in LDL-
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C, the data currently available would support a rather incomplete improvement in HDL
and CEC in FH patients treated with statins. Future research should also compare the
effect of different pharmacological treatments in CEC in both mutation-detected FH and

mutation-negative FH cases.
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Figure legend

Figure 1. Macrophage reverse cholesterol transport (RCT) pathway is impaired in
familiar hypercholesterolemia (FH). The functional alterations of the HDL-mediated RCT
pathway detected at the different steps are based on results from human studies and
FH mouse models. The first step of reverse unesterified cholesterol (UC) transport is
initiated in macrophage foam cells. FH patients display increased cholesteryl ester
transfer protein (CETP) and phospholipid transfer protein (PLTP) activities but reduced
lecithin-cholesterol acyltransferase (LCAT) activity. These changes are associated with
lower a-HDL cholesterol and APOAL levels along with significant alterations in the a-
HDL composition and higher levels of nascent prep-HDL particles. UC efflux from
macrophages to HDL particles, promoted by both the transmembrane cholesterol ATP
binding cassette transporters (ABC), A1 and G1, is impaired in FH patients. A significant
part of macrophage-derived UC present on the surface of pref-HDL and a-HDL
particles and can be rapidly transferred to LDL into the circulation. This process appears
to be independent of CETP. It should be noted that, based on whether cholesterol efflux
from macrophages takes place in the arterial intima, LDL could be trapped by
interactions with proteoglycans, and the UC transferred into LDL at this location would
be finally accumulated at the intima lesion sites. Circulating CETP in FH patients can
also drive the transfer of esterified cholesterol (EC) from HDL toward the core of LDL. In
experimental models of FH, LDLs, carrying their load of macrophage-derived
cholesterol, cannot be correctly internalized by the hepatic LDL receptor (LDLR).
Hepatic cholesterol is ultimately secreted into the bile and to the intestine by ABCG5/G8

as UC, thereby completing the hepatobiliary RCT route. Overall, under the genetic
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