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Abstract. We study the dynamics of Topologically Anosov homeomorphisms
of non compact surfaces. In the case of surfaces of genus zero and finite type,
we classify them. We prove that if f : S → S, is a Topologically Anosov
homeomorphism where S is a non-compact surface of genus zero and finite
type, then S = R2 and f is conjugate to a homothety or reverse homothety
(depending on wether f preserves or reverses orientation). A weaker version
of this result was conjectured in [CGX].

1. Introduction

Let f : S → S be a homeomorphism and δ : S → R a continuous and strictly
positive function. A δ-pseudo-orbit for f is a sequence (xn)n∈Z ⊂ S such that
d(f(xn), xn+1) < δ(f(xn)) for all n ∈ Z. If ǫ : S → R a continuous and strictly
positive function, then a δ-pseudo-orbit (xn)n∈N is ǫ-shadowed by an orbit, if there
exists x ∈ S such that d(xn, f

n(x)) < ǫ(xn) for all n ∈ Z.
Throughout this paper f : S → S is a Topologically Anosov (TA) homeomor-

phism. That is:

• it is topologically expansive: there exists a continuous and strictly positive
function ǫ : S → R such that for all x, y ∈ S, x 6= y there exists k ∈ Z
satisfying d(fk(x), fk(y)) > ǫ(fk(x));

• it satisfies the topological shadowing property: for all continuous and strictly
positive function ǫ : S → R there exists δ : S → R a continuous and strictly
positive function such that every δ-pseudo-orbit is ǫ-shadowed by an orbit.

These definitions are generalizations of the classic notions of uniform expansivity
and pseudo-orbit tracing property, suited for non-compact metric spaces. On non-
compact spaces it is well known that a dynamical system may be expansive or have
the shadowing property with respect to one metric, but not with respect to another
metric that induces the same topology. Topological definitions of expansiveness and
shadowing were given in [DLRW] for first countable, locally compact, paracompact
and Hausdorff topological spaces; they are equivalent to the usual metric definitions
for homeomorphisms on compact metric spaces, but are independent of any change
of compatible metric. The definitions we gave correspond to those given in [DLRW]
in the case of metric spaces, and appeared fist in literature in [LNY].

To illustrate what happens in the non-compact setting, note that a rigid trans-
lation in the plane is topologically expansive but does not satisfy the topological
shadowing property. An example of TA homeomorphism is any homothety (or re-
verse homothety) in R2 (see [C] for a proof). As being TA is a conjugacy invariant,
the whole conjugacy class of homotheties belongs to the family of TA homeomor-
phisms. In this work we deal with the problem of classifying TA homeomorphisms.
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In particular, are all TA plane homeomorphisms conjugate to a homothety (or re-
verse homothety)? Are these the only examples for TA homeomorphisms of non
compact surfaces?

We prove the following:

Theorem 1. Let f : S → S, be a Topologically Anosov homeomorphism, where
S is a non-compact surface of genus zero and finite type. Then S = R2 and f is
conjugate to a homothety or reverse homothety (depending on wether f preserves
or reverses orientation).

By reverse homothety we mean the map z 7→ z/2, z ∈ C.

Particular cases of this problem were treated on [CGX], and a weaker version of
the theorem stated above is contained in Conjecture 1.1 of that paper. We also refer
the reader to the former reference for a characterization of Topologically Anosov
homeomorphisms on R.

Expansive homeomorphisms with the shadowing property on compact metric
spaces are known to have spectral decomposition in Smale’s sense ([AH]).

We use the spectral decomposition for Topologically Anosov homeomorphisms
in [DLRW]:

Theorem 2. Let X be a first countable, locally compact, paracompact, Hausdorff
space and f : X → X a TA homeomorphism. Then, Ω(f) can be written as a union
of disjoint closed invariant sets on which f is topologically transitive.

The disjoint closed invariant sets given by the previous theorem are called basic
sets.

2. Sufficient condition

We show in this section that in the presence of an attracting (or repelling) fixed
point, S = R2 and f is conjugate to a homothety or reverse homothety. This result
is general and makes no assumption on the topology of S, which can be any non-
compact surface. By attracting fixed point we mean a fixed point x0 with an open
neighborhood U such that f(U) ⊂ U and ∩n≥0f

n(U) = {x0}.
If ǫ : S → R is a strictly positive continuous function, we denote W s

ǫ (x) = {y ∈
S : d(fn(x), fn(y)) < ǫ(fn(x)), ∀n ≥ 0}, and Wu

ǫ (x) = {y ∈ S : d(fn(x), fn(y)) <
ǫ(fn(x)), ∀n ≤ 0}. By Proposition 20 in [DLRW], if ǫ : S → R is given by topolog-
ical expansivity, then there exists δ : S → R a continuous strictly positive function
and a continuous map t : B(x, δ(x))2 → S such that

W s
ǫ (w) ∩Wu

ǫ (y) = {t(w, y)}
if (w, y) ∈ B(x, δ(x))2. As a consequence, the set t(γ(s) × {y}), s ∈ [0, 1] is a
connected set contained in Wu

ǫ (y), where γ : [0, 1] → B(x, δ(x)) is a continuous
map such that γ(0) = x and γ(1) = y.

Lemma 1. If there exists an attracting fixed point x0, then S = R2 and f is
conjugate to a homothety or reverse homothety (depending on wether f preserves
or reverses orientation).

Proof. Let B be the basin of attraction of x0, and note that it is enough to show
that B = S. Indeed, if B = S, then S is a nested increasing union of disks, therefore
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a simply connected non compact surface, so it is homeomorphic to R2. Moreover,
if B = S, then x0 is globally asymptotically stable, and therefore f is conjugate to
a homothety or reverse homothety by the cassic Kerékjártó’s theorem ([K1],[K2]).
Take x ∈ ∂B. By the remarks preceeding this lemma, there exists a neighbourhood
U of x such that W s

ǫ (w) ∩ Wu
ǫ (y) = t(w, y) for all (w, y) ∈ U2, where ǫ : S → R

is given by topological expansivity. Note that this is still true if we change the
function ǫ for some other ǫ′ : S → R continuous and strictly positive such that
ǫ′(z) ≤ ǫ(z) for all z ∈ S. Modifying the function ǫ if necessary, we have that any
y ∈ U ∩ B does not belong to W s

ǫ (x), because y ∈ B implies fn(y) →n→∞ x0.
Therefore we may take γ : [0, 1] → U a continuous map such that γ(0) = x and
γ(1) = y and the set t(γ(s) × {y}), s ∈ [0, 1] is not reduced to {y}. We conclude
that Wu

ǫ (y) contains a connected set properly containing y. Then, we can find
z ∈ Wu

ǫ (y) ∩ B, z 6= y, such that z ∈ W s
ǫ (y) (because if z is sufficiently close to y,

its iterates will remain close to those of y until they are both on B(x0, ǫ(x0)/2)).
Then, z ∈ W s

ǫ (y) ∩Wu
ǫ (y) contradicting expansivity .

�

3. Unbounded orbits

The following lemma is a generalization of Lemma 2 in [CGX]. As in the previous
section, we make no assumptions on the topology of S, which is considered to be
any non-compact surface.

Lemma 2. Let f ∈ Homeo(S). If there exists x ∈ S and a sequence of positive
integers (nk)k∈N such that fnk(x) →k→∞ ∞ then there exists ǫ : S → R a continu-
ous positive map with the property that if y 6= x, then there exists k ∈ N such that
d(fnk(x), fnk(y)) ≥ ǫ(fnk(x)).

Proof. First note that there exists a family of pairwise disjoint open sets (Uk)k∈N
such that each Uk is a neighbourhood of fnk(x). We let U0 be a neighbourhood of x
and set n0 = 0. We claim that there exists a family of open sets (Vk)k∈N such that
for all k ∈ N, Vk ⊂ Uk, f

nk(x) ∈ Vk, and a continuous map h : ∪kVk → R2 which is a
homeomorphism onto its image such that hfnk−nk−1 |Vk

= T nk−nk−1h for all k ∈ N,
where T (x, y) = (x + 1, y) for all (x, y) ∈ R2. Take a homeomorphism h : U0 →
B((0, 0), 1/3), and let V0 ⊂ U0 an open set containing x such that fn1(V0) ⊂ U1.

Define Ũ1 := fn1(V0) and extend the homeomorphism h to Ũ1 as h|Ũ1
= T n1hf−n1 .

Note that hfn1 |V0 = T n1h|V0 . We now define V1 ⊂ Ũ1 such that fn2−n1(V1) ⊂ U2,

let Ũ2 = fn2−n1(V1) and extend h to Ũ2 as h|Ũ2
= T n2−n1hf−n2+n1 . Inductively,

if h is defined on Ũi ⊂ Ui, we extend h to Ũi+1 ⊂ Ui+1 as follows. We take

Vi ⊂ Ũi such that fni+1−ni(Vi) ⊂ Ui+1 and let Ũi+1 = fni+1−ni(Vi). We then let
h|Ũi+1

= T ni+1−nihf−ni+1+ni . Note that for all i, hfni+1−ni |Vi = T ni+1−nih|Vi .

This proves the claim.
Now take ǫ̃ : R2 → R a continuous positive map verifying that for all n ∈ N,

B((k, 0), ǫ̃((k, 0))) ⊂ h(Vk) and also that if y 6= x, then there exists n0 > 0 such that
||T n(x)− T n(y)|| > ǫ̃(T n(x)) for all n ≥ n0. Finally, we define ǫ : S → R such that
B(fnk(x), ǫ(fnk(x))) ⊂ h−1(B((nk, 0)), ǫ̃((nk, 0))) and extend it to a continuous
positive map of S. Now notice that if for some y 6= x, d(fnk(x), fnk(y)) < ǫ(fnk(x))
for all k ∈ Z, then fnk(y) ∈ Vk for all k ∈ N which implies that T nkh(y) = hfnk(y)
for all k ∈ N. So, d(T nk(h(y)), (nk, 0)) < ǫ̃(nk, 0) for all k ∈ N, a contradiction.

�
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Of course, we have an analogous statement if there exists a sequence of negative
integers (nk)k∈N such that fnk(x) →k ∞. In this case, there exists ǫ : S → R
a continuous positive map with the property that if y 6= x, then there exists an
integer n < 0 such that d(fn(x), fn(y)) > ǫ(fn(x)).

Remark 1. Let fnk(x) →k ∞ for some sequence of positive integers (nk)k∈N, and
let ǫ : S → R be given by the previous lemma. Note that if (xn)n∈Z is a pseudo-orbit
such that xnk

= fnk(x) for all k ≥ k0, then the only possible orbit that ǫ-shadows
(xn)n∈Z is that of x.

Lemma 3. Let f ∈ Homeo(S) be TA. For any point x ∈ S either its forwards or
backwards orbit is bounded.

Proof. Suppose there exists x ∈ S such that both its forwards and backwards
orbit are unbounded. By Lemma 2, there exists ǫ : S → R a continuous posi-
tive map with the property that if y 6= x, then there exists n ∈ Z, n > 0 such
that d(fn(x), fn(y)) > ǫ(fn(x)) and m ∈ Z,m < 0 such that d(fm(x), fm(y)) >
ǫ(fm(x)). Take δ : S → R a continuous positive map as in the definition of shadow-
ing, and consider the following δ-pseudo-orbit (xn)n∈Z: xn = fn(x) for all n < 0;
xn = fn(y) for all n ≥ 0, where y ∈ B(x, δ(x)), y 6= x. Then, as explained in the
previous remark, the orbit of x is the only possibility to ǫ-shadow this pseudo-orbit.
However, this is impossible because as stated at the beginning of this proof, there
exists n ∈ Z, n > 0 such that d(fn(x), fn(y)) > ǫ(fn(x)).

�

The previous lemma has immediate consequences on the structure of basic sets
(see Theorem 2):

Lemma 4. The basic sets are compact.

Proof. Suppose there is a non-compact basic set Λ. By transitivity, there exists
x ∈ Λ such that both its forwards and backwards orbit are dense in Λ and hence
unbounded. We are done by the previous lemma.

�

We say that there is a cycle of basic sets if there exist Λ0, . . . ,Λn−1 pairwise
disjoint basic sets and points x0, . . . , xn−1 such that xi /∈ Ω(f) for all i = 0, . . . , n−1
and such that α(xi) ⊂ Λi, ω(xi) ⊂ Λi+1 for all i = 0, . . . , n− 1, where Λn = Λ0 .

Lemma 5. There are no cycles of basic sets.

Proof. Take Λi and xi as in the definition of cycle, i = 0, . . . , n − 1. Take r > 0
such that B(xi, r), i = 0, . . . , n− 1. are pairwise disjoint, and B(xi, r) ∩ Ω(f) = ∅,
i = 0, . . . , n − 1. Take ǫ : S → R a continuous positive map such that ǫ(xi) = r,
i = 0, . . . , n − 1. Take δ : S → R a continuous positive map as in the definition
of shadowing. For all i = 0, . . . , n − 1, let x−

i ∈ Λi ∩ α(xi), x
+
i ∈ Λi+1 ∩ ω(xi);

B−
i = B(x−

i , δ(x
−
i )/2), B+

i = B(x+
i , δ(x

−
i )/2); li < 0 such that f li(xi) ∈ B−

i ,
mi > 0 such that fmi(xi) ∈ B+

i , and ni > 0 such that fni(zi) ∈ B−
i+1, zi ∈ B+

i .

Now construct a periodic δ-pseudo-orbit as follows: f j(x0), j = l0,m0 − 1,
f j(z0), j = 0, . . . , n0 − 1, f j(x1), j = l1,m1 − 1, f j(z1), j = 0, . . . , n1 − 1, . . . ,
f j(xi), j = li,mi − 1, f j(zi), j = 0, . . . , ni − 1, f j(xi+1), j = li+1,mi+1 − 1,
f j(zi+1), j = 0, . . . , ni+1−1, . . . , f j(xn−1), j = l,mn−1−1, f j(zn−1), j = 0, . . . , nn−1−
1, f l0(x0).
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Take x such that the orbit of x ǫ-shadows that pseudo orbit. Then, the orbit of x
must intersect B(x0, r) infinitely many times, and therefore have an accumulation
point on B(x0, r), which is a contradiction because we had chosen B(x0, r)∩Ω(f) =
∅. �

Lemma 6. If there exists an unbounded past-orbit, then its ω-limit is contained in
an attracting basic piece.

Proof. Let x ∈ S and a sequence of negative integers (nk)k∈N such that fnk(x) →k

∞. By Lemma 2, there exists ǫ : S → R a continuous positive map with the property
that if y 6= x, then there exists an integer n < 0 such that d(fn(x), fn(y)) >
ǫ(fn(x)). Let δ : S → R as in the definition of shadowing.By Lemma, 3, ω(x) is
compact. It is obvious that ω(x) cannot be contained in a repelling basic piece,
so we have to discard ω(x) ⊂ Λ, with Λ a saddle type piece. If that would be the
case, there would exist y ∈ S, y /∈ Ω(f) such that α(y) ⊂ Λ. Let r > 0 be such
that B(y, r) ∩ O(x) = ∅. Modifying the function ǫ if necessary, we may assume
that ǫ(y) < r. Let z ∈ Λ and n large enough such that d(f−n(y), z) < δ(z). Let
w ∈ Λ be such that its forwards orbit is dense in Λ and m large enough such that
d(fm(x), w) < δ(w).

Now, construct a δ-pseudo orbit (xn)n∈Z as follows: xn = fn(x) for all n ≤ m−1,
xm+j = f j(w) for all j = 0, . . . , l − 1, where d(f l(w), z) < δ(z)/2, xm+l+j =
f−n+j(y) for all j ≥ 0. By construction of the function ǫ, this pseudo-orbit must be
shadowed by the orbit of x, but this contradicts the fact that O(x)∩B(y, ǫ(y)) = ∅.

�

Lemma 7. There exists either an attracting basic piece or a repelling basic piece.

Proof. Suppose that every basic piece is a saddle. Because of the previous lemma,
every orbit is bounded. Moreover, every wandering orbit has its α- and ω-limit
contained in two different saddle pieces (see Lemma 5). Let x0 be a wandering
point, and let α(x0) ⊂ Λ0 and ω(x0) ⊂ Λ1. By definition of saddle piece, there
exists x−1, x1 wandering points, Λ−1,Λ2 saddle pieces, such that α(x−1) ⊂ Λ−1,
ω(x−1) ⊂ Λ0, α(x1) ⊂ Λ1, ω(x1) ⊂ Λ2. Moreover, the Λi’s are pairwise different
by Lemma 5. Proceeding inductively, one obtains a sequence of pairwise different
saddle pieces (Λn)n∈Z such that for all n ∈ Z there exists xn a wandering point
with α(xn) ⊂ Λn and ω(xn) ⊂ Λn+1. Moreover, we may assume that the set
X = ∪n∈ZΛn is compact, because otherwise we are done by the previous lemma
and the shadowing property. Therefore, if we take xn ∈ Λn for all n, there is an
accumulation point z that must belong to a basic set Λ. So, this basic set Λ is
accumulated by basics sets. Now, by Proposition 30 in [DLRW] the basics sets are
open in Ω(f) a contradiction.

�

4. Genus zero and finite type

From now on, we will assume that there exists an attracting basic piece Λ. The
results are analogous assuming the existence of a repelling basic piece. In this
section we make the assumption that S has genus zero and finite type. In this case,
we can compactify S adding a point to each correspoding puncture, obtaining a
compact surface S′, and f extends trivially to a homeomorphism of S′ (which is
topologically a sphere). As Λ ⊂ S′ is an expansive transitive attractor, by Theorem



6 GONZALO COUSILLAS, JORGE GROISMAN AND JULIANA XAVIER

1 in [BM] then either Λ is a single periodic orbit or it is derived from pseudo-Anosov.
Suppose that Λ is a single periodic orbit x. If p is the period of x, then fp is TA and
has an attracting fixed point. Therefore, by Lemma 1, S = R2 and fp is conjugate
to a homothety or reverse homothety. If x is not fixed, then fp fixes the whole
orbit of x, which is impossible because fp has only one fixed point. Therefore, x is
fixed and f is conjugate to a homothety or reverse homothety.

In what follows, we will assume that Λ is derived from pseudo-Anosov. We first
note that we may assume Λ ⊂ R2, by taking a power of f fixing every puncture
of S′, and then taking R2 = S′\{p}, p a puncture. It follows from [M1] that Λ
separates the plane, as 1-dimensional non-separating plane continua are tree-like
and do not support expansive homeomorphisms.

Lemma 8. There are no bounded connected components of S\Λ.
Proof. Let U be a bounded connected component of S\Λ. By Proposition 1.4 in
[BM], there are only finitely many such components. So, by taking a power of
f if necessary, let us assume that U is invariant. Moreover, as Λ is connected,
U is a topological disk with an attracting boundary. As U is compact, there are
only finitely many basic pieces inside U (pieces are isolated by Propositions 27 and
30 in [DLRW]). As there are no cycles of saddles (see Lemma 5), there must be
a repelling basic piece Λ1 ⊂ U , which again must be separating. Consider U1 a
connected component of U\Λ1 that is a topological disk with repelling boundary.
Then, there exists Λ2 ⊂ U1 an attracting piece. Applying this inductively, as there
are finitely many pieces, one of them necessarilly does not separate the plane, and
is therefore a periodic sink or source.

Together with Lemma 1 this implies that every connected component of S\Λ is
punctured.

�

The proof of the following lemma can be found in [CGX] (proof of Lemma 10).

Lemma 9. Let K be a compact invariant set with expansivity constant C. Suppose
that for all x ∈ K there exists a neighborhood U of x, and z ∈ U such that the orbit
of z C/2-shadows any pseudo-orbit (xn)n∈Z such that xn = fn(y), n < 0 for some
y ∈ U and xn = fn(z), n ≥ 0. Then, K is finite.

Lemma 10. The α-limit of any point in the basin of attraction of Λ is bounded.

Proof. Suppose there exists y in the basin of attraction of Λ such that α(y) is
unbounded. By Lemma 2 there exists ǫ : S → R a continuous positive map with
the property that if x 6= y, then there exists n ∈ N such that d(f−n(x), f−n(y)) >
ǫ(f−n(y)). Take δ : S → R as in the definition of shadowing, and for all x ∈ Λ let
U = Ux = B(x, ǫ(x)/2). Note that by transitivity of Λ and the choice of ǫ, there
exists n ≥ 0 such that fn(y) ∈ U . Take z = fn(y) and note that it verifies the
hypothesis of Lemma 9.

�

Lemma 11. There exists a repelling basic piece in any connected component of
S\Λ .

Proof. The α-limit of any point in the basin of attraction of Λ is bounded, and
therefore is contained in a basic piece. If there is a chain of saddle pieces going to
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infinity, by shadowing we obtain an orbit going to infinity, a contradiction. The
result follows.

�
Proof of Theorem 1 We know by [M2] that any attracting or repelling basic piece
separates S in at least three connected components. Moreover, Lemma 8 implies
that any such component is punctured. Let U be a connected component of S\Λ, let
x0 be a puncture in U , and let Λ1 ⊂ U be the repelling basic piece given by Lemma
11. Note that Λ1 separates U in at least three punctured connected components,
so we can get a puncture x1 6= x0 in a connected component of U\Λ1. Proceeding
inductively, we obtain an infinite sequence of different punctures, a contradiction.
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[K1] B. Kerékjártó . Sur le caractère topologique des representations conformes Acad. Sci.
Paris 198 (1934), 317320 .
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