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b Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain 
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A B S T R A C T   

The number of elderly multiple sclerosis (MS) patients is growing, mainly due to the increase in the life ex-
pectancy of the general population and the availability of effective disease-modifying treatments. However, 
current treatments reduce the frequency of relapses and slow the progression of the disease, but they cannot stop 
the disability accumulation associated with disease progression. One possible explanation is the impact of 
immunosenescence, which is associated with the accumulation of unusual immune cell subsets that are thought 
to have a role in the development of an early ageing process in autoimmunity. Here, we provide a recent 
overview of how senescence affects immune cell function and how it is involved in the pathogenesis of auto-
immune diseases, particularly MS. Numerous studies have demonstrated age-related immune changes in 
experimental autoimmune encephalomyelitis models, and the premature onset of immunosenescence has been 
demonstrated in MS patients. Therefore, potential therapeutic strategies based on rejuvenating the immune 
system have been proposed. Senolytics and regenerative strategies using haematopoietic stem cells, therapies 
based on rejuvenating oligodendrocyte precursor cells, microglia and monocytes, thymus cells and senescent B 
and T cells are capable of reversing the process of immunosenescence and could have a beneficial impact on the 
progression of MS.   

1. Introduction 

The world’s population is rapidly ageing. By 2050, it is estimated 
that 22% of people will be over 60 years old [1]. Ageing is broadly 
defined as a progressive functional decline that leads to impaired bio-
logical functions, which are the main cause of multiple human pathol-
ogies, such as cancer, diabetes, cardiovascular disorders and 
neurodegenerative diseases. Several hallmarks define the process of 
ageing, including genomic instability, telomere attrition, epigenetic al-
terations, the loss of proteostasis, deregulated nutrient sensing, mito-
chondrial dysfunction, stem cell exhaustion, altered intercellular 
communication and cellular senescence [2]. The age-related changes 
that take place in the immune system, a process known as 

immunosenescence, generally result in a higher susceptibility to in-
fections, a reduced response to vaccines [3] and a higher prevalence of 
autoimmunity [4] and neurodegenerative disorders [5]. The immuno-
senescence process is the consequence of a series of events that affect the 
differentiation and maturation processes of different immune cell sub-
types as well as their functionality. 

Immunosenescence is defined by a set of immune markers known as 
the immune risk phenotype, which includes the inversion of the CD4: 
CD8 ratio, the expansion of CD8+CD28− T cells, the presence of cyto-
megalovirus (CMV) seropositivity, poor T cell proliferation and low B 
cell numbers. In fact, immune risk phenotype features are associated 
with increased morbidity and mortality in elderly individuals [6]. In 
addition, recent studies have revealed that the ageing process is also 
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associated with an increased activity of immunosuppressive cells such as 
regulatory T (Treg) cells, regulatory B (Breg) cells and myeloid-derived 
suppressor cells (MDSCs) [7]. Numerous changes have already been 
described to occur in the adaptive immune system during immunose-
nescence; however, fewer studies have been performed to determine the 
impact of immunosenescence on innate immunity. Innate immunity 
seems to be more preserved with age, although recent reports point to 
age-associated impaired functionality of innate immune cells [8]. 

Multiple sclerosis (MS) is a chronic neurodegenerative, inflamma-
tory and demyelinating disease of the central nervous system (CNS) 
characterized by the formation of demyelinating lesions. Although the 
immunopathological events occurring in the initial stages of the disease 
are not yet well understood, it is clear that the immune system is 
involved in the destruction of myelin sheaths that ultimately leads to 
neurological disability in patients. Taking this into account, many ex-
perts point to an autoimmune origin of MS [9]. Several studies suggest 
that autoimmunity itself as well as MS progression could be associated 
with premature immunosenescence. Thus, an understanding of the 
mechanisms underlying immunosenescence is a challenging objective in 
the field of MS to determine the possible efficacy of already approved 
therapies that have the capacity to reverse the process of immunose-
nescence. This review gives an overview of recent research findings on 
immunosenescence features and links the events that cause immunose-
nescence with MS immunopathogenesis. Finally, the possible beneficial 
impact of currently approved therapies aiming to rejuvenate the im-
mune system on MS progression is discussed. 

2. Ageing of the immune system: immunosenescence 

The events that take place in the aged immune system result in poor 
immune responses in older adults (Table 1). Indeed, these events affect 
not only the functionality of immune cells but also the number and 
frequency of certain immune cells due to decreased haematopoiesis and 
progressive atrophy of the thymus. Immune cells are generated in the 
bone marrow from haematopoietic stem cells (HSCs), which are able to 
self-renew and differentiate into any of the lineages of the immune 
system. The ageing of HSCs is characterized by impaired telomerase 
activity, which leads to telomere shortening with each division; as a 
consequence, the pool of HSCs is progressively reduced due to decreased 
self-renewal capacity. Moreover, immunosenescence bears other con-
sequences involving the commitment of progenitors, since myeloid 
differentiation is potentiated over lymphoid differentiation [10]. 

2.1. Adaptive immunity 

T cell changes are the most described in the immunosenescence 
process. One of the main consequences of ageing is the progressive 
involution of the thymus, which deeply affects the maturation of naïve T 
cells and the diversity of the T cell receptor (TCR) repertoire [11,12]. 
These two features bear important consequences in T cell-mediated 
immunity. Moreover, the involution of the thymus also involves a 
decrease in the detection of T cell receptor excision circles (TRECs), 
which are circular DNA products generated from the rearrangement of 
TCR genes in the thymus. TRECs are detected only in naïve T cells, so 
their content has been suggested as a biomarker of the naïve T cell pool 
state and thymic function in immune ageing [13]. Although the overall T 
cell population is maintained in older adults, the number of naïve T cells 
in the periphery is reduced (especially the number of CD8+ T cells) 
[14,15]. Terminally differentiated memory T cells (especially CD8+ T 
cells) are expanded and accumulate due to persistent infections, most 
commonly with CMV [16,17]. As a consequence of the lower number of 
naïve T cells and their decreased diversity in the TCR repertoire, the 
normal function of the T cell-mediated immune response is also 
impaired, presenting a decreased ability to respond properly to in-
fections and vaccination [18]. Senescent cells lack the CD28 co- 
stimulatory molecule and express CD57 and KLRG1 senescence 
markers. This phenotype is commonly associated with terminally 
differentiated memory CD8+ T cells in elderly individuals [17]. Termi-
nally differentiated memory CD8+ T cells that tend to accumulate with 
age present an impaired capacity to proliferate, more resistance to un-
dergo apoptosis and shortened telomeres, which are typical features of 
cellular senescence [19]. There is evidence that senescent CD8+ T cells 
also express inhibitory receptors such as T cell immunoglobulin and 
immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) and 
PD1, which are characteristic of not only senescent T cells but also 
exhausted T cells [20]. Although these terminally differentiated memory 
CD8+ T cells could fight against persistent infections in older adults 
[17], senescent T cells are also characterized by the secretion of a 
determinate cytokine profile termed the senescence-associated secretory 
profile (SASP) [21], which could contribute to tissue damage. 

Although major changes are observed in the CD8+ T cell compart-
ment, CD4+ T cells also experience modifications with age, but to a 
lesser extent. Terminally differentiated CD4+ T cells present senescence 
features that are similar to those of terminally differentiated CD8+ T 
cells, since they also accumulate with age due to persistent antigen 
stimulation with pathogens or self-antigens, present shortened telo-
meres, produce a high number of pro-inflammatory cytokines, express 
CD57 and KLRG1 senescence markers and lose CD28 co-stimulatory 
molecule. Particularly, in senescent CD4+ T cells, there is an increased 
number of autoreactive cells [19,22,23]. Furthermore, the loss of CD28 
leads to a deficiency in the induced expression of CD40L, impeding 
CD4+ T cells from interacting with CD40 molecules present on the 
surface of B cells; consequently, CD4+ T cells lose their helper ability to 

Table 1 
Age-related alterations in innate and adaptive immunity.  

Immune cell type Age-related alterations References 

T cells ↓ naïve cells, ↑ memory cells [14–17] 
↓ TCR repertoire diversity, ↓ TRECs [11–13] 
↓ CD28 co-stimulatory receptor, ↓ CD40L, ↓ 
helper ability 

[19,23,24] 

↑ TIGIT and PD1 inhibitory receptors [20] 
↑ CD57 and KLRG-1 senescent markers [17] 
↑ SASP cytokines [21] 
↑ NK receptors, ↑ cytotoxic response [28–30] 
↑ autoreactivity [22,23] 

B cells ↓ naïve cells, ↑ memory cells [34] 
↓ BCR repertoire diversity [33] 
↓ class switch, ↓ AID enzyme [37,38] 
↑ autoantibodies [40] 
↑ ABCs [39,40] 
↑ inflammation recruitment [36] 

Monocytes/ 
macrophages 

↑ M2 macrophages [45] 
↓ MHC-II receptor, ↓ TLR receptors, ↑ TAM 
receptors 

[44,46,47] 

↓ antiviral response, ↓ inflammation 
recruitment 

[43] 

DCs ↓ DC responsiveness [50] 
↑ ROS, ↓ phagocytosis, ↓ cross-presentation [48] 
↓ stimulation of CD8+ T cells, ↓ IFN-γ [49] 

NK cells ↓ CD56bright immunoregulatory cells, ↑ 
CD56dim cytotoxic cells 

[51,52] 

↓ mature NK cells in periphery [53] 
↓ degranulation capacity [52] 

Neutrophils ↓ ROS, ↓ NETs [54] 
↓ phagocytosis [55,56] 
↓ inflammation recruitment [56] 

Abbreviations: T cell receptor (TCR); T cell receptor excision circle (TREC); 
Tyrosine-based inhibitory motif domain (TIGIT); Senescence-associated secre-
tory profile (SASP); B cell receptor (BCR); Activation-induced cytidine deami-
nase (AID); Age-associated B cell (ABC); Major histocompatibility complex 
(MHC); Toll-like receptor (TLR); Tyro3, Axl, and Mer (TAM); Dendritic cell (DC); 
Reactive oxygen species (ROS); Natural killer (NK); Neutrophil extracellular trap 
(NET). 
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induce B cell proliferation and the production of antibodies. Moreover, 
senescent CD4+ T cells lose their helper ability to induce somatic 
hypermutation on B cells and the formation of germinal centres, which is 
a T cell-dependent process that negatively interferes with the humoral 
immune response in older adults [23,24]. 

It is well reported that a subset of CD8+ T cells constitutively express 
the NK-associated receptor NKG2D in humans and upon stimulation in 
mice, as NKG2D serves as an activating receptor in cytotoxic cells [25]. 
However, CD8+ T cells with a senescent-like phenotype, lacking CD28 
expression, accumulate NK receptors with age [26]. Despite their 
inability to respond to TCR-mediated signals, CD8+ senescent T cells 
mediate cytotoxic immune responses through NKG2D and other NK 
receptors instead. The switch from TCR- to NK-receptor-mediated 
cytotoxicity probably increases their capacity for immune surveillance 
and the elimination of senescent cells in aged tissues as well as tumour 
cells [27]. In contrast, CD4+ CD28− T cells express NK receptors de 
novo, and these cells are expanded in certain pathological conditions, 
including acute coronary syndrome [28] and rheumatoid arthritis [29]. 
In aged individuals, CD4+CD28− T cells with senescent features that 
specifically express the NKG2D receptor are expanded and, moreover, 
have been suggested as a differentiation marker in the CD4+ T cell 
compartment in elderly individuals [30]. Innate-like properties in se-
nescent T cells confer beneficial adaptation mechanisms to mediate 
faster effector functions, suggesting that the limits between the innate 
and adaptive immune systems may not be as distinct as was first thought 
[31]. 

Numbers of peripheral B cells are not deemed with age, but many 
changes are observed in the composition of the different compartments 
and in the functional features of B cell subtypes, mainly due to a deficit 
in CD4+ T helper cells, as mentioned above. The production of B cells in 
the bone marrow is decreased in elderly individuals [32], as well as the 
diversity of the B cell receptor (BCR) repertoire in the bone marrow, 
lymph nodes and peripheral blood [33]. Moreover, a shift from naïve to 
memory B cells has been described, which is consistent with the 
decrease in IgD levels observed [34]. Late memory B cell numbers are 
increased in older people and express markers associated with migration 
to sites of inflammation [35,36]. Another age-associated feature is the 
decreased isotype switch from IgM to IgG, IgE or IgA [37], possibly due 
to a decrease in the expression of activation-induced cytidine deaminase 
(AID) [38]. Age-associated B cells (ABCs) are antigen-experienced B 
cells with features of memory B cells that are activated through Toll-like 
receptor (TLR) 7 and TLR9 and not by BCR stimulation alone [39,40]. 
ABCs continuously expand with age and are hardly detectable in youth. 
However, ABCs are particularly expanded at earlier ages in individuals 
with autoimmune diseases, and ABCs often produce antibodies recog-
nizing self-antigens [41]. 

2.2. Innate immunity 

Although alterations induced by age in the adaptive response are 
well established, changes in the innate immune response in human 
ageing are not well understood. Most studies suggest that the total 
numbers of different innate immune cell populations do not change 
dramatically; however, recent findings support that many of their 
functions, such as cytotoxicity, phagocytosis, antigen presentation and 
the secretion of inflammatory cytokines, are altered. 

Monocytes play an important role as starters of the inflammatory 
response, as they are circulating cells that are recruited to the site of 
inflammation, where they can differentiate into macrophages or into 
DCs in certain inflammatory situations [42]. Aged monocytes stimulated 
with agonists of pattern recognition receptors show differences at the 
transcriptional and functional levels, resulting in reduced production of 
IFN-α, IFN-γ, IL-1β, CCL20 and CCL8, which participate in antiviral re-
sponses and in the recruitment of monocytes to the sites of inflammation 
[43]. Monocytes in elderly individuals also express more TAM (Tyro3, 
Axl and Mer) tyrosine kinase receptors, a family of receptors that 

negatively regulate the immune responses mediated by TLRs and, in 
turn, inhibit inflammation [44]. Macrophages are considered the main 
phagocytes of potential pathogens and are capable of initializing and 
regulating inflammation. Polarization to alternatively activated anti- 
inflammatory M2 macrophages, rather than pro-inflammatory M1 
macrophages, is predominant in the tissues of older mice [45]. More-
over, age negatively impacts the expression of TLRs and major histo-
compatibility complex II (MHC-II), which probably contributes to 
impaired antigen presentation and the activation of CD4+ T cells 
[46,47]. 

DCs are the most important antigen-presenting cells, thereby acting 
as a link between innate and adaptive immunity. Age-related alterations 
in DCs, such as mitochondrial dysfunction and increased reactive oxy-
gen species (ROS) production, have specific deleterious effects on the 
phagocytosis and cross-presenting capacity of DCs [48]. The alteration 
of the antigen processing and presentation machinery specifically con-
tributes to an impaired stimulation and cytotoxic response of CD8+ T 
cells, together with lower secretion of IFN-γ [49]. Moreover, circulating 
plasmacytoids (pDCs) and myeloid DCs (mDCs) are less represented and 
less responsive to TLR stimulation in elderly women [50]. 

NK cells are the main innate cell subtype responsible for killing cells 
infected by viruses, which have altered self or missing self-antigens. 
Unlike T and B cells, the absolute number of NK cells is slightly 
increased in elderly individuals, which could be associated with a 
redistribution of NK cell subtypes. There is a decrease in CD56bright 

immunoregulatory cells and an increase in CD56dim cytotoxic cells; 
however, older subjects show a defective degranulation capacity 
[51,52]. In contrast, the maturation of NK cells in the bone marrow of 
mice was shown to be impaired with age and is associated with reduced 
proliferation, resulting in reduced numbers of mature circulating cells in 
peripheral tissues [53]. Taken together, these data highlight the need for 
more studies on how ageing affects NK cells. 

Neutrophils are the first cells recruited against bacterial and fungal 
infections and they produce many degradative enzymes, antimicrobial 
peptides and ROS for their activity. Aged neutrophils display a reduced 
ability to target infected tissue, as these cells present a lower capacity to 
generate ROS and neutrophil extracellular traps (NETs) [54]. In elderly 
individuals, alterations in surface molecules of neutrophils, such as 
CD11b or CD16, have been reported, affecting phagocytosis and intra-
vascular adhesion to the endothelium and, consequently, the recruit-
ment of immune cells to the infected tissue [55,56]. 

3. Age-related autoimmunity 

One of the most important features of immunosenescence is 
inflammaging, a chronic low-grade inflammation characterized by a 
gradual increase in pro-inflammatory mediators, including TNF-α, IL-6 
and IL-1β, which results from an imbalance between pro-inflammatory 
and anti-inflammatory networks during ageing [57]. Pro-inflammatory 
responses can confer not only a high resistance to infectious diseases 
but also an increased susceptibility to inflammatory-based diseases. On 
the other hand, anti-inflammatory responses not only can increase sus-
ceptibility to infectious diseases but also can provide a survival advan-
tage in older individuals. In fact, centenarians seem to deal with this 
chronic low-grade inflammation through an anti-inflammatory response 
called anti-inflammaging, which may be one of the secrets of longevity 
[58]. The principal stimulus involved in the progression of inflammag-
ing is the accumulation of cell debris and self-antigens derived from 
cellular stress or viral infections. The mechanisms devoted to cleaning 
cell debris and misfolded self-antigens become defective with age, 
leading to an overexposure of the immune system to these products and 
sustained low-grade inflammation, which favours autoimmunity [59]. 

Immune tolerance is a mechanism of the unresponsiveness of the 
immune system to antigens and is aimed at discriminating self from non- 
self-antigens. However, some autoreactive lymphocytes escape all 
tolerance mechanisms, leading to the expansion of autoreactive T cells 
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and the production of autoantibodies. Most likely related to a higher 
exposure to exogenous factors, elderly people show an increased prev-
alence of autoantibodies such as rheumatoid factor, anti-neutrophil 
cytoplasm and anti-nuclear antibodies, among others [60,61]. 

Ageing is associated with the emergence of unusual cell subsets that 
are thought to have a role in the development of autoimmunity. Se-
nescent CD4+CD28− T cells were originally isolated in the context of an 
autoimmune disease and were found to be outgrowths and autoreactive 
to self-antigens [22]. Their autoreactive properties and inability to serve 
as helpers in B cell responses are very similar to the deficiencies found in 
senescent CD4+ T cells from aged individuals [23]. Furthermore, se-
nescent CD8+CD28− T cells expressing NK receptors can be found not 
only in elderly individuals but also in patients suffering from autoim-
mune diseases, who present alterations in the number and function of 
these cells [26]. ABCs continuously expand with age and are hardly 
detectable in youth; however, they are particularly expanded at earlier 
ages in people with autoimmune diseases presenting enriched autoan-
tibody production [40]. There are other factors that might accelerate 
immunosenescence and contribute to the onset of autoimmune diseases, 
like genetic factors such as the human leucocyte antigen (HLA) haplo-
type and environmental factors such as persistent viral infections and 
high consumption of different medications in elderly individuals [62]. 

Systemic lupus erythematosus (SLE) has immune features that 
overlap with features of ageing, suggesting the presence of premature 
immunosenescence, such as telomere attrition and a generally lower 
phagocytic capacity [63,64]. The clearance of apoptotic bodies is 
mediated by macrophages and its deregulation could generate danger 
signals and the exposure of self-antigens to DCs [65], which present an 
affected tolerance and a greater autoreactivity with age [66]. In addi-
tion, ABCs are significantly increased in these patients and positively 
correlate with high anti-chromatin antibody production [67]. Moreover, 
ABCs are B cell activating factor (BAFF)-dependent, and the blockade of 
this cytokine has been proven to be effective in SLE patients, which 
confirms the implication of ABCs in the disease [68]. Furthermore, 
autoreactive B and T cells are thought to be activated after infection by 
CMV or Epstein-Barr virus (EBV) with pathogen antigens that share 
structural similarities with self-antigens. This cross-recognition mecha-
nism principally provokes the production of anti-nuclear autoanti-
bodies, which are also found in healthy elderly individuals [69]. 

As in ageing, in rheumatoid arthritis (RA), it is well established that 
CD4+CD28− T cells accumulate and show signs of senescence; in fact, 
this population of cells was first identified in RA patients [22]. Senescent 
T cells no longer require a CD28 co-stimulatory signal for complete 
activation, and at the same time, they acquire cytotoxic properties [62]. 
In addition, a novel CD4+ CD28− T cell subset has been described in RA 
patients, revealing features of both Treg cells and senescent T cells. 
These CD4+CD28− FoxP3+ Treg-like cells insufficiently suppress the 
proliferation of effector T cells and induce a pro-inflammatory cytokine 
profile [70]. 

It is known that age-related gene expression profiles overlap with 
gene expression profiles in tissues affected by autoimmune thyroid 
disease (AITD), suggesting that there is also a relation between prema-
ture immunosenescence and autoimmunity in the thyroid gland. These 
changes include the downregulation of genes related to mitochondrial 
and proteasomal functions and the upregulation of genes related to the 
immune response [71]. AITD patients present a peripheral T cell 
phenotype reminiscent of findings in elderly patients and patients with 
other autoimmune diseases. There is a significant increase in 
CD4+CD28− T cells associated with CMV seropositivity in individuals 
with Hashimoto’s disease [72] and an increase in CD4+CD28− T cells 
producing IFN-γ in individuals with Graves’ disease [73], which might 
drive the destruction of thyroid tissue. 

The most frequent causes of Sjögren syndrome (SjS) are the chronic 
use of medications and viral infections [74], which are both common 
features in elderly individuals, suggesting a relationship between pre-
mature ageing of the immune system and the developmentof the disease. 

ABCs are also implicated in the pathogenesis of this syndrome, as they 
are elevated in the blood of SjS patients. ABCs remain unresponsive in 
peripheral blood and are probably activated through TLRs, breaking 
tolerance and leading to B cell lymphoproliferation [75]. 

4. Immunosenescence in MS 

MS is a chronic neurodegenerative, inflammatory and demyelinating 
disease of the CNS that is probably of autoimmune origin. MS affects 
approximately 2.5 million people worldwide, and MS is the primary 
cause of non-traumatic disability in young adults [76]. MS typically 
initiates between 20 and 40 years of age, with a higher prevalence in 
women than men (2.3–3.5:1), a ratio that is increasing over time [77]. 
Clinically isolated syndrome (CIS) is the first clinical acute episode that 
shows inflammatory demyelination; however, CIS does not fulfil clinical 
and radiological criteria to be considered definite MS, and not all pa-
tients with CIS necessarily develop MS. Most patients present a 
relapsing-remitting (RR) form of MS, the most frequent form of the 
disease (80%), characterized by episodes of neurological dysfunction, 
and the majority of these patients (65%) progressively accumulate 
disability with time, developing secondary progressive (SP) forms of MS. 
A minority of patients (20%) present a progressive disease course from 
the onset, known as primary progressive (PP) MS [78]. 

Although the aetiology of MS remains unknown, MS is known to 
result from an interplay between genetic and environmental risk factors. 
Genome-wide association studies have identified 233 independent as-
sociations that are significantly linked to MS susceptibility, the majority 
of which were found in the autosomal non-MHC genome [79–81]. 
Nonetheless, the main genetic risk factors are related to HLA genes, with 
the variants DRB1*15:01, DRB5*01:01 and DQA1*01:02 being associ-
ated with an increased risk of developing MS, while HLA-A*02 is asso-
ciated with protection from the disease [82]. Sex, living in high-latitude 
areas, smoking, low vitamin D levels caused by insufficient sun exposure 
or dietary intake, obesity during adolescence, commensal microbiota 
composition and EBV infection have been identified as possible envi-
ronmental risk factors related to MS development, whereas the use of 
oral nicotine or alcohol, seropositivity to CMV and high coffee con-
sumption are related to a reduced risk [83,84]. Among these risk factors, 
EBV is strongly associated with the development of MS. Several myelin 
antigens, including myelin basic protein (MBP), myelin oligodendrocyte 
glycoprotein (MOG) and proteolipid protein (PLP), have been proposed 
as the principal candidate autoantigens involved in the development of 
MS [85]; however, other non-myelin antigens have been identified to 
trigger immune attack on myelin components [86]. The most accepted 
hypothesis to explain the immunopathogenesis of MS involves an initial 
immune activation in the periphery of CD4+ T cells reactive to myelin 
antigens. Then, activated autoreactive CD4+ T cells infiltrate the CNS, 
where they are reactivated by the recognition of myelin antigens pre-
sented by microglial cells, initiating a series of immune events that 
contribute to demyelination and tissue damage. These immune events 
provoke the activation of astrocytes and microglia, the apoptosis of ol-
igodendrocytes and axonal loss in both the white matter and the grey 
matter of the brain and the spinal cord. In addition, the release of pro- 
inflammatory mediators facilitates the permeabilization of the blood- 
brain barrier (BBB), attracting monocytes and additional lymphocytes, 
thus sustaining the inflammatory process that leads to progressive tissue 
degeneration [87]. The analysis of the autoimmune response showed 
structural homology between MBP and EBV peptides presented by HLA- 
DRB1*15:01, as well as the presence of T cells with specificity for both 
antigens. Altogether, molecular mimicry with EBV antigens is one of the 
main mechanisms involved in MS pathogenesis [88]. 

The prevalence of MS and the age of affected patients are increasing 
due to the increasing longevity of the general population and the 
availability of effective disease-modifying treatments. Patients with 
PPMS normally have a later disease onset than those with RRMS, the 
majority of whom develop SPMS over time. However, current 
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treatments reduce the frequency of relapses and slow the progression of 
the disease, but they cannot stop the disability accumulation associated 
with disease progression [89]. These facts support the idea that there are 
differences between the processes driving relapses and those driving 
chronic progression commonly in elderly individuals, which could be 
due to the impact of age on the immune system. Indeed, there are 
numerous studies in the animal model of MS experimental autoimmune 
encephalomyelitis (EAE) and in MS patients that demonstrate the impact 
of immunosenescence on the disease [90]. 

4.1. Age-related immune changes in EAE 

EAE is a well-established animal model used for the study of MS that 
has provided helpful information about various pathological processes, 
including inflammation, demyelination, axonopathy and neuron loss 
mediated by immune cells [91]. However, there are some differences in 
immunopathology between EAE and MS, since CD4+ T cells predomi-
nate in the inflammatory infiltrate in EAE, while in MS lesions, CD4+ T 
cells are much less frequent, with CD8+ T cells and macrophages being 
the predominant infiltrating cells [92,93]. 

A key mediator in central tolerance is the autoimmune regulator 
(Aire), a transcription factor highly expressed in medullary thymic 
epithelial cells (TECs) that promotes ectopic expression of peripheral- 
tissue-specific self-antigens, leading to central tolerance. Some autor-
eactive T cells escape this process, but they are regulated by peripheral 
tolerance mechanisms, including immune regulation by Treg cells. 
There is an age-related association between Aire and Treg cells in sus-
ceptibility to EAE. The resistance of young Aire-knockout (KO) mice to 
EAE correlated with an elevated percentage of peripheral Treg cells, 
whereas older Aire-KO mice presented more severe disease and no dif-
ferences in the frequency of Treg cells in the periphery, demonstrating 
age-related impaired peripheral tolerance [94]. A spontaneous EAE 
mouse model also showed a decrease in intrinsic regulatory mechanisms 
involved in the maintenance of self-tolerance and Treg cell suppressive 
function with age [95]. EAE rats show an age-associated alteration in the 
autoimmune response, while young rats show an anti-MBP antibody 
response during the acute period, no epitope dominance was detected in 
the older rats [96]. 

Little is known about the age effect on BBB disruption in EAE, a 
critical step in the development of the disease, as myelin-specific T cells 
infiltrate the CNS by crossing the BBB. Several molecules are altered in 
response to BBB disruption, such as nicotinamide adenine dinucleotide 
phosphate oxidase, matrix metalloproteinases and cell adhesion mole-
cules. These molecules were elevated with age in a non-relapse EAE 
mouse model, suggesting that they play a role in BBB disruption and the 
subsequent autoreactive T cell infiltration that leads to neuro-
degeneration [97]. However, age not only is a risk factor for neuro-
degeneration but also influences neuroregeneration. Using a focal EAE 
rat model, immunization with MOG followed by localized injections of 
cytokines in the spinal cord to generate focal demyelinating injury 
increased vulnerability to axonal injury and reduced the efficiency of 
remyelination in older animals compared with young animals. More-
over, remyelination in aged rats was mediated by Schwann cells, while 
in younger rats, oligodendrocytes mediated the regeneration process 
[98]. 

4.2. Age-related immune changes in MS 

Age, sex and viral infections are known to influence the phenotype 
and function of the immune system. The frequencies of immune cells 
depend on lifetime exposure to pathogens such as CMV, which leads to 
late differentiation and the accumulation of senescent immune cells with 
age [99]. Indeed, senescent neurons and glial cells also accumulate in 
the nervous system with age, predisposing individuals to the appearance 
and aggravation of neurodegenerative events [100]. Furthermore, the 
evolution from RRMS to SPMS normally occurs over time at older ages, 

and this transition is dependent on age rather than disease duration 
[101]. Neuroinflammation mechanisms such as synaptopathy and syn-
aptic plasticity impairments are exacerbated and accelerate with age in 
MS patients [102]. In particular, disease progression is characterized by 
a marked decrease with age in the CD8+ T cell response to EBV-infected 
B cells, which may result from the deletion of EBV-specific T cells 
through exhaustion mechanisms that occur during chronic viral in-
fections [103]. 

4.3. Premature ageing of the immune system in MS 

Patients suffering from MS are also characterized by premature 
immunosenescence [104] and reduced immune function that resembles 
that of healthy elderly individuals. The reduced immune function can be 
a consequence of the diminished proliferative capacity of bone-marrow- 
derived cells and the shortening of telomeres, which are both observed 
in MS patients [105]. Telomere length reduction and increased oxidative 
stress have been suggested as premature ageing markers in many 
autoimmune diseases, including MS. The shortened telomeres and 
oxidative stress found in PPMS patients may reflect the most severe state 
of the disease and may also be associated with greater disability and 
brain atrophy [106,107]. Furthermore, RRMS and PPMS patients also 
present prematurely reduced immune functions related to thymic 
dysfunction, including a contraction of naïve T cells, Treg cell 
dysfunction and decreased signal joint TRECs [108]. Similar alterations 
in T cell homeostasis are observed in paediatric MS patients, confirming 
the presence of an early thymic involution [109]. The main common 
characteristic between ageing and MS is the accumulation of 
CD4+CD28− T cells. These effector memory T cells result from repeated 
viral antigenic stimulation, typically CMV and EBV, before migrating to 
the CNS, which contributes to tissue damage, thereby causing the 
release of self-antigens. IL-15 produced by peripheral B cells, astrocytes 
and infiltrating macrophages in CNS inflammatory lesions is known to 
enhance the cytotoxic properties of CD4+CD28− T cells [110]. Alter-
ations in B cell subsets are also found in the cerebrospinal fluid of MS 
patients with acute relapse, as there is a higher frequency of non- 
switched memory B cells in paediatric patients and class-switched 
memory B cells in adults [111]. However, B cell participation in MS 
goes beyond the production of antibodies. ABCs are increased in MS 
patients as well, corroborating the presence of early ageing [112]. 

MS is primarily mediated by adaptive immune responses, while 
chronic stages are believed to be mediated by compartmentalized innate 
immune responses in the CNS [9]. Therefore, a complete understanding 
of the impact of age on the immune system and disease progression, as 
well as the premature immune ageing observed in MS patients, needs to 
be achieved to develop effective immunotherapies against immunose-
nescence in MS. 

5. Rejuvenation of the immune system as a therapy for MS 

Currently, there is no cure for MS and no effective therapy options 
available that can stop disability accumulation in individuals with 
progressive forms of the disease, who represent the majority of patients 
over 65 years of age. Food and Drug Administration (FDA)-approved 
therapies for RRMS have failed to demonstrate efficacy as a treatment 
for PPMS, and there are few disease-modifying therapy options for SPMS 
[113,114]. In addition, emerging data suggest that premature immu-
nosenescence strongly influences MS progression; thus, several thera-
peutic strategies based on rejuvenating the immune system have been 
proposed to reverse this phenomenon (Fig. 1). 

5.1. Senolytics and HSC regenerative strategies 

Senescent cells accumulate with age in the CNS and contribute to 
disease progression. Senolytic drugs have been developed to selectively 
remove senescent cells by targeting anti-apoptotic pathways, and 
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senolytics have recently been suggested as potential rejuvenation stra-
tegies against progressive MS [115]. The use of the tyrosine kinase in-
hibitor dasatinib and quercetin in combination decreased the 
accumulation of senescent cells and increased survival in older mice. 
Moreover, these drugs showed immunomodulatory effects on MS when 
used separately [116–118]. Another important senolytic drug is navi-
toclax, or ABT263, which is able to induce apoptosis in senescent bone 
marrow HSCs, reduce myeloid bias and improve haematopoietic func-
tionality [119]. In fact, HSC ageing is related to reduced self-renewal 
capacity, which leads to altered immune cell numbers and functions. 
The ageing of the HSC compartment was initially considered to be 
irreversible; however, recent findings show rejuvenating strategies that 
are capable of reversing HSC dysfunctions related to ageing, including 
prolonged fasting and pharmacological targeting to inhibit molecules 
such as mTOR (rapamycin) [120], CDC42 (CASIN) [121] and p38 
MAPK (TN13 and SB203580) [122,123]. These strategies are capable of 
enhancing the regenerative capacity of HSCs, reducing ROS levels and 
re-establishing an immune system similar to that of young organisms 
(Fig. 1A). 

5.2. Rejuvenation of oligodendrocyte precursor cells (OPCs), microglia 
and monocytes 

MS progressive forms are characterized by accumulative neuro-
degeneration due to persistent demyelination of axons. Although the 

CNS has the capacity to remyelinate axons and, thus, prevent neuro-
degeneration, the efficiency of CNS remyelination declines with age, and 
age-related failure of OPCs to differentiate into myelinating oligoden-
drocytes is particularly involved. The fasting mimetic drug metformin 
reverses the poor differentiation and maturation of OPCs and restores 
remyelination and neuroregeneration in aged rodents [124]. Further-
more, older mice with a focal demyelination exposed to a youthful 
systemic milieu through heterochronic parabiosis (a young mouse sur-
gically joined to an aged partner) could recruit young macrophages and 
rejuvenate OPCs, suggesting that youthful monocyte transplantation 
could be considered a remyelination therapy [125]. Microglia and 
macrophages are essential for remyelination, as both are responsible for 
the phagocytosis of myelin debris that inhibits remyelination and for the 
release of growth factors necessary for OPC maturation. With age, a 
decline in the phagocytic clearance of myelin debris occurs, a phe-
nomenon that has also been observed in MS patients. Given that retinoid 
X receptor activation in monocytes enhances myelin debris clearance in 
MS, the agonist bexarotene was found to reverse phagocytosis defects 
and lead to a younger state of these cells [126]. In addition, with age, a 
decrease in the expression of CD36 by microglia occurs, which is also 
involved in myelin debris clearance by phagocytosis. Daily treatment of 
old microglia with niacin or vitamin B3 upregulates CD36 expression 
and enhances phagocytosis, which leads to remyelination. Thus, niacin 
can stimulate innate immunity and represents a regenerative therapy for 
chronic demyelination, which is an interesting therapeutic strategy for 

Fig. 1. Senolytics and regenerative strategies using haematopoietic stem cells (A), therapies based on rejuvenating oligodendrocyte precursor cells, microglia and 
monocytes (B), thymus cells (C) and senescent B and T cells (D) are capable of reversing the process of immunosenescence and could have a beneficial impact on the 
progression of MS. Abbreviations: Oligodendrocyte precursor cell (OPC); Haematopoietic stem cell (HSC); T cell receptor (TCR); Regulatory T cell (Treg); Thymic 
epithelial cell (TEC); Age-associated B cell (ABC); Natural killer (NK). 
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MS [127]. MCC950 regulates innate immunity by specifically inhibiting 
the NLRP3 inflammasome and subsequently reducing IL-1β production. 
MCC950 attenuated the severity of EAE, improved the histopathology of 
the CNS and protected against axonal damage in organotypic cerebellar 
cultures. Therefore, MCC950 could be considered an anti-inflammaging 
therapy for MS [128,129] (Fig. 1B). 

5.3. Rejuvenation of the thymus 

Recently, many potential rejuvenation therapeutic strategies have 
been developed to restore aged thymic function and, consequently, de-
fects in negative selection and in the generation of Treg cells. As the 
FOXN1 transcription factor is strongly implicated in the differentiation 
of TECs cells and is responsible for the ectopic expression of peripheral- 
tissue-specific self-antigens that lead to tolerance, it has been proposed 
as a target for several rejuvenation strategies against thymic involution 
[130]. Because thymic atrophy is related to a failure in the thymic 
microenvironment and consequently in thymopoiesis, targeting this 
process could also reverse the observed thymus dysfunction in MS pa-
tients. There is evidence that an age-related decrease in the expression of 
IL-7 is involved in thymus involution. Treatment with IL-7 promotes the 
maturation of thymocytes to naïve T cells, enhances TCR diversity and 
results in higher numbers of memory CD8+ T cells [131]. Another 
cytokine involved in thymopoiesis is IL-22, which was shown to 
enhance thymic recovery after the depletion of CD4+CD8+ double- 
positive thymocytes [132]. Keratinocyte growth factor is important 
for the maintenance of TECs and has been proven to increase thymo-
poietic capacity in aged mice by restoring the function of TECs [133]. 
However, thymic involution results in not only decreased numbers of 
naïve T cells but also increased output of potential autoreactive T cells to 
the periphery and consequently to higher susceptibility to developing 
autoimmune diseases such as MS. The most promising rejuvenation 
immunotherapies focused on targeting these autoreactive T cells are 
therapeutic vaccinations that include TCR peptides, MBP-based DNA, 
altered peptide ligands and attenuated autoreactive T cells [134]. 
Among them, T cell vaccines have shown clinical efficacy in clinical 
trials, as they induce an anti-idiotypic response against MBP-reactive T 
cells and restore Treg cell function in MS patients, making them a po-
tential strategy against MS [135]. Additionally, a fasting-mimicking 
diet, a very low-calorie and low-protein diet, prevents autoimmunity in 
an EAE model by reducing the levels of autoreactive T cells and 
increasing the production of Treg cells, which are both cell subsets that 
are altered with immunosenescence [136]. Another strategy to coun-
teract immunosenescence is to reduce as much as possible the antigenic 
load represented by common infectious agents such as influenza virus 
and CMV to avoid inflammaging. Strategies of specific vaccination 
should be applied to prevent not only morbidity and mortality but also 
any additional persistent stimulation of the immune system and, thus, 
reduce the impact of inflammaging in elderly individuals and in the 
context of autoimmune diseases (Fig. 1C). 

5.4. Rejuvenation of senescent B and T cells 

Different cell types that become senescent during MS could be 
interesting targets of rejuvenation. Anti-BAFF treatment with belimu-
mab decreases the proliferation of ABCs and, consequently, the pro-
duction of autoantibodies [68]. As in MS, chronic viral infections such as 
CMV promote telomere shortening and premature ageing of the immune 
system, particularly of cytotoxic T cells. These T cells also lack the 
expression of the co-stimulatory receptor CD28, and hence, their ca-
pacity to respond to infections is diminished. TA-65 is a purified telo-
merase activator that, when given orally to aged subjects, can lengthen 
short leucocyte telomeres and decrease the percentage of senescent 
cytotoxic CD8+CD28− T cells as well as NK cells. This effect has been 
observed mostly in CMV-seropositive subjects, whose leukocytes switch 
towards a younger profile [137]. The re-expression of CD28 and the 

restoration of helper function in senescent CD4+ T cells can be partially 
achieved when CD4+ T cells are exposed to the cytokine IL-12 [138]. A 
similar functional restoration and production of IL-2 was shown in se-
nescent CD8+ T cells by CD28 gene transduction [139]. Both strategies 
can delay or reverse the ageing effects of the loss of the CD28 co- 
stimulatory molecule. In addition, the expression of innate receptors 
such as NKG2D on CD4+ T cells is characteristic of ageing and regulates 
the cytotoxic functions of these cells by promoting pro-inflammatory 
cytokine production. Treatment with a blocking anti-NKG2D antibody 
ameliorates EAE inflammation, making this receptor a promising ther-
apeutic target for MS treatment [140] (Fig. 1D). 

6. Conclusions 

Overall, the evidence presented here demonstrates that age-related 
immune changes are observed in EAE and MS patients, as well as pre-
mature ageing of the immune system in MS patients. Therefore, we 
propose different therapeutic strategies based on rejuvenating the im-
mune system, which could reverse the process of immunosenescence 
and have a beneficial impact on the treatment of MS, as potential add-on 
treatments to current FDA-approved therapies. Moreover, therapies 
focused on the rejuvenation of the immune system could provide new 
therapeutic opportunities for the PP form of the disease. A broad 
knowledge of the impact of age on the immune system and disease 
progression in MS patients would facilitate the development of new 
effective immunotherapies against immunosenescence in MS. 
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