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ABSTRACT  25 

Background/Objectives: During obesity, hypertrophic enlargement of white 26 

adipose tissue (WAT) promotes ectopic lipid deposition and development of 27 

insulin resistance. In contrast, WAT hyperplasia is associated with preservation 28 

of insulin sensitivity. The complex network of factors that regulate white 29 

adipogenesis is not fully understood. Bone morphogenic protein 7 (BMP7) can 30 

induce brown adipogenesis, but its role on white adipogenesis remains to be 31 

elucidated. Here, we assessed BMP7-mediated effects on white adipogenesis 32 

in ob/ob mice. 33 

Methods: BMP7 was overexpressed in either WAT or liver of ob/ob mice using 34 

adeno-associated viral (AAV) vectors. Analysis of gene expression, histological 35 

and morphometric alterations, and metabolites and hormones concentrations 36 

were carried out. 37 

Results: Overexpression of BMP7 in adipocytes of subcutaneous and visceral 38 

WAT increased fat mass, the proportion of small-size adipocytes and the 39 

expression of adipogenic and mature adipocyte genes, suggesting induction of 40 

adipogenesis irrespective of fat depot. These changes were associated with 41 

reduced hepatic steatosis and improved insulin sensitivity. In contrast, liver-42 

specific overproduction of BMP7 did not promote WAT hyperplasia despite 43 

BMP7 circulating levels were similar to those achieved after genetic engineering 44 

of WAT.  45 

Conclusions: This study unravels a new autocrine/paracrine role of BMP7 on 46 

white adipogenesis and highlights that BMP7 may modulate WAT plasticity and 47 

increase insulin sensitivity. 48 

49 
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INTRODUCTION  50 

 51 

Obesity and type 2 diabetes (T2D) are strongly associated and have become an 52 

alarming growing health problem worldwide. Obesity has been causally linked 53 

to the development of insulin resistance, type 2 diabetes (T2D), arthritis, cancer, 54 

cardiovascular diseases and Alzheimer’s disease. These obesity-linked 55 

complications lead to reduced life expectancy and poor quality of life, thus 56 

representing a massive burden for the health-care systems.  57 

Obesity is a condition where adipose tissue mass is increased due to an 58 

imbalance between energy intake and expenditure. Expandability of white 59 

adipose tissue (WAT) may result from an increase in the size (hypertrophy) 60 

and/or in the number of adipocytes (hyperplasia), by the differentiation of new 61 

adipocytes from undifferentiated preadipocytes (adipogenesis) [1–3]. Adipocyte 62 

hypertrophy is closely linked to adipose dysfunction and inflammation, abnormal 63 

secretion patterns of adipokines, ectopic lipid deposition in non-adipose tissues 64 

such as liver, skeletal muscle and heart, and whole-body insulin resistance and 65 

T2D, not only in obese but also in lean individuals [4,5]. Conversely, WAT 66 

expansion through hyperplasia has been associated with improved insulin 67 

sensitivity [6–8].  68 

Under physiological conditions, in a situation of positive energy balance, 69 

in both humans and rodents excess lipids is stored primarily via hyperplasia in 70 

the subcutaneous adipose tissue (SAT), since this depot has greater adipogenic 71 

differentiation capacity than visceral adipose tissue (VAT) [4,9,10]. In obesity, 72 

recruitment and adipogenic differentiation of the stromal vascular precursor 73 

cells in SAT are impaired. Therefore, subcutaneous adipocytes become 74 
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hypertrophic and adipogenesis is restricted to VAT, which ultimately also 75 

expands through hypertrophy when its hyperplasic capacity is exceeded [4,11–76 

17]. Enhancement of WAT hyperplasia may limit the deleterious metabolic 77 

effects mediated by dysfunctional white adipocytes and help to preclude hepatic 78 

steatosis and insulin resistance. Nevertheless, the complex network of factors 79 

that regulate white adipogenesis has not been fully elucidated.  80 

The bone morphogenetic protein (BMP) family belongs to the 81 

transforming growth factor β (TGFβ) superfamily of cytokines that regulate an 82 

array of fundamental cellular processes, including proliferation, differentiation, 83 

apoptosis and morphogenesis [18]. BMPs play major roles in adipogenesis, not 84 

only regulating progenitor cell determination, but also promoting terminal 85 

adipogenic differentiation [19,20]. Among them, BMP7 was considered to be 86 

essential for brown adipogenesis in both committed brown preadipocytes and 87 

uncommitted multipotent mesenchymal precursors [19,21]. In contrast, BMP2 88 

and BMP4 had been described as master regulatory factors that drive the 89 

commitment and differentiation of adipocyte precursors into white adipocytes 90 

[19]. Recent studies have evidenced that BMP2 and BMP4, as well as BMP9 91 

and BMP14, can trigger both white and brown adipogenesis [20,22–30]. 92 

Nevertheless, whether the brown adipogenic factor BMP7 may also induce 93 

white adipogenesis is unknown.  94 

In this study, specific overexpression of BMP7 in WAT of adult obese 95 

mice resulted in redistribution of the size of white adipocytes, with a greater 96 

proportion of small-size adipocytes both in SAT and VAT, and amelioration of 97 

insulin resistance. In contrast, overexpression of BMP7 in the liver led to similar 98 

levels of circulating BMP7 but did not promote WAT hyperplasia. These results 99 
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are consistent with a paracrine/autocrine role of BMP7 inducing white 100 

adipogenesis. 101 

102 
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1. MATERIAL AND METHODS 103 

 104 

2.1.  Animals. Eleven-week-old B6.V-Lepob/OlaHsd (ob/ob) male mice were 105 

used. Mice were kept in a specific pathogen-free facility (SER-CBATEG, UAB) 106 

and maintained under a light-dark cycle of 12 h at 22 ºC. Mice were fed ad 107 

libitum with a standard diet (2018S Teklad Global Diets®, Envigo). For tissue 108 

sampling, mice were anesthetized with inhalational anesthetic isoflurane 109 

(IsoFlo®, Abbott Laboratories, Abbott Park, IL, US) and sacrificed. Tissues of 110 

interest were excised and kept at -80°C or in formalin until analysis. Animal care 111 

and experimental procedures were approved by the Ethics Committee in Animal 112 

and Human Experimentation of the Universitat Autònoma de Barcelona. 113 

 114 

2.2.  Recombinant AAV vectors. AAV expression cassettes were obtained by 115 

cloning, between the ITRs of AAV2, a murine optimized BMP7 coding-sequence 116 

(moBMP7) under the control of either: i) the liver-specific human α1-antitrypsin 117 

promoter (hAAT) (AAV-hAAT-BMP7); or ii) the ubiquitous early CMV 118 

enhancer/chicken beta actin promoter (CAG) with the addition of 4 tandem 119 

repeats of miRT122a sequence (5’CAAACACCATTGTCACACTCCA3’) and 120 

miRT1 sequence (5’TTACATACTTCTTTACATTCCA3’) in the 3’ untranslated 121 

region of the expression cassette. The moBMP7 sequence comprised in the 122 

expression cassettes was a murine BMP7 coding-sequence that was codon-123 

optimized to enhance production of wild-type BMP7 protein using the 124 

GeneOptimizer algorithm (GeneArt; Life Technologies), which relies on a 125 

multifactorial approach. Non-coding cassettes, carrying either the hAAT or the 126 

CAG promoter but no transgene, were used to produce null vectors. Single-127 
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stranded AAV vectors of serotype 8 were produced by triple transfection in 128 

HEK293 cells. HEK293 cells were kindly provided by K.A. High, Children’s 129 

Hospital of Philadelphia. AAV vectors were purified using an optimized CsCl 130 

gradient–based purification protocol that renders vector preps of high purity and 131 

devoid of empty capsids [31]. Viral vectors were determined by fluorescence 132 

using the Quant-iT™ PicoGreen™ dsDNA Assay Kit (Invitrogen). A phage 133 

lambda DNA was used as standard curve to calculate the titer of viral vectors. 134 

 135 

2.3.  Administration of AAV vectors. Systemic intravenous and intra-136 

epididimal WAT (eWAT) administration of AAV vectors were performed as 137 

previously described [32,33].  138 

 139 

2.4. Immunohistochemistry. Tissues were fixed for 12-24 h in 10% formalin, 140 

embedded in paraffin and sectioned. Sections were incubated overnight at 4ºC 141 

with rat anti-Mac2 antibody (CL8942AP; Cedarlane). Biotinylated rabbit anti-rat 142 

(E0467; Dako) was used as secondary antibody. The ABC peroxidase kit 143 

(Pierce) was used for immunodetection, and sections were counterstained in 144 

Mayer’s hematoxylin. Morphometric analysis of adipocyte size was performed in 145 

WAT sections stained with hematoxylin–eosin as previously described [34]. A 146 

minimum of four animals per group was used and at least 250 adipocytes per 147 

animal were analyzed. 148 

 149 

2.5. RNA analysis. Total RNA was obtained from different tissues using 150 

isolation reagent (Tripure, Roche, for liver samples and QIAzol, Qiagen, for 151 

adipose depots) and a RNeasy Minikit (Qiagen) and treated with DNAseI 152 
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(Qiagen). One µg of RNA was reverse-transcribed using the Transcriptor First 153 

Strand cDNA Synthesis kit (Roche). Real-time quantitative PCR (qRT-PCR) 154 

was performed in a LightCycler (Roche) using 1) the LightCycler 480 SYBR 155 

Green I Master Mix (Roche) and murine primers (Table S1) or 2) the 156 

LightCycler 480 Probes Master Mix (Roche) and murine primers and probes 157 

(IDT, Leuven, Germany) (Table S2). Data were normalized to Rplp0 expression. 158 

 159 

2.6. Hormone and metabolite assays. Hepatic triglyceride content was 160 

determined after chloroform:methanol (2:1 vol/vol) extraction of total lipids, as 161 

previously described [35]. Triglycerides were quantified spectrophotometrically 162 

using an enzymatic assay (Horiba-ABX) in a Pentra 400 Analyzer (Horiba-ABX). 163 

Glycemia was determined using a Glucometer EliteTM (Bayer) and insulin levels 164 

were measured using the Rat Insulin ELISA kit (90010, Crystal Chem). Serum 165 

BMP7 and adiponectin levels were determined using the Human BMP7 ELISA 166 

kit (DBP700, R&D Systems) and the Mouse Adiponectin ELISA kit (80569, 167 

Crystal Chem). 168 

 169 

2.7. Insulin tolerance test. Insulin (Humulin Regular; Eli Lilly) was injected 170 

intraperitoneally at a dose of 0.75 IU/kg body weight to fed mice. Glycemia was 171 

measured in blood samples from tail vein at the indicated time points.  172 

 173 

2.8. Indirect calorimetry and activity. An indirect open circuit calorimeter 174 

(Oxylet, Panlab) was used to monitor O2 consumption, CO2 production and 175 

activity. Mice were individualized and acclimated to the metabolic chambers for 176 

24h. O2 consumption and CO2 production data were collected in each cage for 3 177 
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min, every 15 min, for 24 h during the light and dark cycles and adjusted by 178 

body weight. Activity was recorded continuously for 24 h during the light and 179 

dark cycles.  180 

 181 

2.9. Statistical analysis. Sample size determination was based on previous 182 

experience with similar studies. Mice were randomly divided into groups (n=8-183 

10 per group). In addition, we tested that the mean body weight and the mean 184 

glycemia were statistically not different for each experimental group prior to 185 

assignment to treatment groups. Furthermore, each experimental group was 186 

caged separately to avoid any caging effects. All tests and analyses were 187 

performed by investigators blinded to the treatment. All results are expressed as 188 

mean ± SEM. Values higher than 1.5IQR were considered atypical and were 189 

excluded from analyses. Differences between groups were compared by two-190 

sided Student’s t-test. Statistical significance was considered if P< 0.05. 191 

192 
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3. RESULTS 193 

 194 

3.1. BMP7 promotes white adipose tissue expansion 195 

Intra-adipose depot delivery of AAV8 vectors in both lean and obese diabetic 196 

mice leads to long-term efficient transduction of WAT and is a useful tool to 197 

study adipose pathophysiology and adipocyte function [32,33,36]. To examine 198 

the role of BMP7 on white adipogenesis, we chose ob/ob mice as a well-199 

established model of obesity with WAT hypertrophy, insulin resistance and a 200 

significant accumulation of hepatic triglycerides relatively early in life [37,38]. A 201 

cohort of ob/ob mice received an intra-epidydimal WAT (eWAT) injection of 202 

1x1012 vg/mouse of AAV8 vectors encoding murine BMP7 under the 203 

transcriptional control of the ubiquitous CAG promoter. To avoid expression of 204 

the transgene in other main organs for which AAV8 shows strong tropism, such 205 

as liver and heart [39–41], we took advantage of microRNAs (miRs). Target 206 

sequences for miR-122a and miR-1, which selectively de-target transgene 207 

expression from liver and heart when included into AAV vectors [32,42], were 208 

added in tandem repeats of four copies to the 3’-UTR of the murine BMP7 209 

expression cassette (AAV8-CAG-BMP7-miRT122-miRT1; AAV-BMP7). Another 210 

cohort of ob/ob mice administered with 1x1012 vg of non-coding null vectors 211 

(AAV8-null) served as controls. 212 

Animals treated intra-eWAT with AAV-BMP7 vectors showed high BMP7 213 

overexpression mainly in this depot but also in retroperitoneal (rWAT), 214 

mesenteric (mWAT) and inguinal (iWAT) depots (Figure 1A), as previously 215 

reported [33]. Marginal BMP7 expression was detected in iBAT (Figure 1A). As 216 

expected, microRNA target sequences efficiently prevented BMP7 expression 217 
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in the liver (Figure 1A) and heart (data not shown). In agreement with previous 218 

reports demonstrating the high secretory capacity of AAV-modified WAT 219 

[32,33], increased BMP7 circulating levels were observed in mice receiving 220 

AAV-BMP7 vectors (Figure 1B). 221 

As animals aged, ob/ob mice overexpressing BMP7 in white adipocytes 222 

showed increased body weight compared with AAV-null-treated counterparts 223 

(Figure 1C) although no differences in food intake were observed (Figure S1A). 224 

A tendency towards a decrease in spontaneous activity during the dark phase 225 

may have contributed to body weight gain (Figure S1B). Treatment with AAV-226 

BMP7 vectors also led to a specific increase of the main WAT depots weight 227 

(Figure 1D). This was parallel to a redistribution of the size of white adipocytes, 228 

with a greater proportion of small-size adipocytes in both eWAT and iWAT 229 

(Figure 1E,F and Figure S1C). Altogether, these observations suggested that 230 

BMP7 induced white adipogenesis, irrespective of fad pad.  231 

 232 

3.2. BMP7 induces expression of adipogenic markers and decreases 233 

WAT inflammation 234 

The expression of the preadipocyte marker Preadipocyte factor 1 (Pref1) as well 235 

as that of the final adipogenic inducers Peroxisome Proliferator Activated 236 

Receptor Gamma (Pparγ) and CCAAT/enhancer binding protein alpha (Cebpα) 237 

was induced in eWAT and iWAT of ob/ob mice overexpressing BMP7 in white 238 

adipocytes (Figure 2A,B). These results suggested induction of white 239 

adipogenesis in SAT and VAT of these animals. In addition, the expression of 240 

proteins involved in lipid accumulation, which are markers of mature adipocytes, 241 

such as sterol regulatory element binding transcription factor 1 (Srebf1), fatty 242 
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acid synthase (Fasn), acetyl-CoA carboxylase 1 (Acc1), acetyl-CoA carboxylase 243 

2 (Acc2), fatty acid-binding protein 4 (Fabp4), perilipin 1 (Plin1) and glucose 244 

transporter type 4 (Slc2a4), was also increased in eWAT and iWAT of AAV-245 

BMP7-treated animals (Figure 2C,D).  246 

In agreement with expansion of WAT, ob/ob mice overexpressing BMP7 247 

showed increased adiponectin levels (Figure 2E). WAT inflammation was also 248 

decreased in these mice, evidenced by lower presence of macrophages, 249 

revealed as “crown-like” structures, and reduced expression of the macrophage 250 

markers F480 and Cd68 and of the pro-inflammatory cytokines Mcp1 and Tnfα 251 

compared with AAV-null treated mice (Figure 2F-I).  252 

 253 

3.3. BMP7 overexpression in WAT does not induce brown adipogenesis  254 

In contrast to the observations made in WAT, ob/ob mice treated with AAV-255 

BMP7 or AAV-null showed similar iBAT weight and lipid deposition in this depot 256 

(Figure 1D and Figure 3A) likely due to the marginal expression of BMP7 in 257 

BAT (Figure 1A). BMP7 can induce brown adipocyte differentiation in vitro and 258 

non-shivering thermogenesis [21,43]. However, no differences in the expression 259 

of pro-adipogenic and mature adipocyte markers were observed in iBAT of 260 

AAV-BMP7-treated mice (Figure 3B,C). Moreover, multilocular beige adipocytes 261 

were not detected in iWAT (Figure 1E) and the expression of the thermogenic 262 

markers uncoupling protein 1 (Ucp1) and peroxisome proliferator-activated 263 

receptor gamma coactivator 1-alpha (Ppargc1a) remained unchanged in iBAT 264 

and iWAT (Figure 3D,E). Consistent with these findings, WAT-derived BMP7 265 

failed to induce energy expenditure (Figure 3F).  266 

 267 
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3.4. BMP7 overproduction in WAT ameliorates hepatic steatosis and 268 

improves insulin resistance  269 

Histological analysis of the liver revealed that null-treated ob/ob mice developed 270 

marked hepatic steatosis (Figure 4A). In contrast, hepatic lipid deposition was 271 

decreased in ob/ob mice overexpressing BMP7 in WAT (Figure 4A,B). This was 272 

parallel to reduced hepatic inflammation, evidenced by decreased number of 273 

Mac2+ cells (Figure 4C) and lower liver expression of Cd68 (Figure 4D).  274 

Ob/ob mice treated with AAV-null vectors showed normal fed glycaemia 275 

but were hyperinsulinemic (Figure 5A,B). In contrast, ob/ob mice treated with 276 

BMP7 were normoglycemic and presented a marked reduction of serum insulin 277 

levels (Figure 5A,B), suggesting improved insulin sensitivity. The intraperitoneal 278 

insulin tolerance test (ITT) confirmed amelioration of insulin resistance in AAV-279 

BMP7-treated ob/ob mice (Figure 5C). 280 

 281 

3.5. BMP7 overexpression in the liver does not induce white 282 

adipogenesis  283 

To elucidate whether the BMP7-mediated induction of WAT hyperplasia was 284 

due to the paracrine/autocrine action of BMP7 in WAT or to the increased 285 

circulating levels of the factor, the liver of ob/ob mice was genetically 286 

engineered to overproduce BMP7. To this end, ob/ob mice were administered 287 

intravenously (IV) with 5x1011 vg of AAV8 vectors encoding murine BMP7 under 288 

the control of the liver-specific hAAT promoter (AAV-hAAT-BMP7). As controls, 289 

another cohort of ob/ob mice received the same dose of non-coding null vectors 290 

(AAV-hAAT-null).  291 
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Ob/ob mice treated with AAV-hAAT-BMP7 vectors showed specific 292 

hepatic overexpression of BMP7 (Figure 6A). This led to increased BMP7 293 

circulating levels (Figure 6B), which were similar to those observed in ob/ob 294 

mice overexpressing BMP7 in white adipocytes (Figure 1B). However, body 295 

weight of ob/ob mice overproducing BMP7 in the liver was indistinguishable 296 

from that of AAV-hAAT-null-treated mice (Figure 6C). In addition, the weight of 297 

liver and adipose depots was similar in both groups of animals (Figure 6D). 298 

Moreover, white adipocyte size of ob/ob treated with AAV-hAAT-BMP7 vectors 299 

remained unchanged (Figure 6E and Figure S2A,B). In agreement, the 300 

expression of genes involved in adipogenesis and of markers of mature 301 

adipocytes (Pref1, Wnt10b, Cebpβ, Pparγ, Cebpα, Fabp4, Plin1, Slc2a4) was 302 

similar between BMP7 and null-treated ob/ob mice in both eWAT and iWAT 303 

(Figure 6F and Figure S2C). These results suggested that BMP7-mediated 304 

effects in white adipogenesis likely resulted from autocrine/paracrine effects of 305 

BMP7 in WAT. 306 

According to the lack of hyperplasic expansion of WAT, both adiponectin 307 

levels and the degree of WAT inflammation remained unchanged in ob/ob mice 308 

overexpressing BMP7 in the liver compared with control mice (Figure 6G-I). 309 

In addition, no differences in lipid deposition or in the expression levels of 310 

the adipogenic and mature adipocyte markers Pref1, Pparγ, Cebpα, Prdm16, 311 

Fabp4 and Plin (Figure S2D,E) were observed in iBAT of AAV-hAAT-BMP7-312 

treated mice. Multilocular adipocytes were neither detected in iWAT of these 313 

mice (Supplementary Figure 2B) and the expression of the thermogenic 314 

markers Ucp1 and Ppargc1a remained unchanged in iWAT and iBAT (Figure 315 

S2F,G).  316 
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Moreover, similar hepatic lipid deposition, TG content or inflammation 317 

were detected in AAV-hAAT-BMP7-treated mice compared with null-treated 318 

ob/ob mice (Figures 6H and 6J,K and Figure S2H), indicating lack of 319 

amelioration of hepatosteatosis. In agreement, animals treated with AAV-hAAT-320 

BMP7 or AAV-null vectors showed similar glycemia and hyperinsulinemia 321 

(Figure 6L,M).  322 

323 
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4. DISCUSSION 324 

 325 

The results reported in this study suggest that BMP7 is able to induce white 326 

adipogenesis in vivo. Enhanced expression of adipogenic genes increased both 327 

adiposity and the proportion of small-size adipocytes in subcutaneous and 328 

visceral WAT depots of ob/ob mice in which BMP7 was overexpressed. In 329 

contrast, when BMP7 was overproduced in the liver, no changes in fat mass, 330 

adipocyte size distribution or expression levels of adipogenic markers were 331 

observed despite similar BMP7 circulating levels. This was consistent with 332 

BMP7-mediated induction of hyperplasic expansion of WAT in an 333 

autocrine/paracrine manner. Compared with the low BMP7 circulating levels 334 

reached in this study after engineering WAT or liver with AAV-BMP7 vectors 335 

(approximately 350 or 550 pg/ml, respectively), short-term treatment with 336 

adenoviral vectors overexpressing BMP7 resulted in very high serum 337 

concentration of the factor [21,44]. In these studies, serum levels of BMP7 in 338 

the first publication ranged 3000-4000 pg/ml [21] and several hundred-fold 339 

higher in the second one [44]. Such very high levels of BMP7 decreased fat 340 

mass, increased energy expenditure and attenuated hyperglycemia and obesity 341 

[21,44], suggesting that BMP7 may elicit different effects depending on the 342 

circulating levels. 343 

Despite an increase in body weight and fat mass, obese ob/ob mice 344 

overexpressing BMP7 in WAT presented reduced hepatic steatosis, WAT and 345 

liver inflammation, and increased insulin sensitivity, together with increased 346 

proportion of small-size adipocytes. Although the absolute number of new 347 

adipocytes was not quantified in SAT and VAT, our results showed an 348 
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increased proportion of smaller adipocytes in BMP7-treated mice together with 349 

increased expression of adipogenic markers, suggesting hyperplasia in both 350 

WAT depots. These results suggested that BMP7 was able to shift the 351 

unhealthy obese phenotype of ob/ob mice towards an improved metabolic 352 

phenotype. It has been observed that a subset of obese humans can also 353 

develop metabolically healthy obesity [45], with reduced hepatic fat deposition 354 

and increased insulin sensitivity despite high BMI [46,47].  355 

Similar to the observations made in ob/ob mice overexpressing BMP7 in 356 

WAT, hyperplasic expansion of SAT and improved insulin sensitivity is also 357 

observed in several animal models, such as ob/ob mice overexpressing 358 

mitoNEET (a mitochondrial membrane protein) in adipose tissue [48]; HFD-fed 359 

mice treated with adipogenic cocktails [49], or FGF21 knock-out mice treated 360 

with recombinant FGF21 [8]. Moreover, treatment of obese insulin-resistance 361 

patients with pioglitazone increases WAT adipogenesis, particularly in SAT [7]. 362 

However, our results suggest that not only subcutaneous but also visceral 363 

adipose hyperplasia may be responsible for the metabolic benefit induced by 364 

BMP7. In agreement, obese mouse models displaying VAT hyperplasia, such 365 

as transgenic mice overexpressing GLUT4 in adipose tissue [50], ob/ob mice 366 

lacking the liver X receptors α and β (LXRαβ) [51], or transgenic mice 367 

overexpressing CIDEA in adipose tissue [52], also show improved glucose 368 

homeostasis and reduced hepatic steatosis.  369 

Increased circulating adiponectin levels in ob/ob mice overexpressing 370 

BMP7 in white adipocytes may also contribute to improve insulin sensitivity. 371 

Adiponectin production is closely linked to adipose tissue hyperplasia, as 372 

indicated by previous reports [8,53,54]. Transgenic mice overexpressing 373 
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adiponectin in adipose tissue presented increased fat mass, WAT hyperplasia 374 

and improved insulin sensitivity [37]. Furthermore, the induction of SAT and/or 375 

VAT hyperplasia observed in the previously mentioned animal models led to 376 

increased plasma adiponectin levels [8,48,51,52]. Likewise, T2D patients 377 

treated with TZD show increased plasma adiponectin concentration [55]. 378 

Adiponectin also has insulin-sensitizing and anti-inflammatory properties and is 379 

additionally associated with decreased hepatic steatosis [37,56,57]. In humans, 380 

adiponectin levels are inversely correlated with development of non-alcoholic 381 

fatty liver disease and with the degree of insulin resistance and T2D [58,59]. 382 

Treatment of mice or rats fed a high fat diet (HFD) with recombinant adiponectin 383 

decreased liver steatosis and increased insulin sensitivity [60,61]. Similarly, 384 

muscular or hepatic gene transfer of adiponectin using AAV vectors enhanced 385 

insulin sensitivity and reduced inflammation and hepatic lipid deposition in HFD-386 

fed diabetic rats [56,57]. Moreover, decreased inflammation and hepatic lipid 387 

deposition were observed in animal models that develop WAT hyperplasia and 388 

showed increased adiponectin levels [37,48,51]. All these results suggest that 389 

the increased circulating adiponectin levels observed in ob/ob mice 390 

overexpressing BMP7 in white adipocytes may play an important role in the 391 

amelioration of liver and WAT inflammation, thus contributing to reduce pro-392 

inflammatory immune cells and cytokine production, as well as, liver steatosis. 393 

These phenotypic benefits together with increased WAT hyperplasia would in 394 

turn improve the insulin sensitivity observed in these ob/ob mice. However, 395 

given that the ob/ob model is deficient in leptin, it would be of particular interest 396 

to study whether a similar BMP7-mediated metabolic benefit would be also 397 

obtained in dietary mouse models of obesity.  398 
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 Altogether, our study unravels for the first time a new autocrine/paracrine 399 

role of BMP7 on white adipogenesis and highlights that BMP7, when locally 400 

expressed in WAT may be a good candidate to modulate adipose tissue 401 

plasticity in order to reduce obesity-associated fatty liver and insulin resistance. 402 

403 
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FIGURE LEGENDS  633 

 634 

Figure 1. BMP7 increases fat mass and reduces white adipocyte size. 635 

Ob/ob mice were administered intra-eWAT with 1x1012 vg/mouse of AAV-BMP7 636 

vectors at 11 weeks of age. Control ob/ob mice received 1x1012 vg of AAV-null 637 

vectors. (A) AAV-derived BMP7 expression in epididymal (eWAT), 638 

retroperitoneal (rWAT), mesenteric (mWAT) and inguinal (iWAT) white adipose 639 

depots, interscapular BAT (iBAT) and the liver 3 months after AAV-treatment. 640 

The qPCR was performed with primers that specifically detected the murine 641 

optimized-BMP7 (moBMP7) coding sequence. n=7-10. (B) Circulating levels of 642 

BMP7 3 months after vector administration. n=8-10. (C) Evolution of body 643 

weight in animals treated with AAV-BMP7 or AAV-null vectors. n=8-10. (D) 644 

Weight of several WAT and BAT depots and the liver in the same cohorts of 645 

mice as in (C). n=8-10. (E) Representative images of the hematoxylin-eosin 646 

staining of eWAT and iWAT sections. Scale bars: 100 μm. (F) Mean area of 647 

white adipocytes in eWAT and iWAT. n=8-10 (eWAT) and n=4 (iWAT). All 648 

values are expressed as mean±SEM. ND, non-detected. AU, arbitrary units. 649 

**P<0.01 and ***P<0.001 versus the AAV-Null-treated group.  650 

 651 

Figure 2. BMP7 induces white adipogenesis and decreases WAT 652 

inflammation. (A,B) Expression of adipogenic markers in eWAT (A) and iWAT 653 

(B). (C,D) Expression of markers of mature adipocytes in eWAT (C) and iWAT 654 

(D). (E) Serum concentration of adiponectin. (F) Immunohistochemistry for the 655 

macrophage-specific marker Mac2 in eWAT sections. Scale bars: 100 μm. (G) 656 

Quantification by qRT-PCR of the expression levels of the macrophage markers 657 
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Cd68 and F4/80 in eWAT. (H,I) Expression of the pro-inflammatory markers 658 

Mcp1(H) and Tnfα (I) in eWAT. All values are expressed as mean±SEM. n=8-659 

10. **P<0.01 and ***P<0.001 versus the AAV-null-injected group.  660 

 661 

Figure 3. WAT-derived BMP7 does neither induce brown adipogenesis nor 662 

enhance non-shivering thermogenesis. (A) Representative images of the 663 

hematoxylin-eosin staining of iBAT sections of ob/ob mice treated intra-eWAT 664 

with AAV-BMP7 or AAV-null vectors. Scale bars: 100 μm. (B,C) Quantification 665 

by qRT-PCR of the expression levels of markers of adipogenesis (B) and of 666 

mature adipocytes (C) in iBAT. n=7-10. (D,E) Quantification by qRT-PCR of the 667 

expression of the thermogenic markers Ucp1 and Ppargc1a in iBAT (D) and 668 

iWAT (E). n=7-9 (F) Energy expenditure was measured with an indirect open 669 

circuit calorimeter 6 weeks after AAV vector delivery. n=8-9. Data were taken 670 

during the light and dark cycles. All values are expressed as mean±SEM.  671 

 672 

Figure 4. BMP7 ameliorates hepatic steatosis. (A) Representative images of 673 

the hematoxylin-eosin staining of liver sections of ob/ob mice treated intra-674 

eWAT with AAV-BMP7 or AAV-null vectors. Scale bars: 200 μm and 50 μm 675 

(inset). (B) Fed hepatic triglyceride content. n=8-10. (C) Immunostaining for the 676 

macrophage-specific marker Mac-2 in liver sections. Red arrowheads indicate 677 

Mac2+ cells. Scale bars: 100 μm and 50 μm (inset). (D) Quantification by qRT-678 

PCR of the expression of the macrophage marker Cd68 in the liver. n=7-10. All 679 

values are expressed as mean±SEM. **P<0.01 and ***P<0.001 versus the 680 

AAV-null injected group.  681 
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Figure 5. BMP7 improves insulin sensitivity. (A) Fed blood glucose levels 3 682 

months after vector administration. n=8-10. (B) Fed serum insulin levels 3 683 

months after vector delivery. n=7-10. (C) Insulin tolerance test was performed 684 

after an intraperitoneal injection of insulin (0.75 units/kg body weight) 2 months 685 

post-AAV delivery. n=7-9. Results were calculated as the percentage of initial 686 

blood glucose levels. All values are expressed as mean±SEM. *P<0.05 and 687 

**P<0.01 versus the AAV-null injected group.  688 

 689 

Figure 6. Liver-derived BMP7 does not induce white adipogenesis. Ob/ob 690 

mice were administered intravenously with 5x1011 vg/mouse of AAV-hAAT-691 

BMP7 vectors at 11 weeks of age. Control ob/ob mice received 5x1011 vg of 692 

AAV-hAAT-null vectors. (A) AAV-derived BMP7 expression in the liver, eWAT 693 

and iWAT depots 5 months after AAV administration. Analysis by qPCR was 694 

performed with primers that specifically detected the murine optimized-BMP7 695 

(moBMP7) coding sequence. n=8-9. (B) BMP7 serum circulating levels 5 696 

months after vector administration. n=7-9. (C) Body weight of animals treated 697 

with either AAV-hAAT-BMP7 or AAV-hAAT-null vectors. n=8-9. (D) Weight of 698 

the liver, epididymal (eWAT), inguinal (iWAT), retroperitoneal (rWAT) and 699 

mesenteric (mWAT) white adipose tissue depots and interscapular brown 700 

adipose tissue (iBAT). n=8-9. (E) Mean area of white adipocytes in eWAT and 701 

iWAT. n=5. (F) Quantification by qRT-PCR of the expression levels of markers 702 

of adipogenesis and of mature adipocytes in eWAT. n=7-9. (G) Serum levels of 703 

adiponectin. n=8-9. (H) Immunohistochemistry for the macrophage-specific 704 

marker Mac2 in sections of eWAT and liver. Scale bars: 100 μm and 50 μm 705 

(inset). (I,J) Quantification by qRT-PCR of the expression of the macrophage 706 
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markers Cd68 and F4/80 in eWAT (I) and in the liver (J). n=7-9. (K) Fed hepatic 707 

triglyceride content. n=8-9. (L,M) Fed blood glucose (L) and insulin (M) levels 5 708 

months after vector administration. n=8-9. ND, non-detected. AU, arbitrary units. 709 

All values are expressed as mean±SEM. *P<0.05 versus the AAV-hAAT-null-710 

injected group.  711 

712 
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SUPPLEMENTAL FIGURE LEGENDS 713 

 714 

Figure S1. Redistribution of the size of white adipocytes by WAT-derived 715 

BMP7. (A) Histogram depicting the food intake of ob/ob mice treated with 716 

1x1012 vg/mouse of AAV-BMP7 or AAV-null vectors. n=8-10. (B) Activity was 717 

measured 6 weeks after AAV vector delivery. n=8-9. Data were taken during the 718 

light and dark cycles. (C) Frequency distribution of white adipocyte area in 719 

eWAT of the same groups as in (A). n=8-10. All values are expressed as 720 

mean±SEM.  721 

 722 

Figure S2. Liver-derived BMP7 failed to induce adipogenesis and did not 723 

decrease hepatic steatosis. (A,B) Representative images of the hematoxylin-724 

eosin staining of eWAT (A) and iWAT (B) sections of ob/ob mice treated 725 

intravenously with 5x1011 vg/mouse of AAV-hAAT-BMP7 or AAV-hAAT-null 726 

vectors. Scale bars: 100 μm. (C) Expression levels of adipogenic markers in 727 

iWAT. n=7-9. (D) Representative images of hematoxylin-eosin staining of iBAT 728 

sections. Scale bars: 100 μm. (E) Expression of markers of adipogenesis and of 729 

mature adipocyte markers in iBAT. n=7-9. (F,G) Expression of markers of 730 

thermogenesis in iWAT (F) and iBAT (G). n=7-9. (H) Representative images of 731 

hematoxylin-eosin staining of liver sections. Scale bars: 200 μm and 50 μm 732 

(inset). All values are expressed as mean±SEM.  733 
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