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Abstract The Kovalevskaya exponents are widely used in the theory of the integrability of dynam-
ical systems. There are many works about this subject. In this survey we list the main results on
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a role. For each result we give an example to illustrate its application for a better understanding.
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1 Introduction

In the theory of ordinary differential equations one of the classical relevant problems is to study the
integrability and nonintegrability of nonlinear differential equations. Many applications involve
differential equations which appear in the description of many physical phenomena such as math-
ematical physics, celestial mechanics, control engineering and other fields. The global dynamical
behavior of these phenomena has attracted the interest of numerous mathematicians. To obtain
global dynamical information we need to analyze the local behavior at the singular points of the
differential equations. One of the most basic tools is to study the linearized system at singular
points and their eigenvalues. Another commendable method to investigate the local and global
dynamical behavior is to obtain explicit or implicitly some solutions of these differential systems.
A third method consists in finding first integrals of the differential systems. The central problem in
the theory of integrability is to decide whether a given differential system has or not first integrals.
Many different methods have been developed for studying the theory of integrability for example
Noether symmetries [43], Lie symmetries [40], the Darboux theory of integrability [12, 13], the Lax
pairs [31], the Painlevé analysis [7], the Kovalevskaya exponents [48, 49], etc. The main purpose
of this paper is to summarize the results on the Kovalevskaya exponents and their applications.

Here we provide a brief history of the Kovalevskaya exponents and refer the reader to the
survey [18] for more information about its history. In 1889, Kovalevskaya did pioneering work on
the rigid body motion. In [26, 27] she investigated the following Euler equations for the motion
of a rigid body with a fixed point

Iω̇ + ω × (Iω) = X × γ, γ̇ + ω × γ = 0, (1.1)

where I = (I1, I2, I3) are the eigenvalues of the inertia tensor, ω = (ω1, ω2, ω3) is the angular
velocity, the vector γ = (γ1, γ2, γ3) describes the orientation of the top, and the vector X =
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(X1, X2, X3) is the center of mass of the body. Kovalevskaya shows that if the general solution of
equations (1.1) can be represented by Laurent series with five free parameters of the form

ω = tp
∞∑

i=0

ait
i, γ = tq

∞∑

i=0

bit
i (1.2)

with p, q ∈ Z3,ai, bi ∈ C3, then they must satisfy the following conditions:
(i) The series (1.2) provide a formal solution and they converge in a punctured disk.
(ii) Five coefficients should be left undetermined.

The Kovalevskaya’s method is based in finding the scale of the invariant solutions (or equiva-
lently the balances, see Section 2) of system (1.2), and introduce a matrix K (i.e. called now the
Kovalevskaya matrix, see Section 2) for each of these solutions. She analysed when the eigenvalues
of the matrix K (called now the Kovalevskaya exponents) are integers, and found the three known
integrable cases and a new case, called now the Kovalevskaya case I1 = I2 = 2I3 and X3 = 0 with
the fourth first integral

{(ω1 + iω2)
2 +X1 (γ1 + iγ2)}{(ω1 − iω2)

2 +X1 (γ1 − iγ2)} = C4.

Additionally Kovalevskaya shows that there are no other cases, except the three already known
cases and the Kovalevskaya case, for which their solutions can be expressed in terms of single-
valued functions. Indeed, Kovalevskaya’s proof tell us that the general Euler equations are not
integrable within the class of single-valued functions.

However at the beginning Kovalevskaya’s method was thought to be peculiar for the Euler
equations and that it cannot be extended to other differential systems. So that it seems to be
forgotten and will not be applied to other physical systems until 1980s when integrability theory
was recovered. In 1983, Yoshida proved a necessary condition for existence of first integrals by
using the method of Kovalevskaya and the result was applied to some well-known differential
systems in mathematical physics [48, 49]. The terminology “Kovalevskaya exponents” was first
named by Yoshida. After Yoshida the Kovalevskaya exponents play an important role in the
study of the integrability of differential systems. Except integrability problems, Kovalevskaya
exponents also have a direct link to the complex dynamic behavior of the system such as fractal
structures, blowup, the Melnikov integrals, see [9, 20] and the references therein. Over the past
two decades the Kovalevskaya exponents have been the focus of intensive research in the theory
of integrability, and a lot of valuable results has been obtained.

In this paper we present a survey of the main results on the Kovalevskaya exponents in inte-
grability theory and nonlinear dynamics. We divide these results into seven topics, see Sections
2-8, respectively.

2 The Classic work

A polynomial differential system

dx

dt
= P (x), x = (x1, . . . , xn) ∈ Cn, (2.1)

with P (x) = (P1 (x) , . . . , Pn (x)) and Pi ∈ C[x1, . . . , xn] for i = 1, . . . , n. As usual N, R and
C will denote the sets of positive integers, real and complex numbers, respectively. The integer
m = max {degP1, . . . ,degPn} is the degree of the polynomial differential system (2.1). The system
(2.1) is quasi-homogeneous if there exist s = (s1, . . . , sn) ∈ Nn and d ∈ N such that for arbitrary
α ∈ R+ = {a ∈ R, a > 0},

Pi (αs1x1, . . . , α
snxn) = αsi−1+dPi (x1, . . . , xn) ,
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for i = 1, . . . , n. We call s = (s1, . . . , sn) the weighted exponent of system (2.1), and d the weighted
degree with respect to the weighted exponent s, or simply we say that system (2.1) is (s1, . . . , sn)-d
type. In the particular case that s = (1, . . . , 1) system (2.1) is the classical homogeneous polynomial
differential system of degree d.

We note that if system (2.1) is quasi-homogeneous of weighted degree d > 1 with respect to
the weighted exponent s, then the system is invariant under the change xi → αwixi, t → α−1t,
where wi = si/ (d− 1).

A point c = (c1, . . . , cn) ∈ Cn\{0} is a balance of system (2.1) if it satisfies the algebraic
equation P (c) + wc = 0, where w := s/ (d− 1) = (s1/ (d− 1) , . . . , sn/ (d− 1)) and wc :=
(w1c1, . . . , wncn).

To each balance c, we introduce a matrix

K (c) = DP (c) + diag (w1, . . . , wn) , (2.2)

where DP (c) is the Jacobian matrix of P evaluated at c and diag(w1, . . . , wn) is the diagonal
matrix with diagonal elements (w1, . . . , wn). The matrix K (c) and its eigenvalues are called the
Kovalevskaya matrix and the Kovalevskaya exponents, respectively. The Kovalevskaya exponents
of the balance c are denoted by ρ = (ρ1, . . . , ρn). It can be shown that for any balance c there
always exists a Kowalevskaya exponent equal to −1 with the associated eigenvector wc, see [14]
or [19] for more details.

Let U be an open set of Cn. A non-locally constant function I : U → C is called a first integral
of system (2.1) if it is constant along any solution curve of system (2.1) contained in U . If I (x)
is differentiable, then I (x) is a first integral of system (2.1) if and only if

n∑

i=1

Pi
∂I

∂xi

∣∣∣
x∈U

= 〈P (x) ,∇I (x)〉
∣∣∣
x∈U
≡ 0, (2.3)

where 〈·, ·〉 denotes the inner product of two vectors, ∇I (x) is the gradient of I (x).

Definition 1. A function I (x) is quasi-homogeneous with respect to s of weighted degree d if
I (αsx) = I (αs1x1, . . . , α

snxn) = αdI (x1, . . . , xn) = αdI (x) for all α ∈ R+ (it will be called a
s-function of degree degs (I) = d ).

The functions Ik : U → C for k = 1, . . . , l are independent if their gradients are linearly
independent, i.e.,

rank (∇I1 (x0) , . . . ,∇Il (x0)) = l

for all x0 ∈ U except perhaps in zero Lebesgue measure set.

Sophia Kowalevskaya was the first to introduce the determinant of K (c) to compute the
Laurent series solutions of the rigid body motion. The next two theorems are due to Yoshida,
see [48, 49]. First, he proves that, under certain conditions, the weighted degree of a first integral
is a Kowalevskaya exponent. Second, he shows that if one of the Kowalevskaya exponents is not
rational, then the system cannot be algebraically integrable.

Theorem 1. Let I (x) be a quasi-homogeneous first integral of weighted degree d for the quasi-
homogeneous system (2.1). Assume that the gradient ∇I (c) is not identically zero for at least one
choice of a balance c. Then d is a Kowalevskaya exponent.

Example 1. Consider the following Hamiltonian system of three degrees of freedom ( see [23]):

ẋ1 = p1, ẋ2 = p2, ẋ3 = p3, ṗ1 = −4x31 − 24x22x1,

ṗ2 = −64x32 − 24x21x2, ṗ3 = −4µx33,
(2.4)
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with the HamiltonianH =
(
p21 + p22 + p23

)
/2+µx43+x41+12x22x

2
1+16x42. It is clear that system (2.4)

is (1, 1, 1, 2, 2, 2)-2 type system and H is quasi-homogeneous with respect to the weighted exponent
s = (1, 1, 1, 2, 2, 2). Moreover system (2.4) has the following two independent first integrals

I1 = p23 + 2µx43, I2 = x2p
2
1 − x1p1p2 − 8x21x

3
2 − 4x31x

2
2. (2.5)

The weighted degree of H, I1, I2 with respect to s are, respectively, dH = 4, d1 = 4, d2 = 5.
Doing some computations we get that system (2.4) has 24 different balances. We pick 3 different
balances of these 24 balances in order to illustrate Theorem 1:

c1 =

(
i√
2
, 0,

i√
2µ
,− i√

2
, 0,− i√

2µ

)
, ρ1 = (5, 4, 4,−2,−1,−1) ,

∇H (c1) 6= 0, ∇I1 (c1) 6= 0, ∇I2 (c1) 6= 0;

c2 =

(
i√
2
, 0, 0,− i√

2
, 0, 0

)
, ρ2 = (5, 4,−2, 2,−1, 1) ,

∇H (c2) 6= 0, ∇I1 (c2) = 0, ∇I2 (c2) 6= 0;

c3 =

(
0,− i

4
√

2
, 0, 0,

i

4
√

2
, 0

)
, ρ3 =

(
4,

5

2
, 2,−1, 1,

1

2

)
,

∇H (c3) 6= 0, ∇I1 (c3) = 0, ∇I2 (c3) = 0.

In the first case the gradients of the first integrals do not vanish evaluated at c1. Hence dH , d1
and d2 are Kowalevskaya exponents. In the second case, ∇I1 vanishes identically and d1 is not a
Kowalevskaya exponent. In the third case, only ∇H (c3) does not vanish and dH is a Kowalevskaya
exponent.

Definition 2. System (2.1) is algebraically integrable if there exist (n− 1) independent algebraic
first integrals Ii (i = 1, . . . , n− 1).

Theorem 2. If system (2.1) is algebraically integrable, then all Kovalevskaya exponents are ra-
tional.

Example 2. Consider the system

ẋ1 = x2, ẋ2 = x3, ẋ3 = x1x2. (2.6)

Note that it is a (2, 3, 4)-2 type system. System (2.6) has the following two independent polynomial
first integrals :

I1 = x3 −
x21
2
, I2 = x3x1 −

x22
2
− x31

2
,

see [25]. Thus, system (2.6) is algebraically integrable and c = (12,−24, 72) is the only balance of
system (2.6). The Kovalevskaya exponents ρ = (6, 4,−1) are rational. So this differential system
satisfies Theorem 2.

Example 3 (Jouanolou system). We consider the Jouanolou system

ẋ1 = xn3 , ẋ2 = xn1 , ẋ3 = xn2 , (2.7)

where n ≥ 2 is a natural number. This system is homogeneous of degree n. The balance c =
(c1, c2, c3) satisfies

cn3 +
c1

n− 1
= 0, cn1 +

c2
n− 1

= 0, cn2 +
c3

n− 1
= 0.

Note that ci 6= 0 for i = 1, 2, 3. The matrix (2.2) is

K (c) =




1
n−1 0 ncn−13

ncn−11
1

n−1 0

0 ncn−12
1

n−1


 =




1
n−1 0 − nc1

(n−1)c3
− nc2

(n−1)c1
1

n−1 0

0 ncn−12
1

n−1


 .
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Doing some computations, the Kovalevskaya exponents

ρ =

(
−1,

(
1− i

√
3
)
n+ 2

2(n− 1)
,

(
1 + i

√
3
)
n+ 2

2(n− 1)

)

are independent of the all balances c. Using Theorem 2 we can obtain that system (2.7) is not
algebraically integrable. This means that for system (2.7) does not exist two independent algebraic
first integrals. Moulin-Ollagnier et al. [39] used Bezout theorem to prove that system (2.7) has no
Darboux polynomials. So it has no rational first integrals.

The following relationship between the degrees of the first integrals and the Kovalevskaya
exponents was given by Goriely [17].

Theorem 3. If the quasi-homogeneous system (2.1) has k independent algebraic first integrals
I1, · · · , Ik of weighted degrees d1, · · · , dk and Kovalevskaya exponents ρ1 = −1, ρ2, · · · , ρn, then
there exists a k × n matrix M = (mij) with integer entries so that

n∑

j=2

mijρj = di, i = 1, · · · , k. (2.8)

This relations (2.8) can view as resonance relations between the Kovalevskaya exponents the
same as in the normal form theory, see for instance [8].

Example 4. Consider the Liouville integrable Hamiltonian system

ẋ1 = 3p21 + x21, ẋ2 = 2p2x1, ṗ1 = −2p1x1 − p22 − x22, ṗ2 = −2x1x2, (2.9)

with HamiltonianH = p1
(
p21 + x21

)
+x1

(
p22 + x22

)
, and having the second first integral I1 = p22+x22,

see [5]. The system (2.9) has three different balances c1 = (−1, 0, 0, 0), c2 = (1/2, 0,−i/2, 0) and
c3 = (1/2, 0, i/2, 0). The corresponding Kovalevskaya exponents are ρ1 = (3, 1 + 2i, 1− 2i,−1)
and ρ2 = ρ3 = (3, 1 + i, 1− i,−1). The weighted degree of H and I1 are respectively dH = 3 and
d1 = 2. One can check that the Kovalevskaya exponents satisfy the following relations:

MR =

(
dH
d1

)
,

where

M =

(
1 0 0 0
0 1 1 0

)
and R =

(
ρT1 ,ρ

T
2 ,ρ

T
3

)
.

The next two corollaries follow immediately from Theorem 3.

Definition 3. The numbers ρ1, . . . , ρn are Z-independent (or N-independent) if there do not exist
k1, . . . , kn ∈ Z (or N) such that

n∑

i=1

kiρi = 0 and
n∑

i=1

| ki |6= 0.

Corollary 1. If the Kovalevskaya exponents are Z-independent, then there is no rational first
integral.

Example 5. Consider a three-dimensional quasi-homogeneous polynomial system

ẋ =
√

3xy, ẏ =
√

2y2 + xz, ż = yz + x. (2.10)
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Note that it is a (3, 2, 1)-3 type system. This system has three different balances c1 =
(
0,−
√

2/2, 0
)
,

c2 =


 i

2

(√
3− 3

)√ √6− 2

6− 2
√

3
,−
√

3

2
,−i
√

3
√

6− 6

6− 2
√

3




and

c3 =


− i

2

(√
3− 3

)√ √6− 2

6− 2
√

3
,−
√

3

2
, i

√
3
√

6− 6

6− 2
√

3


 .

The corresponding Kovalevskaya exponents are ρ1 =
(
−1,

(
3−
√

6
)
/2,
(
1−
√

2
)
/2
)
and ρ2 =

ρ3 =


−1,

5−
√

3− 2
√

6 + i
(√

3 + 1
)√

8
√

6− 3
√

3− 7

4
,
5−
√

3− 2
√

6− i
(√

3 + 1
)√

8
√

6− 3
√

3− 7

4


 .

Using Corollary 1 we can conclude that system (2.10) has no rational first integrals.

Corollary 2. If the Kovalevskaya exponents are N-independent, then there is no polynomial first
integral.

Example 6 (Halphen system). The quadratic homogeneous system

ẋ1 = x2x3 − x1 (x2 + x3) , ẋ2 = x3x1 − x2 (x1 + x3) , ẋ3 = x1x2 − x3 (x1 + x2) , (2.11)

is the Darboux-Brioschi-Halphen system, see [37]. There is a unique balance c = (1, 1, 1) and
the Kovalevskaya exponents are ρ = (−1,−1,−1). Therefore, the Halphen system (2.11) has no
polynomial first integrals. In [37] Maciejewski et al. also proved that the Halphen system (2.11)
has no rational first integral.

3 Kovalevskaya exponents of quasi-homogeneous differential sys-
tems

In this section we introduce some important results about the Kowalevskaya exponents of quasi-
homogeneous polynomial differential systems.

Furta [14] and Goriely [17] independently proved the existence of the following link between
the Kowalevskaya exponents of the system and the degree of their quasi-homogeneous polynomial
first integrals.

Theorem 4. Consider the quasi-homogeneous polynomial differential system (2.1) of weighted
exponent s. For each balance c, let ρ1, . . . , ρn be the Kowalevskaya exponents associated with c. If
system (2.1) has a quasi-homogeneous polynomial first integral of weighted degree l with respect to
the weighted exponent s, then there exist non-negative integers k1, . . . , kn satisfying k1+· · ·+kn ≤ l
such that k1ρ1 + · · ·+ knρn = l.

Example 7 (Hénon-Heiles system [6, 22, 49]). Consider the Hamiltonian system

q̇1 = p1, q̇2 = p2, ṗ1 = −2q1q2, ṗ2 = −εq22 − q21, (3.1)

with the Hamiltonian H =
(
p21 + p22

)
/2 + q21q2 + εq32/3. For ε = 6, there exists a polynomial

first integral I1 = q41 + 4q22q
2
1 − 4p1 (p1q2 − p2q1) independent of H. This system is a (2, 2, 3, 3)-2

type system and has three different balances c1 = (0,−1, 0, 2), c2 = (−6i,−3, 12i, 6) and c3 =
(6i,−3,−12i, 6). The corresponding Kovalevskaya exponents are ρ1 = (6, 4,−1, 1) and ρ2 = ρ3 =
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(8, 6,−3,−1). Note that the weighted degree of H and I1 are respectively dH = 6 and d1 = 8. We
have that

k1 = (0, 2, 2, 0) , k2 = (1, 0, 0, 1) , k1ρ
T
1 = dH , k2ρ

T
1 = d1;

k1 = (1, 0, 0, 2) , k2 = (0, 2, 0, 4) , k1ρ
T
2 = k1ρ

T
3 = dH , k2ρ

T
2 = k2ρ

T
3 = d1.

Llibre and Zhang in [35] proved the following new relation.

Theorem 5. Consider the quasi-homogeneous polynomial differential system (2.1) of weighted
degree d > 1 with respect to the weighted exponent s. For each balance c, let ρ1, · · · , ρn be the
Kowalevskaya exponents associated with c. If system (2.1) has a quasi-homogeneous polynomial
first integral of weighted degree l with respect to the weighted exponent s, then there exist nonneg-
ative integers k1, . . . , kn satisfying k1 + · · ·+ kn ≤ l such that k1ρ1 + · · ·+ knρn = l/ (d− 1).

Example 8. Consider the (4, 3, 5)-6 type quasi-homogeneous polynomial system

ẋ = y3, ẏ = x2, ż = z2, (3.2)

with the first integral H = x3/3 − y4/4. It has three different balances c1 = (0, 0,−1), c2 =(
5
√

540/5,− 5
√

1200/5,−1
)
and c3 =

(
5
√

540/5,− 5
√

1200/5, 0
)
. The corresponding Kowalevskaya

exponents are ρ1 = (−1, 4/5, 3/5), ρ2 = (−1,−1, 12/5) and ρ3 = (−1, 1, 12/5). Note that the
weighted degree of H is 12. The system satisfies Theorem 5.

Moreover, Llibre and Zhang studied (1, · · · , 1)-2 type quasi-homogeneous systems (2.1), i.e.,
quadratic homogeneous systems, see [35]. They proved that the coefficient corresponding to the
Kowalevskaya exponent −1 in Theorem 5 can be taken to be 0 and obtained the following result.

Theorem 6. Consider a quadratic homogeneous polynomial differential system (2.1). For each
balance c, let ρ1 = −1, ρ2, · · · , ρn be the Kowalevskaya exponents associated with c. If system
(2.1) has a homogeneous polynomial first integral of degree l, then there exist nonnegative integers
k2, . . . , kn satisfying k2 + · · ·+ kn ≤ l such that k2ρ2 + · · ·+ knρn = l.

Example 9. Consider the quadratic homogeneous polynomial differential system

ẋ1 = x23, ẋ2 = x24, ẋ3 = −x21, ẋ4 = −x22 (3.3)

with the homogeneous polynomial first integral H =
(
x31 + x32 + x33 + x34

)
/3. The balance c =

(c1, c2, c3, c4) satisfies

c1 + c23 = 0, c2 + c24 = 0, c3 − c21 = 0, c4 − c22 = 0.

For each balance c, the Kovalevskaya exponents can be computed and we get that they are
ρ1 = (−1,−1, 3, 3) and ρ2 = (−1, 1, 1, 3). So this example satisfies Theorem 6.

Liu et al. [32] show the next theorem that Theorem 6 holds not only for (1, · · · , 1)-2 type
systems but also for any (s1, . . . , sn)-d type systems.

Theorem 7. For each balance c of an (s1, . . . , sn)-d type polynomial system (2.1),d ≥ 2, let ρ1 =
−1, ρ2, · · · , ρn be the Kowalevskaya exponents associated with c. If system (2.1) has an (s1, . . . , sn)-
l type polynomial first integral, then there exist non-negative integers k2, . . . , kn, satisfying k2 +
· · ·+ kn ≤ l such that k2ρ2 + · · ·+ knρn = l/ (d− 1).

Example 10. We consider the (4, 3, 5, 5)-6 type quasi-homogeneous polynomial system

ẋ1 = x32, ẋ2 = x21, ẋ3 = x23, ẋ4 = x24 (3.4)

with the first integral H = x31/3 − x42/4. System (3.4) has 6 different balances. We pick 2
different balances of these 6 balances in order to illustrate Theorem 7: c1 = (0, 0,−1, 0) and c2 =
(0, 0,−1,−1). The Kovalevskaya exponents are ρ1 = (−1, 1, 4/5, 3/5) and ρ2 = (−1,−1, 4/5, 3/5).
Then 1 + 4/5 + 3/5 = 12/5 and −1× 2 + 4× 4/5 + 2× 3/5 = 12/5, as described in Theorem 7.
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In [35] Llibre and Zhang also considered the planar system

ẋ = P (x, y) , ẏ = Q (x, y) , (3.5)

where P (x, y) and Q (x, y) are polynomial, and proved the next result.

Theorem 8. Assume that the planar system (3.5) is a quasi-homogeneous polynomial system of
weighted degree d = 2, P (x, y)Q (x, y) 6= 0, and P and Q are co-prime in C[x, y]. The following
statements hold.

(i) If system (3.5) has two independent balances with Kowalevskaya exponents (−1, ρ1) and
(−1, ρ2), then it has a quasi-homogeneous polynomial first integral of weighted degree l ∈ N
if and only if ρ−11 + ρ−12 ≤ 1, l/ρi ∈ N, for i = 1, 2.

(ii) If system (3.5) has a unique balance with the Kowalevskaya exponents (−1, ρ), ρ 6= 0, then
it has a quasi-homogeneous polynomial first integral of weighted degree l ∈ N if and only if
ρ−1 ≤ 1, l/ρ ∈ N

(iii) If system (3.5) has no balance or has infinitely many balances, then it has no quasi-homogeneous
polynomial first integrals.

The next two examples are due to Llibre and Zhang [35].

Example 11. Consider the quasi-homogeneous polynomial system of weighted degree 2

ẋ = ax2 + by, ẏ = dx3 + gxy, (3.6)

with b 6= 0. The balance c = (c1, c2) satisfies

c2 = −1

b
c1 −

a

b
c21,

(
d− ag

b

)
c21 −

2a+ g

b
c1 −

2

b
= 0.

If d = 0 and 2a 6= g, then system (3.6) has the first integral H =
[
(2a− g)x2 + 2by

]g
y−2a

and two independent balances c1 =
(
−a−1, 0

)
and c2 =

(
−2 (2a− g) b−1g−2,−2g−1

)
. The cor-

responding Kowalevskaya exponents are ρ1 =
(
−1, (2a− g) a−1

)
and ρ2 =

(
−1,−2 (2a− g) g−1

)
.

The system satisfies statement (i) of Theorem 8.

If d = 0 and 2a = g, then system (3.6) has the balance
(
−a−1, 0

)
and the first integral

H = b−1gx2y−1 − ln
(
−2by2

)
. The corresponding Kowalevskaya exponents are ρ = (−1, 0). So in

this case statement (ii) of Theorem 8 holds.

Example 12. Consider the system

ẋ = ax2, ẏ = bxn+1 + dxy, (3.7)

with n > 2, n ∈ N, a 6= 0 and b2 + d2 6= 0.

If n = d/a and b 6= 0, then system (3.7) has no balances, and it has the first integral H =
b lnx− ax−d/ay.

If n = d/a and b = 0, then system (3.7) has infinitely many balances (−1/a, c2) and a first
integral H = x−ny, where c2 is an arbitrary constant. In these two cases statement (iii) of
Theorem 8 is fulfilled.

In the next theorem Liu et al. [32] generalized Theorem 8 from (s1, s2)-2 type systems to
systems of (s1, s2)-d type with d ≥ 2, and additionally they extend Theorem 8 from polynomial
first integrals to rational first integrals, see the next result.

8



Theorem 9. Let the planar quasi-homogeneous polynomial differential system (3.5) be (s1, s2)-d
type with d ≥ 2, where P and Q are co-prime in C[x, y]. Then the system always has at least
one and at most d + 1 balances, and it has a polynomial (resp. rational) first integral if and
only if for every balance c of the system with the corresponding Kowalevskaya exponent (−1, ρ),
ρ ∈ Q+ (resp.ρ ∈ Q\{0}) .

Example 13. Consider the (3, 2)-4 type quasi-homogeneous polynomial system

ẋ = x2 + y3, ẏ = axy, (3.8)

with a 6= 0.

If a = 2/3, then system (3.8) has only the balance c = (−1, 0) with Kowalevskaya exponent
ρ = (−1, 0).

If a 6= 2/3, then system (3.8) has the two independent balances c1 = (−1, 0) and c2 =(
−2/3a, 3

√
6 (3a− 2) a/3a

)
. The corresponding Kowalevskaya exponents are ρ1 = (−1, 2/3− a)

and ρ2 = (−1, 2 (1− 2/3a)).

Applying Theorem 9 we have that the first integral of system (3.8) is rational if and only if
a ∈ Q\{3/2}, and the first integral is polynomial if and only if a ∈ Q−.

From [15] the system has first integral H = y2
(
2y3 + (2− 3a)x2

)−a if a 6= 2/3, and H =

y exp
(
− x2

3y3

)
if a = 2/3.

Remark 1. The approach of [32] is completely different from the approach of [35]. By the trans-
formation of variables (X,Y ) = (xs2 , ys1), the quasi-homogeneous polynomial systems (3.5) can be
changed into a homogeneous system. Hence, studying the integrability of the quasi-homogeneous
polynomial systems (3.5) can be changed into studying the integrability of its corresponding homo-
geneous systems.

The existence of the following link between the Kowalevskaya exponents and the rational first
integrals of quasi-homogeneous system (2.1) is found in [28]. It is known that a rational function
H = M (x) /G (x) is a first integral of system (2.1) if and only if there is a polynomial R (x) such
that 〈P (x) ,∇M (x)〉 = MR and 〈P (x) ,∇G (x)〉 = GR.

Theorem 10. Consider the quasi-homogeneous polynomial differential system (2.1) of weighted
degree d > 1 with respect to the weighted exponent s. Let H = M (x) /G (x) be a rational first
integral of system (2.1). If 〈P (x) ,∇M (x)〉 = MR, M (c) = 0 and ∇M (c) 6= 0 for a balance c,
then degs (M) /(d− 1) +R(c) is a Kovalevskaya exponent.

Example 14 (Lotka-Volterra system). Consider the Lotka-Volterra system

ẋ = x (Cy + z) , ẏ = y (Az + x) , ż = z (Bx+ y) , (3.9)

where A, B and C are parameters, see [38]. If A = B = C = 1, then system (3.9) has rational
first integral H = (x− y) (y − z) /y. We have M = (x− y) (y − z), degM = 2 and R = x+ z.

In this case, the system (3.9) has four different balances c1 = (−1,−1, 0), c2 = (−1, 0,−1),
c3 = (−1/2,−1/2,−1/2) and c4 = (0,−1,−1). Only two balances c1 = (−1,−1, 0) and c4 =
(0,−1,−1) satisfy conditionsM (c) = 0 and∇M (c) 6= 0. By Theorem 10, 2+R (c1) = 2+R (c4) =
1 is a Kovalevskaya exponent. In fact, the corresponding Kowalevskaya exponents of system (3.9)
are ρ1 = ρ2 = ρ4 = (−1,−1, 1) and ρ3 = (−1, 1/2, 1/2).

Denoted by F = (P,Q)T the polynomial vector field associated to system (3.5). The system
(3.5) is called irreducible if P and Q are coprime. A polynomial I (x) is said to be s-d type quasi-
homogeneous if I (αsx) = I (αs1x1, . . . , α

snxn) = αdI (x1, . . . , xn) = αdI (x) for all α ∈ R+ (it will

9



be called s-polynomial of degree degs (I) = d ). The vector space of s-d type quasi-homogeneous
polynomials is denoted by Ps

d . The vector field F = (P,Q) is a s-d type quasi-homogeneous
vector field if P ∈ Ps

s1+d−1 and Q ∈ Ps
s2+d−1. We denote the vector space of the s-d type quasi-

homogeneous polynomial vector fields by Qs
d.

The quasi-homogeneous vector field Fd ∈ Qs
d can be decomposed into a sum of two quasi-

homogeneous fields, a conservative one (having zero-divergence) and a dissipative one, see the
next lemma proved in [1].

Lemma 1. Every vector field Fd ∈ Qs
d can be expressed as

Fd =
1

d+ |s| − 1
[Xh + div (Fd)D0] , (3.10)

where D0 (x, y) = (s1x, s2y)T (a dissipative s-1 type vector field), div (Fd) ∈ Ps
d (the divergence

of Fd), h = s1xQ− s2yP ∈ Pt
d+|t|−1 (the wedge product of D0 and Fd) being |s| = s1 + s2.

This decomposition is known as the conservative-dissipative splitting of a quasi-homogeneous
vector field. Using this decomposition, Algaba et al. [2] obtained the Kowalevskaya exponents
and relate the rational integrability of quasi-homogeneous vector fields to their Kowalevskaya
exponents, see the following four results.

Proposition 1. If c is a balance of a quasi-homogeneous system (3.5), then h (c) = 0. Further-
more, if P and Q are coprime and PQ 6= 0, the following statements hold.

(i) If x is a factor of h, then (0, c2), with c
(d−1)/s2
2 = − s2

(d−1)Q(0,1) , is a balance of system (3.5).

(ii) If y is a factor of h, then (c1, 0), with c(d−1)/s11 = − s1
(d−1)P (1,0) , is a balance of system (3.5).

(iii) If ys1 − λxs2 is a factor of h with λ ∈ C\{0}, then (c1, c2) with c1 = us1, c2 = us2λ1/s1 and
ud−1 = − s1

(d−1)P(1,λ1/s1)
, is a balance of system (3.5).

We need the following lemma, see [2].

Lemma 2. If a quasi-homogeneous system (3.5) is irreducible with div(Fd) 6≡ 0, then d+ |s|−1 =
k3s1s2 + δys2 + δxs1 with δx, δy ∈ {0, 1} and k3 ≥ 0. Then:

(i) h (x, y) = xδxyδyh0 (xs2 , ys1) with h0 (x, y) a homogeneous polynomial of degree k3, and

(ii) div(Fd) (x, y) = x(1−δx)(s2−1)y(1−δy)(s1−1)µ0 (xs2 , ys1) with µ0 (x, y) a homogeneous polyno-
mial of degree k3 − (1− δx)− (1− δy).

From Lemma 2 we can define the function

η (x, y) :=
µ0 (x, y)

xδxyδyh0 (x, y)
.

The residue of η (1, y) at y0 is denoted by Res [η (1, y) , y0], see [47] for definition of residue.

Proposition 2. Assume that quasi-homogeneous system (3.5) is irreducible with h =
∏l+2
j=1 f

lj
j 6=

0. If w1 = ∞, w2 = 0, wj = λj , j = 3, · · · , l + 2 are the poles of η (1, y), then ρi = 0 if li > 1,
otherwise,

ρ−1i =
d− 1

d+ |s| − 1

(
1− s1s2

degs (fi)
Res [η (1, y) , wi]

)
, (3.11)

where every (−1, ρi) is the Kowalevskaya exponents associated to the factor fi of h, for i =
1, · · · , l + 2.
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The next result characterizes the rational (polynomial) integrability of a quasi-homogeneous
polynomial system (3.5) through its Kowalevskaya exponents.

Theorem 11. An irreducible quasi-homogeneous polynomial system (3.5) has a rational (resp.
polynomial) first integral if and only if div (Fd) ≡ 0 or the two following properties hold:

(i) The s-polynomial h has at least two irreducible factors on K[x, y], and all of them are distinct,
that is, it can be written as h =

∏l+2
j=1 f

lj
j , where f1 = xδx , f2 = yδy , δx, δy ∈ {0, 1}, fj =

ys1 − λjxs2, for j ≥ 3, and j ≥ 3, and l ≥ 0.

(ii) For any Kowalevskaya exponent ρj 6= −1, ρj is a rational number. Moreover, in such a case,
if we define the rational numbers

rj =
1

d− 1
ρ−1j , j = 1, . . . , l + 2,

Then
∏l+2
j=1 f

nj

j is a s-rational (resp. polynomial) first integral of degree M , where nj =
Mrj ∈ Z (N ∪ {0}, resp.).

We apply the above results to the following example [2].

Example 15. We consider the (1, 2)-3 type planar quasi-homogeneous polynomial system given
by

ẋ = (d1 − 2c)xy + d2x
3, ẏ = (c+ 2d1) y

2 + 2d2x
2y − 5cx4, (3.12)

with c, d1 and d2 real parameters and c 6= 0. The function h associated to system (3.12) is
h (x, y) = cx

(
y − x2

) (
y + x2

)
. Using Proposition 1, system (3.12) has five balances:

c1 =

(
1√

2 (d1 − 2c− d2)
,

1

2 (2c− d1 + d2)

)
, c2 =

(
− 1√

2 (2c− d1 − d2)
,

1

2 (2c− d1 − d2)

)
,

c3 =

(
1√

2 (2c− d1 − d2)
,

1

2 (2c− d1 − d2)

)
, c4 =

(
− 1√

2 (d1 − 2c− d2)
,

1

2 (2c− d1 + d2)

)
,

c5 =

(
0,− 1

c+ 2d1

)
.

In this case η (x, y) = (d1y + d2x) / (cx (y − x) (y + x)). We have

Res[η (1, y) ,∞] = −Res[η (x, 1) , 0] = −d1
c
,

Res[η (1, y) , 1] =
d1 + d2

2c
,

Res[η (1, y) ,−1] =
d1 − d2

2c
.

Applying Proposition 2 we get that the Kowalevskaya exponents are
(
−1,

5c

2 (c+ 2d1)

)
,

(
−1,− 5c

d1 + d2 − 2c

)
and

(
−1,

5c

2c− d1 + d2

)
.

By Theorem 21 system (3.12) has a (1, 2)-polynomial first integral of degree M > 0 if and only if

M

5

(
1 +

2d1
c

)
,
M

5

(
1− d1 + d2

2c

)
and

M

5

(
1 +

d2 − d1
2c

)
,

are non-negative integer numbers. System (3.12) has a (1, 2)-rational first integral of degree M if
and only if

M

5

(
1 +

2d1
c

)
,
M

5

(
1− d1 + d2

2c

)
and

M

5

(
1 +

d2 − d1
2c

)
,

are integer numbers.
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4 Kovalevskaya exponents of semi-quasi-homogeneous systems

Let E be identity matrix, S = diag (s1, . . . , sn) and αE−S = diag (1− s1, . . . , 1− sn). We say that
system (2.1) is a semi-quasi-homogeneous system if it can be expressed as

dx

dt
= P (x) = Pd (x) + P̃ (x) , (4.1)

where Pd (x) is a quasi-homogeneous vector field of degree d with exponents s = (s1, . . . , sn) and
αE−SP̃ (x) =

(
α1−s1P̃1 (x) , · · · , α1−snP̃n (x)

)
is the sum of quasi-homogeneous polynomials of

degrees all greater than d, or all less than d. In the former case (resp. latter) we say that (2.1) is
positively (resp. negatively) semi-quasi-homogeneous. Moreover the system

ẋ = Pd (x) . (4.2)

is called the quasi-homogeneous cut of semi-quasi-homogeneous system (2.1).

If system (2.1) is semi-quasi-homogeneous, then under the transformation

x→ αwx, t→ α−1t, w =
s

d− 1
=

(
s1

d− 1
, · · · , sn

d− 1

)
,

it becomes

ẋ = Pd (x) + P̃ (x, α) , (4.3)

where P̃ (x, α) is a formal power series either with respect to α (positive semi-quasi-homogeneity)
or respect to α−1 (negative semi-quasi-homogeneity) without any constant term.

The existence or non-existence of nontrivial first integrals is an important problem in consider-
ing integrability and non-integrability for semi-quasi-homogeneous systems. The following result
goes back to Poincaré [41], which gave a necessary condition in order that a planar polynomial
system has a rational first integral.

Theorem 12 (Poincaré Theorem). If planar polynomial system (3.5) has a rational first integral,
then the eigenvalues ρ1, ρ2 associated to any singular point of the system must be resonant in the
following sense: there exist integers m1,m2 with |m1|+ |m2| > 0 such that m1ρ1 +m2ρ2 = 0.

In 1996, Furta [14] gave an elementary proof of Poincaré’s result. Furthermore, Furta studied
the integrability of semi-quasi-homogeneous systems and proved the following criterion.

Theorem 13. Consider that the planar system (3.5) is semi-quasi-homogeneous. If the Ko-
valevskaya matrix of its quasi-homogeneous cut (4.2) is diagonalizable and its eigenvalues ρ1, ρ2
are nonzero and do not satisfy any resonant condition of form

k1ρ1 + k2ρ2 = 0, k1, k2 ∈ N ∪ {0}, k1 + k2 ≥ 1,

then semi-quasi-homogeneous system (3.5) does not have any polynomial first integral.

Example 16. Consider the following system ( [16])

ẋ = y
(
ax+ by2n

)
+ P̃ (x, y) , ẏ = cy2 + Q̃ (x, y) , (4.4)

where P̃ (x, y) =
∑

i,j aijx
iyj and Q̃ (x, y) =

∑
i,j bijx

iyj satisfy 2n (i− 1) + j − 1 > 0 and
2ni + j − 2 > 0, respectively. This system is positively semi-quasi-homogeneous system with
exponents s1 = 2n and s2 = 1. The corresponding quasi-homogeneous cut is

ẋ = y
(
ax+ by2n

)
, ẏ = cy2. (4.5)
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If a 6= 2cn and c 6= 0, then system (4.5) has a balance

c =

(
b

c2n (2cn− a)
,−1

c

)
.

The associated Kowalevskaya exponents are ρ = (−1, 2n− a/c). Form Theorem 13 it follows that
system (4.4) does not have any polynomial first integral if c (2cn− a) 6= 0 and a/c 6∈ Q+.

In [45] the authors presented the following criterion for semi-quasi-homogeneous systems, which
is a generalization of Theorem 13.

Theorem 14. Assume that system (2.1) is semi-quasi-homogeneous system. If the Kowalevskaya
exponents of its quasi-homogeneous cut (4.2) ρ = (ρ1, . . . , ρn) do not satisfy any resonant condition

n∑

j=1

kjρj = 0, kj ∈ N ∪ {0},
n∑

j=1

kj ≥ 1,

then semi-quasi-homogeneous system (2.1) does not have any polynomial first integral.

To illustrate Theorem 14 we consider the next example given in [45].

Example 17. Consider a four dimensional system of Lotka-Volterra type

ẋ1 = x1 (α1 + ax1 + bx2) , ẋ2 = x2 (α2 + cx1 + dx2) ,

ẋ3 = x3 (α3 + ax1 + bx2 + ex3 + fx4) , ẋ4 = x4 (α1 − fx4) ,
(4.6)

where αj , a, b, c, d, e, f are real constants. This system can be regarded as a negative semi-quasi-
homogeneous system with exponents s1 = s2 = · · · = sn = 1. Its quasi-homogeneous cut is

ẋ1 = x1 (ax1 + bx2) , ẋ2 = x2 (cx1 + dx2) ,

ẋ3 = x3 (ax1 + bx2 + ex3 + fx4) , ẋ4 = −fx24.
(4.7)

Then system (4.7) has the balance

c =

(
b− d
ad− cb ,

c− a
ad− cb ,−

1

e
,

1

f

)
,

if ad− cb 6= 0 and ef 6= 0. The Kowalevskaya exponents associated to c are

ρ =

(
−1,−1,−1,−(b− d) (c− a)

ad− cb

)
.

Using Theorem 14 system (4.6) has no polynomial integral, if for any k1, k2, k3, k4 ∈ N∪ {0}, k1 +
k2 + k3 + k4 ≥ 1,

− (k1 + k2 + k3) +

[
−(b− d) (c− a)

ad− cb

]
· k4 6= 0,

or equivalently

−(b− d) (c− a)

ad− cb 6∈ Q−.

The function Φ (x) is Laurent polynomial if it can be represented in the form

Φ (x) =
∑

(k1,...,kn)∈A
Φk1...knx

k1
1 · · ·xknn ,

where x = (x1, . . . , xn), Φk1...kn ∈ C and A is a finite subset of Zn.

Shi et al. in [46] studied the nonexistence and existence of Laurent polynomial integrals for
semi-quasi-homogeneous systems and proved the following two results.
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Theorem 15. Assume that system (2.1) is a semi-quasi-homogeneous system. If the Kowalevskaya
exponents of its quasi-homogeneous cut (4.2) ρ = (ρ1, . . . , ρn) are Z-independent, i.e., they do not
satisfy any resonant condition of the form

n∑

j=1

kjρj = 0, kj ∈ Z,
n∑

j=1

|kj | ≥ 1,

then system (2.1) does not have any nontrivial Laurent polynomial first integral.

The next example is due to Shi et al., see [46].

Example 18. Consider the following quadratic system in Rn

ẋi = xi (ai1x1 + ai2x2 + · · ·+ ainxn) , i = 1, 2, . . . , n, (4.8)

where ai, aij are real constants. System (4.8) can be seem as a semi-quasi-homogeneous system
with exponents s1 = s2 = · · · = sn = 1. If ajj 6= 0, then system (4.8) has the balance c =
(0, . . . ,−1/ajj , . . . , 0). For simplicity, we assume that j = n. The Kowalevskaya exponents are
ρ =

(
1− a1n/ann, 1− a2n/ann, . . . , 1− a(n−1)n/ann,−1

)
. Applying Theorem 15 system (4.8) does

not have any Laurent polynomial integral if

k1

(
1− a1n

ann

)
+ · · ·+ kn

(
1−

a(n−1)n
ann

)
− kn 6= 0, kj ∈ Z,

n∑

j=1

|kj | ≥ 1,

holds for any nonzero integral vector k ∈ Zn. This is equivalent to

k̃1a1n + k̃2a2n + · · ·+ k̃nann 6= 0, k̃j ∈ Z,
n∑

j=1

|k̃j | ≥ 1.

Theorem 16. Assume that system (2.1) is a semi-quasi-homogeneous system of degree d with the
weighted exponents (s1, . . . , sn), and has m nontrivial Laurent polynomial first integrals Φ1 (x) , . . . ,
Φm (x), and that the following conditions hold.

(i) The Kowalevsky matrix K (c) of its quasi-homogeneous cut (4.2) is diagonalizable.

(ii) The Kowalevskaya exponents ρ = (ρ1, . . . , ρn) associated to the balance c satisfy

rank G = rank



(k1, · · · , kn) ∈ Zn :

n∑

j=1

kjρj = 0



 = m.

(iii) The Laurent polynomial first integrals L1 (x, z) , · · · , Lm (x, z) of the linear system

ẋ = Kx, ż = − z

d− 1
, (4.9)

are functionally independent.

Then any other nontrivial Laurent polynomial first integral Φ (x) of system (2.1) is a function of
Φ1 (x) , . . . ,Φm (x).

Remark 2. If system (2.1) has a nontrivial Laurent polynomial first integral Φ (x), then the linear
system (4.9) has also a Laurent polynomial first integral L (x, z), see [46] for more details.

As an application of Theorem 16, the authors in [46] consider the Euler-Poincaré equations on
Lie algebras [4] as follows.
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Example 19. We consider the following Euler-Poincaré equations

ẋ1 = −s (x) (α1x1 + β1x2 + γ1x3) ,

ẋ2 = −s (x) (β2x2 + γ2x3) ,

ẋ3 = −s (x) (β3x2 + γ3x3) ,

ẋ4 = p (x) (α1x1 + β1x2 + γ1x3) + q (x) (β2x2 + γ2x3) + r (x) (β3x2 + γ3x3) ,

(4.10)

with the first integral H = (x1p (x) + x2q (x) + x3r (x) + x4s (x)) /2, where p (x) = ax1 + ex2 +
fx + 3 + gx + 4, q (x) = ex1 + bx2 + hx3 + vx4, r (x) = fx1 + hx2 + cx3 + jx4 and s (x) =
gx1 + vx2 + jx3 + dx4. System (4.10) is a quasi-homogeneous system as well as a semi-quasi-
homogeneous system with exponents s1 = s2 = s3 = s4 = 1. If a = 0 and α1g 6= 0, then system
(4.10) has the balance c =

(
1
α1g

, 0, 0, 0
)
with Kowalevskaya exponents

ρ =


−1, 2, 1−

β2 + γ3 −
√

(β2 − γ3)2 + 4β3γ2

2α1
, 1−

β2 + γ3 +
√

(β2 − γ3)2 + 4β3γ2

2α1


 .

Applying Theorem 16, we obtain that if

rank G = rank
{

(k1, k2, k3, k4) ∈ Z4 : k1ρ1 + k2ρ2 + r3ρ3 + r4ρ4 = 0
}

= 1, (4.11)

then any other nontrivial Laurent polynomial integral Φ (x) of system (4.10) is a function of H.
Moreover equation (4.11) is equivalent to

k̃1 + k̃2 ·
β2 + γ3

2α1
+ k̃3 ·

√
(β2 − γ3)2 + 4β3γ2

2α1
6= 0

for any k̃1, k̃2, k̃3 ∈ Z, |k̃1|+ |k̃2|+ |k̃3| ≥ 1.

In [44] Shi proved the following criterion of nonexistence of rational first integrals for semi-
quasi-homogeneous systems and give a example.

Theorem 17. Assume that system (2.1) is a semi-quasi-homogeneous system with balance c
and ρ = (ρ1, . . . , ρn) are the Kowalevskaya exponents associated to the balance c of its quasi-
homogeneous cut (4.2). If system (2.1) has a rational first integral, then there exists a nonzero
integral vector k = (k1, . . . , kn) ∈ Zn such that

∑n
i=1 kiρi = 0.

Example 20. Consider the following quadratic system in Rn

ẋi = aixi + xi (ai1x1 + ai2x2 + · · ·+ ainxn) , i = 1, 2, . . . , n, (4.12)

where ai, aij are real constants. This system can be seem as a negative semi-quasi-homogeneous
system with exponents s1 = s2 = · · · = sn = 1. If ajj 6= 0, then system (4.12) has the balance
c = (0, . . . ,−1/ajj , . . . , 0). Without loss of generality we assume that j = n. In this case the
Kowalevskaya exponents are ρ =

(
1− a1n/ann, 1− a2n/ann, . . . , 1− a(n−1)n/ann,−1

)
. By Theo-

rem 17 system (4.12) does not have any rational first integral if

k1

(
1− a1n

ann

)
+ · · ·+ kn

(
1−

a(n−1)n
ann

)
− kn 6= 0

holds for any nonzero integral vector k ∈ Zn. This is equivalent to

k̃1a1n + k̃2a2n + · · ·+ k̃nann 6= 0, k̃j ∈ Z,
n∑

j=1

|k̃j | ≥ 1.
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Let Φ1 (x) , . . . ,Φm (x) be nontrivial analytic first integrals of a semi-quasi-homogeneous sys-
tem (2.1). Denote by Φd

1 (x) , · · · ,Φd
m (x) the first quasi-homogeneous terms of Φ1 (x) , · · · ,Φm (x),

respectively. Then Φd
1 (x) , · · · ,Φd

m (x) are first integrals of the quasi-homogeneous cut system
(4.2). Using the Kowalevsky exponents, Kwek et al. [30] gave the following theorem about ana-
lytic first integral for general semi-quasi-homogeneous system.

Theorem 18. Assume that system (2.1) is a semi-quasi-homogeneous system with m nontrivial
analytic first integrals Φ1 (x) , . . . ,Φm (x), and that the following conditions hold.

(i) Φd
1 (x) , · · · ,Φd

m (x) are functionally independent.

(ii) For a balance c, the vectors ∇Φd
1 (c) , · · · ,∇Φd

m (c) are linear independent.

(iii) The last n −m eigenvalues ρm+1, . . . , ρn = −1 of the Kowalevsky matrix K do not satisfy
any resonant condition of the form

n∑

j=m+1

kjρj = 0, |kn|+
n−1∑

j=m+1

kj ≥ 1, kn ∈ Z, kj ∈ N ∪ {0}, j = m+ 1, . . . , n− 1.

Then any other nontrivial analytic first integral Ψ (x) of system (2.1) is a function of Φ1 (x) , . . . ,Φm (x),
i.e., Ψ (x) = F (Φ1 (x) , . . . ,Φm (x)), where F is a smooth function.

The following example was shown in [30].

Example 21. Consider the Euler-Poincaré equations (4.10) again. Form Theorem 18 it follows
that if

1−

β2 + γ3 −
√

(β2 − γ3)
2

+ 4β3γ2

2α1


 · k2 +


1−

β2 + γ3 +

√
(β2 − γ3)

2
+ 4β3γ2

2α1


 · k3 − 1 · k4 6= 0

(4.13)

for any k2, k3 ∈ N∪{0}, k4 ∈ Z, k2 +k3 + |k4| ≥ 1, then any other nontrivial analytic first integral
Φ (x) of system (4.10) is functionally dependent on H.

In particular, if β2 = γ3, and β3 = 0, γ2 6= 0 (or β2 6= 0, γ2 = 0), then (4.13) becomes

k2 + k3 − k4 − (k2 + k3)
β2
α1
6= 0

or equivalently, β2/α1 6∈ Q.

The following result is an extension of Theorem 18 and it was proved in [51].

Theorem 19. Assume that system (2.1) is semi-quasi-homogeneous of degree d associated with
the weighted exponents (s1, · · · , sn), and that it has m (m < n−1) nontrivial analytic first integrals
Φ1 (x) , · · · ,Φm (x) in a neighbourhood of the singularity x = 0. Denote by Φd

1 (x) , · · · ,Φd
m (x)

the first quasi-homogeneous terms of Φ1 (x) , · · · ,Φm (x), respectively. Moreover, we suppose that
the following conditions hold.

(i) There exists a balance c such that the corresponding Kowalevskaya exponents ρ1, · · · , ρn sat-
isfy the conditions: ρ1 = 0, and

rank

{
(k2, · · · , kn) :

n∑

i=2

kiρi = 0,
n∑

i=2

ki 6= 0, ki ∈ Z+, i = 2, · · · , n
}

= m.

(ii) The eigenspace corresponding to ρ1 is tangent to the manifold S =
{

Φd
1 (x) = 0

}
∩ . . . ∩{

Φd
m (x) = 0

}
.
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(iii) The functions Φd
1 (x) , · · · ,Φd

m (x) are independent at the balance c.

Then if the balance c of the quasi-homogeneous cut (4.2) is isolated, any first integral (analytic or
formal series) of system (2.1) in a neighbourhood of the singularity 0 is an analytic function or a
formal series in Φ1 (x) , · · · ,Φm (x).

The next example is inspired by Example 2 of [30].

Example 22. Consider a four-dimensional system of Lotka-Volterra type

ẋ1 = x1 (α1 + ax1 + bx3) , ẋ2 = −x2 (α1 + ax1 + bx3) , ẋ3 = −ax1x3,
ẋ4 = x4 (α2 + ax1 + dx2 + ex3 + fx4) ,

(4.14)

where α1, α2, a, b, d, e, f are real constants. System (4.14) has two first integrals Φ1 (x) = ax1x3 +
bx23/2+α1x3 and Φ2 (x) = x1x2. This system can be regarded as a negative semi-quasi-homogeneous
system with exponents s1 = s2 = · · · = sn = 1. Its quasi-homogeneous cut is

ẋ1 = x1 (ax1 + bx3) , ẋ2 = −x2 (ax1 + bx3) , ẋ3 = −ax1x3,
ẋ4 = x4 (ax1 + dx2 + ex3 + fx4)

(4.15)

with two first integrals Φ2
1 (x) = ax1x3 + bx23/2 and Φ2

2 (x) = x1x2. System (4.15) has a balance
c = (−1/a, 0, 0, 0) with Kowalevsky matrix




−1 0 − b
a 0

0 2 0 0
0 0 2 0
0 0 0 0


 .

So the corresponding Kowalevskaya exponents are ρ = (0,−1, 2, 2). Obviously,

rank {(k2, k3, k4) : −k2 + 2k3 + 2k4 = 0} = 2

and Φ2
1 (x) ,Φ2

2 (x) are independent at the balance c. The eigenspace V = {(0, 0, 0, x4) : x4 ∈ R}
corresponding to ρ1 = 0 is tangent to the manifold given by

{
Φ2
1 (x) = 0

}
∩
{

Φ2
2 (x) = 0

}
. By

Theorem 19, any first integral (analytic or formal series) of system (4.14) in a neighbourhood of
the singularity 0 is an analytic function or a formal series in Φ1 (x) and Φ2 (x).

5 Kovalevskaya exponents of Hamiltonian systems

The Hamiltonian systems are very useful in mathematical physics, especially in celestial mechanics,
control engineering and other fields. Yoshida was the first to point out an interesting relation
between the Kowalevskaya exponent for Hamiltonian systems. The final form of this relation was
given by Lochak [36], see the next result.

Proposition 3. Let system (2.1) be a Hamiltonian system with Hamiltonian H. If ρ is a
Kowalevskaya exponent for system (2.1), then h− 1− ρ also is a Kowalevskaya exponent, where h
is the weighted degree of the Hamiltonian H.

Example 23. Consider the Hamiltonian system

ẋ1 = y1, ẋ2 = y2, ẋ3 = y3, ẏ1 = −x33, ẏ2 = −x33, ẏ3 = −3x23 (x1 + x2) (5.1)

with the Hamiltonian H =
(
y21 + y22 + y23

)
/2+x1x

3
3 +x2x

3
3. This system is a (1, 1, 1, 2, 2, 2)-2 type

system and the weighted degree of H is 4. The Kovalevskaya exponents of all balances c are

ρ =

(
−1, 1,

1

2

(
3 + i

√
7
)
, 4, 2,

1

2

(
3− i

√
7
))

.

The Kovalevskaya exponents of system (5.1) satisfy the relation of Proposition 3.
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Form Proposition 3 it follows that the Kowalevskaya exponents always come by pairs for
Hamiltonian systems. Yoshida considered Hamiltonian systems of n degree of freedom with a
diagonal kinetic contribution and a homogeneous potential of the form

H =
1

2

(
p21 + · · ·+ p2n

)
+ V (q1, . . . , qn) , (5.2)

where V (x) is a homogeneous polynomial of degree k with k 6= 0,±2. Let ρ1, . . . , ρ2n be
Kowalevskaya exponents of Hamiltonian (5.2). Then, by Proposition 3, ρi+ρn+i = (k + 2) / (k − 2)
for i = 1, . . . , n. We can define the difference between two exponents of each pair as ∆ρi = ρi+n−ρi
for i = 1, . . . , n. In [50] Yoshida proved the following result.

Theorem 20. Let ρ1, . . . , ρ2n be Kowalevskaya exponents of the Hamiltonian system with Hamil-
tonian (5.2). If ∆ρ1, . . . ,∆ρn are Q-independent, then this Hamiltonian system has no additional
first integral besides H.

Example 24 (Reduce Yang-Mills equations [19]). Consider the Yang-Mills quadratic potential in
three dimensions

V = q21q
2
2 + q22q

2
3 + q21q

2
3,

i.e., Hamiltonian system

ṗ1 = 2q1q
2
2 + 2q1q

2
3, ṗ2 = 2q2q

2
1 + 2q2q

2
3, ṗ3 = 2q3q

2
1 + 2q22q3,

q̇1 = −p1, q̇2 = −p2, q̇3 = −p3,
(5.3)

with the Hamiltonian H =
(
p21 + p22 + p23

)
/2 + q21q

2
2 + q23q

2
2 + q21q

2
3. This system has the balance

c = (0,−i,−i, 0,−i,−i). The corresponding Kowalevskaya exponents are

ρ =

(
−1,

√
17 + 3

2
,
3 + i

√
7

2
, 4,

3−
√

17

2
,
3− i

√
7

2

)
.

The difierence of Kovalevskaya exponents is (∆ρ1,∆ρ2,∆ρ3) =
(
5,−
√

17,−i
√

7
)
. Clearly, these

numbers are Q-independent. So system (5.3) has no additional first integrals.

6 Darboux Polynomials and Kovalevskaya exponents

Darboux [12, 13] provided a method to get first integrals of polynomial differential systems vi-
a a sufficient number of Darboux polynomials, that is, invariant algebraic curves, or surfaces, or
hypersurfaces. The Darboux polynomials play an important role in the Darboux theory of integra-
bility, see [10, 33, 52] and the references cited therein. In this section we describe the relationship
between Kovalevskaya exponents and Darboux polynomials.

The polynomial F (x) ∈ C [x1, . . . , xn] is a Darboux polynomial of system (2.1) if there exists
a k (x) ∈ C [x1, . . . , xn] such that

n∑

i=1

Pi
∂F

∂xi
= P · ∇F = kF,

The polynomial k (x) is called the cofactor and has degree at most m − 1 if m is the degree of
the polynomial differential system (2.1). As usual, ∇F denotes the gradient of the function F .
Then F = 0 is an invariant algebraic hypersurface of system (2.1) if F is a Darboux polynomial
of system (2.1).

We can decompose the polynomial Pi (x) for i = 1, · · · , n as the sum of its quasi-homogeneous
parts, that is,

Pi (x) =

mi∑

j=0

P
(j)
i (x) , (6.1)
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where P (j)
i (x) is a quasi-homogeneous polynomial of weighted exponent s = (s1, . . . , sn) ∈ Q with

weighted degree si + q(j) − 1, i.e.

P
(j)
i (αsx) = αsi+q

(j)−1P (j)
i (x) , (6.2)

for i = 1, · · · , n and j = 0, 1, · · · ,mi, with q(j) ∈ Q and q(0) = 0 < q(1) < · · · < q(m̃), where m̃ is
the maximum of the {m1, · · · ,mn}. Thus system (2.1) can be written in the form

dx

dt
= P (x) =

m̃∑

j=0

P (j) (x) , (6.3)

where P (j) (x) =
(
P

(j)
1 (x) , . . . , P

(j)
n

)
, P (j)

1 (x) satisfies (6.2) and P (0) (x) 6≡ 0.

Assume that the system ẋ = P (0) (x) has the particular solution x = cts = (c1t
s1 , · · · , cntsn)

where the coefficients c ∈ Cn are solution of the algebraic systems

sici = P
(0)
i (c) , i = 1, . . . , n, (6.4)

t = t − t∗ for some complex t∗, and s ∈ Cn with |s| = |s1| + · · · + |sn| 6= 0. Then we say
that the polynomial differential system (2.1) has a dominant balance {c, s}. The Kovalevskaya
exponents ρ = (ρ1, . . . , ρn) associated with the dominant balance {c, s} are the eigenvalues of the
Kovalevskaya matrix

M (c) = DP (0) (c)− diag (s1, . . . , sn) . (6.5)

The following two theorems and examples can be found in [34].

Theorem 21. Assume that the polynomial differential system (2.1) admits the particular solution
x = cts, i.e., x = (c1t

s1 , · · · , cntsn). If F (x) is a quasi-homogeneous Darboux polynomial of
weighted degree d of system (2.1), then ∇F (c) 6= 0 and its cofactor k cannot be constant.

Example 25. The four dimensional system

ẋ1 = −x3, ẋ2 = −x4, ẋ3 = 3i (x2 − ix1) (x2 + ix1)
2 − i (x2 + ix1)

3 ,

ẋ4 = 3 (x2 − ix1) (x2 + ix1)
2 + i (x2 + ix1)

3 ,
(6.6)

has the Darboux polynomials F1 = x3 − ix4 − (x2 + ix1)
2 with cofactor k1 = −2 (x1 − ix2),

and F2 = x3 − ix4 + (x2 + ix1)
2 with cofactor k2 = 2 (x1 − ix2). This system is a (1, 1, 2, 2)-2

type system. The Darboux polynomials F1 and F2 are both quasi-homogeneous polynomials with
weighted degree 2. Note that ∇Fj = (∗, ∗, 1,−i) for j = 1, 2. So cofactor kj cannot be constant
and ∇Fj (c) 6= 0 for j = 1, 2, as described in Theorem 21.

The following theorem [34] characterized the relation between the Kovalevskaya exponents and
Darboux polynomials.

Theorem 22. Assume that the polynomial differential system (2.1) has a dominant balance {c, s}
such that the Kovalevskaya matrix M (c) diagonalizes. Then the following statements hold.

(i) If the Kovalevskaya exponents (ρ1, · · · , ρn) of M (c) are Z-independent and F (x) is a Dar-
boux polynomial of system (2.1), then F (x) must have a cofactor k such that k(0) (c) is not
a rational number.

(ii) If the Kovalevskaya exponents (ρ1, · · · , ρn) of M (c) are N-independent and F (x) is a Dar-
boux polynomial of system (2.1), then F (x) must have a cofactor k such that k(0) (c) is not
a non-negative integer.
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Example 26 (Lorenz system). Consider the Lorenz system

ẋ1 = p (x2 − x1) , ẋ2 = rx1 − x2 − x1x3, ẋ3 = −bx3 + x1x2, (6.7)

where p, r, b are real parameters and p 6= 0. If s = (−1,−2,−2), then system (6.7) can be written
in the form

ẋ = P (0) + P (1) + P (2),

where P (0) = (px2,−x1x3, x1x2), P (1) = (−px1,−x2,−bx3) and P (2) = (0, rx1, 0). Doing
the adequate computations, we get that system (6.7) has two dominant balances {c, s} with
c = (−2i, 2i/p,−2/p) and s = (−1,−2,−2); and {c, s} with c = (2i,−2i/p,−2/p) and s =
(−1,−2,−2). The Kovalevskaya exponents of these two dominant balances {c, s} are ρ = (−1, 2, 4).
These Kowalevskaya exponents are N-dependent. If p = −n/2 and b = 2p with n ∈ N ∪ {0}, then
system (6.7) has the Darboux polynomial x21 − 2px3 with cofactor k = k(0) (c) = n. This Lorenz
system satisfies statement (ii) of Theorem 22.

We consider the planar vector field F = (P,Q)T with P,Q analytic functions at the origin,
and the origin is an isolated singular point. The curve f (x, y) = 0 with f (x, y) ∈ C [[x, y]] (ring of
formal power series in x, y over C) and f (0) = 0, is an invariant curve at the origin of the vector
field F if there exists k (x, y) ∈ C [[x, y]] such that

P
∂f

∂x
+Q

∂f

∂y
= kf,

where k (x, y) is called the cofactor. If the formal power series f (x, y) ∈ C [[x, y]] is convergent,
then f (x, y) = 0 is an analytic invariant curve.

If a function f (x, y) ∈ C [[x, y]] and f (x, y) = f1 (x, y) f2 (x, y) with f, f1, f2 ∈ C [[x, y]] and
f (0) = f1 (0) = f2 (0) = 0, then f (x, y) is called reducible. Otherwise, f (x, y) is irreducible. A
formal function U (x, y) is unit element if U (0, 0) 6= 0.

The analytic vector field F can be written in the form

F = Fd + Fd+1 + · · · , (6.8)

for some integer d, where Fj ∈ Qs
j (the vector space of the quasi-homogeneous polynomial vector

fields of type s and degree j ) and Fd 6≡ 0. The expansion (6.8) is expressed as F = Fd+q-h.h.o.t.,
where "q-h.h.o.t." means "quasi-homogeneous higher order terms". By Lemma 1, the analytic
vector field Fd can be expressed as equation (3.10).

The following result gives a link between the Kowalevskaya exponents of a planar vector field
and the existence of analytic invariant curves, see [3].

Theorem 23. Consider an analytic vector field F = Fd + Fd+1 + q-h.h.o.t. with Fd ∈ Qs
d and

h̃ ∈ C [x, y] a simple factor of h. If the Kowalevskaya exponent ρ different from −1 associated to
h̃ satisfies ρ−1 6∈ Q ∩ (−(d− 1), 0), then there exists a unique irreducible analytic invariant curve
f = h̃+ q-h.h.o.t. at the origin.

Moreover, if f̃ is an invariant curve starting by h̃n, with n a natural number, then f̃ = fnU ,
where U is a formal unit element.

Here for the definition of h see Lemma 1, and the Kowalevskaya exponents associated to the
factor h̃ are given in formula (3.11).

The next example was studied by Algaba et al. in [3].
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Example 27. Consider the vector field F =
(
2x3 − 7xy3 + q-h.h.o.t., 5x2y − y4 + q-h.h.o.t.

)
. The

lowest-degree quasi-homogeneous term with respect to the type s = (3, 2) are

F7 =
(
2x3 − 7xy3, 5x2y − y4

)
, h = 11xy

(
x2 + y3

)
and η (x, y) =

x− y
xy (x+ y)

.

Using Proposition 2 we get

for h̃ = x, ρ−1 = − 6

11
,

for h̃ = y, ρ−1 = −12

11
,

for h̃ = y3 + x2, ρ−1 = −18

11
.

Thus, by Theorem 23, for the vector field F exists the analytic invariant curve f = y3 + x2 +
q-h.h.o.t. at the origin.

Recently, the authors showed that the non-rational Kovalevskayas exponents imply the non-
existence of Darboux first integrals, see [24].

7 Global Properties of Kovalevskaya exponents

First of all we recall some notations to introduce related works of this subject. System (2.1) is
s-homogeneous of weighted degree k if its components P (x) = (P1 (x) , . . . , Pn (x)) are quasi-
homogeneous and degs (Pi) = si + k, for i = 1, . . . , n ( see Definition 1).

Definition 4. The point d ∈ Cn\ {0} is called a Darboux point of the s-homogeneous system (2.1)
if and only if

Pi (d) = −αsidi for i = 1, · · · , n, (7.1)

for a certain α ∈ C. If P (d) 6= 0, then the Darboux point d is called proper, otherwise is nonproper.

The set of all Darboux points of system (2.1) is denoted by D (P ), and D∗ (P ) denotes the
set of all proper Darboux points.

Analogously we can define the Kovalevskaya matrix

K (d) =
1

α
DP (d) + diag (s1, . . . , sn)

for each Darboux point d. The eigenvalues of K (d) are also called the Kowalevskaya exponents
of d and are denoted by ρ = (ρ1, . . . , ρn). For convenience, we fix α = 1 in the above definition.

In [11] Maciejewski et al. studied the global properties of Kovalevskaya exponents, and they
proved:

Theorem 24. Let d be a Darboux point of a s-homogeneous of weighted degree k system (2.1)
and K (d) the corresponding Kovalevskaya matrix. Then ρ = −k is an eigenvalue of K (d) and
e = P (d) is the corresponding eigenvector.

Example 28. The system

ẋ = axy, ẏ = b1x
3 + b2y

2,

is a (2, 3)-homogeneous of weighted degree 3 system. This system has two Darboux points
d1 = (0,−3/b2) and d2 =

(
3
√

2ab21 (3a− 2b2)/ (ab1) ,−2/a
)
. The Kowalevskaya exponents are
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ρ1 = (−3, 2− 3a/b2) and ρ2 = (−3, 6− 4b2/a). Then ρ = −k = −3 is an eigenvalue of K (d).
The vectors e1 = P (d1) = (0, 9/b2) and e2 = P (d2) =

(
−2 3
√

2ab21 (3a− 2b2)/ (ab1) , 6/a
)

are
eigenvectors of K (d1) and K (d2), respectively. This system satisfies the statement of Theorem
24.

Let d be a proper Darboux point and ρi (d) be the corresponding Kovalevskaya exponents for
i = 1, · · · , n. Without loss of generality we assume ρn (d) = −k. The remaining Kovalevskaya
exponents will be denoted by ρ (d) = (ρ1 (d) , · · · , ρn−1 (d)) and called nontrivial ones. The
elementary symmetric polynomial of degree r in its variables is denoted by τr.

The following theorem goes back to Przybylska [42]. It shows that the described relations do
not depend on a specific form of system (2.1), but only on its degree provided that it is generic.

Theorem 25. Assume that system (2.1) is a homogeneous polynomial system of degree k, i.e.,
deg (Pi (x)) = k + 1 for i = 1, . . . , n. Assume that all Darboux points of system (2.1) are proper
and simple. Then

∑

d∈D∗(P )

(ρ1 (d) + · · ·+ ρn−1 (d))r

ρ1 (d) · · · ρn−1 (d)
= (n+ k)r (7.2)

and
∑

d∈D∗(P )

τr (ρ (d))

ρ1 (d) · · · ρn−1 (d)
=

r∑

i=0

(n− i− 1)!

(n− 1− r)! (r − i)! (k + 1)i , (7.3)

for r = 0, . . . , n− 1.

Example 29 (Halphen system). Consider the Halphen system

ẋ = a1x
2 + (1− a1) (xy + xz − yz),

ẏ = a2y
2 + (1− a2) (xy − xz + yz),

ż = a3z
2 + (1− a3) (xz + yz − xy),

(see [21]). This system has 7 Darboux points d0 = (−1,−1,−1), d1 = (−1/a1, 0, 0), d2 =
(0,−1/a2, 0), d3 = (0, 0,−1/a3), d3+i = d0 − di for i = 1, 2, 3. The corresponding nontrivial
Kowalevskaya exponents are ρ (d0) = (−1,−1) and ρ (di) = (1, ρ2 (di)) with ρ2 (di) = ρ2 (di+3) =
(a1 + a2 + a3 − 2) /ai for i = 1, 2, 3. Then the following relations hold:

6∑

i=0

1

ρ1 (di) ρ2 (di)
=

6∑

i=0

τ0 (ρ1 (di) , ρ2 (di))

ρ1 (di) ρ2 (di)
= 1,

6∑

i=0

ρ1 (di) + ρ2 (di)

ρ1 (di) ρ2 (di)
=

6∑

i=0

τ1 (ρ1 (di) , ρ2 (di))

ρ1 (di) ρ2 (di)
= 4,

6∑

i=0

(ρ1 (di) + ρ2 (di))
2

ρ1 (di) ρ2 (di)
= 16,

6∑

i=0

τ2 (ρ1 (di) , ρ2 (di))

ρ1 (di) ρ2 (di)
= 7,

where τ0 (x1, x2) = 1, τ1 (x1, x2) = x1 + x2 and τ2 (x1, x2) = x1x2. In this case k = 1 and n = 3,
the above relations are exactly the same as those given in Theorem 25.

Using the Euler-Jacobi-Kronecker formula, Maciejewski et al. [11] extend Theorem 25 to s-
homogeneous of weighted degree k system, see the following two theorems.

Let h = (h1 (x) , . . . , hn (x)) ∈ C[x]n with hi (x) = Pi (x) + sixi for i = 1, . . . , n. The set
V (h) of common zeros of polynomials (h1, · · · , hn) is finite and all its points are simple, i.e.,
detDh (d) 6= 0 for all d ∈ V (h). We denote also V ∗ (h) = V (h) \ {0}.
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Theorem 26. If all Darboux points of s-homogeneous of weighted degree k system (2.1) are proper
and simple, then

∑

d∈V ∗(h)

(ρ1 (d) + · · ·+ ρn−1 (d))r

kρ1 (d) · · · ρn−1 (d)
=

(k + s1 + · · ·+ sn)r

s1 · · · sn
(7.4)

and

∑

d∈V ∗(h)

τr (ρ (d))

kρ1 (d) · · · ρn−1 (d)
=

1

s1 · · · sn

r∑

i=0

kiτr−i (s) , (7.5)

for r = 0, · · · , n− 1.

Example 30. The three dimensional system

ẋ = xy2, ẏ = x+ y3, ż = z2, (7.6)

is (3, 1, 2)-homogeneous of weighted degree 2. It has 9 Darboux points d0 = (0, 0,−2), d1 =
(0,−i,−2), d2 = (0, i,−2), d3 = −d4 = (0,−i, 0), d5 =

(
−2i
√

3,−i
√

3,−2
)
, d6 =

(
2i
√

3, i
√

3,−2
)

and d7 = −d8 =
(
−2i
√

3,−i
√

3, 0
)
. The corresponding nontrivial Kowalevskaya exponents are

ρ (d0) = (1, 3), ρ (d1) = ρ (d2) = (−2, 2), ρ (d3) = ρ (d4) = (2, 2), ρ (d5) = ρ (d6) = (−6,−2)
and ρ (d7) = ρ (d8) = (−6, 2). Then the following relations hold:

8∑

i=0

1

2ρ1 (di) ρ2 (di)
=

8∑

i=0

τ0 (ρ1 (di) , ρ2 (di))

2ρ1 (di) ρ2 (di)
=

1

6
,

8∑

i=0

ρ1 (di) + ρ2 (di)

2ρ1 (di) ρ2 (di)
=

8∑

i=0

τ1 (ρ1 (di) , ρ2 (di))

2ρ1 (di) ρ2 (di)
=

4

3
,

8∑

i=0

(ρ1 (di) + ρ2 (di))
2

2ρ1 (di) ρ2 (di)
=

32

3
,

8∑

i=0

τ2 (ρ1 (di) , ρ2 (di))

2ρ1 (di) ρ2 (di)
=

9

2
,

where τ0 (x1, x2) = 1, τ1 (x1, x2) = x1 + x2 and τ2 (x1, x2) = x1x2. In this case s = (3, 1, 2), k = 2
and n = 3, the above relations are exactly the same as those given by Theorem 26.

Moreover if d = (d1, . . . , dn) is a single proper Darboux point of s-homogeneous of weighted
degree k system (2.1), then so is dj :=

(
εjs1d1, . . . , ε

jsndn
)
with j = 0, . . . , k − 1, where εk =

1. Moreover, we have ρ (d0) = · · · = ρ (dk−1). Thus these k Darboux points have the same
Kowalevskaya exponents and form an equivalence class. So we introduce the following equivalence
relation

d ∼ d̃ if and only if d̃ =
(
εjs1d1, . . . , ε

jsndn
)

for some j = 0, . . . , k − 1. The equivalence class of d is denoted by [d]. The number of different
elements in set {d0, . . . ,dk−1} are denoted by κ (d) = #{d0, · · · ,dk−1}.

Theorem 27. If all Darboux points of s-homogeneous of weighted degree k system (2.1) are proper
and simple, then

∑

[d]∈D∗(P )

κ (d)

k

(ρ1 (d) + · · ·+ ρn−1 (d))r

ρ1 (d) · · · ρn−1 (d)
=

(k + s1 + · · ·+ sn)r

s1 · · · sn
,

for r = 0, · · · , n− 1.
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Example 31. Consider system (7.6) again. We have D∗ (P ) = {[d0], [d1], [d3], [d5], [d7]} and
κ (d0) = 1 and κ (di) = 2 for i = 1, 3, 5, 7. Then the following relations hold:

κ (d0)

2ρ1 (d0) ρ2 (d0)
+

3∑

i=0

κ (d2i+1)

2ρ1 (d2i+1) ρ2 (d2i+1)
=

1

6
,

κ (d0)

2

ρ1 (d0) + ρ2 (d0)

ρ1 (d0) ρ2 (d0)
+

3∑

i=0

κ (d2i+1)

2

ρ1 (d2i+1) + ρ2 (d2i+1)

ρ1 (d2i+1) ρ2 (d2i+1)
=

4

3
,

κ (d0)

2

(ρ1 (d0) + ρ2 (d0))
2

ρ1 (d0) ρ2 (d0)
+

3∑

i=0

κ (d2i+1)

2

(ρ1 (d2i+1) + ρ2 (d2i+1))
2

ρ1 (d2i+1) ρ2 (d2i+1)
=

32

3
.

The above relations are exactly the same as those given by Theorem 27.

8 Painlevé property

The representation of the solutions of a differential system in complex time can exhibit different
types of behavior. The simplest is to be single-valued, i.e. that all its solutions could be represented
as Laurent series of the time parameter. This property is known as Painlevé property.

In 2017 Llibre et al. [34] provided some connections between the Painlevé property and Darboux
polynomials in the next two results, and show the following two examples.

Theorem 28. Assume that the polynomial differential system (2.1) satisfies the Painlevé property.
Then if the system has a Darboux polynomial, its cofactor k must satisfy k (c) ∈ Z for all balances
c of the system.

Example 32. Consider the polynomial differential system

ẋ1 = x21, ẋ2 = x21. (8.1)

System (8.1) has the Darboux polynomial F = x1 with cofactor k = x1. It is not difficult to get
that the general solution is

x1 = − 1

t+ c1
, x2 = c2 −

1

t+ c1
,

with c1 and c2 constant. This general solution is single-valued on its maximum domain of analytic
continuation in C. Hence system (8.1) satisfies the Painlevé property. Moreover, this system has a
particular solution of the form cts with c = (−1,−1) and s = (−1,−1). Therefore, k (c) = −1 ∈ Z.

Theorem 29. Assume that the polynomial differential system (2.1) admits a dominant balance
{c, s} and it has a Darboux polynomial with cofactor k such that k(0) (c) 6∈ Z. Then system (2.1)
cannot satisfy the Painlevé property.

Example 33. Consider the Lorenz system (6.7) with p = 1/3 and b = 0. In this case system (6.7)
does not satisfy the Painlevé property, see [29] for more details. Furthermore, this system has the
Darboux polynomial F = x41 − 4x21x3/3− 4x22/9− 8x1x2/9 + 4rx21/3 with cofactor k = −4/3 6∈ Z.

If p = 1/2, b = 1 and r = 0, then system(6.7) satisfies the Painlevé property, also see [29].
This system has the Darboux polynomials x21 − 2px3 and x22 + x23 with cofactors −2p = −1 ∈ Z
and −2 ∈ Z, respectively. Thus, the two cases satisfy Theorem 29.

The three dimensions Lotka-Volterra system is defined by

ẋ = diag (x1, x2, x3)




0 a b
−a 0 c
−b −c 0


 (x1, x2, x3)

T . (8.2)

Using Painlevé analysis and more specifically by the use of Kowalevski exponents, Constandinides
et al. in [11] obtain a complete classification of system (8.2).
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Theorem 30. The Lotka-Volterra system (8.2) in three dimensions satisfy the Kowalevski-Painlevé
property if and only if (a, b, c) is in the class of (i) (1, 0, 1); (ii) (1,−1, 1); (iii) (1,−1, 2); (iv)
(1,−2, 3); (v) (1, 1, λ) , λ ∈ Z\{0}; (vi) (1, 1 + µ, µ) , µ ∈ R.
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