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Abstract 96 

Ecological theory is built on trade-offs where trait differences among species evolved as 97 

adaptations to different environments. Trade-offs are often assumed to be bidirectional, where 98 

opposite ends of a gradient in trait values confer advantages in different environments. However, 99 

unidirectional benefits could be widespread if extreme trait values confer advantages at one end 100 

of an environmental gradient, whereas a wide range of trait values are equally beneficial at the 101 

other end. Here we show that root traits explain species occurrences along broad gradients of 102 

temperature and water availability, but model predictions only resembled trade-offs in two out of 103 

twenty-four models. Forest species with low specific root length (SRL) and high root tissue 104 

density (RTD) were more likely to occur in warm climates but species with high SRL and low 105 

RTD were more likely to occur in cold climates. Unidirectional benefits were more prevalent 106 

than trade-offs: for example, species with large-diameter roots and high RTD were more 107 

commonly associated with dry climates, but species with the opposite trait values were not 108 

associated with wet climates. Directional selection for traits consistently occurred in cold or dry 109 

climates, whereas a diversity of root trait values were equally viable in warm or wet climates. 110 

Explicit integration of unidirectional benefits into ecological theory is needed to advance our 111 



 4 

understanding of the consequences of trait variation on species responses to environmental 112 

change. 113 

 114 

 115 

The nature of ecological trade-offs 116 

Ecological trade-offs underpin our conceptual understanding of global biodiversity distributions 117 

1-6. Species pools are filtered into local communities based on the matching of species’ trait 118 

values to environmental conditions. Models that use traits to predict the success of a species in a 119 

given environment are actively being developed and tested. Ecological trade-offs arise as a 120 

consequence of the adaptive value of a trait, eloquently described as ‘an evolutionary dilemma, 121 

whereby genetic change conferring increased fitness in one circumstance inescapably involves 122 

sacrifice of fitness in another’ 4. As the term ‘trade-off’ implies, the trait effects are 123 

‘bidirectional’, where, for example, low trait values of a species confer adaptive advantage at one 124 

end of an environmental gradient whereas high trait values confer benefits at the opposite end of 125 

the gradient (Fig 1A) 1.  126 

Classical ecological theory has long emphasized this bidirectional perspective on trait-127 

environment relationships at the species level 7. For example, resource ratio theory 128 

(ALLOCATE) is built on a single trait – environment trade-off. At the high end of the soil 129 

fertility gradient, plant species that allocate relatively more carbon aboveground than 130 

belowground are predicted to be better competitors for light. Whereas at the low end of the soil 131 

fertility gradient, plant species that allocate relatively more carbon belowground than 132 

aboveground are predicted to be better competitors for soil nutrients 8. Empirical evidence for 133 

trade-offs have been found in a variety of traits including light compensation points along light 134 



 5 

gradients 9 and root angles along nutrient gradients 10. In many cases, however, the empirical 135 

evidence for trade-offs in performance among species has been met with mixed success 6,11. 136 

Empirical evidence for trade-offs at the species level would be provided by showing that 137 

the effect of a trait on the probability of species occurrence switches sign (i.e., changes direction) 138 

along an environmental gradient (Fig. 1A) 12. In other words, a positive relationship between a 139 

trait and an environmental gradient implies that the effect of the trait on the probability of species 140 

occurrence is negative at the low end of the gradient, but is positive at the high end of the 141 

gradient (Fig. 1A). This directional switch in sign is fundamental, but detecting the switch 142 

empirically is nontrivial because it cannot be observed through a simple trait-environment 143 

correlation 12. The switch in sign can, however, be explicitly tested by comparing model-based 144 

predictions of trait effects on the probability of species occurrence at contrasting ends of the 145 

environmental gradient 13. Specifically, if the first partial derivative with respect to traits crosses 146 

zero along the environmental gradient, then the effect of a trait on probability of occurrence 147 

switches sign (Fig 1A). 148 

In contrast, the absence of a switch in sign of a trait’s effect on the probability of species 149 

occurrence along an environmental gradient would indicate that a trait only confers an adaptive 150 

advantage at one end of this gradient, thereby exhibiting a mere ‘unidirectional benefit’ (Fig. 151 

1B). The prevalence of unidirectional benefits at the species level has not been adequately tested, 152 

yet empirical research has provided hints that they exist. For example, plant communities in New 153 

Zealand exhibit trait convergence towards low leaf nitrogen concentration in phosphorus-poor 154 

soil, whereas in phosphorus-rich soil communities display wide divergence of leaf nitrogen 155 

concentration 14. This suggests that low leaf nitrogen is adaptive in phosphorus-poor soil to 156 

maintain a balanced leaf nutrient stoichiometry, whereas high leaf nitrogen is not adaptive in 157 
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phosphorus-rich soil. Thus, it is a unidirectional benefit, not a trade-off. Simulation results and 158 

empirical work in insect host use has suggested that the importance of trade-offs in the evolution 159 

of specialization may be overstated 11,15. The prevailing view of trade-offs in ecological theory 160 

across all levels of organization 1,2 may thus have hindered the discovery of unidirectional 161 

benefits that could be widespread in nature. In particular at the species level, discerning the 162 

difference between trade-offs and unidirectional benefits would advance our understanding of 163 

how individual traits affect community assembly. 164 

 165 

Belowground root traits 166 

We tested the generality of ecological trade-offs in the context of plant root traits because 167 

these ‘hidden’ belowground organs are essential for water and nutrient uptake yet we still lack 168 

broad-scale empirical evidence for how they influence the filtering of species pools into local 169 

community assemblages 16. To test the effects of root trait variation on species distributions 170 

along broad gradients in temperature and water availability we applied a new root trait 171 

framework consisting of two independent axes of variation 17 (Fig. 1C).  172 

First, species span a trait axis defined by specific root length (SRL; fine root length per 173 

unit mass) and root diameter (RD) that has evolved in concert with symbiosis with mycorrhizal 174 

fungi. Arbuscular mycorrhizal (AM) plants comprise nearly 80% of plant species globally 18, and 175 

among them thick-rooted species are colonized at higher rates because of greater fungal habitat 176 

in the root cortex 17,19,20. Most of the remaining mycorrhizal plant species associate with 177 

ectomycorrhizal (EcM) or ericoid mycorrhizal (ErM) fungi, which tend to colonize species with 178 

moderate to thin roots 17. A small number of species in our dataset (described below) are non-179 
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mycorrhizal, and these species tend to have the thinnest roots to explore the soil for resources by 180 

themselves. 181 

Second, species span another independent axis, where conservative species invest in high 182 

root tissue density (RTD; fine root mass per unit volume), and acquisitive species construct more 183 

metabolically active tissue with low RTD and high root nitrogen (root N) concentration 21,22. 184 

This second axis is associated with the aboveground leaf economics spectrum 22, where species 185 

construct either short-lived leaves with high metabolic rates or long-lived leaves with thick cell 186 

walls 23. Consequently, fast species construct cheaper fine roots with higher rates of root turnover 187 

17. The global correlation between SRL and RTD among species is r = -0.09 17, which implies 188 

that plants have explored the expression of nearly all possible combinations of these two axes 189 

leading to a two-dimensional root economics space (Fig. 1C). Therefore, these two root trait axes 190 

provide a unique opportunity to scrutinize the evidence for ecological trade-offs and 191 

unidirectional benefits among species to advance our understanding of the role of traits in 192 

community assembly. 193 

 194 

Hypotheses and methods 195 

We developed four hypotheses about how SRL, RD, RTD, and Root N influence species 196 

distributions along broad gradients of temperature and water availability (Fig 1D). Our 197 

hypotheses are grounded in physiological and symbiotic mechanisms and we predict that trade-198 

offs generate variation in species occurrences across climatic gradients (Fig 1D). Our predictions 199 

for SRL and RTD are opposite in sign to our predictions for RD and Root N, respectively, 200 

because they are negatively correlated 17. 201 
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(1) We predicted a negative relationship between SRL and temperature (and a positive 202 

relationship between RD and temperature) for several reasons. Species with low SRL would be 203 

more prevalent in warm climates where AM fungi are abundant 24-26.We also predicted species 204 

with high SRL to be more common in extremely cold climates because 1) non-mycorrhizal taxa 205 

dominate the high Arctic where mycorrhiza are limited by extremely low temperatures 27, and 2) 206 

ErM and EcM fungi are more common in moderately cold climates and tend to colonize species 207 

with moderate to high SRL 24-26. 208 

(2) We predicted a positive relationship between SRL and water availability (and a 209 

negative relationship between RD and water availability) because species with high SRL can 210 

more efficiently acquire resources by themselves in wet environments, and species with low SRL 211 

that provide more cortical habitat for AM fungi can be more drought-tolerant through 212 

mycorrhizal symbiosis-enhanced stomatal conductance and water use efficiency 28. 213 

(3) We predicted a negative relationship between RTD and temperature (and a positive 214 

relationship between root N and temperature) because ‘slow’ species with high RTD would 215 

tolerate low temperatures by limiting frost-induced cell lysis and resisting freezing-induced 216 

embolism formation, and because ‘fast’ species with low RTD and higher metabolic rates would 217 

be more productive than slow species in warmer climates 22,29. 218 

(4) We predicted a negative relationship between RTD and water availability (and a 219 

positive relationship between root N and water availability) because conservative species would 220 

tolerate dry climates by resisting embolism formation and cellular collapse under extreme 221 

osmotic tension, and because acquisitive species with low RTD and higher metabolic rates would 222 

be more productive than slow species in wetter climates  22,30. 223 
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To test these four hypotheses, we combined the largest global vegetation database (sPlot) 224 

31 with the global root trait database (GRooT) 32 (see Methods) (Fig. S1). We used long-term 225 

average minimum temperature of the coldest month to represent cold limitation and the long-226 

term average precipitation-to-potential evapotranspiration ratio (P:PET) to represent chronic 227 

water limitation. The plots spanned a gradient of -10 to 25 °C mean annual temperature and 50 to 228 

2,750 mm mean annual precipitation. Given the functional differences in vegetation dominated 229 

by woody and herbaceous plants with respect to traits such as height, root diameter, and root 230 

mass fractions 20,23,33-35, we took a conservative approach to prevent confounding the 231 

relationships by classifying each plot as forest, grassland, or wetland (Fig. S1). We predicted root 232 

trait-climate relationships to be absent in wetlands because plants that grow in anoxic soil 233 

conditions develop aerenchyma to maintain respiration rates, which would alter root morphology 234 

independent from the regional climate 36. 235 

 236 

Root traits in relation to temperature and water 237 

SRL was related to the probability of species occurrence along climatic gradients in 238 

forests and grasslands, but not in wetlands (Fig. 2). In agreement with our first hypothesis and 239 

regional studies 37-39, the interactive effects of SRL and temperature on species occurrence was 240 

negative in both forests and grasslands (Table 1, Fig. 2A), and SRL was negatively correlated 241 

with species optimum minimum temperature (Fig. S2A,B). Low-SRL species associated with 242 

AM fungi, such as Chinese fir (Cunninghami lanceolata, Fig. 1C), were more likely to occur in 243 

warmer climates. High-SRL species associated with ErM fungi, such as lingonberry (Vaccinium 244 

vitis-idaea, Fig. 1C), were more likely to occur in colder climates. Overall, the relationship 245 

between SRL and temperature in forests was an example of a classic trade-off (Table 1, Fig. 2B). 246 
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In grasslands, however, we only observed a unidirectional benefit (Fig. 2C). Species with high 247 

SRL, such as Draba nemorosa (Fig. 1C), were more likely to occur in colder climates, but 248 

species with any SRL value were equally likely to occur in warm climates (Table 1, Fig. 2C). 249 

Root diameter did not exhibit trade-offs with temperature in forests or grasslands (Table 1, Fig. 250 

2D,E,F). Large-diameter roots in forests were advantageous in warm climates, but thin roots 251 

were not clearly advantageous in cold climates (Table 1, Fig. 2E). Thick roots thus exhibit a 252 

unidirectional benefit in forests with warm climates where AM fungi are most abundant 24-26. 253 

SRL did not exhibit a trade-off in relation to water availability, but rather a unidirectional 254 

benefit (Table 1). In agreement with our second hypothesis, the SRL-water availability 255 

interaction was positive in both forests and grasslands (Table 1, Fig. 2G), and SRL was 256 

positively correlated with species optimum P:PET ratio (Fig. S2C,D). Species with low SRL 257 

were more likely to occur in dry environments likely because AM fungi that inhabit thicker roots 258 

can confer drought tolerance to plants 28 (Fig. 2H,I). Contrary to expectations, species with any 259 

SRL value were equally likely to occur in wet environments (Fig. 2H,I), which may explain a 260 

lack of clear linear relationship with water availability in previous studies 30,38. Root diameter did 261 

not exhibit trade-offs with water availability in either forests or grasslands (Table 1, Fig. 2K,L). 262 

RTD influenced the probability of species occurrence along climatic gradients in forests 263 

and grasslands, but not in wetlands (Fig. 3A). Contrary to our third hypothesis and other studies 264 

29,38-43, the RTD-temperature interaction was positive rather than negative (Table 1, Fig. 3A) and 265 

RTD was positively correlated with species optimum minimum temperatures (Fig. S2E,F). In 266 

forests, species such as honeysuckle (Lonicera chrysantha, Fig. 1C) with low RTD were more 267 

likely to occur in cold climates and species such as common myrtle (Myrtus communis, Fig. 1C) 268 

with high RTD were more likely to occur in warm climates (Table 1, Fig. 3B). However, this 269 
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trade-off was not observed in grasslands where we found that species with low RTD were more 270 

likely to occur in cold climates but species with any RTD value were equally likely in warm 271 

climates (Table 1, Fig. 3C). We predicted that ‘slow’ species with dense roots would be better 272 

adapted to low temperatures, but this was incorrect. Freeze-thaw dynamics of soil in cooler 273 

climates can physically disturb root systems, which introduces the risk of losing large 274 

investments in dense roots and may thus select for species that produce cheap low-density roots 275 

that can regrow quickly after disturbance 44,45. We also predicted that ‘fast’ species with low 276 

RTD and higher metabolic rates would be more competitive in warm climates, but this too was 277 

incorrect. It may be that dense lignin-rich roots physically defend plants against plant pathogens, 278 

protozoan parasites, and insect herbivores whose effects can be more intense at higher 279 

temperature 24,46-49. Root N did not exhibit clear trade-offs with temperature in either forests or 280 

grasslands (Table 1, Fig. 3D,E,F). 281 

RTD did not exhibit a trade-off in relation to water availability (Table 1, Fig 3G,H,I). In 282 

partial agreement with our fourth hypothesis and regional studies 30,38,50, the RTD-water 283 

availability interaction was negative (Fig. 3G) and RTD was negatively correlated with species 284 

optimum P:PET ratio (Fig S2G,H). In forests, species with high RTD had greater chances of 285 

occurring in drier climates likely because denser root tissue enhances resistance to drought-286 

induced cavitation 51. However, species with any RTD value were equally likely to occur in wet 287 

climates (Table 1, Fig. 3H). No clear RTD-water availability trade-off was observed in 288 

grasslands (Fig. 3I), perhaps because short-lived herbaceous species escape drought by 289 

restricting their activity to brief pulses of ample water availability. Contrary to our hypothesis, 290 

high root N appeared to be advantageous in dry forests (Table 1, Fig 3K). This result is 291 

qualitatively consistent with the discovery that leaf N per area is higher in drought-tolerant plants 292 
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because higher photosynthetic rates are possible at lower stomatal conductance 52. Perhaps root 293 

N is higher in dry climates to provide drought-tolerant leaves with a greater supply of N. 294 

 295 

Implications for ecological theory 296 

The diversification of root morphology was pivotal to the evolutionary development of 297 

land plants in their quest to colonize the terrestrial biosphere 20,53, yet direct tests for how root 298 

traits may influence species distributions along climatic gradients have been lacking until now. 299 

We analyzed the largest root trait and vegetation datasets and found that within forest ecosystems 300 

1) species with low SRL, large RD, or high RTD have a higher chance of occurring in warm 301 

climates, while species with high SRL or low RTD have a higher chance of occurring in cold 302 

climates; and 2) species with low SRL, large RD, high RTD, and high Root N have a higher 303 

chance of occurring in dry environments, but the probability of occurring in wet environments 304 

was not related to any of these root traits. These results demonstrate that root traits contribute to 305 

our understanding of the distribution of vegetation, and that unidirectional benefits may be more 306 

prevalent than trade-offs. 307 

Ecological community assembly theory is grounded in trade-offs, but our study 308 

challenges our understanding of how individual continuous traits influence species distributions 309 

along environmental gradients. Of the 13 models in which a significant trait-by-environment 310 

interaction was detected, only two of these models supported a trade-off, whereas seven models 311 

supported unidirectional benefits and four exhibited no clear benefits in either direction (Table 312 

1). This result demonstrates the importance of evaluating the model-based predictions at each 313 

end of the gradient (Fig. 2,3) rather than relying on trait-environment correlations or the 314 

significance of interaction coefficients alone as evidence of a trade-off. The predicted signs (i.e., 315 
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direction) of the relationships were supported 67% of the time (16 out of the 24 models), but the 316 

model predictions only resembled trade-offs 8% of the time (2 out of 24 models) (Table 1). Our 317 

results agree with Grubb’s insight that ‘the concept of a trade-off, which implies that being suited 318 

to one condition necessarily involves not being suited to the opposite, is widely diffused in the 319 

current literature but is not universally applicable’.54 320 

Our work suggests that community assembly models and plant strategy theories that use 321 

continuous variation in functional traits should be explicit about whether a trait exhibits trade-322 

offs with environmental gradients or unidirectional benefits. Patterns of aboveground trait 323 

variation have been shown to exhibit trait convergence in resource-poor environments and trait 324 

divergence in productive environments 14,55, suggesting that unidirectional benefits may also 325 

occur in aboveground traits. Our analysis focused on determining the contributions of individual 326 

traits to species distributions, but plant strategy theories are built on sets of multiple traits. Plant 327 

strategies are likely generated by a combination of trade-offs for some traits (e.g., light 328 

compensation point along light gradients9) and unidirectional benefits for others (e.g. leaf 329 

nutrient concentrations along soil fertility gradients14,55), which inevitably makes the task of 330 

predicting species responses using continuous traits more difficult than previously anticipated. 331 

Predictive models that use sets of continuous traits as predictors of species responses need to 332 

know whether a trait exhibits trade-offs or unidirectional benefits along an environmental 333 

gradient. Strong trait-environment interaction coefficients in linear models will, by default, 334 

predict a trait-environment trade-off, but our results show that these are less prevalent than 335 

unidirectional benefits. In the case of unidirectional benefits, the predictive power of a trait for 336 

species occurrences would vary with the particular values of that trait, giving one end of the 337 

range in trait values higher importance than the other end. Such information could perhaps enter 338 
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models as priors within a hierarchical model framework. An expanded theory of trait-339 

environment interactions that incorporates unidirectional benefits will advance our understanding 340 

of the adaptive value of traits in community assembly and may improve predicted responses to 341 

climate change. For example, in regions projected to become warmer and drier rather than 342 

warmer and wetter 56, plant communities may converge toward lower SRL and higher RTD. This 343 

would make other trait combinations less viable and put species with higher SRL or lower RTD 344 

at a higher risk of local extinction in these drier regions. 345 

Forests exhibited the strongest trade-offs among species, grasslands were dominated by 346 

unidirectional benefits, and root trait-climate interactions were absent in wetlands (Table 1). The 347 

lack of trade-offs in wetlands was expected because anoxic water-logged soils select for species 348 

with aerenchyma which would confound root trait-climate relationships. The co-occurrence and 349 

higher functional diversity of both woody and herbaceous plants in forests may partly explain the 350 

evidence for stronger trade-offs in forests. Forests contain a higher proportion of woody species 351 

and these exhibit a higher variability in fine root traits than herbs, both because the clades of land 352 

plants that are characterized by large root diameter are mostly trees and because there is a greater 353 

diversity of mycorrhizal types among woody plants 17. Woody plants host not only AM 354 

mycorrhizal fungi, but also the evolutionarily younger EcM and ErM fungi (which are associated 355 

with thinner roots) 20, whereas non-woody plants mostly host AM fungi with only a minority of 356 

genera being noted for hosting EcM fungi (e.g., Kobresia). Many of the grasslands in our dataset 357 

are semi-natural and occur because of human management, which may also weaken trait-358 

environment relationships. Our analysis was also limited to species-level average trait values, 359 

and it is possible that evidence for trade-offs may be stronger in general if intraspecific trait 360 

plasticity could be explicitly incorporated into the model. 361 
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We also found that trade-offs were stronger along temperature gradients than along 362 

gradients in water availability, and we consider two possible reasons for this. First, weaker 363 

moisture effects could have resulted from a larger mismatch between modelled and actual 364 

climatic conditions for moisture than for temperature. The difference between macro- and 365 

microclimate might be comparably small for temperature, whereas soil moisture is more strongly 366 

modified by soil conditions and topography, resulting in local deviations of water supply from 367 

our predictions. This interpretation is supported by the lack of trait-environment interactions in 368 

wetlands where water availability is driven by hydrological processes rather than climate. 369 

Second, this may be related to observations that shifts in mycorrhizal dominance occur on 370 

temperature gradients, but not so consistently with water 57. At large scales, AM species tend to 371 

dominate warm regions (tropical dipterocarps being notable exceptions), whereas EcM and ErM 372 

tend to dominate cold regions, and root traits should respond to differences in mycorrhizal 373 

dominance 24,25. However, it is still uncertain whether the shift in mycorrhizal dominance is due 374 

to temperature induced shifts in root morphology, or if the shift in root morphology is driven by 375 

temperature induced shifts in mycorrhizal dominance, or both.  376 

The expectation of trade-offs holds across different levels of organization from 377 

individuals, populations, and to species 1, but may become masked in species because of multiple 378 

trade-offs in complex environments 2. Indeed, there are many factors that confound the detection 379 

of broad-scale relationships between interspecific trait variation and climate: the high range of 380 

species trait values within communities relative to the global range 58,59, the high plasticity of 381 

traits within species across environments and the importance of other traits 60, the stochastic 382 

nature of disturbance regimes and land-use change 58, the spatially heterogeneous variation in 383 

microclimate and soil properties such as moisture and texture at small spatial scales 38, dispersal 384 
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limitation, and biotic interactions (e.g., competition, facilitation) 61. While root traits only 385 

explained a fraction of the variation in species occurrences (Table 1), similar to studies focused 386 

on aboveground traits 58, it is therefore remarkable that such clear root trait-climate relationships 387 

were discovered here. This suggests that the root economics space framework is important for 388 

understanding plant community assembly.     389 

Trade-off theory assumes that selection is bidirectional and that constraints occur at both 390 

ends of the environmental gradient 1, but relaxing these assumptions may explain when and 391 

where trade-offs occur among species. Importantly, unidirectional benefits were consistently 392 

associated with the more extreme cold and dry climates that are more resource-limited than 393 

warm and wet climates (Figs. 2 and 3). This supports the idea that environmental filtering 394 

increases in intensity where resources are more limited 62. Single optimum traits were observed 395 

in cold and dry climates, while single trait optima were not observed in warmer and wetter 396 

climates. In other words, warm and wet climates exerted no clear directional selection on root 397 

traits. This may also partially explain why biodiversity is higher in warm and wet climates and 398 

lower in cold and dry climates. Given the prevalence of unidirectional benefits, revisiting 399 

evidence for trade-offs between aboveground traits and environmental gradients using model-400 

based predictions is a research priority.  401 

 402 

 403 
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Table 1. Model support and summary of results for root trait-climate interactions. Each of the eight models were evaluated for 610 

their support for a trait-by-environment interaction in forests, grasslands, and wetlands. Statistical evidence was evaluated by 611 

inspecting the significance of the coefficient in the model, the model R2, the AIC difference (AIC) between models with the 612 

environment alone versus models with both environment and traits (see full model description in Methods), and a likelihood ratio test 613 

(LRT). Number of observations for each test are provided in Table S1. 614 

 615 
  Generalized Linear Mixed Effects Model 

Results 

Comparison with 

Environment-only model 

Interpretation 

Trait and 

climate 

variables 

Vegetation 

type 

Trait-Env 

interaction 

coefficient 

(Std. Error) 

P-value for 

interaction 

coefficient 

R2
m R2

c AIC LRT 2 with df=2 

(P-value) 

Hypothesized 

direction 

supported? 

Nature of 

Trade-off 

          

SRL - Temp Forests -0.50 (0.03) P < 2e-16 0.06 0.77 -36 39.6 (P=2.556e-09) Yes Trade-off  

 Grasslands -0.19 (0.01) P < 2e-16 0.05 0.79 -51 55.0 (P=1.144e-12) Yes Unidirectional 

 Wetlands 0.04 (0.04) P = 0.277 0.01 0.48 +3 1.1 (P=0.5694) Yes No interaction 

RD - Temp Forests 0.17 (0.04) P = 3.79e-05 0.06 0.77 -22 26.5 (P=1.731e-06) Yes Unidirectional 

 Grasslands 0.20 (0.01) P < 2e-16 0.04 0.82 -21 25.5 (P=2.885e-06) Yes No interaction* 

 Wetlands -0.04 (0.04) P = 0.2652 0.01 0.55 2 1.3 (P=0.5224) Yes No interaction 

          

SRL - P:PET Forests 0.19 (0.04) P = 2.31e-07 0.05 0.75 -31 35.1 (P=2.422e-08) Yes Unidirectional 

 Grasslands 0.38 (0.01) P < 2e-16 0.11 0.79 -74 78.0 (P<2.2e-16) Yes Unidirectional 

 Wetlands 0.005 (0.03) P = 0.88498 0.01 0.49 +3 0.7 (P=0.708) Yes No interaction 

RD - P:PET Forests 0.01 (0.03) P = 0.623 0.08 0.70 -37 41.2 (P=1.132e-09) No No interaction 

 Grasslands -0.17 (0.01) P < 2e-16 0.06 0.78 -12 16.2 (P=0.000308) Yes No interaction* 

 Wetlands -0.01 (0.04) P = 0.775 0.02 0.55 3 1.8 (P=0.4121) Yes No interaction 

          

RTD - Temp Forests 0.41 (0.05) P = 2.45e-14 0.07 0.74 -34 38.3 (P=4.772e-09) No Trade-off 

 Grasslands 0.26 (0.02) P < 2e-16 0.03 0.82 -8 12.0 (P=0.0025) No Unidirectional 

 Wetlands -0.02 (0.04) P = 0.5587 0.01 0.49 +3 1.8 (P=0.4072) Yes No interaction 

Root N - Temp Forests -0.05 (0.03) P = 0.1040 0.02 0.69 -2 6.5 (P=0.03947) No No interaction 

 Grasslands 0.03 (0.03) P = 0.27539 0.01 0.74 2 2.4 (P=0.2956) No No interaction 

 Wetlands 0.10 (0.06) P = 0.0929 0.08 0.60 0 4.1 (P=0.1296) Yes No interaction 



 23 

          

RTD - P:PET Forests -0.13 (0.04) P = 0.000503 0.04 0.63 -20 23.9 (P=6.54e-06) Yes Unidirectional 

 Grasslands -0.12 (0.02) P = 1.6e-11 0.04 0.77 -4 8.0 (P=0.01788) Yes No interaction* 

 Wetlands 0.01 (0.03) P = 0.8406 0.00 0.48 +2 2.0 (P=0.3729) Yes No interaction 

Root N - P:PET Forests -0.14 (0.03) P = 7.01e-06 0.04 0.74 -2 6.1 (P=0.04621) No Unidirectional 

 Grasslands -0.15 (0.03) P = 2.96e-09 0.04 0.79 -4 7.8 (P=0.01977) No No interaction* 

 Wetlands -0.14 (0.05) P = 0.00994 0.07 0.55 -2 6.4 (P=0.04018) No No interaction 

          

          

R2
m = deviance explained by fixed effects 616 

R2
c = deviance explained by fixed and random effects (see Methods for list of random effects) 617 

AIC = AICTxE - AICE; that is, AIC of model TxE minus AIC of model E (see Methods). Models with AIC that are more negative 618 

than -4 are more supported than the simpler model E 619 

2 = chi-square statistic for likelihood ratio test (LRT) comparing models TxE and E with 2 df 620 

SRL = specific root length (m g-1) 621 

RTD = root tissue density (mg mm-3) 622 

RD = root diameter (mm) 623 

Root N = root nitrogen concentration (mg g-1) 624 

Temp = minimum temperature in the coldest month (degree C) 625 

P:PET = Precipitation : Potential Evapotranspiration ratio (mm mm-1) 626 

*Four models marked by an asterisk (described in text) exhibited significant trait-by-environment interaction coefficients and 627 

likelihood ratio tests, yet the illustrated model predictions in Figures 2 and 3 did not exhibit clear trade-off or unidirectional benefits, 628 

so we classify them as “no interaction” here because of our conservative criterion 629 

 630 

 631 
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Figure Captions 632 

Figure 1. The ecological consequences of trait variation on species distributions along 633 

climatic gradients. (A) Empirical evidence for an ecological trade-off requires the existence of a 634 

strong trait-environment interaction 1,12. Here we illustrate examples for both positive and 635 

negative trait-environment interactions driving species occurrences. In the case of a positive 636 

interaction between a trait and an environmental gradient, the effect of the trait on the probability 637 

of species occurrence at the low end of an environmental gradient would be negative, but this 638 

effect will switch directions and become positive at the high end of the gradient (see left-hand 639 

column). This result would imply that a high trait value is beneficial at the high end of the 640 

gradient and a low trait value is beneficial at the low end of the gradient (see middle and right-641 

hand columns). (B) Alternatively, if a statistical trait-environment interaction is detected, yet the 642 

trait only exhibits an effect at one end of the environmental gradient (i.e., the effects do not 643 

switch direction along the gradient), then this suggests there is only a ‘unidirectional benefit’. 644 

Evidence for a unidirectional benefit for two alternative cases are illustrated for the positive 645 

interaction scenario. (C) We scrutinized the existence of trade-offs using plant roots, which have 646 

recently been shown to vary among species along two independent trait axes 17. One axis is 647 

described by variation in investment in high specific root length (SRL) versus large root diameter 648 

(RD), and the other axis is described by variation between investment in high root tissue density 649 

(RTD) versus metabolically-active roots with high root nitrogen (root N). The location in the 650 

root economics space of five species discussed in the main text are shown on the biplot: 651 

Vaccinium vitis-idaea (Vv) is a high-SRL ErM species, Draba nemorosa (Dn) is a high-SRL AM 652 

species with low colonization rates, Cunninghami lanceolata (Cl) is a low-SRL AM species, 653 

Lonicera chrysantha (Lc) is a low-RTD species, and Myrtus communis (Mc) is a high-RTD 654 



 25 

species. (D) We developed four hypotheses using first principles about the adaptive value of 655 

these roots traits along global climatic gradients, where temperature is illustrated as a gradient 656 

from blue to red (i.e., cold to warm) and water availability is illustrated as a gradient from gold 657 

to green (i.e., dry to wet).  658 

 659 

 660 

Figure 2. Specific root length (SRL) and root diameter (RD) are related to species 661 

occurrences along climatic gradients. The left-hand column illustrates how the sign of the 662 

relationship between the trait and the probability of occurrence changes along gradients of mean 663 

minimum temperature of the coldest month and the precipitation-to-potential evapotranspiration 664 

ratio (P:PET) in forests, grasslands, and wetlands. The y-axis of the left-hand column is the 665 

partial derivative of probability of occurrence with respect to traits (𝜕𝑦 𝜕𝑇⁄ ) to demonstrate 666 

whether the effect of the trait on probability of occurrence changes sign along the climatic 667 

gradient. Biologically meaningful interactions switch sign, which is indicated if the lines cross 668 

the horizontal dotted line. The middle and right-hand columns illustrate model predictions 669 

(including 95% confidence intervals) for forests and grasslands, respectively (wetlands are not 670 

shown because no interactions were significant). A trade-off was only evident in panel B, where 671 

trait values exhibited different effects on occurrences at different ends of the environmental 672 

gradients. In contrast, unidirectional benefits were evident in panels C, E, H, and I. Note that the 673 

flat lines that hover close to zero probability are interpreted as ‘equally likely to occur across the 674 

root trait gradient’ because the average probability of occurrence is near zero; this is because 675 

absences (i.e., zeros) comprise ~99% of the dataset. 676 

 677 
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 678 

 679 

 680 

Figure 3. Root tissue density (RTD) and root nitrogen concentration (Root N) are related to 681 

species occurrences along climatic gradients. The left-hand column illustrates how the sign of 682 

the relationship between the trait and the probability of occurrence changes along gradients of 683 

mean minimum temperature of the coldest month and the precipitation-to-potential 684 

evapotranspiration ratio (P:PET) in forests, grasslands, and wetlands. The y-axis of the left-hand 685 

column is the partial derivative of probability of occurrence with respect to traits (𝜕𝑦 𝜕𝑇⁄ ) to 686 

demonstrate whether the effect of the trait on probability of occurrence changes sign along the 687 

climatic gradient. Biologically meaningful interactions switch sign, which is indicated if the lines 688 

cross the horizontal dotted line. The middle and right-hand columns illustrate model predictions 689 

(and 95% confidence intervals) for forests and grasslands, respectively (wetlands are not shown 690 

because no interactions were significant). A trade-off was only evident in panel B. In contrast, 691 

unidirectional benefits were evident in panels C, H, and K. Note that the flat lines that hover 692 

close to zero probability are interpreted as ‘equally likely to occur across the root trait gradient’ 693 

because the average probability of occurrence is near zero; this is because absences (i.e., zeros) 694 

comprise ~99% of the dataset.   695 
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Methods 696 

  697 

Data synthesis 698 

To test the adaptive value of root traits along gradients in temperature and water 699 

availability, we joined the global vegetation plot database (sPlot) 31 with the global root trait 700 

database (GRooT) 32, which combines observations from the Fine-Root Ecology Database 701 

(FRED) 63 with root data in TRY 64, as well as additional incorporated literature. This dataset has 702 

strong representation of AM, EcM, and ErM mycorrhizal types but only a few non-mycorrhizal 703 

species. 704 

 We computed species-level averages of the most commonly measured fine root traits by 705 

first calculating the mean value of a species within a study and then averaging those values for a 706 

species across studies. We cannot say anything about plasticity or intraspecific trait variation in 707 

this study given that we were only able to analyze average trait values of species. RTD values 708 

reported to be > 1.0 mg mm-3 were excluded from this study. This resulted in a dataset of 1,767 709 

species with specific root length (SRL; m g-1) and 1,426 species with root tissue density (RTD; 710 

mg mm-3), 1,283 species with root nitrogen concentration (root N, mg g-1), and 1,623 species 711 

with root diameter (RD; mm). Out of the 2,122 species in GRooT, 1,638 species were present in 712 

sPlot for a total of 998,669 vegetation records. We discarded all plots that contained < 80% trait 713 

coverage based on relative cover 65 for a total of 152,771 plots with SRL data, 154,192 plots with 714 

RD data, 107,325 plots with RTD data, and 109,494 plots with root N data. 715 

The majority of plots were located in Europe, Asia, North America, and Australia (Fig 716 

S1A). Plots were found within all global biomes except tropical rainforests but were most 717 

representative of temperate seasonal forest, boreal forest, woodland-shrubland, and temperate 718 
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grassland-desert biomes (Fig S1B). The paucity of root trait data in tropical forests prevented us 719 

from including these biomes in our analysis, highlighting the importance of new data collection 720 

in tropical ecosystems. We used the geographical coordinates of each plot to compile climate 721 

data and ecoregion classification. The average minimum temperature in the coldest month was 722 

downloaded from CHELSA (~1 km resolution) 66. The correlation between minimum 723 

temperature and P:PET was weak and negative (r = -0.12) (Fig. S1D). Model results were 724 

qualitatively similar if mean annual temperature was used instead of minimum temperature of 725 

the coldest month. Water availability was expressed as the precipitation-to-potential 726 

evapotranspiration ratio (P:PET) using the global Aridity index raster  (~1 km resolution) 67.  727 

Information on vegetation types was only available for a subset of plots in sPlot, and 728 

most of these classified plots were located in Europe. To have all plots consistently assigned to 729 

vegetation types, we ran one classification based on species’ affinities to forest, grassland, 730 

savanna, heathland, steppe, wetland, and other, as assigned based on expert opinion (available in 731 

Supplementary Material). Based on the relative cover of each species within a given plot, we 732 

summarized species based on their habitat affinities, and summed their relative cover. We then 733 

assigned each plot to a habitat based on the following if-else conditions: if the pooled relative 734 

cover of species with wetland affinities > 0.5, then it was classified as “Wetland”, if the relative 735 

cover of species with forest affinities > 0.3, then it was classified as “Forest”, if the relative cover 736 

of species with either grassland, savanna, heathland, or steppe > 0.7, then we classified it as 737 

“Grassland”. These three if-else conditions were sequential, so that a plot assigned to “Wetland”, 738 

could not be also assigned to “Forest” or “Grassland”. We selected the thresholds iteratively, in 739 

order to maximize the overall accuracy of the classification based on species’ habitat affinity, 740 

when tested against sPlot’s native habitat classification. Out of the 202,942 plots we considered, 741 
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23,885 were assigned to “Wetland”, 65,618 to “Forest” and 103,009 to “Grassland”. Another 742 

10,420 remained unassigned and were removed from the analysis. The overall accuracy of the 743 

classification was 0.67 and the Kappa statistic was 0.49. Compositional differences among the 744 

three vegetation types are illustrated by a Principal Coordinates Analysis using Bray-Curtis 745 

distances (Fig S1D). We included savanna species within grasslands and did not include a 746 

‘savanna’ category for two main reasons: 1) no plots in our dataset occurred in the savanna 747 

regions of South America or Africa, and 2) the compositional data available to us could not be 748 

used to reliably discern a savanna from a forest or grassland. This decision had no appreciable 749 

affect on the results because the direction of the trait-environment interactions detected in this 750 

study were relatively consistent between grassland and forest, so adding additional vegetation 751 

types that are intermediary between the two would not have affected the results. 752 

Each plot was categorized into ecoregions using Olson et al’s ecoregion classification 753 

system 68 to account for the spatial structure of the data and to define regional species pools. 754 

Regional species pools were defined as all species detected in plots within an ecoregion, and we 755 

defined species absences based on these regional species pools. Species that were not detected on 756 

plot x but were found on other plots within the ecoregion were considered absent in plot x. We 757 

did this to prevent a situation where a species has zero probability of being in a plot; for 758 

example, we prevented a subtropical species from being considered ‘absent’ from a plot in the 759 

taiga. This method accounts for the fact that species may be absent from a plot because of 760 

biogeographical dispersal limitation, not just because of environmental filtering. We removed all 761 

ecoregions with < 200 observations, which eliminated observations from South America and 762 

Africa. The final number of plots used in each model is listed in Table S1. 763 

 764 
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Data analysis 765 

 We fit hierarchical models using Generalized Linear Mixed Effects Models to test 766 

whether root traits explain species occurrences by their interactions with climatic gradients 13,69, 767 

which is the most appropriate method for evaluating how trait-environment interactions drive 768 

species occurrences 70. We modeled binomial species presence-absence data using a logit link 769 

function and binomial error structure. Given the size of the dataset, all models were fit in parallel 770 

using an Intel compiled version of R on the high-performance computer cluster at the University 771 

of Wyoming, where several days to four weeks were required to achieve model convergence. We 772 

used the following packages in R version 3.6.1 71  to conduct our analyses: stats 71, ggplot2 72, 773 

lme4 73, lmerTest 74, performance 75, plotbiomes 76, and labdsv 77. 774 

 First, we fit an ‘environment-only model’, which fit quadratic polynomials to all species 775 

simultaneously with respect to the climate factor. The quadratic polynomial was especially 776 

important to accurately capture the broad variation in species environmental optima across such 777 

vast climatic gradients. We also controlled for variation in occurrences within each ecoregion by 778 

modelling ecoregions as random intercepts, which was important given the strong bias of number 779 

of plots in European ecoregions. In summary, for each climatic factor we fit the following 780 

hierarchical model (‘model E’):   781 

 782 

𝑙𝑜𝑔𝑖𝑡(𝑦) =  𝛽0 + 𝛾𝑗0 + 𝛿𝑘0 + (𝛽1 + 𝛾𝑗1) 𝑐𝑙𝑖𝑚𝑎𝑡𝑒 + (𝛽2 + 𝛾𝑗2) 𝑐𝑙𝑖𝑚𝑎𝑡𝑒2 783 

 784 

where y was binomial presence and absence, 𝛽0 was the global intercept, 𝛽1was the fixed effect 785 

term describing the main effect of the climatic gradient, 𝛽2was the fixed effect term describing 786 

the main effect of the squared-climatic term, which allowed to model optimum environments for 787 
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each species, 𝛾𝑗0 was a random intercept for each of j species drawn from a normal distribution 788 

N(0,2
j0) , 𝛿𝑘0 was a random intercept for each of k ecoregions drawn from a normal distribution 789 

N(0,2
k0), 𝛾𝑗1 was a random slope for each of j species drawn from a normal distribution 790 

N(0,2
j1), and 𝛾𝑗2 was a random slope for each of j species drawn from a normal distribution 791 

N(0,2
j2). We used the quadratic polynomial random effects from this model to compute the 792 

optimum temperature and water availability for each species, i.e., the value of the climatic 793 

variables where the species attains its highest probability of occurrence. We regressed these on 794 

the trait values of each species, where the relative abundance of each species in the dataset were 795 

used as weights in the regression (see Fig. S2). The lme4 syntax for this model was 796 

glmer(occurrence ~ climate + climate2 + (climate + climate2|species) + 797 

(1|ecoregion), family=binomial). 798 

Second, we fit ‘trait-by-environment interaction models’, which included one root trait 799 

and its interaction with climate, to test if traits explain any additional information about the 800 

changing probabilities of species occurrences along the climatic gradients. For each trait and 801 

climatic factor combination we fit the following hierarchical model (‘model TxE’): 802 

 803 

𝑙𝑜𝑔𝑖𝑡(𝑦) =  𝛽0 + 𝛾𝑗0 + 𝛿𝑘0 + (𝛽1 + 𝛾𝑗1)𝑐𝑙𝑖𝑚𝑎𝑡𝑒 + (𝛽2 + 𝛾𝑗2)𝑐𝑙𝑖𝑚𝑎𝑡𝑒2 + (𝛽3)𝑡𝑟𝑎𝑖𝑡 +  (𝛽4)𝑡𝑟𝑎𝑖𝑡 ∙ 𝑐𝑙𝑖𝑚𝑎𝑡𝑒 804 

 805 

where 𝛽3was the fixed effect term describing the main effect of traits, and 𝛽4 was the fixed effect 806 

term describing the interaction between the trait and the climatic gradient. The lme4 syntax for 807 

this model was glmer(occurrence ~ climate + climate2 + trait + trait:climate 808 

+ (climate + climate2|species) + (1|ecoregion), family=binomial). 809 
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 To evaluate the empirical support for the trait-environment interaction, we compared 810 

model ‘TxE’ model to model ‘E’. Given the statistical power of the large dataset, we used three 811 

criteria to assess the evidence of whether species occurrences can be explained by trait-812 

environment interactions: 1) differences in AIC between the two models (i.e., AICTxE – AICE) that 813 

were < -4 (i.e., an absolute difference > 4) 78, 2) significant likelihood ratio tests using a chi-814 

square statistic, and 3) a significant fixed effect interaction term in the linear predictor. All three 815 

criteria needed to be met to consider these to be important interactions. We used a threshold of 816 

AIC differences more negative than -4 following suggested rules of thumb for model comparison 817 

78. 818 

We further classified these significant interactions into two general types: 1) “trade-offs” 819 

and 2) “unidirectional benefits”. Trade-offs occur where certain trait values confer adaptive 820 

advantage at one end of an environmental gradient and other trait values confer benefits at the 821 

opposite end of the gradient (Fig. 1A). Unidirectional benefits occur when a trait confers an 822 

adaptive advantage at only one end of an environmental gradient (Fig. 1B). In order to be 823 

considered a ‘trade-off’, the effect of traits on probability of occurrence had to switch signs 824 

between each end of the environmental gradient 12. To test this, we illustrate the first partial 825 

derivative of the model with respect to the trait (𝜕𝑦 𝜕𝑇⁄ ) to demonstrate how the effect of the 826 

trait on probability of occurrence changes along the climatic gradient. A significant positive 827 

interaction would be illustrated as a line with positive slope that passes through 𝜕𝑦 𝜕𝑇⁄  = 0 (Fig. 828 

1A). In contrast, ‘unidirectional benefits’ were interactions where a trait exhibits an effect on 829 

probability of occurrence at one end of the gradient but has no effect on probability of 830 

occurrence at the other end of the gradient (Fig. 1B). To operationalize this distinction, we 831 

plotted model-predicted probabilities as a function of each trait at the low end (1st percentile) and 832 
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high end (99th percentile) of each climatic gradient. Given the size of the datasets, these 833 

percentiles include thousands of observations. If the probability of occurrence at one end of the 834 

gradient did not exceed 5% whereas the probability of occurrence at the other end of the gradient 835 

exceeded 5%, then we considered this to be a ‘unidirectional benefit’. Given the large number of 836 

absences that is typical with sparse community datasets, the average probability of species 837 

detection was approximately 0.01, thus a 5% probability would be a five-fold increase from the 838 

average. Using these criteria, the nature of each trade-off is listed in Table 1 and Figs. 2 and 3. 839 

 We limited our analyses to models with one trait and one climate gradient rather than 840 

fitting more complex models with multiple traits and multiple climate gradients. We took this 841 

choice to make our work more comparable to other recent work 58 and to achieve a more 842 

straightforward interpretation of interactions. We also limited our models to one climate gradient 843 

because model convergence was problematic even for the environment-only models (model E). 844 

These models included hundreds of random slopes and intercepts with respect to climate 845 

variables and squared variables to fit quadratic polynomials to account for each species’ 846 

nonlinear response to climate (Fig. S2). Adding a second climate variable would add hundreds 847 

more coefficients to account for each species’ nonlinear response to that gradient, and we would 848 

need to include their interaction. Finally, we limited models to only one trait because including 849 

two traits reduced the number of species with data for both traits that could be included in the 850 

model. The occurrence of species-level average trait values are plotted along each climate 851 

gradient in Figs. S3 and S4. 852 

 853 

 854 

 855 
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Data Availability 856 

All code and data needed to reproduce the model results can be accessed at 857 

https://idata.idiv.de/ddm/Data/ShowData/3475 858 

 859 

 860 

https://idata.idiv.de/ddm/Data/ShowData/3475

