
This is the **accepted version** of the journal article:

Laughlin, Daniel C.; Mommer, Liesje; Sabatini, Francesco Maria; [et al.]. «Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs». *Nature Ecology & Evolution*, Vol. 5 (June 2021), p. 1123-1134. DOI 10.1038/s41559-021-01471-7

This version is available at <https://ddd.uab.cat/record/299922>

under the terms of the IN COPYRIGHT license

1 **Root traits explain plant species distributions along climatic gradients yet challenge the**
2 **nature of ecological trade-offs**

3
4 Daniel C. Laughlin^{1*}, Liesje Mommer², Francesco Maria Sabatini^{4,3}, Helge Bruelheide^{4,3}, Thom
5 W. Kuyper⁵, M. Luke McCormack⁶, Joana Bergmann⁷, Grégoire T. Freschet⁸, Nathaly R.
6 Guerrero-Ramírez⁹, Colleen M. Iversen¹⁰, Jens Kattge^{11,3}, Ina C. Meier¹², Hendrik Poorter^{13,14},
7 Catherine Roumet¹⁵, Marina Semchenko^{16,17}, Christopher J. Sweeney¹⁶, Oscar J. Valverde-
8 Barrantes¹⁸, Fons van der Plas^{2,19}, Jasper van Ruijven², Larry M. York²⁰, Isabelle Aubin²¹, Olivia
9 R. Burge²², Chaeho Byun²³, Renata Čušterevska²⁴, Jürgen Dengler^{25,26,3}, Estelle Forey²⁷, Greg R.
10 Guerin^{28,29}, Bruno Hérault^{30,31,32}, Rob Jackson^{33,34}, Dirk Nikolaus Karger³⁵, Jonathan Lenoir³⁶,
11 Tatiana Lysenko^{37,38,39}, Patrick Meir^{40,41}, Ülo Niinemets^{42,43}, Wim A. Ozinga⁴⁴, Josep
12 Penuelas^{45,46}, Peter B. Reich^{47,48}, Marco Schmidt^{49,50}, Franziska Schrödt⁵¹, Eduardo Velázquez⁵²,
13 Alexandra Weigelt^{19,3}

14

15 *Corresponding author: Daniel C. Laughlin daniel.laughlin@uwyo.edu

16 ¹ Department of Botany, University of Wyoming, Laramie, Wyoming 82071, USA

17 ² Plant Ecology and Nature Conservation Group, Wageningen University & Research, The
18 Netherlands

19 ³ German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany

20 ⁴ Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-
21 Wittenberg, Germany

22 ⁵ Soil Biology Group, Wageningen University & Research, The Netherlands

23 ⁶ Center for Tree Science, The Morton Arboretum, Lisle, USA

24 ⁷ Sustainable Grassland Systems, Leibniz Centre for Agricultural Landscape Research (ZALF),
25 Paulinenaue, Germany

26 ⁸ Theoretical and Experimental Ecology Station (SETE), National Center for Scientific Research
27 (CNRS), Moulis, France

28 ⁹ Biodiversity, Macroecology & Biogeography, Faculty of Forest Sciences and Forest Ecology,
29 University of Goettingen, Göttingen, Germany

30 ¹⁰ Oak Ridge National Laboratory, Climate Change Science Institute and Environmental
31 Sciences Division, Oak Ridge, Tennessee, USA

32 ¹¹ Functional Biogeography, Max Planck Institute for Biogeochemistry, Jena, Germany

33 ¹² Functional Forest Ecology, Department of Biology, Universität Hamburg, Germany

34 ¹³ Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany

35 ¹⁴ Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia

36 ¹⁵ CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France

37 ¹⁶ Department of Earth and Environmental Sciences, The University of Manchester, UK

38 ¹⁷ Institute of Ecology and Earth Sciences, University of Tartu, Estonia

39 ¹⁸ Institute of Environment, Department of Biological Sciences, Florida International University,
40 Miami, USA

41 ¹⁹ Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University,
42 Germany
43 ²⁰ Noble Research Institute, LLC, Ardmore, OK 73401, USA
44 ²¹ Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste
45 Marie, ON, Canada
46 ²² Ecosystems and Conservation, Manaaki Whenua - Landcare Research, Lincoln, New Zealand
47 ²³ Department of Biological Sciences and Biotechnology, Andong National University,
48 Andong, Republic of Korea
49 ²⁴ Institute of Biology, University of Ss. Cyril and Methodius, Skopje, North Macedonia
50 ²⁵ Vegetation Ecology, Institute of Natural Resource Sciences (IUNR), Zurich University of
51 Applied Sciences (ZHAW), Wädenswil, Switzerland
52 ²⁶ Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth,
53 Germany
54 ²⁷ Normandie Univ, UNIROUEN, INRAE, ECODIV, 76000 Rouen, France.
55 ²⁸ Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide,
56 Australia
57 ²⁹ Terrestrial Ecosystem Research Network (TERN), The University of Queensland, St. Lucia,
58 Australia
59 ³⁰ CIRAD, UPR Forêts et Sociétés, Yamoussoukro, Côte d'Ivoire
60 ³¹ Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
61 ³² Institut National Polytechnique Félix Houphouët-Boigny, INP-HB, Yamoussoukro, Côte
62 d'Ivoire
63 ³³ Jackson Lab, Department of Earth System Science, Stanford University, USA
64 ³⁴ Stanford Woods Institute for the Environment, Stanford, USA
65 ³⁵ Biodiversity and Conservation Biology, Spatial Evolutionary Ecology, Swiss Federal Institute
66 for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
67 ³⁶ UMR CNRS 7058 « Ecologie et Dynamique des Systèmes Anthropisés » (EDYSAN),
68 Université de Picardie Jules Verne, Amiens, France
69 ³⁷ Laboratory of Vegetation Science, Komarov Botanical Institute RAS, Russian Academy of
70 Sciences (RAS), Saint-Petersburg, Russia
71 ³⁸ Laboratory of Phytodiversity Problems and Phytocoenology, Institute of Ecology of the Volga
72 River Basin RAS - Branch of the Samara Scientific Center RAS, Russian Academy of Sciences
73 (RAS), Togliatti, Russia
74 ³⁹ Group of Ecology of living organisms, Tobolsk complex scientific station Ural Branch
75 RAS, Russian Academy of Sciences (RAS), Tobolsk, Russia
76 ⁴⁰ Research School of Biology, Australian National University, Canberra ACT, Australia
77 ⁴¹ School of Geosciences University of Edinburgh, Edinburgh UK
78 ⁴² Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
79 ⁴³ Estonian Academy of Sciences, Tallinn, Estonia
80 ⁴⁴ Vegetation, Forest and Landscape Ecology, Wageningen Environmental Research,
81 Wageningen University & Research, The Netherlands
82 ⁴⁵ CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra (Catalonia) E-08193, Spain
83 ⁴⁶ CREAF, Cerdanyola del Vallès (Catalonia) E-08193, Spain
84 ⁴⁷ Department of Forest Resources, University of Minnesota, USA
85 ⁴⁸ Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW,
86 Australia

87 ⁴⁹ Data and Modelling Centre, Senckenberg Biodiversity and Climate Research Centre, Frankfurt
88 am Main, Germany

89 ⁵⁰ Palmengarten, City of Frankfurt, Frankfurt am Main, Germany

90 ⁵¹ School of Geography, University of Nottingham, UK

91 ⁵² Production and Forest Resources, Institute for Research in Sustainable Forest Management
92 (iuFOR), ETS Agricultural Engineering University of Valladolid, Palencia, Spain

93

94

95

96 **Abstract**

97 Ecological theory is built on trade-offs where trait differences among species evolved as
98 adaptations to different environments. Trade-offs are often assumed to be bidirectional, where
99 opposite ends of a gradient in trait values confer advantages in different environments. However,
100 unidirectional benefits could be widespread if extreme trait values confer advantages at one end
101 of an environmental gradient, whereas a wide range of trait values are equally beneficial at the
102 other end. Here we show that root traits explain species occurrences along broad gradients of
103 temperature and water availability, but model predictions only resembled trade-offs in two out of
104 twenty-four models. Forest species with low specific root length (SRL) and high root tissue
105 density (RTD) were more likely to occur in warm climates but species with high SRL and low
106 RTD were more likely to occur in cold climates. Unidirectional benefits were more prevalent
107 than trade-offs: for example, species with large-diameter roots and high RTD were more
108 commonly associated with dry climates, but species with the opposite trait values were not
109 associated with wet climates. Directional selection for traits consistently occurred in cold or dry
110 climates, whereas a diversity of root trait values were equally viable in warm or wet climates.
111 Explicit integration of unidirectional benefits into ecological theory is needed to advance our

112 understanding of the consequences of trait variation on species responses to environmental
113 change.

114

115

116 **The nature of ecological trade-offs**

117 Ecological trade-offs underpin our conceptual understanding of global biodiversity distributions
118 ¹⁻⁶. Species pools are filtered into local communities based on the matching of species' trait
119 values to environmental conditions. Models that use traits to predict the success of a species in a
120 given environment are actively being developed and tested. Ecological trade-offs arise as a
121 consequence of the adaptive value of a trait, eloquently described as '*an evolutionary dilemma,*
122 *whereby genetic change conferring increased fitness in one circumstance inescapably involves*
123 *sacrifice of fitness in another*'⁴. As the term 'trade-off' implies, the trait effects are
124 'bidirectional', where, for example, low trait values of a species confer adaptive advantage at one
125 end of an environmental gradient whereas high trait values confer benefits at the opposite end of
126 the gradient (Fig 1A)¹.

127 Classical ecological theory has long emphasized this bidirectional perspective on trait-
128 environment relationships at the species level⁷. For example, resource ratio theory
129 (ALLOCATE) is built on a single trait – environment trade-off. At the high end of the soil
130 fertility gradient, plant species that allocate relatively more carbon aboveground than
131 belowground are predicted to be better competitors for light. Whereas at the low end of the soil
132 fertility gradient, plant species that allocate relatively more carbon belowground than
133 aboveground are predicted to be better competitors for soil nutrients⁸. Empirical evidence for
134 trade-offs have been found in a variety of traits including light compensation points along light

135 gradients ⁹ and root angles along nutrient gradients ¹⁰. In many cases, however, the empirical
136 evidence for trade-offs in performance among species has been met with mixed success ^{6,11}.

137 Empirical evidence for trade-offs at the species level would be provided by showing that
138 the effect of a trait on the probability of species occurrence switches sign (*i.e.*, changes direction)
139 along an environmental gradient (Fig. 1A) ¹². In other words, a positive relationship between a
140 trait and an environmental gradient implies that the effect of the trait on the probability of species
141 occurrence is negative at the low end of the gradient, but is positive at the high end of the
142 gradient (Fig. 1A). This directional switch in sign is fundamental, but detecting the switch
143 empirically is nontrivial because it cannot be observed through a simple trait-environment
144 correlation ¹². The switch in sign can, however, be explicitly tested by comparing model-based
145 predictions of trait effects on the probability of species occurrence at contrasting ends of the
146 environmental gradient ¹³. Specifically, if the first partial derivative with respect to traits crosses
147 zero along the environmental gradient, then the effect of a trait on probability of occurrence
148 switches sign (Fig 1A).

149 In contrast, the absence of a switch in sign of a trait's effect on the probability of species
150 occurrence along an environmental gradient would indicate that a trait only confers an adaptive
151 advantage at one end of this gradient, thereby exhibiting a mere 'unidirectional benefit' (Fig.
152 1B). The prevalence of unidirectional benefits at the species level has not been adequately tested,
153 yet empirical research has provided hints that they exist. For example, plant communities in New
154 Zealand exhibit trait convergence towards low leaf nitrogen concentration in phosphorus-poor
155 soil, whereas in phosphorus-rich soil communities display wide divergence of leaf nitrogen
156 concentration ¹⁴. This suggests that low leaf nitrogen is adaptive in phosphorus-poor soil to
157 maintain a balanced leaf nutrient stoichiometry, whereas high leaf nitrogen is not adaptive in

158 phosphorus-rich soil. Thus, it is a unidirectional benefit, not a trade-off. Simulation results and
159 empirical work in insect host use has suggested that the importance of trade-offs in the evolution
160 of specialization may be overstated^{11,15}. The prevailing view of trade-offs in ecological theory
161 across all levels of organization^{1,2} may thus have hindered the discovery of unidirectional
162 benefits that could be widespread in nature. In particular at the species level, discerning the
163 difference between trade-offs and unidirectional benefits would advance our understanding of
164 how individual traits affect community assembly.

165

166 **Belowground root traits**

167 We tested the generality of ecological trade-offs in the context of plant root traits because
168 these 'hidden' belowground organs are essential for water and nutrient uptake yet we still lack
169 broad-scale empirical evidence for how they influence the filtering of species pools into local
170 community assemblages¹⁶. To test the effects of root trait variation on species distributions
171 along broad gradients in temperature and water availability we applied a new root trait
172 framework consisting of two independent axes of variation¹⁷ (Fig. 1C).

173 First, species span a trait axis defined by specific root length (SRL; fine root length per
174 unit mass) and root diameter (RD) that has evolved in concert with symbiosis with mycorrhizal
175 fungi. Arbuscular mycorrhizal (AM) plants comprise nearly 80% of plant species globally¹⁸, and
176 among them thick-rooted species are colonized at higher rates because of greater fungal habitat
177 in the root cortex^{17,19,20}. Most of the remaining mycorrhizal plant species associate with
178 ectomycorrhizal (EcM) or ericoid mycorrhizal (ErM) fungi, which tend to colonize species with
179 moderate to thin roots¹⁷. A small number of species in our dataset (described below) are non-

180 mycorrhizal, and these species tend to have the thinnest roots to explore the soil for resources by
181 themselves.

182 Second, species span another independent axis, where conservative species invest in high
183 root tissue density (RTD; fine root mass per unit volume), and acquisitive species construct more
184 metabolically active tissue with low RTD and high root nitrogen (root N) concentration ^{21,22}.

185 This second axis is associated with the aboveground leaf economics spectrum ²², where species
186 construct either short-lived leaves with high metabolic rates or long-lived leaves with thick cell
187 walls ²³. Consequently, fast species construct cheaper fine roots with higher rates of root turnover
188 ¹⁷. The global correlation between SRL and RTD among species is $r = -0.09$ ¹⁷, which implies
189 that plants have explored the expression of nearly all possible combinations of these two axes
190 leading to a two-dimensional root economics space (Fig. 1C). Therefore, these two root trait axes
191 provide a unique opportunity to scrutinize the evidence for ecological trade-offs and
192 unidirectional benefits among species to advance our understanding of the role of traits in
193 community assembly.

194

195 **Hypotheses and methods**

196 We developed four hypotheses about how SRL, RD, RTD, and Root N influence species
197 distributions along broad gradients of temperature and water availability (Fig 1D). Our
198 hypotheses are grounded in physiological and symbiotic mechanisms and we predict that trade-
199 offs generate variation in species occurrences across climatic gradients (Fig 1D). Our predictions
200 for SRL and RTD are opposite in sign to our predictions for RD and Root N, respectively,
201 because they are negatively correlated ¹⁷.

202 (1) We predicted a negative relationship between SRL and temperature (and a positive
203 relationship between RD and temperature) for several reasons. Species with low SRL would be
204 more prevalent in warm climates where AM fungi are abundant ²⁴⁻²⁶. We also predicted species
205 with high SRL to be more common in extremely cold climates because 1) non-mycorrhizal taxa
206 dominate the high Arctic where mycorrhiza are limited by extremely low temperatures ²⁷, and 2)
207 ErM and EcM fungi are more common in moderately cold climates and tend to colonize species
208 with moderate to high SRL ²⁴⁻²⁶.

209 (2) We predicted a positive relationship between SRL and water availability (and a
210 negative relationship between RD and water availability) because species with high SRL can
211 more efficiently acquire resources by themselves in wet environments, and species with low SRL
212 that provide more cortical habitat for AM fungi can be more drought-tolerant through
213 mycorrhizal symbiosis-enhanced stomatal conductance and water use efficiency ²⁸.

214 (3) We predicted a negative relationship between RTD and temperature (and a positive
215 relationship between root N and temperature) because ‘slow’ species with high RTD would
216 tolerate low temperatures by limiting frost-induced cell lysis and resisting freezing-induced
217 embolism formation, and because ‘fast’ species with low RTD and higher metabolic rates would
218 be more productive than slow species in warmer climates ^{22,29}.

219 (4) We predicted a negative relationship between RTD and water availability (and a
220 positive relationship between root N and water availability) because conservative species would
221 tolerate dry climates by resisting embolism formation and cellular collapse under extreme
222 osmotic tension, and because acquisitive species with low RTD and higher metabolic rates would
223 be more productive than slow species in wetter climates ^{22,30}.

224 To test these four hypotheses, we combined the largest global vegetation database (sPlot)
225³¹ with the global root trait database (GRooT)³² (see Methods) (Fig. S1). We used long-term
226 average minimum temperature of the coldest month to represent cold limitation and the long-
227 term average precipitation-to-potential evapotranspiration ratio (P:PET) to represent chronic
228 water limitation. The plots spanned a gradient of -10 to 25 °C mean annual temperature and 50 to
229 2,750 mm mean annual precipitation. Given the functional differences in vegetation dominated
230 by woody and herbaceous plants with respect to traits such as height, root diameter, and root
231 mass fractions^{20,23,33-35}, we took a conservative approach to prevent confounding the
232 relationships by classifying each plot as forest, grassland, or wetland (Fig. S1). We predicted root
233 trait-climate relationships to be absent in wetlands because plants that grow in anoxic soil
234 conditions develop aerenchyma to maintain respiration rates, which would alter root morphology
235 independent from the regional climate³⁶.

236

237 **Root traits in relation to temperature and water**

238 SRL was related to the probability of species occurrence along climatic gradients in
239 forests and grasslands, but not in wetlands (Fig. 2). In agreement with our first hypothesis and
240 regional studies³⁷⁻³⁹, the interactive effects of SRL and temperature on species occurrence was
241 negative in both forests and grasslands (Table 1, Fig. 2A), and SRL was negatively correlated
242 with species optimum minimum temperature (Fig. S2A,B). Low-SRL species associated with
243 AM fungi, such as Chinese fir (*Cunninghamia lanceolata*, Fig. 1C), were more likely to occur in
244 warmer climates. High-SRL species associated with ErM fungi, such as lingonberry (*Vaccinium*
245 *vitis-idaea*, Fig. 1C), were more likely to occur in colder climates. Overall, the relationship
246 between SRL and temperature in forests was an example of a classic trade-off (Table 1, Fig. 2B).

247 In grasslands, however, we only observed a unidirectional benefit (Fig. 2C). Species with high
248 SRL, such as *Draba nemorosa* (Fig. 1C), were more likely to occur in colder climates, but
249 species with any SRL value were equally likely to occur in warm climates (Table 1, Fig. 2C).
250 Root diameter did not exhibit trade-offs with temperature in forests or grasslands (Table 1, Fig.
251 2D,E,F). Large-diameter roots in forests were advantageous in warm climates, but thin roots
252 were not clearly advantageous in cold climates (Table 1, Fig. 2E). Thick roots thus exhibit a
253 unidirectional benefit in forests with warm climates where AM fungi are most abundant²⁴⁻²⁶.

254 SRL did not exhibit a trade-off in relation to water availability, but rather a unidirectional
255 benefit (Table 1). In agreement with our second hypothesis, the SRL-water availability
256 interaction was positive in both forests and grasslands (Table 1, Fig. 2G), and SRL was
257 positively correlated with species optimum P:PET ratio (Fig. S2C,D). Species with low SRL
258 were more likely to occur in dry environments likely because AM fungi that inhabit thicker roots
259 can confer drought tolerance to plants²⁸ (Fig. 2H,I). Contrary to expectations, species with any
260 SRL value were equally likely to occur in wet environments (Fig. 2H,I), which may explain a
261 lack of clear linear relationship with water availability in previous studies^{30,38}. Root diameter did
262 not exhibit trade-offs with water availability in either forests or grasslands (Table 1, Fig. 2K,L).

263 RTD influenced the probability of species occurrence along climatic gradients in forests
264 and grasslands, but not in wetlands (Fig. 3A). Contrary to our third hypothesis and other studies
265^{29,38-43}, the RTD-temperature interaction was positive rather than negative (Table 1, Fig. 3A) and
266 RTD was positively correlated with species optimum minimum temperatures (Fig. S2E,F). In
267 forests, species such as honeysuckle (*Lonicera chrysantha*, Fig. 1C) with low RTD were more
268 likely to occur in cold climates and species such as common myrtle (*Myrtus communis*, Fig. 1C)
269 with high RTD were more likely to occur in warm climates (Table 1, Fig. 3B). However, this

270 trade-off was not observed in grasslands where we found that species with low RTD were more
271 likely to occur in cold climates but species with any RTD value were equally likely in warm
272 climates (Table 1, Fig. 3C). We predicted that ‘slow’ species with dense roots would be better
273 adapted to low temperatures, but this was incorrect. Freeze-thaw dynamics of soil in cooler
274 climates can physically disturb root systems, which introduces the risk of losing large
275 investments in dense roots and may thus select for species that produce cheap low-density roots
276 that can regrow quickly after disturbance ^{44,45}. We also predicted that ‘fast’ species with low
277 RTD and higher metabolic rates would be more competitive in warm climates, but this too was
278 incorrect. It may be that dense lignin-rich roots physically defend plants against plant pathogens,
279 protozoan parasites, and insect herbivores whose effects can be more intense at higher
280 temperature ^{24,46-49}. Root N did not exhibit clear trade-offs with temperature in either forests or
281 grasslands (Table 1, Fig. 3D,E,F).

282 RTD did not exhibit a trade-off in relation to water availability (Table 1, Fig 3G,H,I). In
283 partial agreement with our fourth hypothesis and regional studies ^{30,38,50}, the RTD-water
284 availability interaction was negative (Fig. 3G) and RTD was negatively correlated with species
285 optimum P:PET ratio (Fig S2G,H). In forests, species with high RTD had greater chances of
286 occurring in drier climates likely because denser root tissue enhances resistance to drought-
287 induced cavitation ⁵¹. However, species with any RTD value were equally likely to occur in wet
288 climates (Table 1, Fig. 3H). No clear RTD-water availability trade-off was observed in
289 grasslands (Fig. 3I), perhaps because short-lived herbaceous species escape drought by
290 restricting their activity to brief pulses of ample water availability. Contrary to our hypothesis,
291 high root N appeared to be advantageous in dry forests (Table 1, Fig 3K). This result is
292 qualitatively consistent with the discovery that leaf N per area is higher in drought-tolerant plants

293 because higher photosynthetic rates are possible at lower stomatal conductance ⁵². Perhaps root
294 N is higher in dry climates to provide drought-tolerant leaves with a greater supply of N.

295

296 **Implications for ecological theory**

297 The diversification of root morphology was pivotal to the evolutionary development of
298 land plants in their quest to colonize the terrestrial biosphere ^{20,53}, yet direct tests for how root
299 traits may influence species distributions along climatic gradients have been lacking until now.
300 We analyzed the largest root trait and vegetation datasets and found that within forest ecosystems
301 1) species with low SRL, large RD, or high RTD have a higher chance of occurring in warm
302 climates, while species with high SRL or low RTD have a higher chance of occurring in cold
303 climates; and 2) species with low SRL, large RD, high RTD, and high Root N have a higher
304 chance of occurring in dry environments, but the probability of occurring in wet environments
305 was not related to any of these root traits. These results demonstrate that root traits contribute to
306 our understanding of the distribution of vegetation, and that unidirectional benefits may be more
307 prevalent than trade-offs.

308 Ecological community assembly theory is grounded in trade-offs, but our study
309 challenges our understanding of how individual continuous traits influence species distributions
310 along environmental gradients. Of the 13 models in which a significant trait-by-environment
311 interaction was detected, only two of these models supported a trade-off, whereas seven models
312 supported unidirectional benefits and four exhibited no clear benefits in either direction (Table
313 1). This result demonstrates the importance of evaluating the model-based predictions at each
314 end of the gradient (Fig. 2,3) rather than relying on trait-environment correlations or the
315 significance of interaction coefficients alone as evidence of a trade-off. The predicted signs (*i.e.*,

316 direction) of the relationships were supported 67% of the time (16 out of the 24 models), but the
317 model predictions only resembled trade-offs 8% of the time (2 out of 24 models) (Table 1). Our
318 results agree with Grubb's insight that '*the concept of a trade-off, which implies that being suited*
319 *to one condition necessarily involves not being suited to the opposite, is widely diffused in the*
320 *current literature but is not universally applicable*'.⁵⁴

321 Our work suggests that community assembly models and plant strategy theories that use
322 continuous variation in functional traits should be explicit about whether a trait exhibits trade-
323 offs with environmental gradients or unidirectional benefits. Patterns of aboveground trait
324 variation have been shown to exhibit trait convergence in resource-poor environments and trait
325 divergence in productive environments^{14,55}, suggesting that unidirectional benefits may also
326 occur in aboveground traits. Our analysis focused on determining the contributions of individual
327 traits to species distributions, but plant strategy theories are built on sets of multiple traits. Plant
328 strategies are likely generated by a combination of trade-offs for some traits (e.g., light
329 compensation point along light gradients⁹) and unidirectional benefits for others (e.g. leaf
330 nutrient concentrations along soil fertility gradients^{14,55}), which inevitably makes the task of
331 predicting species responses using continuous traits more difficult than previously anticipated.
332 Predictive models that use sets of continuous traits as predictors of species responses need to
333 know whether a trait exhibits trade-offs or unidirectional benefits along an environmental
334 gradient. Strong trait-environment interaction coefficients in linear models will, by default,
335 predict a trait-environment trade-off, but our results show that these are less prevalent than
336 unidirectional benefits. In the case of unidirectional benefits, the predictive power of a trait for
337 species occurrences would vary with the particular values of that trait, giving one end of the
338 range in trait values higher importance than the other end. Such information could perhaps enter

339 models as priors within a hierarchical model framework. An expanded theory of trait-
340 environment interactions that incorporates unidirectional benefits will advance our understanding
341 of the adaptive value of traits in community assembly and may improve predicted responses to
342 climate change. For example, in regions projected to become warmer and drier rather than
343 warmer and wetter ⁵⁶, plant communities may converge toward lower SRL and higher RTD. This
344 would make other trait combinations less viable and put species with higher SRL or lower RTD
345 at a higher risk of local extinction in these drier regions.

346 Forests exhibited the strongest trade-offs among species, grasslands were dominated by
347 unidirectional benefits, and root trait-climate interactions were absent in wetlands (Table 1). The
348 lack of trade-offs in wetlands was expected because anoxic water-logged soils select for species
349 with aerenchyma which would confound root trait-climate relationships. The co-occurrence and
350 higher functional diversity of both woody and herbaceous plants in forests may partly explain the
351 evidence for stronger trade-offs in forests. Forests contain a higher proportion of woody species
352 and these exhibit a higher variability in fine root traits than herbs, both because the clades of land
353 plants that are characterized by large root diameter are mostly trees and because there is a greater
354 diversity of mycorrhizal types among woody plants ¹⁷. Woody plants host not only AM
355 mycorrhizal fungi, but also the evolutionarily younger EcM and ErM fungi (which are associated
356 with thinner roots) ²⁰, whereas non-woody plants mostly host AM fungi with only a minority of
357 genera being noted for hosting EcM fungi (e.g., *Kobresia*). Many of the grasslands in our dataset
358 are semi-natural and occur because of human management, which may also weaken trait-
359 environment relationships. Our analysis was also limited to species-level average trait values,
360 and it is possible that evidence for trade-offs may be stronger in general if intraspecific trait
361 plasticity could be explicitly incorporated into the model.

362 We also found that trade-offs were stronger along temperature gradients than along
363 gradients in water availability, and we consider two possible reasons for this. First, weaker
364 moisture effects could have resulted from a larger mismatch between modelled and actual
365 climatic conditions for moisture than for temperature. The difference between macro- and
366 microclimate might be comparably small for temperature, whereas soil moisture is more strongly
367 modified by soil conditions and topography, resulting in local deviations of water supply from
368 our predictions. This interpretation is supported by the lack of trait-environment interactions in
369 wetlands where water availability is driven by hydrological processes rather than climate.
370 Second, this may be related to observations that shifts in mycorrhizal dominance occur on
371 temperature gradients, but not so consistently with water⁵⁷. At large scales, AM species tend to
372 dominate warm regions (tropical dipterocarps being notable exceptions), whereas EcM and ErM
373 tend to dominate cold regions, and root traits should respond to differences in mycorrhizal
374 dominance^{24,25}. However, it is still uncertain whether the shift in mycorrhizal dominance is due
375 to temperature induced shifts in root morphology, or if the shift in root morphology is driven by
376 temperature induced shifts in mycorrhizal dominance, or both.

377 The expectation of trade-offs holds across different levels of organization from
378 individuals, populations, and to species¹, but may become masked in species because of multiple
379 trade-offs in complex environments². Indeed, there are many factors that confound the detection
380 of broad-scale relationships between interspecific trait variation and climate: the high range of
381 species trait values within communities relative to the global range^{58,59}, the high plasticity of
382 traits within species across environments and the importance of other traits⁶⁰, the stochastic
383 nature of disturbance regimes and land-use change⁵⁸, the spatially heterogeneous variation in
384 microclimate and soil properties such as moisture and texture at small spatial scales³⁸, dispersal

385 limitation, and biotic interactions (e.g., competition, facilitation)⁶¹. While root traits only
386 explained a fraction of the variation in species occurrences (Table 1), similar to studies focused
387 on aboveground traits⁵⁸, it is therefore remarkable that such clear root trait-climate relationships
388 were discovered here. This suggests that the root economics space framework is important for
389 understanding plant community assembly.

390 Trade-off theory assumes that selection is bidirectional and that constraints occur at both
391 ends of the environmental gradient¹, but relaxing these assumptions may explain when and
392 where trade-offs occur among species. Importantly, unidirectional benefits were consistently
393 associated with the more extreme cold and dry climates that are more resource-limited than
394 warm and wet climates (Figs. 2 and 3). This supports the idea that environmental filtering
395 increases in intensity where resources are more limited⁶². Single optimum traits were observed
396 in cold and dry climates, while single trait optima were not observed in warmer and wetter
397 climates. In other words, warm and wet climates exerted no clear directional selection on root
398 traits. This may also partially explain why biodiversity is higher in warm and wet climates and
399 lower in cold and dry climates. Given the prevalence of unidirectional benefits, revisiting
400 evidence for trade-offs between aboveground traits and environmental gradients using model-
401 based predictions is a research priority.

402

403

404 **References**

405 1 Agrawal, A. A. A scale-dependent framework for trade-offs, syndromes, and
406 specialization in organismal biology. *Ecology* **101**, e02924, (2020).

407 2 Agrawal, A. A., Conner, J. K. & Rasmann, S. in *Evolution since Darwin: the First 150*
408 *Years* Vol. 150 243-268 (2010).

409 3 Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. *Annual Review*
410 *of Ecology and Systematics* **19**, 207-233, (1988).

411 4 Grime, J. P. & Pierce, S. *The Evolutionary Strategies that Shape Ecosystems*. (John
412 Wiley & Sons, 2012).

413 5 Fry, J. D. Detecting ecological trade-offs using selection experiments. *Ecology* **84**, 1672-
414 1678, (2003).

415 6 Grubb, P. J. Trade-offs in interspecific comparisons in plant ecology and how plants
416 overcome proposed constraints. *Plant Ecology & Diversity* **9**, 3-33, (2016).

417 7 Kneitel, J. M. & Chase, J. M. Trade- offs in community ecology: linking spatial scales
418 and species coexistence. *Ecology Letters* **7**, 69-80, (2004).

419 8 Tilman, D. *Plant strategies and the dynamics and structure of plant communities*.
420 (Princeton University Press, 1988).

421 9 Lusk, C. H. & Jorgensen, M. A. The whole-plant compensation point as a measure of
422 juvenile tree light requirements. *Functional Ecology* **27**, 1286-1294, (2013).

423 10 Ho, M. D., Rosas, J. C., Brown, K. M. & Lynch, J. P. Root architectural tradeoffs for
424 water and phosphorus acquisition. *Functional Plant Biology* **32**, 737-748, (2005).

425 11 Forister, M. L. & Jenkins, S. H. A Neutral Model for the Evolution of Diet Breadth. *The
426 American Naturalist* **190**, E40-E54, (2017).

427 12 Laughlin, D. C., Strahan, R. T., Adler, P. B. & Moore, M. M. Survival rates indicate that
428 correlations between community-weighted mean traits and environments can be
429 unreliable estimates of the adaptive value of traits. *Ecology Letters* **21**, 411-421, (2018).

430 13 Pollock, L. J., Morris, W. K. & Vesk, P. A. The role of functional traits in species
431 distributions revealed through a hierarchical model. *Ecography* **35**, 716-725, (2012).

432 14 Mason, N. W. H. *et al.* Changes in coexistence mechanisms along a long-term soil
433 chronosequence revealed by functional trait diversity. *Journal of Ecology* **100**, 678-689,
434 (2012).

435 15 Gompert, Z. *et al.* The evolution of novel host use is unlikely to be constrained by trade-
436 offs or a lack of genetic variation. *Molecular Ecology* **24**, 2777-2793, (2015).

437 16 Laliberté, E. Below-ground frontiers in trait-based plant ecology. *New Phytologist* **213**,
438 1597-1603, (2017).

439 17 Bergmann, J. *et al.* The fungal collaboration gradient dominates the root economics space
440 in plants. *Science Advances* **6**, eaba3756, (2020).

441 18 Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant
442 population and community biology. *Science* **367**, eaba1223, (2020).

443 19 Kong, D. *et al.* Leading dimensions in absorptive root trait variation across 96 subtropical
444 forest species. *New Phytologist* **203**, 863-872, (2014).

445 20 Ma, Z. *et al.* Evolutionary history resolves global organization of root functional traits.
446 *Nature* **555**, 94-97, (2018).

447 21 Weemstra, M. *et al.* Towards a multidimensional root trait framework: a tree root review.
448 *New Phytologist* **211**, 1159-1169, (2016).

449 22 Kramer-Walter, K. R. *et al.* Root traits are multidimensional: specific root length is
450 independent from root tissue density and the plant economic spectrum. *Journal of
451 Ecology* **104**, 1299-1310, (2016).

452 23 Díaz, S. *et al.* The global spectrum of plant form and function. *Nature* **529**, 167-171,
453 (2016).

454 24 Tedersoo, L. *et al.* Global diversity and geography of soil fungi. *Science* **346**, 1256688,
455 (2014).

456 25 Steidinger, B. S. *et al.* Climatic controls of decomposition drive the global biogeography
457 of forest-tree symbioses. *Nature* **569**, 404-408, (2019).

458 26 Soudzilovskaia, N. A. *et al.* Global mycorrhizal plant distribution linked to terrestrial
459 carbon stocks. *Nature Communications* **10**, 5077, (2019).

460 27 Kytöviita, M.-M. Asymmetric symbiont adaptation to Arctic conditions could explain
461 why high Arctic plants are non-mycorrhizal. *FEMS Microbiology Ecology* **53**, 27-32,
462 (2005).

463 28 Augé, R. M., Toler, H. D. & Saxton, A. M. Arbuscular mycorrhizal symbiosis alters
464 stomatal conductance of host plants more under drought than under amply watered
465 conditions: a meta-analysis. *Mycorrhiza* **25**, 13-24, (2015).

466 29 Gill, R. A. & Jackson, R. B. Global patterns of root turnover for terrestrial ecosystems.
467 *New Phytologist* **147**, 13-31, (2000).

468 30 Butterfield, B. J., Bradford, J. B., Munson, S. M. & Gremer, J. R. Aridity increases
469 below-ground niche breadth in grass communities. *Plant Ecology* **218**, 385-394, (2017).

470 31 Bruelheide, H. *et al.* sPlot – A new tool for global vegetation analyses. *Journal of
471 Vegetation Science* **30**, 161-186, (2019).

472 32 Guerrero-Ramírez, N. R. *et al.* Global root traits (GRoT) database. *Global Ecology and
473 Biogeography* **30**, 25-37, (2021).

474 33 Valverde-Barrantes, O. J., Freschet, G. T., Roumet, C. & Blackwood, C. B. A worldview
475 of root traits: the influence of ancestry, growth form, climate and mycorrhizal association
476 on the functional trait variation of fine-root tissues in seed plants. *New Phytologist* **215**,
477 1562-1573, (2017).

478 34 Kong, D. *et al.* Nonlinearity of root trait relationships and the root economics spectrum.
479 *Nature Communications* **10**, 2203, (2019).

480 35 Fort, F. & Freschet, G. T. Plant ecological indicator values as predictors of fine-root trait
481 variations. *Journal of Ecology*, (2020).

482 36 Purcell, A. S. T., Lee, W. G., Tanentzap, A. J. & Laughlin, D. C. Fine Root Traits Are
483 Correlated with Flooding Duration while Aboveground Traits Are Related to Grazing in
484 an Ephemeral Wetland. *Wetlands* **39**, 291-302, (2019).

485 37 Laughlin, D. C., Fulé, P. Z., Huffman, D. W., Crouse, J. & Laliberté, E. Climatic
486 constraints on trait-based forest assembly. *Journal of Ecology* **99**, 1489-1499, (2011).

487 38 Simpson, A. H., Richardson, S. J. & Laughlin, D. C. Soil-climate interactions explain
488 variation in foliar, stem, root and reproductive traits across temperate forests. *Global
489 Ecology and Biogeography* **25**, 964-978, (2016).

490 39 Chen, W., Zeng, H., Eissenstat, D. M. & Guo, D. Variation of first-order root traits across
491 climatic gradients and evolutionary trends in geological time. *Global Ecology and
492 Biogeography* **22**, 846-856, (2013).

493 40 Freschet, G. T. *et al.* Climate, soil and plant functional types as drivers of global fine-root
494 trait variation. *Journal of Ecology* **105**, 1182-1196, (2017).

495 41 Ostonen, I. *et al.* Adaptive root foraging strategies along a boreal–temperate forest
496 gradient. *New Phytologist* **215**, 977-991, (2017).

497 42 Wang, R. *et al.* Different phylogenetic and environmental controls of first-order root
498 morphological and nutrient traits: Evidence of multidimensional root traits. *Functional
499 Ecology* **32**, 29-39, (2018).

500 43 Craine, J. M. & Lee, W. G. Covariation in leaf and root traits for native and non-native
501 grasses along an altitudinal gradient in New Zealand. *Oecologia* **134**, 471-478, (2003).

502 44 Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental
503 constraints on a global relationship among leaf and root traits of grasses. *Ecology* **86**, 12-
504 19, (2005).

505 45 Zadworny, M. *et al.* Patterns of structural and defense investments in fine roots of Scots
506 pine (*Pinus sylvestris* L.) across a strong temperature and latitudinal gradient in Europe.
507 *Global Change Biology* **23**, 1218-1231, (2017).

508 46 Oliverio, A. M. *et al.* The global-scale distributions of soil protists and their contributions
509 to belowground systems. *Science Advances* **6**, eaax8787, (2020).

510 47 Bennett, A. E., Grussu, D., Kam, J., Caul, S. & Halpin, C. Plant lignin content altered by
511 soil microbial community. *New Phytologist* **206**, 166-174, (2015).

512 48 Moore, B. D. & Johnson, S. N. Get Tough, Get Toxic, or Get a Bodyguard: Identifying
513 Candidate Traits Conferring Belowground Resistance to Herbivores in Grasses. *Frontiers*
514 in *Plant Science* **7**, (2017).

515 49 Delgado-Baquerizo, M. *et al.* The proportion of soil-borne pathogens increases with
516 warming at the global scale. *Nature Climate Change*, (2020).

517 50 de la Riva, E. G. *et al.* Root traits across environmental gradients in Mediterranean
518 woody communities: are they aligned along the root economics spectrum? *Plant and Soil*
519 **424**, 35-48, (2018).

520 51 Hacke, U. G., Sperry, J. S. & Pittermann, J. Drought experience and cavitation resistance
521 in six shrubs from the Great Basin, Utah. *Basic and Applied Ecology* **1**, 31-41, (2000).

522 52 Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and
523 nutrient content between species of high- and low-rainfall and high- and low-nutrient
524 habitats. *Functional Ecology* **15**, 423-434, (2001).

525 53 Wang, B. *et al.* Presence of three mycorrhizal genes in the common ancestor of land
526 plants suggests a key role of mycorrhizas in the colonization of land by plants. *New*
527 *Phytologist* **186**, 514-525, (2010).

528 54 Grubb, P. in *The population structure of vegetation* Vol. Handbook of Vegetation
529 Science Vol 3 (ed J. White) 595-621 (Dr. W. Junk Publishers, 1985).

530 55 Laughlin, D. C. *et al.* Quantifying multimodal trait distributions improves trait-based
531 predictions of species abundances and functional diversity. *Journal of Vegetation Science*
532 **26**, 46-57, (2015).

533 56 Pfahl, S., O'Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of
534 projected future changes in extreme precipitation. *Nature Climate Change* **7**, 423-427,
535 (2017).

536 57 Read, D. J. Mycorrhizas in ecosystems. *Experientia* **47**, 376-391, (1991).

537 58 Bruelheide, H. *et al.* Global trait–environment relationships of plant communities. *Nature*
538 *Ecology & Evolution* **2**, 1906-1917, (2018).

539 59 Wright, I. J. *et al.* The worldwide leaf economics spectrum. *Nature* **428**, 821-827, (2004).

540 60 Kumordzi, B. B. *et al.* Geographic scale and disturbance influence intraspecific trait
541 variability in leaves and roots of North American understorey plants. *Functional Ecology*
542 **33**, 1771-1784, (2019).

543 61 Velázquez, E., Paine, C. E. T., May, F. & Wiegand, T. Linking trait similarity to
544 interspecific spatial associations in a moist tropical forest. *Journal of Vegetation Science*
545 **26**, 1068-1079, (2015).

546 62 Butterfield, B. J. Environmental filtering increases in intensity at both ends of climatic
547 gradients, though driven by different factors, across woody vegetation types of the
548 southwest USA. *Oikos* **124**, 1374-1382, (2015).

549 63 Iversen, C. M. *et al.* A global Fine-Root Ecology Database to address below-ground
550 challenges in plant ecology. *New Phytologist* **215**, 15-26, (2017).

551 64 Kattge, J. *et al.* TRY plant trait database – enhanced coverage and open access. *Global
552 Change Biology* **26**, 119-188, (2020).

553 65 Pakeman, R. J. & Quested, H. M. Sampling plant functional traits: What proportion of the
554 species need to be measured? *Applied Vegetation Science* **10**, 91-96, (2007).

555 66 Karger, D. N. *et al.* Climatologies at high resolution for the earth's land surface areas.
556 *Scientific Data* **4**, 170122, (2017).

557 67 Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: A
558 spatial analysis of global land suitability for clean development mechanism afforestation
559 and reforestation. *Agriculture, Ecosystems & Environment* **126**, 67-80, (2008).

560 68 Olson, D. M. *et al.* Terrestrial Ecoregions of the World: A New Map of Life on Earth: A
561 new global map of terrestrial ecoregions provides an innovative tool for conserving
562 biodiversity. *Bioscience* **51**, 933-938, (2001).

563 69 Jamil, T., Ozinga, W. A., Kleyer, M. & ter Braak, C. J. F. Selecting traits that explain
564 species–environment relationships: a generalized linear mixed model approach. *Journal
565 of Vegetation Science* **24**, 988-1000, (2013).

566 70 Miller, J. E. D., Damschen, E. I. & Ives, A. R. Functional traits and community
567 composition: a comparison among community-weighted means, weighted correlations,
568 and multilevel models. *Methods in Ecology and Evolution* **10**, 415-425, (2018).

569 71 R Development Core Team. *R 3.6.1: A language and environment for statistical
570 computing*, <<http://www.R-project.org/>> (2019).

571 72 Wickham, H. *ggplot2: Elegant Graphics for Data Analysis*. (Springer-Verlag, 2016).

572 73 Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models
573 using lme4. *Journal of Statistical Software* **67**, 1-48, (2015).

574 74 Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in
575 Linear Mixed Effects Models. *Journal of Statistical Software* **82**, 1-26, (2017).

576 75 Lüdecke, D., Makowski, D. & Waggoner, P. performance: Assessment of Regression
577 Models Performance. R package version 0.4.2. (2019).

578 76 Stefan, V. & Levin, S. plotbiomes: Plot Whittaker biomes with ggplot2. R package
579 version 0.0.0.9001., (2020).

580 77 Roberts, D. W. labdsv: Ordination and Multivariate Analysis for Ecology. R package
581 version 1.8.0. <https://CRAN.R-project.org/package=labdsv>. (2016).

582 78 Anderson, D. R. *Model based inference in the life sciences: a primer on evidence*.
583 (Springer Science & Business Media, 2008).

584

585
586 **Acknowledgements:**

587 We thank the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig for
588 supporting the sRoot and sPlot working groups and the University of Wyoming Advanced
589 Research Computing Center for their technical support. sPlot was initiated by sDiv and funded
590 by the German Research Foundation (FZT 118), and now is a platform of iDiv. The sRoot
591 workshops and LM were also supported by NWO-Vidi grant 864.14.006. CMI and FRED were
592 supported by the Biological and Environmental Research program in the U.S. Department of
593 Energy's Office of Science. JB was supported by Deutsche Forschungsgemeinschaft (DFG) -
594 project 432975993. NG-R thanks the Dorothea Schlözer Postdoctoral Programme of the Georg-
595 August-Universität.

596
597
598

Author contributions:

599 AW, LM, HB and DCL conceived the idea for the project; all authors were involved in collecting
600 datasets, developing the conceptual framework and interpreting the results; DCL, FMS and HB
601 performed the statistical analyses; DCL wrote the first draft of the manuscript; all authors
602 commented on and agreed with the final version of the manuscript.

603
604

605 **Competing interests**

606 The authors declare no competing interests.

607
608
609

610 **Table 1. Model support and summary of results for root trait-climate interactions.** Each of the eight models were evaluated for
 611 their support for a trait-by-environment interaction in forests, grasslands, and wetlands. Statistical evidence was evaluated by
 612 inspecting the significance of the coefficient in the model, the model R^2 , the AIC difference (ΔAIC) between models with the
 613 environment alone versus models with both environment and traits (see full model description in Methods), and a likelihood ratio test
 614 (LRT). Number of observations for each test are provided in Table S1.
 615

Trait and climate variables	Vegetation type	Generalized Linear Mixed Effects Model Results			Comparison with Environment-only model			Interpretation	
		Trait-Env interaction coefficient (Std. Error)	P-value for interaction coefficient	R^2_m	R^2_c	ΔAIC	LRT χ^2 with $df=2$ (P-value)	Hypothesized direction supported?	Nature of Trade-off
SRL - Temp	Forests	-0.50 (0.03)	$P < 2e-16$	0.06	0.77	-36	39.6 ($P=2.556e-09$)	Yes	Trade-off
	Grasslands	-0.19 (0.01)	$P < 2e-16$	0.05	0.79	-51	55.0 ($P=1.144e-12$)	Yes	Unidirectional
	Wetlands	0.04 (0.04)	$P = 0.277$	0.01	0.48	+3	1.1 ($P=0.5694$)	Yes	No interaction
RD - Temp	Forests	0.17 (0.04)	$P = 3.79e-05$	0.06	0.77	-22	26.5 ($P=1.731e-06$)	Yes	Unidirectional
	Grasslands	0.20 (0.01)	$P < 2e-16$	0.04	0.82	-21	25.5 ($P=2.885e-06$)	Yes	No interaction*
	Wetlands	-0.04 (0.04)	$P = 0.2652$	0.01	0.55	2	1.3 ($P=0.5224$)	Yes	No interaction
SRL - P:PET	Forests	0.19 (0.04)	$P = 2.31e-07$	0.05	0.75	-31	35.1 ($P=2.422e-08$)	Yes	Unidirectional
	Grasslands	0.38 (0.01)	$P < 2e-16$	0.11	0.79	-74	78.0 ($P < 2.2e-16$)	Yes	Unidirectional
	Wetlands	0.005 (0.03)	$P = 0.88498$	0.01	0.49	+3	0.7 ($P=0.708$)	Yes	No interaction
RD - P:PET	Forests	0.01 (0.03)	$P = 0.623$	0.08	0.70	-37	41.2 ($P=1.132e-09$)	No	No interaction
	Grasslands	-0.17 (0.01)	$P < 2e-16$	0.06	0.78	-12	16.2 ($P=0.000308$)	Yes	No interaction*
	Wetlands	-0.01 (0.04)	$P = 0.775$	0.02	0.55	3	1.8 ($P=0.4121$)	Yes	No interaction
RTD - Temp	Forests	0.41 (0.05)	$P = 2.45e-14$	0.07	0.74	-34	38.3 ($P=4.772e-09$)	No	Trade-off
	Grasslands	0.26 (0.02)	$P < 2e-16$	0.03	0.82	-8	12.0 ($P=0.0025$)	No	Unidirectional
	Wetlands	-0.02 (0.04)	$P = 0.5587$	0.01	0.49	+3	1.8 ($P=0.4072$)	Yes	No interaction
Root N - Temp	Forests	-0.05 (0.03)	$P = 0.1040$	0.02	0.69	-2	6.5 ($P=0.03947$)	No	No interaction
	Grasslands	0.03 (0.03)	$P = 0.27539$	0.01	0.74	2	2.4 ($P=0.2956$)	No	No interaction
	Wetlands	0.10 (0.06)	$P = 0.0929$	0.08	0.60	0	4.1 ($P=0.1296$)	Yes	No interaction

RTD - P:PET	Forests	-0.13 (0.04)	$P = 0.000503$	0.04	0.63	-20	23.9 ($P=6.54e-06$)	Yes	Unidirectional
	Grasslands	-0.12 (0.02)	$P = 1.6e-11$	0.04	0.77	-4	8.0 ($P=0.01788$)	Yes	No interaction*
	Wetlands	0.01 (0.03)	$P = 0.8406$	0.00	0.48	+2	2.0 ($P=0.3729$)	Yes	No interaction
Root N - P:PET	Forests	-0.14 (0.03)	$P = 7.01e-06$	0.04	0.74	-2	6.1 ($P=0.04621$)	No	Unidirectional
	Grasslands	-0.15 (0.03)	$P = 2.96e-09$	0.04	0.79	-4	7.8 ($P=0.01977$)	No	No interaction*
	Wetlands	-0.14 (0.05)	$P = 0.00994$	0.07	0.55	-2	6.4 ($P=0.04018$)	No	No interaction

616 R^2_m = deviance explained by fixed effects

617 R^2_c = deviance explained by fixed and random effects (see Methods for list of random effects)

618 $\Delta AIC = AIC_{TxE} - AIC_E$; that is, AIC of model TxE minus AIC of model E (see Methods). Models with ΔAIC that are more negative
619 than -4 are more supported than the simpler model E

620 χ^2 = chi-square statistic for likelihood ratio test (LRT) comparing models TxE and E with 2 df

621 SRL = specific root length ($m g^{-1}$)

622 RTD = root tissue density ($mg mm^{-3}$)

623 RD = root diameter (mm)

624 Root N = root nitrogen concentration ($mg g^{-1}$)

625 Temp = minimum temperature in the coldest month (degree C)

626 P:PET = Precipitation : Potential Evapotranspiration ratio ($mm mm^{-1}$)

627 *Four models marked by an asterisk (described in text) exhibited significant trait-by-environment interaction coefficients and
628 likelihood ratio tests, yet the illustrated model predictions in Figures 2 and 3 did not exhibit clear trade-off or unidirectional benefits,
629 so we classify them as “no interaction” here because of our conservative criterion

630

631

632 **Figure Captions**

633 **Figure 1. The ecological consequences of trait variation on species distributions along**
634 **climatic gradients.** (A) Empirical evidence for an ecological trade-off requires the existence of a
635 strong trait-environment interaction ^{1,12}. Here we illustrate examples for both positive and
636 negative trait-environment interactions driving species occurrences. In the case of a positive
637 interaction between a trait and an environmental gradient, the effect of the trait on the probability
638 of species occurrence at the low end of an environmental gradient would be negative, but this
639 effect will switch directions and become positive at the high end of the gradient (see left-hand
640 column). This result would imply that a high trait value is beneficial at the high end of the
641 gradient and a low trait value is beneficial at the low end of the gradient (see middle and right-
642 hand columns). (B) Alternatively, if a statistical trait-environment interaction is detected, yet the
643 trait only exhibits an effect at one end of the environmental gradient (i.e., the effects do not
644 switch direction along the gradient), then this suggests there is only a ‘unidirectional benefit’.
645 Evidence for a unidirectional benefit for two alternative cases are illustrated for the positive
646 interaction scenario. (C) We scrutinized the existence of trade-offs using plant roots, which have
647 recently been shown to vary among species along two independent trait axes ¹⁷. One axis is
648 described by variation in investment in high specific root length (SRL) versus large root diameter
649 (RD), and the other axis is described by variation between investment in high root tissue density
650 (RTD) versus metabolically-active roots with high root nitrogen (root N). The location in the
651 root economics space of five species discussed in the main text are shown on the biplot:
652 *Vaccinium vitis-idaea* (*Vv*) is a high-SRL ErM species, *Draba nemorosa* (*Dn*) is a high-SRL AM
653 species with low colonization rates, *Cunninghamia lanceolata* (*Cl*) is a low-SRL AM species,
654 *Lonicera chrysantha* (*Lc*) is a low-RTD species, and *Myrtus communis* (*Mc*) is a high-RTD

655 species. (D) We developed four hypotheses using first principles about the adaptive value of
656 these roots traits along global climatic gradients, where temperature is illustrated as a gradient
657 from blue to red (*i.e.*, cold to warm) and water availability is illustrated as a gradient from gold
658 to green (*i.e.*, dry to wet).

659

660

661 **Figure 2. Specific root length (SRL) and root diameter (RD) are related to species**
662 **occurrences along climatic gradients.** The left-hand column illustrates how the sign of the
663 relationship between the trait and the probability of occurrence changes along gradients of mean
664 minimum temperature of the coldest month and the precipitation-to-potential evapotranspiration
665 ratio (P:PET) in forests, grasslands, and wetlands. The y-axis of the left-hand column is the
666 partial derivative of probability of occurrence with respect to traits ($\partial y / \partial T$) to demonstrate
667 whether the effect of the trait on probability of occurrence changes sign along the climatic
668 gradient. Biologically meaningful interactions switch sign, which is indicated if the lines cross
669 the horizontal dotted line. The middle and right-hand columns illustrate model predictions
670 (including 95% confidence intervals) for forests and grasslands, respectively (wetlands are not
671 shown because no interactions were significant). A trade-off was only evident in panel B, where
672 trait values exhibited different effects on occurrences at different ends of the environmental
673 gradients. In contrast, unidirectional benefits were evident in panels C, E, H, and I. Note that the
674 flat lines that hover close to zero probability are interpreted as ‘equally likely to occur across the
675 root trait gradient’ because the average probability of occurrence is near zero; this is because
676 absences (*i.e.*, zeros) comprise ~99% of the dataset.

677

678

679

680

681 **Figure 3. Root tissue density (RTD) and root nitrogen concentration (Root N) are related to**
682 **species occurrences along climatic gradients.** The left-hand column illustrates how the sign of
683 the relationship between the trait and the probability of occurrence changes along gradients of
684 mean minimum temperature of the coldest month and the precipitation-to-potential
685 evapotranspiration ratio (P:PET) in forests, grasslands, and wetlands. The y-axis of the left-hand
686 column is the partial derivative of probability of occurrence with respect to traits ($\partial y / \partial T$) to
687 demonstrate whether the effect of the trait on probability of occurrence changes sign along the
688 climatic gradient. Biologically meaningful interactions switch sign, which is indicated if the lines
689 cross the horizontal dotted line. The middle and right-hand columns illustrate model predictions
690 (and 95% confidence intervals) for forests and grasslands, respectively (wetlands are not shown
691 because no interactions were significant). A trade-off was only evident in panel B. In contrast,
692 unidirectional benefits were evident in panels C, H, and K. Note that the flat lines that hover
693 close to zero probability are interpreted as ‘equally likely to occur across the root trait gradient’
694 because the average probability of occurrence is near zero; this is because absences (i.e., zeros)
695 comprise ~99% of the dataset.

696 **Methods**

697

698 *Data synthesis*

699 To test the adaptive value of root traits along gradients in temperature and water
700 availability, we joined the global vegetation plot database (sPlot)³¹ with the global root trait
701 database (GRoT)³², which combines observations from the Fine-Root Ecology Database
702 (FRED)⁶³ with root data in TRY⁶⁴, as well as additional incorporated literature. This dataset has
703 strong representation of AM, EcM, and ErM mycorrhizal types but only a few non-mycorrhizal
704 species.

705 We computed species-level averages of the most commonly measured fine root traits by
706 first calculating the mean value of a species within a study and then averaging those values for a
707 species across studies. We cannot say anything about plasticity or intraspecific trait variation in
708 this study given that we were only able to analyze average trait values of species. RTD values
709 reported to be $> 1.0 \text{ mg mm}^{-3}$ were excluded from this study. This resulted in a dataset of 1,767
710 species with specific root length (SRL; m g^{-1}) and 1,426 species with root tissue density (RTD;
711 mg mm^{-3}), 1,283 species with root nitrogen concentration (root N, mg g^{-1}), and 1,623 species
712 with root diameter (RD; mm). Out of the 2,122 species in GRoT, 1,638 species were present in
713 sPlot for a total of 998,669 vegetation records. We discarded all plots that contained $< 80\%$ trait
714 coverage based on relative cover⁶⁵ for a total of 152,771 plots with SRL data, 154,192 plots with
715 RD data, 107,325 plots with RTD data, and 109,494 plots with root N data.

716 The majority of plots were located in Europe, Asia, North America, and Australia (Fig
717 S1A). Plots were found within all global biomes except tropical rainforests but were most
718 representative of temperate seasonal forest, boreal forest, woodland-shrubland, and temperate

719 grassland-desert biomes (Fig S1B). The paucity of root trait data in tropical forests prevented us
720 from including these biomes in our analysis, highlighting the importance of new data collection
721 in tropical ecosystems. We used the geographical coordinates of each plot to compile climate
722 data and ecoregion classification. The average minimum temperature in the coldest month was
723 downloaded from CHELSA (~1 km resolution)⁶⁶. The correlation between minimum
724 temperature and P:PET was weak and negative ($r = -0.12$) (Fig. S1D). Model results were
725 qualitatively similar if mean annual temperature was used instead of minimum temperature of
726 the coldest month. Water availability was expressed as the precipitation-to-potential
727 evapotranspiration ratio (P:PET) using the global Aridity index raster (~1 km resolution)⁶⁷.

728 Information on vegetation types was only available for a subset of plots in sPlot, and
729 most of these classified plots were located in Europe. To have all plots consistently assigned to
730 vegetation types, we ran one classification based on species' affinities to forest, grassland,
731 savanna, heathland, steppe, wetland, and other, as assigned based on expert opinion (available in
732 Supplementary Material). Based on the relative cover of each species within a given plot, we
733 summarized species based on their habitat affinities, and summed their relative cover. We then
734 assigned each plot to a habitat based on the following if-else conditions: if the pooled relative
735 cover of species with wetland affinities > 0.5 , then it was classified as "Wetland", if the relative
736 cover of species with forest affinities > 0.3 , then it was classified as "Forest", if the relative cover
737 of species with either grassland, savanna, heathland, or steppe > 0.7 , then we classified it as
738 "Grassland". These three if-else conditions were sequential, so that a plot assigned to "Wetland",
739 could not be also assigned to "Forest" or "Grassland". We selected the thresholds iteratively, in
740 order to maximize the overall accuracy of the classification based on species' habitat affinity,
741 when tested against sPlot's native habitat classification. Out of the 202,942 plots we considered,

742 23,885 were assigned to “Wetland”, 65,618 to “Forest” and 103,009 to “Grassland”. Another
743 10,420 remained unassigned and were removed from the analysis. The overall accuracy of the
744 classification was 0.67 and the Kappa statistic was 0.49. Compositional differences among the
745 three vegetation types are illustrated by a Principal Coordinates Analysis using Bray-Curtis
746 distances (Fig S1D). We included savanna species within grasslands and did not include a
747 ‘savanna’ category for two main reasons: 1) no plots in our dataset occurred in the savanna
748 regions of South America or Africa, and 2) the compositional data available to us could not be
749 used to reliably discern a savanna from a forest or grassland. This decision had no appreciable
750 affect on the results because the direction of the trait-environment interactions detected in this
751 study were relatively consistent between grassland and forest, so adding additional vegetation
752 types that are intermediary between the two would not have affected the results.

753 Each plot was categorized into ecoregions using Olson et al’s ecoregion classification
754 system⁶⁸ to account for the spatial structure of the data and to define regional species pools.
755 Regional species pools were defined as all species detected in plots within an ecoregion, and we
756 defined species absences based on these regional species pools. Species that were not detected on
757 plot x but were found on other plots within the ecoregion were considered absent in plot x . We
758 did this to prevent a situation where a species has zero probability of being in a plot; for
759 example, we prevented a subtropical species from being considered ‘absent’ from a plot in the
760 taiga. This method accounts for the fact that species may be absent from a plot because of
761 biogeographical dispersal limitation, not just because of environmental filtering. We removed all
762 ecoregions with < 200 observations, which eliminated observations from South America and
763 Africa. The final number of plots used in each model is listed in Table S1.

764

765 *Data analysis*

766 We fit hierarchical models using Generalized Linear Mixed Effects Models to test
767 whether root traits explain species occurrences by their interactions with climatic gradients^{13,69},
768 which is the most appropriate method for evaluating how trait-environment interactions drive
769 species occurrences⁷⁰. We modeled binomial species presence-absence data using a logit link
770 function and binomial error structure. Given the size of the dataset, all models were fit in parallel
771 using an Intel compiled version of R on the high-performance computer cluster at the University
772 of Wyoming, where several days to four weeks were required to achieve model convergence. We
773 used the following packages in R version 3.6.1⁷¹ to conduct our analyses: stats⁷¹, ggplot2⁷²,
774 lme4⁷³, lmerTest⁷⁴, performance⁷⁵, plotbiomes⁷⁶, and labdsv⁷⁷.

775 First, we fit an ‘environment-only model’, which fit quadratic polynomials to all species
776 simultaneously with respect to the climate factor. The quadratic polynomial was especially
777 important to accurately capture the broad variation in species environmental optima across such
778 vast climatic gradients. We also controlled for variation in occurrences within each ecoregion by
779 modelling ecoregions as random intercepts, which was important given the strong bias of number
780 of plots in European ecoregions. In summary, for each climatic factor we fit the following
781 hierarchical model (‘model E’):

782

783
$$\text{logit}(y) = \beta_0 + \gamma_{j0} + \delta_{k0} + (\beta_1 + \gamma_{j1}) \text{climate} + (\beta_2 + \gamma_{j2}) \text{climate}^2$$

784

785 where y was binomial presence and absence, β_0 was the global intercept, β_1 was the fixed effect
786 term describing the main effect of the climatic gradient, β_2 was the fixed effect term describing
787 the main effect of the squared-climatic term, which allowed to model optimum environments for

788 each species, γ_{j0} was a random intercept for each of j species drawn from a normal distribution
 789 $N(0, \sigma^2_{\gamma_{j0}})$, δ_{k0} was a random intercept for each of k ecoregions drawn from a normal distribution
 790 $N(0, \sigma^2_{\delta_{k0}})$, γ_{j1} was a random slope for each of j species drawn from a normal distribution
 791 $N(0, \sigma^2_{\gamma_{j1}})$, and γ_{j2} was a random slope for each of j species drawn from a normal distribution
 792 $N(0, \sigma^2_{\gamma_{j2}})$. We used the quadratic polynomial random effects from this model to compute the
 793 optimum temperature and water availability for each species, *i.e.*, the value of the climatic
 794 variables where the species attains its highest probability of occurrence. We regressed these on
 795 the trait values of each species, where the relative abundance of each species in the dataset were
 796 used as weights in the regression (see Fig. S2). The lme4 syntax for this model was
 797 `glmer(occurrence ~ climate + climate2 + (climate + climate2|species) +`
 798 `(1|ecoregion), family=binomial).`

799 Second, we fit ‘trait-by-environment interaction models’, which included one root trait
 800 and its interaction with climate, to test if traits explain any additional information about the
 801 changing probabilities of species occurrences along the climatic gradients. For each trait and
 802 climatic factor combination we fit the following hierarchical model (‘model *TxE*’):
 803

804 $\text{logit}(y) = \beta_0 + \gamma_{j0} + \delta_{k0} + (\beta_1 + \gamma_{j1})\text{climate} + (\beta_2 + \gamma_{j2})\text{climate}^2 + (\beta_3)\text{trait} + (\beta_4)\text{trait} \cdot \text{climate}$
 805
 806 where β_3 was the fixed effect term describing the main effect of traits, and β_4 was the fixed effect
 807 term describing the interaction between the trait and the climatic gradient. The lme4 syntax for
 808 this model was `glmer(occurrence ~ climate + climate2 + trait + trait:climate`
 809 `+ (climate + climate2|species) + (1|ecoregion), family=binomial).`

810 To evaluate the empirical support for the trait-environment interaction, we compared
811 model ‘ TxE ’ model to model ‘ E ’. Given the statistical power of the large dataset, we used three
812 criteria to assess the evidence of whether species occurrences can be explained by trait-
813 environment interactions: 1) differences in AIC between the two models (i.e., $AIC_{TxE} - AIC_E$) that
814 were < -4 (i.e., an absolute difference > 4)⁷⁸, 2) significant likelihood ratio tests using a chi-
815 square statistic, and 3) a significant fixed effect interaction term in the linear predictor. All three
816 criteria needed to be met to consider these to be important interactions. We used a threshold of
817 AIC differences more negative than -4 following suggested rules of thumb for model comparison
818⁷⁸.

819 We further classified these significant interactions into two general types: 1) “trade-offs”
820 and 2) “unidirectional benefits”. Trade-offs occur where certain trait values confer adaptive
821 advantage at one end of an environmental gradient and other trait values confer benefits at the
822 opposite end of the gradient (Fig. 1A). Unidirectional benefits occur when a trait confers an
823 adaptive advantage at only one end of an environmental gradient (Fig. 1B). In order to be
824 considered a ‘trade-off’, the effect of traits on probability of occurrence had to switch signs
825 between each end of the environmental gradient¹². To test this, we illustrate the first partial
826 derivative of the model with respect to the trait ($\partial y / \partial T$) to demonstrate how the effect of the
827 trait on probability of occurrence changes along the climatic gradient. A significant positive
828 interaction would be illustrated as a line with positive slope that passes through $\partial y / \partial T = 0$ (Fig.
829 1A). In contrast, ‘unidirectional benefits’ were interactions where a trait exhibits an effect on
830 probability of occurrence at one end of the gradient but has no effect on probability of
831 occurrence at the other end of the gradient (Fig. 1B). To operationalize this distinction, we
832 plotted model-predicted probabilities as a function of each trait at the low end (1st percentile) and

833 high end (99th percentile) of each climatic gradient. Given the size of the datasets, these
834 percentiles include thousands of observations. If the probability of occurrence at one end of the
835 gradient did not exceed 5% whereas the probability of occurrence at the other end of the gradient
836 exceeded 5%, then we considered this to be a ‘unidirectional benefit’. Given the large number of
837 absences that is typical with sparse community datasets, the average probability of species
838 detection was approximately 0.01, thus a 5% probability would be a five-fold increase from the
839 average. Using these criteria, the nature of each trade-off is listed in Table 1 and Figs. 2 and 3.

840 We limited our analyses to models with one trait and one climate gradient rather than
841 fitting more complex models with multiple traits and multiple climate gradients. We took this
842 choice to make our work more comparable to other recent work ⁵⁸ and to achieve a more
843 straightforward interpretation of interactions. We also limited our models to one climate gradient
844 because model convergence was problematic even for the environment-only models (model *E*).
845 These models included hundreds of random slopes and intercepts with respect to climate
846 variables and squared variables to fit quadratic polynomials to account for each species’
847 nonlinear response to climate (Fig. S2). Adding a second climate variable would add hundreds
848 more coefficients to account for each species’ nonlinear response to that gradient, and we would
849 need to include their interaction. Finally, we limited models to only one trait because including
850 two traits reduced the number of species with data for both traits that could be included in the
851 model. The occurrence of species-level average trait values are plotted along each climate
852 gradient in Figs. S3 and S4.

853

854

855

856 **Data Availability**

857 All code and data needed to reproduce the model results can be accessed at

858 <https://idata.idiv.de/ddm/Data>ShowData/3475>

859

860