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Abstract

Ecological theory is built on trade-offs where trait differences among species evolved as
adaptations to different environments. Trade-offs are often assumed to be bidirectional, where
opposite ends of a gradient in trait values confer advantages in different environments. However,
unidirectional benefits could be widespread if extreme trait values confer advantages at one end
of an environmental gradient, whereas a wide range of trait values are equally beneficial at the
other end. Here we show that root traits explain species occurrences along broad gradients of
temperature and water availability, but model predictions only resembled trade-offs in two out of
twenty-four models. Forest species with low specific root length (SRL) and high root tissue
density (RTD) were more likely to occur in warm climates but species with high SRL and low
RTD were more likely to occur in cold climates. Unidirectional benefits were more prevalent
than trade-offs: for example, species with large-diameter roots and high RTD were more
commonly associated with dry climates, but species with the opposite trait values were not
associated with wet climates. Directional selection for traits consistently occurred in cold or dry
climates, whereas a diversity of root trait values were equally viable in warm or wet climates.

Explicit integration of unidirectional benefits into ecological theory is needed to advance our
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understanding of the consequences of trait variation on species responses to environmental

change.

The nature of ecological trade-offs

Ecological trade-offs underpin our conceptual understanding of global biodiversity distributions
16 Species pools are filtered into local communities based on the matching of species’ trait
values to environmental conditions. Models that use traits to predict the success of a species in a
given environment are actively being developed and tested. Ecological trade-offs arise as a
consequence of the adaptive value of a trait, eloquently described as ‘an evolutionary dilemma,
whereby genetic change conferring increased fitness in one circumstance inescapably involves
sacrifice of fitness in another’ *. As the term ‘trade-off> implies, the trait effects are
‘bidirectional’, where, for example, low trait values of a species confer adaptive advantage at one
end of an environmental gradient whereas high trait values confer benefits at the opposite end of
the gradient (Fig 1A) .

Classical ecological theory has long emphasized this bidirectional perspective on trait-
environment relationships at the species level ’. For example, resource ratio theory
(ALLOCATE) is built on a single trait — environment trade-off. At the high end of the soil
fertility gradient, plant species that allocate relatively more carbon aboveground than
belowground are predicted to be better competitors for light. Whereas at the low end of the soil
fertility gradient, plant species that allocate relatively more carbon belowground than
aboveground are predicted to be better competitors for soil nutrients ®. Empirical evidence for

trade-offs have been found in a variety of traits including light compensation points along light
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gradients * and root angles along nutrient gradients '°. In many cases, however, the empirical
evidence for trade-offs in performance among species has been met with mixed success ®!!.

Empirical evidence for trade-offs at the species level would be provided by showing that
the effect of a trait on the probability of species occurrence switches sign (i.e., changes direction)
along an environmental gradient (Fig. 1A) !2. In other words, a positive relationship between a
trait and an environmental gradient implies that the effect of the trait on the probability of species
occurrence is negative at the low end of the gradient, but is positive at the high end of the
gradient (Fig. 1A). This directional switch in sign is fundamental, but detecting the switch
empirically is nontrivial because it cannot be observed through a simple trait-environment
correlation '2. The switch in sign can, however, be explicitly tested by comparing model-based
predictions of trait effects on the probability of species occurrence at contrasting ends of the
environmental gradient 1. Specifically, if the first partial derivative with respect to traits crosses
zero along the environmental gradient, then the effect of a trait on probability of occurrence
switches sign (Fig 1A).

In contrast, the absence of a switch in sign of a trait’s effect on the probability of species
occurrence along an environmental gradient would indicate that a trait only confers an adaptive
advantage at one end of this gradient, thereby exhibiting a mere ‘unidirectional benefit’ (Fig.
1B). The prevalence of unidirectional benefits at the species level has not been adequately tested,
yet empirical research has provided hints that they exist. For example, plant communities in New
Zealand exhibit trait convergence towards low leaf nitrogen concentration in phosphorus-poor
soil, whereas in phosphorus-rich soil communities display wide divergence of leaf nitrogen
concentration '#. This suggests that low leaf nitrogen is adaptive in phosphorus-poor soil to

maintain a balanced leaf nutrient stoichiometry, whereas high leaf nitrogen is not adaptive in
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phosphorus-rich soil. Thus, it is a unidirectional benefit, not a trade-off. Simulation results and
empirical work in insect host use has suggested that the importance of trade-offs in the evolution
of specialization may be overstated '*'°. The prevailing view of trade-offs in ecological theory
across all levels of organization > may thus have hindered the discovery of unidirectional
benefits that could be widespread in nature. In particular at the species level, discerning the
difference between trade-offs and unidirectional benefits would advance our understanding of

how individual traits affect community assembly.

Belowground root traits

We tested the generality of ecological trade-offs in the context of plant root traits because
these ‘hidden’ belowground organs are essential for water and nutrient uptake yet we still lack
broad-scale empirical evidence for how they influence the filtering of species pools into local
community assemblages '°. To test the effects of root trait variation on species distributions
along broad gradients in temperature and water availability we applied a new root trait
framework consisting of two independent axes of variation 7 (Fig. 1C).

First, species span a trait axis defined by specific root length (SRL; fine root length per
unit mass) and root diameter (RD) that has evolved in concert with symbiosis with mycorrhizal
fungi. Arbuscular mycorrhizal (AM) plants comprise nearly 80% of plant species globally '8, and
among them thick-rooted species are colonized at higher rates because of greater fungal habitat
in the root cortex 1%, Most of the remaining mycorrhizal plant species associate with
ectomycorrhizal (EcM) or ericoid mycorrhizal (ErM) fungi, which tend to colonize species with

moderate to thin roots !”. A small number of species in our dataset (described below) are non-
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mycorrhizal, and these species tend to have the thinnest roots to explore the soil for resources by
themselves.

Second, species span another independent axis, where conservative species invest in high
root tissue density (RTD; fine root mass per unit volume), and acquisitive species construct more
metabolically active tissue with low RTD and high root nitrogen (root N) concentration 21?2,

This second axis is associated with the aboveground leaf economics spectrum 2, where species
construct either short-lived leaves with high metabolic rates or long-lived leaves with thick cell
walls 2%, Consequently, fast species construct cheaper fine roots with higher rates of root turnover
17 The global correlation between SRL and RTD among species is 7 = -0.09 !7, which implies
that plants have explored the expression of nearly all possible combinations of these two axes
leading to a two-dimensional root economics space (Fig. 1C). Therefore, these two root trait axes
provide a unique opportunity to scrutinize the evidence for ecological trade-offs and

unidirectional benefits among species to advance our understanding of the role of traits in

community assembly.

Hypotheses and methods

We developed four hypotheses about how SRL, RD, RTD, and Root N influence species
distributions along broad gradients of temperature and water availability (Fig 1D). Our
hypotheses are grounded in physiological and symbiotic mechanisms and we predict that trade-
offs generate variation in species occurrences across climatic gradients (Fig 1D). Our predictions
for SRL and RTD are opposite in sign to our predictions for RD and Root N, respectively,

because they are negatively correlated 7.
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(1) We predicted a negative relationship between SRL and temperature (and a positive
relationship between RD and temperature) for several reasons. Species with low SRL would be
more prevalent in warm climates where AM fungi are abundant 242 We also predicted species
with high SRL to be more common in extremely cold climates because 1) non-mycorrhizal taxa
dominate the high Arctic where mycorrhiza are limited by extremely low temperatures 27, and 2)
ErM and EcM fungi are more common in moderately cold climates and tend to colonize species
with moderate to high SRL 2426,

(2) We predicted a positive relationship between SRL and water availability (and a
negative relationship between RD and water availability) because species with high SRL can
more efficiently acquire resources by themselves in wet environments, and species with low SRL
that provide more cortical habitat for AM fungi can be more drought-tolerant through
mycorrhizal symbiosis-enhanced stomatal conductance and water use efficiency 2®.

(3) We predicted a negative relationship between RTD and temperature (and a positive
relationship between root N and temperature) because ‘slow’ species with high RTD would
tolerate low temperatures by limiting frost-induced cell lysis and resisting freezing-induced
embolism formation, and because ‘fast’ species with low RTD and higher metabolic rates would
be more productive than slow species in warmer climates 227,

(4) We predicted a negative relationship between RTD and water availability (and a
positive relationship between root N and water availability) because conservative species would
tolerate dry climates by resisting embolism formation and cellular collapse under extreme
osmotic tension, and because acquisitive species with low RTD and higher metabolic rates would

be more productive than slow species in wetter climates 2.
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To test these four hypotheses, we combined the largest global vegetation database (sPlot)
3! with the global root trait database (GRooT) 3? (see Methods) (Fig. S1). We used long-term
average minimum temperature of the coldest month to represent cold limitation and the long-
term average precipitation-to-potential evapotranspiration ratio (P:PET) to represent chronic
water limitation. The plots spanned a gradient of -10 to 25 °C mean annual temperature and 50 to
2,750 mm mean annual precipitation. Given the functional differences in vegetation dominated
by woody and herbaceous plants with respect to traits such as height, root diameter, and root

mass fractions 2%-23-33-3

, we took a conservative approach to prevent confounding the
relationships by classifying each plot as forest, grassland, or wetland (Fig. S1). We predicted root
trait-climate relationships to be absent in wetlands because plants that grow in anoxic soil

conditions develop aerenchyma to maintain respiration rates, which would alter root morphology

independent from the regional climate *°.

Root traits in relation to temperature and water

SRL was related to the probability of species occurrence along climatic gradients in
forests and grasslands, but not in wetlands (Fig. 2). In agreement with our first hypothesis and
regional studies 3’| the interactive effects of SRL and temperature on species occurrence was
negative in both forests and grasslands (Table 1, Fig. 2A), and SRL was negatively correlated
with species optimum minimum temperature (Fig. S2A,B). Low-SRL species associated with
AM fungi, such as Chinese fir (Cunninghami lanceolata, Fig. 1C), were more likely to occur in
warmer climates. High-SRL species associated with ErM fungi, such as lingonberry (Vaccinium
vitis-idaea, Fig. 1C), were more likely to occur in colder climates. Overall, the relationship

between SRL and temperature in forests was an example of a classic trade-off (Table 1, Fig. 2B).
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In grasslands, however, we only observed a unidirectional benefit (Fig. 2C). Species with high
SRL, such as Draba nemorosa (Fig. 1C), were more likely to occur in colder climates, but
species with any SRL value were equally likely to occur in warm climates (Table 1, Fig. 2C).
Root diameter did not exhibit trade-offs with temperature in forests or grasslands (Table 1, Fig.
2D,E,F). Large-diameter roots in forests were advantageous in warm climates, but thin roots
were not clearly advantageous in cold climates (Table 1, Fig. 2E). Thick roots thus exhibit a
unidirectional benefit in forests with warm climates where AM fungi are most abundant 2426,
SRL did not exhibit a trade-off in relation to water availability, but rather a unidirectional
benefit (Table 1). In agreement with our second hypothesis, the SRL-water availability
interaction was positive in both forests and grasslands (Table 1, Fig. 2G), and SRL was
positively correlated with species optimum P:PET ratio (Fig. S2C,D). Species with low SRL
were more likely to occur in dry environments likely because AM fungi that inhabit thicker roots
can confer drought tolerance to plants 2® (Fig. 2H,I). Contrary to expectations, species with any
SRL value were equally likely to occur in wet environments (Fig. 2H,I), which may explain a
lack of clear linear relationship with water availability in previous studies 3**. Root diameter did
not exhibit trade-offs with water availability in either forests or grasslands (Table 1, Fig. 2K,L).
RTD influenced the probability of species occurrence along climatic gradients in forests
and grasslands, but not in wetlands (Fig. 3A). Contrary to our third hypothesis and other studies
29.38-43 the RTD-temperature interaction was positive rather than negative (Table 1, Fig. 3A) and
RTD was positively correlated with species optimum minimum temperatures (Fig. S2E,F). In
forests, species such as honeysuckle (Lonicera chrysantha, Fig. 1C) with low RTD were more

likely to occur in cold climates and species such as common myrtle (Myrtus communis, Fig. 1C)

with high RTD were more likely to occur in warm climates (Table 1, Fig. 3B). However, this
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trade-off was not observed in grasslands where we found that species with low RTD were more
likely to occur in cold climates but species with any RTD value were equally likely in warm
climates (Table 1, Fig. 3C). We predicted that ‘slow’ species with dense roots would be better
adapted to low temperatures, but this was incorrect. Freeze-thaw dynamics of soil in cooler
climates can physically disturb root systems, which introduces the risk of losing large
investments in dense roots and may thus select for species that produce cheap low-density roots
that can regrow quickly after disturbance ***3. We also predicted that ‘fast’ species with low
RTD and higher metabolic rates would be more competitive in warm climates, but this too was
incorrect. It may be that dense lignin-rich roots physically defend plants against plant pathogens,
protozoan parasites, and insect herbivores whose effects can be more intense at higher
temperature 2****°_ Root N did not exhibit clear trade-offs with temperature in either forests or
grasslands (Table 1, Fig. 3D,E,F).

RTD did not exhibit a trade-off in relation to water availability (Table 1, Fig 3G,H,I). In
partial agreement with our fourth hypothesis and regional studies 3*3%°° the RTD-water
availability interaction was negative (Fig. 3G) and RTD was negatively correlated with species
optimum P:PET ratio (Fig S2G,H). In forests, species with high RTD had greater chances of
occurring in drier climates likely because denser root tissue enhances resistance to drought-
induced cavitation °!. However, species with any RTD value were equally likely to occur in wet
climates (Table 1, Fig. 3H). No clear RTD-water availability trade-off was observed in
grasslands (Fig. 31), perhaps because short-lived herbaceous species escape drought by
restricting their activity to brief pulses of ample water availability. Contrary to our hypothesis,
high root N appeared to be advantageous in dry forests (Table 1, Fig 3K). This result is

qualitatively consistent with the discovery that leaf N per area is higher in drought-tolerant plants
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because higher photosynthetic rates are possible at lower stomatal conductance 2. Perhaps root

N is higher in dry climates to provide drought-tolerant leaves with a greater supply of N.

Implications for ecological theory
The diversification of root morphology was pivotal to the evolutionary development of

land plants in their quest to colonize the terrestrial biosphere 2*->3

, yet direct tests for how root
traits may influence species distributions along climatic gradients have been lacking until now.
We analyzed the largest root trait and vegetation datasets and found that within forest ecosystems
1) species with low SRL, large RD, or high RTD have a higher chance of occurring in warm
climates, while species with high SRL or low RTD have a higher chance of occurring in cold
climates; and 2) species with low SRL, large RD, high RTD, and high Root N have a higher
chance of occurring in dry environments, but the probability of occurring in wet environments
was not related to any of these root traits. These results demonstrate that root traits contribute to
our understanding of the distribution of vegetation, and that unidirectional benefits may be more
prevalent than trade-offs.

Ecological community assembly theory is grounded in trade-offs, but our study
challenges our understanding of how individual continuous traits influence species distributions
along environmental gradients. Of the 13 models in which a significant trait-by-environment
interaction was detected, only two of these models supported a trade-off, whereas seven models
supported unidirectional benefits and four exhibited no clear benefits in either direction (Table
1). This result demonstrates the importance of evaluating the model-based predictions at each

end of the gradient (Fig. 2,3) rather than relying on trait-environment correlations or the

significance of interaction coefficients alone as evidence of a trade-off. The predicted signs (i.e.,
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direction) of the relationships were supported 67% of the time (16 out of the 24 models), but the
model predictions only resembled trade-offs 8% of the time (2 out of 24 models) (Table 1). Our
results agree with Grubb’s insight that ‘the concept of a trade-off, which implies that being suited
to one condition necessarily involves not being suited to the opposite, is widely diffused in the
current literature but is not universally applicable’ >*

Our work suggests that community assembly models and plant strategy theories that use
continuous variation in functional traits should be explicit about whether a trait exhibits trade-
offs with environmental gradients or unidirectional benefits. Patterns of aboveground trait
variation have been shown to exhibit trait convergence in resource-poor environments and trait

divergence in productive environments 4>

, suggesting that unidirectional benefits may also
occur in aboveground traits. Our analysis focused on determining the contributions of individual
traits to species distributions, but plant strategy theories are built on sets of multiple traits. Plant
strategies are likely generated by a combination of trade-offs for some traits (e.g., light
compensation point along light gradients”) and unidirectional benefits for others (e.g. leaf
nutrient concentrations along soil fertility gradients'*>%), which inevitably makes the task of
predicting species responses using continuous traits more difficult than previously anticipated.
Predictive models that use sets of continuous traits as predictors of species responses need to
know whether a trait exhibits trade-offs or unidirectional benefits along an environmental
gradient. Strong trait-environment interaction coefficients in linear models will, by default,
predict a trait-environment trade-off, but our results show that these are less prevalent than
unidirectional benefits. In the case of unidirectional benefits, the predictive power of a trait for

species occurrences would vary with the particular values of that trait, giving one end of the

range in trait values higher importance than the other end. Such information could perhaps enter
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models as priors within a hierarchical model framework. An expanded theory of trait-
environment interactions that incorporates unidirectional benefits will advance our understanding
of the adaptive value of traits in community assembly and may improve predicted responses to
climate change. For example, in regions projected to become warmer and drier rather than
warmer and wetter °°, plant communities may converge toward lower SRL and higher RTD. This
would make other trait combinations less viable and put species with higher SRL or lower RTD
at a higher risk of local extinction in these drier regions.

Forests exhibited the strongest trade-offs among species, grasslands were dominated by
unidirectional benefits, and root trait-climate interactions were absent in wetlands (Table 1). The
lack of trade-offs in wetlands was expected because anoxic water-logged soils select for species
with aerenchyma which would confound root trait-climate relationships. The co-occurrence and
higher functional diversity of both woody and herbaceous plants in forests may partly explain the
evidence for stronger trade-offs in forests. Forests contain a higher proportion of woody species
and these exhibit a higher variability in fine root traits than herbs, both because the clades of land
plants that are characterized by large root diameter are mostly trees and because there is a greater
diversity of mycorrhizal types among woody plants 7. Woody plants host not only AM
mycorrhizal fungi, but also the evolutionarily younger EcM and ErM fungi (which are associated
with thinner roots) 2°, whereas non-woody plants mostly host AM fungi with only a minority of
genera being noted for hosting EcM fungi (e.g., Kobresia). Many of the grasslands in our dataset
are semi-natural and occur because of human management, which may also weaken trait-
environment relationships. Our analysis was also limited to species-level average trait values,
and it is possible that evidence for trade-offs may be stronger in general if intraspecific trait

plasticity could be explicitly incorporated into the model.
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We also found that trade-offs were stronger along temperature gradients than along
gradients in water availability, and we consider two possible reasons for this. First, weaker
moisture effects could have resulted from a larger mismatch between modelled and actual
climatic conditions for moisture than for temperature. The difference between macro- and
microclimate might be comparably small for temperature, whereas soil moisture is more strongly
modified by soil conditions and topography, resulting in local deviations of water supply from
our predictions. This interpretation is supported by the lack of trait-environment interactions in
wetlands where water availability is driven by hydrological processes rather than climate.
Second, this may be related to observations that shifts in mycorrhizal dominance occur on
temperature gradients, but not so consistently with water /. At large scales, AM species tend to
dominate warm regions (tropical dipterocarps being notable exceptions), whereas EcM and ErM
tend to dominate cold regions, and root traits should respond to differences in mycorrhizal
dominance **?°. However, it is still uncertain whether the shift in mycorrhizal dominance is due
to temperature induced shifts in root morphology, or if the shift in root morphology is driven by
temperature induced shifts in mycorrhizal dominance, or both.

The expectation of trade-offs holds across different levels of organization from
individuals, populations, and to species !, but may become masked in species because of multiple
trade-offs in complex environments 2. Indeed, there are many factors that confound the detection
of broad-scale relationships between interspecific trait variation and climate: the high range of
species trait values within communities relative to the global range >, the high plasticity of
traits within species across environments and the importance of other traits ®, the stochastic
nature of disturbance regimes and land-use change %, the spatially heterogeneous variation in

microclimate and soil properties such as moisture and texture at small spatial scales **, dispersal
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limitation, and biotic interactions (e.g., competition, facilitation) °!. While root traits only
explained a fraction of the variation in species occurrences (Table 1), similar to studies focused
on aboveground traits %, it is therefore remarkable that such clear root trait-climate relationships
were discovered here. This suggests that the root economics space framework is important for
understanding plant community assembly.

Trade-off theory assumes that selection is bidirectional and that constraints occur at both
ends of the environmental gradient !, but relaxing these assumptions may explain when and
where trade-offs occur among species. Importantly, unidirectional benefits were consistently
associated with the more extreme cold and dry climates that are more resource-limited than
warm and wet climates (Figs. 2 and 3). This supports the idea that environmental filtering
increases in intensity where resources are more limited . Single optimum traits were observed
in cold and dry climates, while single trait optima were not observed in warmer and wetter
climates. In other words, warm and wet climates exerted no clear directional selection on root
traits. This may also partially explain why biodiversity is higher in warm and wet climates and
lower in cold and dry climates. Given the prevalence of unidirectional benefits, revisiting
evidence for trade-offs between aboveground traits and environmental gradients using model-

based predictions is a research priority.
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Table 1. Model support and summary of results for root trait-climate interactions. Each of the eight models were evaluated for

their support for a trait-by-environment interaction in forests, grasslands, and wetlands. Statistical evidence was evaluated by
inspecting the significance of the coefficient in the model, the model R?, the AIC difference (AA4IC) between models with the

environment alone versus models with both environment and traits (see full model description in Methods), and a likelihood ratio test
(LRT). Number of observations for each test are provided in Table S1.

Generalized Linear Mixed Effects Model Comparison with Interpretation
Results Environment-only model
Trait and Vegetation Trait-Env P-value for R* R2. AAIC  LRT x* with df=2 Hypothesized  Nature of
climate type interaction  interaction (P-value) direction Trade-off
variables coefficient coefficient supported?
(Std. Error)
SRL - Temp Forests -0.50 (0.03) P <2e-16 0.06 0.77 -36 39.6 (P=2.556e-09) Yes Trade-off
Grasslands  -0.19 (0.01) P <2e-16 0.05 0.79 -51 55.0 (P=1.144e-12)  Yes Unidirectional
Wetlands 0.04 (0.04) P=0.277 0.01 0.48 +3 1.1 (P=0.5694) Yes No interaction
RD - Temp Forests 0.17 (0.04) P=3.7%-05 0.06 0.77 -22 26.5 (P=1.731e-06)  Yes Unidirectional
Grasslands  0.20 (0.01) P <2e-16 0.04 0.82 -21 25.5 (P=2.885¢-06)  Yes No interaction*®
Wetlands -0.04 (0.04) P =0.2652 0.01 0.55 2 1.3 (P=0.5224) Yes No interaction
SRL - P:PET Forests 0.19 (0.04) P=231e-07 0.05 0.75 -31 35.1 (P=2.422¢-08)  Yes Unidirectional
Grasslands  0.38 (0.01) P <2e-16 0.11 0.79 -74 78.0 (P<2.2e-16) Yes Unidirectional
Wetlands 0.005 (0.03) P =0.88498 0.01 0.49 +3 0.7 (P=0.708) Yes No interaction
RD - P:PET Forests 0.01 (0.03) P =0.623 0.08 0.70 -37 41.2 (P=1.132e-09) No No interaction
Grasslands  -0.17 (0.01) P <2e-16 0.06 0.78 -12 16.2 (P=0.000308) Yes No interaction*®
Wetlands -0.01 (0.04) P=0.775 0.02 0.55 3 1.8 (P=0.4121) Yes No interaction
RTD - Temp Forests 0.41 (0.05) P=245e-14 0.07 0.74 -34 38.3 (P=4.772¢-09) No Trade-off
Grasslands  0.26 (0.02) P <2e-16 0.03 0.82 -8 12.0 (P=0.0025) No Unidirectional
Wetlands -0.02 (0.04) P =0.5587 0.01 0.49 +3 1.8 (P=0.4072) Yes No interaction
Root N - Temp Forests -0.05 (0.03) P =0.1040 0.02 0.69 -2 6.5 (P=0.03947) No No interaction
Grasslands  0.03 (0.03) P=0.27539 0.01 0.74 2 2.4 (P=0.2956) No No interaction
Wetlands 0.10 (0.06) P=0.0929 0.08 0.60 0 4.1 (P=0.1296) Yes No interaction

22



616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

RTD - P:PET Forests -0.13 (0.04) P =0.000503 0.04 0.63 -20 23.9 (P=6.54¢-06) Yes Unidirectional

Grasslands  -0.12 (0.02) P =1.6e-11 0.04 0.77 -4 8.0 (P=0.01788) Yes No interaction™
Wetlands 0.01 (0.03) P =0.8406 0.00 0.48 +2 2.0 (P=0.3729) Yes No interaction
Root N -P:PET  Forests -0.14 (0.03) P=7.01e-06 0.04 0.74 -2 6.1 (P=0.04621) No Unidirectional
Grasslands  -0.15(0.03) P =2.96e-09 0.04 0.79 -4 7.8 (P=0.01977) No No interaction™®
Wetlands -0.14 (0.05) P =0.00994 0.07 0.55 -2 6.4 (P=0.04018) No No interaction

R?,, = deviance explained by fixed effects

R?. = deviance explained by fixed and random effects (see Methods for list of random effects)

AAIC = AIC1«g - AICE; that is, AIC of model TxE minus AIC of model E (see Methods). Models with AAIC that are more negative
than -4 are more supported than the simpler model E

v? = chi-square statistic for likelihood ratio test (LRT) comparing models TxE and E with 2 df

SRL = specific root length (m g™!)

RTD = root tissue density (mg mm™)

RD = root diameter (mm)

Root N = root nitrogen concentration (mg g™!)

Temp = minimum temperature in the coldest month (degree C)

P:PET = Precipitation : Potential Evapotranspiration ratio (mm mm-')

*Four models marked by an asterisk (described in text) exhibited significant trait-by-environment interaction coefficients and
likelihood ratio tests, yet the illustrated model predictions in Figures 2 and 3 did not exhibit clear trade-off or unidirectional benefits,
so we classify them as “no interaction” here because of our conservative criterion
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Figure Captions

Figure 1. The ecological consequences of trait variation on species distributions along
climatic gradients. (A) Empirical evidence for an ecological trade-off requires the existence of a
strong trait-environment interaction ''2. Here we illustrate examples for both positive and
negative trait-environment interactions driving species occurrences. In the case of a positive
interaction between a trait and an environmental gradient, the effect of the trait on the probability
of species occurrence at the low end of an environmental gradient would be negative, but this
effect will switch directions and become positive at the high end of the gradient (see left-hand
column). This result would imply that a high trait value is beneficial at the high end of the
gradient and a low trait value is beneficial at the low end of the gradient (see middle and right-
hand columns). (B) Alternatively, if a statistical trait-environment interaction is detected, yet the
trait only exhibits an effect at one end of the environmental gradient (i.e., the effects do not
switch direction along the gradient), then this suggests there is only a ‘unidirectional benefit’.
Evidence for a unidirectional benefit for two alternative cases are illustrated for the positive
interaction scenario. (C) We scrutinized the existence of trade-offs using plant roots, which have
recently been shown to vary among species along two independent trait axes 7. One axis is
described by variation in investment in high specific root length (SRL) versus large root diameter
(RD), and the other axis is described by variation between investment in high root tissue density
(RTD) versus metabolically-active roots with high root nitrogen (root N). The location in the
root economics space of five species discussed in the main text are shown on the biplot:
Vaccinium vitis-idaea (Vv) is a high-SRL ErM species, Draba nemorosa (Dn) is a high-SRL AM
species with low colonization rates, Cunninghami lanceolata (Cl) is a low-SRL AM species,

Lonicera chrysantha (Lc) 1s a low-RTD species, and Myrtus communis (Mc) is a high-RTD
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species. (D) We developed four hypotheses using first principles about the adaptive value of
these roots traits along global climatic gradients, where temperature is illustrated as a gradient
from blue to red (i.e., cold to warm) and water availability is illustrated as a gradient from gold

to green (i.e., dry to wet).

Figure 2. Specific root length (SRL) and root diameter (RD) are related to species
occurrences along climatic gradients. The left-hand column illustrates how the sign of the
relationship between the trait and the probability of occurrence changes along gradients of mean
minimum temperature of the coldest month and the precipitation-to-potential evapotranspiration
ratio (P:PET) in forests, grasslands, and wetlands. The y-axis of the left-hand column is the
partial derivative of probability of occurrence with respect to traits (dy/dT) to demonstrate
whether the effect of the trait on probability of occurrence changes sign along the climatic
gradient. Biologically meaningful interactions switch sign, which is indicated if the lines cross
the horizontal dotted line. The middle and right-hand columns illustrate model predictions
(including 95% confidence intervals) for forests and grasslands, respectively (wetlands are not
shown because no interactions were significant). A trade-off was only evident in panel B, where
trait values exhibited different effects on occurrences at different ends of the environmental
gradients. In contrast, unidirectional benefits were evident in panels C, E, H, and 1. Note that the
flat lines that hover close to zero probability are interpreted as ‘equally likely to occur across the
root trait gradient’ because the average probability of occurrence is near zero; this is because

absences (i.e., zeros) comprise ~99% of the dataset.
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Figure 3. Root tissue density (RTD) and root nitrogen concentration (Root N) are related to
species occurrences along climatic gradients. The left-hand column illustrates how the sign of
the relationship between the trait and the probability of occurrence changes along gradients of
mean minimum temperature of the coldest month and the precipitation-to-potential
evapotranspiration ratio (P:PET) in forests, grasslands, and wetlands. The y-axis of the left-hand
column is the partial derivative of probability of occurrence with respect to traits (0y/dT) to
demonstrate whether the effect of the trait on probability of occurrence changes sign along the
climatic gradient. Biologically meaningful interactions switch sign, which is indicated if the lines
cross the horizontal dotted line. The middle and right-hand columns illustrate model predictions
(and 95% confidence intervals) for forests and grasslands, respectively (wetlands are not shown
because no interactions were significant). A trade-off was only evident in panel B. In contrast,
unidirectional benefits were evident in panels C, H, and K. Note that the flat lines that hover
close to zero probability are interpreted as ‘equally likely to occur across the root trait gradient’
because the average probability of occurrence is near zero; this is because absences (i.e., zeros)

comprise ~99% of the dataset.
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Methods

Data synthesis

To test the adaptive value of root traits along gradients in temperature and water
availability, we joined the global vegetation plot database (sPlot) 3! with the global root trait
database (GRooT) *2, which combines observations from the Fine-Root Ecology Database
(FRED) ¢ with root data in TRY %, as well as additional incorporated literature. This dataset has
strong representation of AM, EcM, and ErM mycorrhizal types but only a few non-mycorrhizal
species.

We computed species-level averages of the most commonly measured fine root traits by
first calculating the mean value of a species within a study and then averaging those values for a
species across studies. We cannot say anything about plasticity or intraspecific trait variation in
this study given that we were only able to analyze average trait values of species. RTD values
reported to be > 1.0 mg mm™ were excluded from this study. This resulted in a dataset of 1,767
species with specific root length (SRL; m g'!') and 1,426 species with root tissue density (RTD;
mg mm™), 1,283 species with root nitrogen concentration (root N, mg g'), and 1,623 species
with root diameter (RD; mm). Out of the 2,122 species in GRooT, 1,638 species were present in
sPlot for a total of 998,669 vegetation records. We discarded all plots that contained < 80% trait
coverage based on relative cover % for a total of 152,771 plots with SRL data, 154,192 plots with
RD data, 107,325 plots with RTD data, and 109,494 plots with root N data.

The majority of plots were located in Europe, Asia, North America, and Australia (Fig
STA). Plots were found within all global biomes except tropical rainforests but were most

representative of temperate seasonal forest, boreal forest, woodland-shrubland, and temperate
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719  grassland-desert biomes (Fig S1B). The paucity of root trait data in tropical forests prevented us
720  from including these biomes in our analysis, highlighting the importance of new data collection
721  in tropical ecosystems. We used the geographical coordinates of each plot to compile climate
722  data and ecoregion classification. The average minimum temperature in the coldest month was
723 downloaded from CHELSA (~1 km resolution) . The correlation between minimum

724  temperature and P:PET was weak and negative (» = -0.12) (Fig. S1D). Model results were

725  qualitatively similar if mean annual temperature was used instead of minimum temperature of
726  the coldest month. Water availability was expressed as the precipitation-to-potential
727  evapotranspiration ratio (P:PET) using the global Aridity index raster (~1 km resolution) ®’.

728 Information on vegetation types was only available for a subset of plots in sPlot, and

729  most of these classified plots were located in Europe. To have all plots consistently assigned to
730  vegetation types, we ran one classification based on species’ affinities to forest, grassland,

731  savanna, heathland, steppe, wetland, and other, as assigned based on expert opinion (available in
732 Supplementary Material). Based on the relative cover of each species within a given plot, we

733  summarized species based on their habitat affinities, and summed their relative cover. We then
734  assigned each plot to a habitat based on the following if-else conditions: if the pooled relative
735  cover of species with wetland affinities > 0.5, then it was classified as “Wetland”, if the relative
736  cover of species with forest affinities > 0.3, then it was classified as “Forest”, if the relative cover
737  of species with either grassland, savanna, heathland, or steppe > 0.7, then we classified it as

738  “Grassland”. These three if-else conditions were sequential, so that a plot assigned to “Wetland”,
739  could not be also assigned to “Forest” or “Grassland”. We selected the thresholds iteratively, in
740  order to maximize the overall accuracy of the classification based on species’ habitat affinity,

741  when tested against sPlot’s native habitat classification. Out of the 202,942 plots we considered,

28



742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

23,885 were assigned to “Wetland”, 65,618 to “Forest” and 103,009 to “Grassland”. Another
10,420 remained unassigned and were removed from the analysis. The overall accuracy of the
classification was 0.67 and the Kappa statistic was 0.49. Compositional differences among the
three vegetation types are illustrated by a Principal Coordinates Analysis using Bray-Curtis
distances (Fig S1D). We included savanna species within grasslands and did not include a
‘savanna’ category for two main reasons: 1) no plots in our dataset occurred in the savanna
regions of South America or Africa, and 2) the compositional data available to us could not be
used to reliably discern a savanna from a forest or grassland. This decision had no appreciable
affect on the results because the direction of the trait-environment interactions detected in this
study were relatively consistent between grassland and forest, so adding additional vegetation
types that are intermediary between the two would not have affected the results.

Each plot was categorized into ecoregions using Olson et al’s ecoregion classification
system ®8 to account for the spatial structure of the data and to define regional species pools.
Regional species pools were defined as all species detected in plots within an ecoregion, and we
defined species absences based on these regional species pools. Species that were not detected on
plot x but were found on other plots within the ecoregion were considered absent in plot x. We
did this to prevent a situation where a species has zero probability of being in a plot; for
example, we prevented a subtropical species from being considered ‘absent’ from a plot in the
taiga. This method accounts for the fact that species may be absent from a plot because of
biogeographical dispersal limitation, not just because of environmental filtering. We removed all
ecoregions with < 200 observations, which eliminated observations from South America and

Africa. The final number of plots used in each model is listed in Table S1.
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Data analysis

We fit hierarchical models using Generalized Linear Mixed Effects Models to test
whether root traits explain species occurrences by their interactions with climatic gradients '3,
which is the most appropriate method for evaluating how trait-environment interactions drive
species occurrences '°. We modeled binomial species presence-absence data using a logit link
function and binomial error structure. Given the size of the dataset, all models were fit in parallel
using an Intel compiled version of R on the high-performance computer cluster at the University
of Wyoming, where several days to four weeks were required to achieve model convergence. We
used the following packages in R version 3.6.1 ’! to conduct our analyses: stats ’!, ggplot2 2,
Ime4 7, ImerTest ', performance 7°, plotbiomes %, and labdsv 7’.

First, we fit an ‘environment-only model’, which fit quadratic polynomials to all species
simultaneously with respect to the climate factor. The quadratic polynomial was especially
important to accurately capture the broad variation in species environmental optima across such
vast climatic gradients. We also controlled for variation in occurrences within each ecoregion by
modelling ecoregions as random intercepts, which was important given the strong bias of number

of plots in European ecoregions. In summary, for each climatic factor we fit the following

hierarchical model (‘model E):

logit(y) = B, + Yio + Sro + (ﬁl + Vj1) climate + (Bz + ij) climate®
where y was binomial presence and absence, 5, was the global intercept, §;was the fixed effect

term describing the main effect of the climatic gradient, S, was the fixed effect term describing

the main effect of the squared-climatic term, which allowed to model optimum environments for
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788  each species, yjo was a random intercept for each of j species drawn from a normal distribution
789 N(0,6%j0) , Sxo Was a random intercept for each of k ecoregions drawn from a normal distribution
790  N(0,6%x0), Y1 was a random slope for each of j species drawn from a normal distribution

791 N(0,6%j1), and Y2 was a random slope for each of j species drawn from a normal distribution
792 N(0,6%;2). We used the quadratic polynomial random effects from this model to compute the

793  optimum temperature and water availability for each species, i.e., the value of the climatic

794  variables where the species attains its highest probability of occurrence. We regressed these on

795  the trait values of each species, where the relative abundance of each species in the dataset were

796  used as weights in the regression (see Fig. S2). The Ime4 syntax for this model was

797 glmer (occurrence ~ climate + climate? + (climate + climate?|species) +
798 (1|ecoregion), family=binomial).
799 Second, we fit ‘trait-by-environment interaction models’, which included one root trait

800  and its interaction with climate, to test if traits explain any additional information about the

801  changing probabilities of species occurrences along the climatic gradients. For each trait and

802  climatic factor combination we fit the following hierarchical model (‘model 7xE"):

803

804  logit(y) = Bo+Vjo + Oko + (B, + yjl)climate + (B + yjz)climate2 + (Bs)trait + (By)trait - climate
805

806  where f;3was the fixed effect term describing the main effect of traits, and 8, was the fixed effect
807  term describing the interaction between the trait and the climatic gradient. The Ime4 syntax for
808  this model was glmer (occurrence ~ climate + climate? + trait + trait:climate

809 + (climate + climate?|species) + (1l|ecoregion), family=binomial).
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To evaluate the empirical support for the trait-environment interaction, we compared
model ‘7xE’ model to model ‘E’. Given the statistical power of the large dataset, we used three
criteria to assess the evidence of whether species occurrences can be explained by trait-
environment interactions: 1) differences in 4/C between the two models (i.e., AIC7z — AICE) that
were < -4 (i.e., an absolute difference > 4) 7¥, 2) significant likelihood ratio tests using a chi-
square statistic, and 3) a significant fixed effect interaction term in the linear predictor. All three
criteria needed to be met to consider these to be important interactions. We used a threshold of
AIC differences more negative than -4 following suggested rules of thumb for model comparison
78

We further classified these significant interactions into two general types: 1) “trade-offs”
and 2) “unidirectional benefits”. Trade-offs occur where certain trait values confer adaptive
advantage at one end of an environmental gradient and other trait values confer benefits at the
opposite end of the gradient (Fig. 1A). Unidirectional benefits occur when a trait confers an
adaptive advantage at only one end of an environmental gradient (Fig. 1B). In order to be
considered a ‘trade-off’, the effect of traits on probability of occurrence had to switch signs
between each end of the environmental gradient '%. To test this, we illustrate the first partial
derivative of the model with respect to the trait (dy/0dT) to demonstrate how the effect of the
trait on probability of occurrence changes along the climatic gradient. A significant positive
interaction would be illustrated as a line with positive slope that passes through dy/dT = 0 (Fig.
1A). In contrast, ‘unidirectional benefits’ were interactions where a trait exhibits an effect on
probability of occurrence at one end of the gradient but has no effect on probability of
occurrence at the other end of the gradient (Fig. 1B). To operationalize this distinction, we

plotted model-predicted probabilities as a function of each trait at the low end (1*' percentile) and
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high end (99" percentile) of each climatic gradient. Given the size of the datasets, these
percentiles include thousands of observations. If the probability of occurrence at one end of the
gradient did not exceed 5% whereas the probability of occurrence at the other end of the gradient
exceeded 5%, then we considered this to be a ‘unidirectional benefit’. Given the large number of
absences that is typical with sparse community datasets, the average probability of species
detection was approximately 0.01, thus a 5% probability would be a five-fold increase from the
average. Using these criteria, the nature of each trade-off is listed in Table 1 and Figs. 2 and 3.
We limited our analyses to models with one trait and one climate gradient rather than
fitting more complex models with multiple traits and multiple climate gradients. We took this
choice to make our work more comparable to other recent work ® and to achieve a more
straightforward interpretation of interactions. We also limited our models to one climate gradient
because model convergence was problematic even for the environment-only models (model E).
These models included hundreds of random slopes and intercepts with respect to climate
variables and squared variables to fit quadratic polynomials to account for each species’
nonlinear response to climate (Fig. S2). Adding a second climate variable would add hundreds
more coefficients to account for each species’ nonlinear response to that gradient, and we would
need to include their interaction. Finally, we limited models to only one trait because including
two traits reduced the number of species with data for both traits that could be included in the
model. The occurrence of species-level average trait values are plotted along each climate

gradient in Figs. S3 and S4.
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856  Data Availability

857  All code and data needed to reproduce the model results can be accessed at
858  https://idata.idiv.de/ddm/Data/ShowData/3475
859

860
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