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1 | INTRODUCTION
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Abstract

Mistletoe-host systems exemplify an intimate and chronic relationship where mistle-
toes represent protracted stress for hosts, causing long-lasting impact. Although host
changes in morphological and reproductive traits due to parasitism are well known,
shifts in their physiological system, altering metabolite concentrations, are less
known due to the difficulty of quantification. Here, we use ecometabolomic tech-
niques in the plant-plant interaction, comparing the complete metabolome of the
leaves from mistletoe (Viscum album) and needles from their host (Pinus nigra), both
parasitized and unparasitized, to elucidate host responses to plant parasitism. Our
results show that mistletoe acquires metabolites basically from the primary metabo-
lism of its host and synthesizes its own defence compounds. In response to mistletoe
parasitism, pines modify a quarter of their metabolome over the year, making the
pine canopy metabolome more homogeneous by reducing the seasonal shifts in top-
down stratification. Overall, host pines increase antioxidant metabolites, suggesting
oxidative stress, and also increase part of the metabolites required by mistletoe,
which act as a permanent sink of host resources. In conclusion, by exerting biotic
stress and thereby causing permanent systemic change, mistletoe parasitism gener-
ates a new host-plant metabolic identity available in forest canopy, which could have

notable ecological consequences in the forest ecosystem.

KEYWORDS
ecometabolomic, mistletoe-host system, oxidative stress, permanent and systemic effects,
plant-plant interaction, seasonality

instantaneous in response to a pulse disturbance or could cause a per-

manent reaction, leaving a long-lasting fingerprinting and, eventually,

Plants react to biotic and abiotic stress, causing a wide range of well-
known biotic changes, for example by modifying plant ecophysiology,
growth, reproduction and phenology (Pérez-Ramos et al., 2020;

Strauss & Zangerl, 2002). These responses could be almost

causing a generalized effect throughout the system over time
(Bender, Case, & Gilpin, 1984; Sutherland, 1981). Thus, while insect
outbreaks and some abiotic disturbances (e.g., episodic drought

events, wildfires and strong storms) have short-term implications, the

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

Plant Cell Environ. 2021;44:3655-3666.

wileyonlinelibrary.com/journal/pce 3655


https://orcid.org/0000-0002-3367-180X
https://orcid.org/0000-0002-7536-2888
https://orcid.org/0000-0003-3475-4997
https://orcid.org/0000-0003-2478-0219
https://orcid.org/0000-0002-2506-5826
https://orcid.org/0000-0002-1716-8876
https://orcid.org/0000-0002-7215-0150
https://orcid.org/0000-0002-5049-9968
mailto:albalazaro@ugr.es
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/pce
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fpce.14179&domain=pdf&date_stamp=2021-09-16

s | WILEY— ¥

LAZARO-GONZALEZ ET AL.

case of parasitic plants such as mistletoe represents a long-term host-
parasite interaction that might cause a permanent host reaction
(Lazaro-Gonzaélez, Hodar, & Zamora, 2019a).

Mistletoe are long-lived plants with a perennial endophytic sys-
tem called haustorium, which is embedded in the host xylem system
and serves to parasitize by extracting water and minerals from the
host (Ehleringer et al., 1985; Hawksworth & Wiens, 1996; Marshall &
Ehleringer, 1990). Vast literature is available on the visible changes
that mistletoe cause to their host, such as growth and reproductive
changes (Kuijt, 1955; Pennings & Callaway, 2002; Press &
Phoenix, 2005), as well as to their neighbouring plants (Hartley
et al, 2015; Hédar, Lazaro-Gonzalez, & Zamora, 2018; Mellado &
Zamora, 2017) and insect community (Hartley et al., 2015; Lazaro-
Gonzilez, Hédar, & Zamora, 2019b; Mellado, Hobby, Lazaro-
Gonzalez, & Watson, 2019). However, less evident effects, such as
chemical profile alterations, have been less studied, with attention
usually focused on a single compound or group of metabolites
(e.g., Anselmo-Moreira, Teixeira-Costa, Ceccantini, & Furlan, 2019;
Lazaro-Gonzalez et al., 2019a).

The first response of a plant to biotic or abiotic stress starts with
their phenotypical response including physiological and metabolic
acclimation. These metabolite changes could be episodic or perma-
nent according to the nature of the stress factor (e.g., Peters
et al., 2018 and references therein). The challenge of studying chemi-
cal and physiological plant responses to environmental stress is the
extraordinary variety of traits that can be altered, as well as the range
of analytical methods that researchers need in order to disentangle
the situation. A consequence of this complexity is that most of the
research studies using traditional techniques focus on a single com-
pound or a group of compounds, such as chemical defence by toxins
and deterrents (e.g., Chen, 2008; Sampedro, Moreira, & Zas, 2011).
Plant metabolite profiles comprise a complex set of primary metabo-
lites (sugars, amino acids, nucleotides, etc.) and secondary ones (terpe-
noids, phenolics, etc.), jointly called the metabolome, which is
synthesized by the system of plants and which shapes the real func-
tionality of plants at a specific time (Fiehn, 2002; Tomita &
Nishioka, 2005; Weckwerth, 2003). For this reason, metabolomic
techniques that have great sensitivity have been developed, allowing
us to combine ecological and biochemical studies on plants and to
capture these ecophysiological and functional changes in a dynamic
way at the finest metabolite level (Allwood, Clarke, Goodacre, &
Mur, 2010; Bundy, Davey, & Viant, 2008; Gargallo-Garriga
et al,, 2017; Lima et al., 2010; Pefiuelas & Sardans, 2009a; Sardans,
Pefiuelas, & Rivas-Ubach, 2011).

Biotic stress exerted by mistletoe parasitism could alter pine
metabolomic identity in different ways. As modular organisms, pine
trees could have a high phenotypic plasticity, adjusting the response
of the entire module population against environmental conditions. In
addition, tree canopies offer a stratified top-down trait because they
are exposed under a vertical gradient of different microclimatic condi-
tions (e.g., light availability, wind speed, air temperature), generating
top-down differences in ecophysiological properties (Brooks, Flana-

gan, Varney, & Ehleringer, 1997, Lewis, McKane, Tingey, &

Beedlow, 2000; Parker & Brown, 2000). On a temporal scale, the
metabolome of any organism is dynamic and highly susceptible to
change under variations in environmental conditions. For example, in
spring, new shoots start a burst of growth, and therefore, their meta-
bolic requirements differ from those of more mature needles, which
contain compounds from other pathways (Gargallo-Garriga
et al., 2015; Meijon et al., 2016). In a typical Mediterranean climate,
two crucial and metabolically different periods for current pine
needles could be early summer, after the first elongation, and early
autumn, after a stress period of hot temperatures and drought. For
these reasons, pine stratification and the time period become essen-
tial for researchers to analyse correctly the diversity and spatio-
temporal consistency of metabolic profile on the whole host-parasite
system.

Here, we focus on the European mistletoe (Viscum album subsp.
austriacum Wiesb. Vollman, hereafter V. album), an evergreen, epi-
phytic and dioecious parasitic plant native of most regions of Europe,
which specializes on conifers (Zuber, 2004). Part of changes in the
chemical profile of the main host, the black pine, Pinus nigra subsp.
salzmannii (Dunal) Franco (hereafter P. nigra), caused by V. album, have
recently been studied (Lazaro-Gonzalez et al., 2019a). This prior study
shows how highly parasitized pines react against mistletoe parasitism,
provoking changes in the concentrations of nitrogen and defence
compounds in pine needles. However, the overall metabolic profile
(the complete set of metabolites) of the plant host-mistletoe interac-
tion has not yet been examined. Thus, a higher-level resolution in the
analyses of host metabolic profile could help to elucidate the diversity
and spatio-temporal consistency of metabolic profile of the host-
parasite system. In addition, metabolomics is a powerful tool for
improving our understanding of the changes in metabolism and bio-
chemical composition of organisms, that is the ultimate phenotypic
response to environmental changes (Fiehn et al., 2000; Pefuelas &
Sardans, 2009b). It is increasingly applied to ecological studies in what
has been called ecometabolomics (Gargallo-Garriga et al., 2016, 2018,
2020; Sardans et al., 2014, 2020). Ecometabolomics approaches have
specially been applied in plant-animal, plant-fungus and plant-
microbe interactions, but this is the first time such an approach has
been used in a plant-plant interaction, which are involved a host-
parasite system with two long-lived plants (Peters et al., 2018).

Our general hypothesis is that parasitized pines react perma-
nently to mistletoe due to the chronic parasitism, changing their
metabolome over the vyear. Thus, we expect the following:
(a) parasitized pines compared with unparasitized pines will increase
the concentration of metabolites according to mistletoe requirements,
and therefore, these metabolites of parasitized pines would show
more similar concentrations to mistletoes than those of non-
parasitized pines to mistletoe, and (b) parasitized pines will promote
their secondary metabolism to bolster the production of defence com-
pounds against mistletoe parasitism. In addition, due to the intimate
connection of the haustorium with the vascular vessels of the pine
and the long-lasting attack of the mistletoe, we expect (c) these
changes in metabolomics to manifest themselves systemically

throughout the parasitized pine canopy. This study advances our
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understanding of plant-parasitism ecology and the plant-host
responses at the finest metabolic level in two long-lived plants, a rela-
tionship that in turn can promote far-reaching ecological conse-

quences in forest ecosystems.

2 | MATERIALS AND METHODS

21 | Studyzone

This study was conducted in a Mediterranean pine forest in Sierra de
Baza (Granada, south-eastern Spain, 2°51’ 48" W—37°22" 57" N),
which has an altitudinal gradient of 850-2,269 m a.s.l. and represents
the southernmost limit of the V. album subsp. austriacum geographical
distribution. The climate is typically Mediterranean with a mean
annual temperature of 15.5°C (CMAOT, 2017) and annual mean (+SE)
precipitation of 495 + 33 mm (1991-2006 period; Cortijo Narvaez
meteorological station, 1,360 m a.s.l.) concentrated in spring and
autumn, hot and dry summers (June-September) and cold winters
(December-March). This site is dominated by conifers (43%), espe-
cially P. nigra Am., which is the main host and frequently parasitized
by V. album (Mellado & Zamora, 2020). There are other species of
pines, such as Aleppo (Pinus halepensis Mill.), maritime (Pinus pinaster
Ait.) and Scots pine (P. sylvestris L.), as well as oaks (Quercus ilex,
Q. coccifera, 9%) and an ensemble of shrubs and herbaceous areas
(23%; CMAQT, 2008).

2.2 | Experimental design

The study was conducted in 2015 in a stand of afforested P. nigra
(57.3 £ 3.2 trees ha™') located at 1450 m a.s.l. in Sierra de Baza.
These trees have the same age (~40 years old) and similar architec-
ture (M [+SE] DBH: 48.4 £ 2.6 cm, and height: 6.1 £ 0.3 m). In addi-
tion, due to the self-reinfection system of mistletoe (Mellado &
Zamora, 2014), pine hosts have a wide range of mistletoe parasite
loads, from mistletoe-free pines to heavily parasitized ones. We
selected 10 unparasitized pines and 10 highly parasitized ones (>50%
of canopy foliage occupied by mistletoe), paired by their structural
similarities (i.e., canopy configuration and size) and spatial proximity.
The pines were selected from within a maximum distance of 30 m and
a minimum of 10 m in order to ensure that the trees constituted inde-
pendent sampling units. We collected three samples of current-year
needles from terminal twigs in each pine, located at different cardinal
points with equivalent distances between them, per strata and at
three different strata within pine canopy (upper, medium and bottom
third of canopy). All samples were collected at the morning (9-10 hr)
and repeated in two seasons (early summer [July] and early autumn
[October]). Each sample was formed by mixing different terminal
twigs from the same canopy stratum. Therefore, the experimental
design contained a total of 120 pine-needle samples: 10 pine trees
per treatment (parasitized and unparasitized), two sampling seasons

(summer and autumn) and three strata for pine-needle samples due to

their vertical gradient (upper, medium and bottom third of the can-
opy). In addition, current-year mistletoe leaves (MLs) of three mistle-
toes randomly selected from the upper part of the parasitized pines

canopy were collected in both seasons.

2.3 | Collection and preparation of tissue samples
The samples were frozen immediately in liquid nitrogen and then
lyophilized and stored in plastic cans at —80°C. At the laboratory,
the samples were ground with a ball mill (Mikrodismembrator-U,
B. Braun Biotech International, Melsungen, Germany) at 1700 rpm
for 4 min, producing a fine powder that was stored at —80°C.
Finally, the powdered samples were extracted with a mix of 80% of
methanol and 20% of water. The rest of the sample preparation is
described in detail by Rivas-Ubach et al. (2013) and Gargallo-Garriga
et al. (2014).

2.4 | Analysis by liquid chromatography-mass
spectrometry (LC-MS)

The LC-MS platform (all from ThermoFisher Scientific, San Jose, CA,
USA, unless otherwise noted) consisted of an Accela U-HPLC system
with quaternary pumps, an HTC PAL autosampler (CTC Analytics AG,
Zwingen, Switzerland), a Keystone hot pocket column heater and an
Exactive Orbitrap mass spectrometer controlled by Xcalibur 2.1.
Reversed-phase LC separation used a Synergy Hydro-RP column
(100 x 2 mm, 2.5 um particle size, Phenomenex, Torrance, CA, USA)
with the ion-pairing agent tributylamine in the agueous mobile phase
to enhance retention and separation. The LC used a column with a
small particle size (2.5 pm instead of 4 um) to reduce peak widths and
expedite analysis. The total run time was 25 min, and the flow rate
was 200 pl/min. Solvent A was 97:3 water:methanol with 10 mM tri-
butylamine and 15 mM acetic acid; solvent B was methanol. The gra-
dient was 0 min, 0% B; 2.5 min, 0% B; 5 min, 20% B; 7.5 min, 20% B;
13 min, 55% B; 15.5 min, 95% B; 18.5 min, 95% B; 19 min, 0% B;
25 min, 0% B. Afterwards, the column was washed and stabilized for
5 min before the next sample was injected. Other LC parameters were
autosampler temperature, 4°C; injection volume, 10 pl; and column
temperature, 25°C. HESI (heated electrospray ionization) was used for
MS detection. All samples were injected twice: once with the ESI
operating in negative ionization mode (TH) and once in positive ioni-
zation mode ("H). The Orbitrap mass spectrometer was operated in
FTMS (Fourier transform mass spectrometry) full-scan mode with a
mass range of 50-1,000 m/z and high-mass resolution (60,000). The
resolution and sensitivity of the spectrometer were monitored by
injecting a caffeine standard after every 10 samples, and the resolu-
tion was further monitored with lock masses (phthalates). Blank sam-
ples were also analysed during the sequence. The assignment of the
metabolites was based on standards, with the retention time and mass
of the assigned metabolites in both positive and negative ionization

modes.
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2.5 | Statistical analyses

First, the normality of each metabolite signal-intensity data was tested
by Kolmogorov-Smirnov tests. The data for all metabolites followed a
normal distribution, except 5 unidentified compounds (0.25%), which
were removed from the data set. Then, a permutational multivariate
analysis of variance (PERMANQOVA) was performed to test differences
between pine needles, from parasitized (PPN) and unparasitized pines
(UPN), and MLs in both seasons. Thus, treatment (PPN, UPN and ML)
and season (summer and autumn) were included as fixed factors and
pine tree individual as a random factor. In the same way, a partial least
squares discriminant analysis (PLS-DA) was also performed to deter-
mine general trends on a sample ordination, and a linear mixed model
and Tukey post hoc test with score coordinates of the two first PLS-
DA components were used to test differences among metabolomes
of ML, PPN and UPN for summer and autumn. Finally, one-way ANO-
VAs were performed for each individual metabolic compound to iden-
tify any statistical differences between ML, PPN and UPN
metabolomes.

Second, the whole metabolomic profile of P. nigra needles (1991
metabolites), including 55 identified from our metabolite library, was
analysed in order to test global effects of mistletoe parasitism (parasit-
ized and unparasitized pines), canopy modularity (upper, middle and
bottom third of the pine canopy) and season (summer and autumn).
These three factors were run on a PERMANOVA using the Euclidean
distance, with 10,000 permutations, as fixed independent factors and
each pine tree as random factors. One-way ANOVAs between treat-
ment and season were also performed for each individual metabolic
compound. Multivariate ordination PLS-DAs were also performed to
detect general patterns of sample ordination in the metabolomes. The
PLS-DAs allowed us to reduce the dimensionality of the entire data
set of identified and unidentified metabolites and to project our sam-
ples and variables on a biplot. Therefore, we were able to identify
metabolomic trends of parasitized and unparasitized P. nigra, seasons
and canopy modularity. To test differences among the metabolome of
different groups across the scores coordinates of two first compo-
nents of the PLS-DAs, we used an linear mixed model (LMM) for each
component and a Tukey post hoc test, with three factors as fixed and
pine tree as the random factor.

All statistical analyses were conducted with R software (R Core
Team, 2020) and were performed to detect shifts in both the

metabolomes and individual metabolites as well as the variables con-
trolling them. The PERMANOVA was conducted with the adonis
functions in “vegan” package (Oksanen et al., 2019). One-way ANO-
VAs and the Kolmogorov-Smirnov test were performed by aov and
ks. test functions in “stats” package (R Core Team, 2020). PLS-DA
was conducted with the plsda function in the “mixOmics” package
(Rohart, Gautier, Singh, & Lé Cao, 2017). All data were scaled for the
PLS-DA by setting the parameter “scale = TRUE” in the function.
Finally, LMM and Tukey post hoc tests were performed with the Ime
and Ismeans functions of the “nlme” (Pinheiro, Bates, DebRoy,
Sarkar, & R Core Team, 2020) and “Ismeans” (Lenth, 2016) packages,
respectively.

3 | RESULTS

3.1 | Metabolomic profile differences between
pine host and its hemiparasite

All metabolites detected in pine needles (1991 compounds in total)
were found in both pine treatments, PPN and UPN. However, the
metabolic profile of ML lacked 17 and 15 of metabolites when com-
pared to pine needles in summer and autumn season, respectively,
5 of these being absent in all cases. The PERMANOVA of the entire
data set indicated differences in the overall metabolomes among
treatments (F; = 32.21; p < .001), seasons (F; = 43.39; p < .001) and
their interaction (F; = 4.73; p < .001).

Overall, the ML metabolome differed markedly from that of pine
needles, and although PPN metabolome was displayed close to UPN,
their metabolic profile was statistically different, being PPN more sim-
ilar to ML than UPN to ML. When all the data were analysed at once,
these differences were displayed on component 2 of PLS-DA
(Table 1, Figure 1). The one-way ANOVAs of all metabolic compounds
showed that the ML metabolome differed from UPN in 80% of the
compounds (1,542 out of 1991), whereas the metabolic profile of
PPN showed fewer differences with regard to ML (72.5%, 1,444 com-
pounds). The concentration of 933 and 842 metabolites was higher in
UPN and PPN, respectively, than that in ML, and the rest (609 and
602 compounds) proved higher in ML (see Figure 2 and Table S1 for
identified compounds). Thus, the metabolic profile of the ML showed

a higher proportion of most amino acids, most sugars, organic acids

TABLE 1 Post hoc results from LMMs of two first components from PLS-DA between treatment and season

Component 1 Component 2

ML-S ML-A PPN-S PPN-A UPN-S ML-S ML-A PPN-S PPN-A UPN-S
ML-A <0.001 — — — — <0.001 — — — —
PPN-S 0.898 <0.001 — — — <0.001 <0.001 — — —
PPN-A <0.001 <0.001 <0.001 — — <0.001 <0.001 <0.001 — —
UPN-S 0.444 <0.001 0.013 <0.001 — <0.001 <0.001 <0.001 <0.001 —
UPN-A <0.001 <0.001 <0.001 0.038 <0.001 <0.001 <0.001 0.677 <0.001 <0.001

Note: Bold type indicates significant effects (p < .05).

Abbreviations: A, autumn; ML, mistletoe leaves; PPN, parasitized pine needles; S, summer; UPN, unparasitized pine needles.
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FIGURE 1 Component 1 versus Component 2 of the partial least

squares discriminant analysis (PLS-DA) conducted with all
metabolome of parasitized and unparasitized pine needles, and
mistletoe leaves. Biplots of the two first components of (a) the PLS-
DA of metabolomic data presenting the scores (M * SE) of the Pinus
nigra needles (dark red and green, parasitized pines; orange and blue,
unparasitized pines) and mistletoe leaves (purple and pink), and
summer and autumn season. (b) The various metabolomic families are
represented by colours: green, amino acids; cyan, nucleotides; orange,
organic acids related to the tricarboxylic acid cycle; red, other
secondary metabolites; dark blue, sugars; yellow, phenolics; purple,
terpenes; and grey, unknown metabolites. Aspartic acid (Asp), serine
(Ser), lysine (Lys), asparagine (Asn), arginine (Arg), tyrosine (Tyr),
methionine (Met), histidine (His), glutamine (GIn), glutamic acid (Glu),
isoleucine (Iso), phenylalanine (Phe), hydroxyproline (ProH), alanine
(Ala), adenine (Ad), uracil (Ur), guanosine (Gua), guanine (Gu), cytidine
(Cy), cytosine (Cyt), adenosine (Ade), thymine (Thy), a-ketoglutaric
acid (KG), chlorogenic acid (CGA), citric acid (anhydrous) (Cit), L-
(—)-malic acid (Mal), lactic acid (Lac), pyruvic acid (Pyr), succinic acid
(Suc), D-(+)-arabitol (Ara), pentose (Pen), 2-deoxy-D-ribose (Rib), D-
(—)-lyxose (Lyo), D-(+)-sorbose (Sor), gibberellic acid (GA3) (Gib),
ascorbic acid (Asc), abscisic acid (ABA), riboflavin (RiF), pantothenic
acid hemicalcium salt (Pan), quinic acid (QA), (+)-catechin hydrate
(anhydrous) (Cat), epigallocatechin (EpG), 5,7-dihydroxy-
3,4,5-trimethoxyflavone (Fla), epicatechin (Epi), protocatechuic acid
(Prc), caffeic acid (CafA), kaempferol (Kae), D-pinitol (Pin), a-humulene
(Hum), aucubin (Acu), a-terpinene (Ter), caryophyllene oxide (CarO),
ocimene (Oci), a-terpineol (Teo) and carvone (Car)

associated with the Krebs cycle and a higher proportion of most of
the nitrogenous bases (Figure 2 and Table S1). The metabolic profile

of pine needles showed higher concentrations of most of the defence

compounds such as here determined phenolic compounds and ter-
penes, some amino acids and other secondary metabolites (Figure 2
and Table S1).

3.2 | Metabolomic responses of pine host to
mistletoe

All of the metabolites detected in pine needles were found in both
treatments (parasitized and unparasitized P. nigra) and seasons (sum-
mer and autumn), but with different concentrations and ratios. The
PERMANOVA of the entire data set revealed significant differences in
the overall metabolomic profile between parasitized and non-
parasitized pines. Moreover, seasonality and the interaction between
treatments (parasitized vs. non-parasitized pines) x season were also
significant (Table 2).

Differences between UPN and PPN were displayed in Compo-
nent 2 of PLS-DA (Figure 3). One-way ANOVAs show that mistletoe
presence was related to a shift in the concentrations of 26% of
metabolites detected in P. nigra needles (518 out of 1991). Approxi-
mately half of these metabolites (239) presented higher concentra-
tions in parasitized pines, whereas concentrations of the rest (279)
was lower (see Figure 4a for identified compounds). Therefore, the
metabolic profiles of the PPN had higher concentrations of most
amino acids, a higher proportion of the guanine nitrogenous bases,
some sugars such as arabitol and some secondary metabolites such as
phenols (Figure 4a). The UPN had higher concentrations of Vit. B5
(pantothenic acid) and some phenols among the determined metabo-

lites (Figure 4a).

3.3 | Seasonality of the host-mistletoe system and
the vertical within-canopy gradient

The concentrations of 38.3% (761 out of 1986) of the total detected
metabolites in the ML metabolome changed between seasons,
whereas the overall metabolic profile of the pine needles showed a
difference of 65.4% (1,303 out of 1991). The differences in seasonal-
ity between parasite-host metabolome were displayed on Compo-
nent 1 of PLS-DA (Figure 1 and Table 1). For MLs, the one-way
ANOVA identified a trend in which the concentration of 276 metabo-
lites (13.9% of the total detected metabolites) was higher during sum-
mer, including few amino acids, sugars and defence compounds.
Conversely, another 485 compounds (24.4%), including most amino
acids, some nucleotides, compounds associated with the Krebs cycle,
and growth factors such as Vit. B5 and gibberellic acid, increased their
concentrations in autumn.

On the other hand, the PERMANOVA of the entire data set of
PPN and UPN also reflected a significant interaction between season-
ality and parasitism status (Figure 3 and Table 2). The PLS-DAs of the
entire data clearly separated their component according to the PER-
MANOVA results, where Component 1 separated the cases by sea-
sons (Figure 3). One-third part of seasonally altered metabolites of
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FIGURE 2 Differences in total intensities of parasitized (filled bars) and unparasitized pine needles (open bars) of all identified compounds
with respect to mistletoe-leaf intensities. Bars show mean quantities (intensities) of N = 10 samples, where the bars above zero corresponds to
greater metabolite intensities in MLs, whereas the bars below zero correspond to greater metabolite intensities in pine needles. The asterisks
indicate significant results from the one-way ANOVA (p < .05 **; p < .1 *). Different metabolomic families are coloured and described in the
caption of Figure 1, and SE values are given in Table S1 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Effects of treatment (parasitized and unparasitized
pines), and stratification level of canopy (upper, medium and bottom
third part), and season (summer and autumn) in a complete set of the
metabolome of pine needles

Factors Df F.Model R? Pr(>F)

Treatment 1 4.62 .031 <0.001
Stratification 2 0.45 .006 0.596
Season 1 39.32 263 <0.001
Treatment * stratification 2 0.18 .003 0.979
Treatment * season 1 4.03 .027 0.048
Season * stratification 2 0.25 .003 0.892

Note: The results come from the PERMANOVA model, including all
metabolomic variables (1991 compounds). Bold type indicates significant
effects (p < .05).

pine needles (420 out of 1,303) had higher concentrations in summer,
and two-thirds (883 of 1,303) had higher concentration values in
autumn (see Figure 4b and Table S1 for identified metabolites). Over-
all, pine needles in autumn had lower relative concentrations in some
amino acids, nucleotides and terpenes, but higher relative concentra-
tions of other nucleotides, organic acids typically related to the Krebs
cycle, sugars, phenolics compounds here determined, terpenes and
growth factors such as abscisic acid (Figure 4b).

In addition, the post hoc test from LMM, realized with score coor-
dinates of the two first PLS-DA components, showed an interaction
between treatment, season and canopy strata (Table 3). This interac-

tion showed that the metabolome from both parasitized and

unparasitized pines was homogeneous within the pine canopy during
summer, whereas the chemical profile of pine needles differed from
the bottom to the upper part of pine canopy, especially in

unparasitized pines in autumn (Figure 3 and Table 3).

4 | DISCUSSION

This study provides for the first time an integral view of overall shifts
in the metabolic profile caused by European mistletoe, V. album subsp.
austriacum, on its main host black pine, P. nigra subsp. salzmannii, in a
Mediterranean forest. Mistletoe parasitism has a systemic effect, mak-
ing the pine host a more unitary rather than modular organism in
space and time. Overall, by causing shifts in host metabolism, mistle-
toe is able to convert its host into a new plant metabolomic identity
available in the forest canopy. In addition, our results strongly suggest
that mistletoe acquires resources, derived from primary metabolism,
directly from their host, and changes in the metabolic profile of para-
sitized pines closely fits the hemiparasite metabolome. This indicates
that the pine host works for mistletoe, constituting a sink of host

resources.
4.1 | Metabolomic profile differences between the
pine host and its hemiparasite

Previous studies have shown that the concentration of functional

chemical groups (basically defence compounds) in the European MLs
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FIGURE 3 Component 1 versus Component 2 of the partial least
squares discriminant analysis (PLS-DA) of the changes of the
metabolomes of pine-needle samples. Biplots of the two first
components of the PLS-DA of (a) metabolomic data presenting the
scores (M + SE) of the different Pinus nigra treatments (red and green,
parasitized P. nigra; brown and blue, P. nigra uninfected) and different
season (red and brown, summer; green and blue; autumn). The
different intensities of the colour indicate the height (high intensity
indicated the top, the medium indicated the medium, and the lowest
indicated the bottom). (b) Different metabolomic families are coloured
and described in the caption of Figure 1 [Colour figure can be viewed
at wileyonlinelibrary.com]

and black pine needles sharply differs (Ldzaro-Gonzalez et al., 2019a).
According to this, our study shows that these differences are evident
not only at the level of functional chemical groups (i.e., defence com-
pounds), but also at the finest metabolic level (i.e., amino acids, nucle-
otides). Overall, the main metabolome differences between MLs and
pine needles concern a high concentration of amino acids, nucleo-
tides, compounds related to the Krebs cycle and sugars, and therefore
involve a higher up-regulation of primary metabolism (Figure 2). All
these changes suggest, on the one hand, that the hemiparasite
requires high amounts of metabolic resources to invest in their devel-
opment in comparison with their plant host. Interestingly, mistletoe
acquires at least a part of these resources (Pate, True, & Kuo, 1991;
Stewart & Press, 1990), derived from primary metabolism, directly
from their host. At the same time, the host accumulates extra

amounts of these compounds, benefitting mistletoe, by acquiring part

of them (Pate et al., 1991; Stewart & Press, 1990), rather than the
host itself, for instance, showing a reduction in host primary and sec-
ondary growth (Mellado & Zamora, 2020). In addition, mistletoes have
high transpiration rates and low hydric potential (Ehleringer
et al, 1985; Schulze & Ehleringer, 1984; Schulze, Turner, &
Glatzel, 1984), guaranteeing the unidirectional flow from host to hem-
iparasite plant, especially for carbohydrates and amino acids (Glatzel &
Geils, 2009; Lamont, 1983; Lopez-Saez, Catalan, & Saez, 2002). Our
results reinforce the idea that the mistletoe-host relationship is a
one-way flow system—an asymmetrical relationship where the pine
host is forced to work for mistletoe becoming an irreversible sink of
resources and water, this being consistent with results of previous
non-ecometabolomic studies (Glatzel & Geils, 2009; Ldpez-Saez
et al., 2002; Schulze et al., 2019).

On the other hand, our results show that mistletoe has a weak
secondary metabolism relative to the pine host, where the concentra-
tion of mostly secondary metabolites, especially defence compounds
(e.g., flavonoids, tannins and terpenes), is practically absent in mistle-
toe (Figure 2, Table S1, Lazaro-Gonzélez et al., 2019a). According to
Lazaro-Gonzalez et al. (2019a), these results reinforce the idea that
V. album does not benefit from the pine host by acquiring anti-
herbivory properties. However, the higher concentrations of free
amino acids in mistletoe coming from the plant host are consistent
with the higher concentrations of N-rich herbivore deterrent sub-
stances in this parasite. These amino acids correspond to a series of
compounds necessary to synthesize the sequence of their own pro-
teins, which are toxic for animal cells, such as viscotoxin (Olson &
Samuelsson, 1972; Samuelsson, 1973; Samuelsson &
Pettersson, 1971) and lectins (Soler et al., 1996; Soler, Stoeva, &
Voelter, 1998). Lysine, for instance, required for the synthesis of
viscotoxins, shows higher concentrations in ML than in pines
(Figure 2). Thus, by generating a net flux of primary metabolites from
the host, mainly related to a source of matter and energy (C and nutri-
ents), but not to secondary plant compounds, mistletoe leads its
efforts to synthetize their own anti-herbivore defences rather than

anti-abiotic stress compounds.

4.2 | Metabolomic responses of pine host to
mistletoe

Mistletoe can modify the metabolic profile of their pine host by
altering the concentration of a quarter of their metabolome (26% of
the metabolites analysed). Overall, parasitized pines increase the
concentration of most of the primary metabolites intercepted by the
mistletoe such as amino acids, nucleobases, compounds related to
the Krebs cycle and carbohydrates, while decreasing the concentra-
tion of secondary metabolites such as vitamins and certain deter-
mined phenolic compounds (Figure 4a and Table S1). Therefore, as a
consequence of mistletoe requirements and their inability to take
up essential resources from soil, parasitized pines respond by
enhancing the concentrations of metabolites especially rich in

nitrogen.
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FIGURE 4 Differences between (a) treatments (parasitized and unparasitized pines) and (b) season (summer and autumn) of compounds
identified. Asterisks indicate significant results from one-way ANOVA (p < .05 **; p < .01 *). Different metabolomic families are coloured and
described in the caption of Figure 1 [Colour figure can be viewed at wileyonlinelibrary.com]

In addition, the pine reaction against mistletoe shows common
responses to other biotic stressors such as the specialist and more
abundant pine-feeding herbivore the pine processionary moth (PPM),
which also induces greater concentrations of amino acids, compounds
related to the Krebs cycle and carbohydrates (Rivas-Ubach
et al.,, 2016). Besides, PPM generate oxidative stress on pine (Rivas-
Ubach, Hdédar, et al., 2016), a response commonly induced by folivory
in attacked plants (Bi & Felton, 1995). Overall, the metabolic profile of
mistletoe-infested pine trees also shows wide similarity with those of
pines suffering from water stress. This is because V. album keep the
stomata open in an almost unregulated way, thus maintaining high
transpiration rates under various environmental conditions, leading to
drought stress in the host (Escher et al., 2008; Hu et al., 2017; Schulze
et al., 1984). As a consequence, primary metabolism is altered by
increasing concentrations of soluble sugars and carbohydrate deriva-
tives, and frequently also by elevated concentrations of free amino
acids, whereas secondary metabolites, especially flavonoids and ter-
penes, also commonly exhibited increased concentrations (see
Sardans et al., 2020 for a deep analysis on the metabolomic responses
to drought in trees). Our results suggest that mistletoe parasitism also
provokes oxidative stress, since parasitized pines raise the concentra-
tion of some phenols such as flavonoids with antioxidant properties
(Figure 4 and Table S1). Despite the similarities of pine responses to
PPM attack and mistletoe parasitism, the folivory of PPM causes a
slighter effect, with only 12.9% of host metabolome altered (Rivas-
Ubach et al., 2016). Meanwhile, mistletoe parasitism has a greater
impact on the host pine, modifying 26% of the pine metabolome due
presumably to the chronic parasitism and intimate host-parasite
relationship.

Parasitized pines increase the relative concentration of aucubin

(Figure 4a), an iridoid glycoside known as a secondary defence

compound against insect (Bowers &
Puttick, 1988; Sauri, &

Riekkola, 2003), but also attract specialist lepidopteran species for

generalist herbivory

Nieminen, Suomi, Van Nouhuys,
oviposition and feeding (Harvey, Van Nouhuys, & Biere, 2005;
Nieminen et al., 2003; Pefiuelas, Sardans, Stefanescu, Parella, &
Filella, 2006). Parasitized pines could attract the oviposition of the
main pine-feeding specialist, the PPM and, at the same time, provide a
low-quality food for caterpillar (Lazaro-Gonzalez et al., 2019a). As a
consequence, pine woodland with mistletoe presence would make
pine processionary outbreaks less prevalent. Further studies are
needed to assess whether PPM, or other specialist lepidopterans,
preferably oviposit upon parasitized pines and whether hatched larvae
are able to sequester any defensive compound of pine host for their

own defence (Bowers & Collinge, 1992).

4.3 | Seasonality of the host-mistletoe system and
the vertical within-canopy gradient

MLs and pine needles undergo metabolomic changes from summer to
autumn, although MLs are more stable, showing less seasonal variance
in their metabolome (38.3% of metabolites change their concentra-
tion) than pines (65.4%). This indicates that V. album functionality
(metabolome) depends less on the environment than on the function-
ality (metabolome) of the host, as expected from the hemiparasite
habit. Thus, both ML and pine-needle metabolomes increase their
concentration of primary metabolites such as amino acids associated
with chlorophyll synthesis and nutrient assimilation (e.g., lysine and
arginine) in summer, whereas other amino acids, nucleotides, com-
pounds associated with the Krebs cycle and vitamins increase in

autumn (Table S1). This suggests that the host-parasite system, as
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TABLE 3

LMM of component 1

Post hoc results from LMMs of two first components from PLSDA between parasitism status, seasons, and stratification level

PPN-SL  PPN-SM  PPN-ST  PPN-AL  PPN-AM  PPN-AT UPN-SL  UPN-SM  UPN-ST UPN-AL  UPN-AM
PPN-SM 1 - - - - - - - - — -
PPN-ST 1 1 - - — - - — — — -
PPN-AL <0.001 <0.001 <0.001 - - - — - - - -
PPN-AM <0.001 <0.001 <0.001 0.888 - - - — — - -
PPN-AT <0.001 <0.001 <0.001 0.021 0.671 - — - - — —
UPN-SL 0.808 0.604 0.878 <0.001 <0.001 <0.001 - — — — —
UPN-SM 0.433 0.260 0.523 <0.001 <0.001 <0.001 0.999 - - - -
UPN-ST 0.392 0.231 0.479 <0.001 <0.001 <0.001 0.999 1 — — —
UPN-AL <0.001 <0.001 <0.001 0.944 1 0.864 <0.001 <0.001 <0.001 - -
UPN-AM  <0.001 <0.001 <0.001 0.289 0.948 1 <0.001 <0.001 <0.001 0.968 =
UPN-AT <0.001 <0.001 <0.001 <0.001 0.014 0.310 <0.001 <0.001 <0.001 0.003 0.210
LMM component 2
PPN-SL  PPN-SM  PPN-ST  PPN-AL  PPN-AM  PPN-AT UPN-SL  UPN-SM  UPN-ST UPN-AL  UPN-AM

PPN-SM 0.992 - - - - - - - - — -
PPN-ST 0.965 1 — — — — — — — — —
PPN-AL 0.885 0.207 0.121 - - - - - - - -
PPN-AM 0.985 0.440 0.294 1 — - - — — — -
PPN-AT 1 0.951 0.872 0.971 0.999 - — - - — —
UPN-SL 0.031 0.098 0.123 0.005 0.008 0.023 - — — - -
UPN-SM 0.036 0.111 0.139 0.006 0.010 0.026 1 — — - -
UPN-ST 0.012 0.041 0.052 0.002 0.003 0.009 0.999 0.997 — — —
UPN-AL 0.010 0.031 0.039 0.002 0.003 0.00 0.981 0.963 1 - -
UPN-AM 0.003 0.009 0.011 <.001 <.001 0.002 0.446 0.374 0.894 0.994 —
UPN-AT <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.003 0.114

Note: Bold type indicates significant effects (p < .05).

Abbreviations: A, autumn; L, the bottom third of the tree; M, the middle third; PPN, parasitized pine needles; S, summer; T, the treetop; UPN, unparasitized

pine needles.

well as mistletoe-free pines, begins to accumulate most primary and
some secondary metabolites for the growth period several months
before the resources are needed, showing similar responses to
seasonality.

At the canopy scale, the pine needles respond permanently to
mistletoe parasitism over the year (Figure 3). New needles sprout with
a common metabolic profile and shift to a vertical within-canopy gra-
dient in autumn, with changes being more intense from the crown to
the bottom part of canopy (Figure 3). However, the vertical gradient
in parasitized pines is less accentuated than in unparasitized ones, and
therefore, mistletoe parasitism makes the metabolome of parasitized
pine needles more homogeneous by softening the stratification during
autumn. This suggests that the metabolic responses of pines are sys-
temic at the canopy scale, turning a modular pine tree into an organ-
ism with unitary responses. Thus, mistletoe is an agent of systemic
changes (see also Cocoletzi, Angeles, Ceccantini, Patrén, &
Ornelas, 2016), able to generate a new plant metabolic identity in the

host pine with respect to mistletoe-free pines, prompting ecological

consequences. Notably, this systemic reaction appears to be
mistletoe-specific in P. nigra, given that pines attacked by other biotic
stressors such as PPM react to folivory more at local level rather than
at the systemic level (Rivas-Ubach, Hodar, et al., 2016).

44 | The ecological consequences of mistletoe
parasitism

Mistletoe has a permanent and systemic effect on the metabolic pro-
file of pine hosts needles, as shown by the data presented in Figure 1.
On the one hand, mistletoe parasitism causes damage by permanent
oxidative stress (Mutlu, llhan, & Turkoglu, 2016) and resorbing N-rich
compounds from its host over the year in pine needles (Escher,
Eiblmeier, Hetzger, & Rennenberg, 2004). On the other hand, the host
has a systemic reaction (e.g., Anselmo-Moreira et al., 2019), which
prevents minimizing the effects of parasitism by discarding a part of

their canopy and acting as a more unitary rather than modular
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organism. As a result, the pine-feeding herbivores cannot find safe
sites at different times of the year and in different parts of pine can-
opy free of the mistletoe impact, triggering spatio-temporal tritrophic
mediated indirect interactions. For instance, changes in the chemical
profile in response to mistletoe have direct detrimental effects, includ-
ing death, on many pine-feedings herbivores such as the summer fol-
ivore beetle Brachyderes sp. and the winter folivore PPM (Lazaro-
Gonzélez et al., 2019b), one of the most severe and widespread pests
in the Mediterranean forests (Hédar, Castro, & Zamora, 2003; Hddar,
Zamora, & Castro, 2002). Thus, mistletoe generates non-trophic links
with pine-feeding herbivores, where the permanent and systemic
reaction of pine host has indirect effects on arthropod herbivores via
changes in the host quality as food (Lazaro-Gonzalez et al., 20194,
2019b).

In conclusion, by exerting a press disturbance, mistletoes cause
a permanent and long-lasting systemic effect, making the pine host a
more unitary rather than modular organism in space and time. By
causing shifts throughout the host metabolism, mistletoe is able to
generate a new metabolomic identity in host, which increases the
complexity and heterogeneity of the forest canopy. This in turn trig-
gers an ecological cascade of consequences, which exert detrimental
effects on pine herbivores (Ldzaro-Gonzalez et al., 2019b). Never-
theless, the new identity could mean a novel niche and new opportu-
nities for tolerant and adapted herbivores, promoting the local and
regional forest biodiversity at ecosystem level, which can have valu-
able implications for the conservation and management of pine
forests.

ACKNOWLEDGMENTS

We are especially grateful to the Andalusian Environmental Council,
Junta de Andalucia, and the Direction of the Sierra de Baza Natural
Park for providing permission for field work. We are also grateful to
Ramoén Ruiz-Puche for their help on field sampling, and D. Nesbitt for
checking the English version of this manuscript. This research was
supported by the European Research Council Synergy grant ERC-
2013-SyG-610028 IMBALANCE-P, the Spanish Ministry of Science
and Innovation projects ELEMENTALSHIFT PID2019-110521GB-I100
to J.P. and J.S., and CLAVINOVA CGL2011-29910 to R.Z., the Catalan
Government grant SGR 2017-1005, and the Spanish Ministry of
Economy and Competitiveness FPl grant BES-2012-057125 to
A.L.G. The work by J.P., A.G.G,, J.S., M.O,, and O.U. was supported by
MEYS project SustES (CZ.02.1.01/0.0/0.0/16_019/0000797).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHORS' CONTRIBUTIONS

José Antonio Hodar and Regino Zamora conceived the idea; Alba
Lazaro-Gonzalez, José Antonio Hédar and Regino Zamora designed
the study; José Antonio Hddar and Alba Lazaro-Gonzalez performed
the field work; Albert Gargallo-Garriga and Alba Lazaro-Gonzalez per-
formed the laboratory work and statistical analyses; Michal Oravec

and Otmar Urban performed the chemical analyses. All authors

discussed the results, contributed critically to the drafts and gave final

approval for publication.

DATA AVAILABILITY STATEMENT
The data set generated during the current study is available in the
Zenodo repository at https://doi.org/10.5281/zenodo.5387360.

ORCID

Alba Ldzaro-Gonzdlez ' https://orcid.org/0000-0002-3367-180X
https://orcid.org/0000-0002-7536-2888

José Antonio Hodar = https://orcid.org/0000-0003-3475-4997

https://orcid.org/0000-0003-2478-0219
https://orcid.org/0000-0002-2506-5826

https://orcid.org/0000-0002-1716-8876
https://orcid.org/0000-0002-7215-0150

https://orcid.org/0000-0002-5049-9968

Albert Gargallo-Garriga

Jordi Sardans
Michal Oravec
Otmar Urban
Josep Peiiuelas

Regino Zamora

REFERENCES

Allwood, J., Clarke, A., Goodacre, R., & Mur, L. A. J. (2010). Dual met-
abolomics: A novel approach to understanding plant-pathogen inter-
actions. Phytochemistry, 71, 590-597.

Anselmo-Moreira, F., Teixeira-Costa, L., Ceccantini, G., & Furlan, C. M.
(2019). Mistletoe effects on the host tree Tapirira guianensis: Insights
from primary and secondary metabolites. Chemoecology, 29, 11-24.

Bender, E. A, Case, T. J., & Gilpin, M. E. (1984). Perturbation experiments
in community ecology: Theory and practice. Ecology, 65, 1-13.

Bi, J. L., & Felton, G. W. (1995). Foliar oxidative stress and insect herbiv-
ory: Primary compounds, secondary metabolites, and reactive oxygen
species as components of induced resistance. Journal of Chemical Ecol-
ogy, 21, 1511-1530.

Bowers, M. D., & Collinge, S. K. (1992). Fate of iridoid glycosides in differ-
ent life stages of the buckeye, Junonia coenia (Lepidoptera:
Nymphalidae). Journal of Chemical Ecology, 18, 817-831.

Bowers, M. D., & Puttick, G. M. (1988). Response of generalist and special-
ist insects to qualitative allelochemical variation. Journal of Chemical
Ecology, 14, 319-334.

Brooks, J., Flanagan, L., Varney, G., & Ehleringer, J. (1997). Vertical gradi-
ents in photosynthetic gas exchange characteristics and refixation of
respired CO, within boreal forest canopies. Tree Physiology, 17, 1-12.

Bundy, J. G., Davey, M. P., & Viant, M. R. (2008). Environmental met-
abolomics: A critical review and future perspectives. Metabolomics, 5,
3-21.

Chen, M.-S. (2008). Inducible direct plant defense against insect herbi-
vores: A review. Insect Science, 15, 101-114.

CMAQOT. (2008). Usos del suelo y coberturas vegetales en Andalucia, por
Espacio Natural Protegido. Consejeria de Medio Ambiente y
Ordenaciéon del Territorio, Junta de Andalucia. Retrieved June
15, 2020 from www.juntadeandalucia.es/medioambiente/web/
Blogues_Tematicos/Estadisticas_e_Indicadores/Estadisticas_Oficiales_
de_la_Consejeria_de_Medio_Ambiente/SueloUso/usoscob_enp-

2007 xls.

CMAOT. (2017). Temperaturas et precipitaciones medias anuales en grandes
dreas geogrdficas de Andalucia, 1997-2017. Consejeria de Medio
Ambiente y Ordenacién del Territorio, Junta de Andalucia. Retrieved
June 15, 2020 from http://www.juntadeandalucia.es/medioambiente/
vem/?c=Menu/tema/283.

Cocoletzi, E., Angeles, G., Ceccantini, G., Patron, A., & Ornelas, J. F. (2016).
Bidirectional anatomical effects in a mistletoe-host relationship:
Psittacanthus schiedeanus mistletoe and its hosts Liquidambar sty-
raciflua and Quercus germana. American Journal of Botany, 103,
986-997.

85U80|7 SUOWLWOD aAeaID 8|qeot|dde ays Aq pausenob afe sejoiie YO ‘8sN JO s8Nl 10} Areiq1T8ulUQ AB]IA UO (SUORIPUOD-pUe-SLLBYLICD" A8 1M ATe1q U1 [UO//:SANY) SUORIPUOD PUe Swie 1 8us 88 *[7202/80/c2] Uo Areiqiauliuo AB11m ‘(ouleAnde) eqnopesy Aq 6/T+T80d/TTTT OT/I0p/wWoo A3 1M AR jeuljuoy/sdny wo.y pepeojumod ‘TT ‘TZ0Z ‘Ov0ES9ET


https://doi.org/10.5281/zenodo.5387360
https://orcid.org/0000-0002-3367-180X
https://orcid.org/0000-0002-3367-180X
https://orcid.org/0000-0002-7536-2888
https://orcid.org/0000-0002-7536-2888
https://orcid.org/0000-0003-3475-4997
https://orcid.org/0000-0003-3475-4997
https://orcid.org/0000-0003-2478-0219
https://orcid.org/0000-0003-2478-0219
https://orcid.org/0000-0002-2506-5826
https://orcid.org/0000-0002-2506-5826
https://orcid.org/0000-0002-1716-8876
https://orcid.org/0000-0002-1716-8876
https://orcid.org/0000-0002-7215-0150
https://orcid.org/0000-0002-7215-0150
https://orcid.org/0000-0002-5049-9968
https://orcid.org/0000-0002-5049-9968
http://www.juntadeandalucia.es/medioambiente/web/Bloques_Tematicos/Estadisticas_e_Indicadores/Estadisticas_Oficiales_de_la_Consejeria_de_Medio_Ambiente/SueloUso/usoscob_enp-2007.xls
http://www.juntadeandalucia.es/medioambiente/web/Bloques_Tematicos/Estadisticas_e_Indicadores/Estadisticas_Oficiales_de_la_Consejeria_de_Medio_Ambiente/SueloUso/usoscob_enp-2007.xls
http://www.juntadeandalucia.es/medioambiente/web/Bloques_Tematicos/Estadisticas_e_Indicadores/Estadisticas_Oficiales_de_la_Consejeria_de_Medio_Ambiente/SueloUso/usoscob_enp-2007.xls
http://www.juntadeandalucia.es/medioambiente/web/Bloques_Tematicos/Estadisticas_e_Indicadores/Estadisticas_Oficiales_de_la_Consejeria_de_Medio_Ambiente/SueloUso/usoscob_enp-2007.xls
http://www.juntadeandalucia.es/medioambiente/vem/?c=Menu/tema/283
http://www.juntadeandalucia.es/medioambiente/vem/?c=Menu/tema/283

MISTLETOE CAUSES CHANGES IN PINE HOST METABOLOME

5_WILEY_L*

Ehleringer, J., Schulze, E.-D., Ziegler, H., Lange, O., Farquhar, G. &
Cowar, I. (1985). Xylem-tapping mistletoes: Water or nutrient para-
sites? Science, 227, 1479-1481.

Escher, P., Eiblmeier, M., Hetzger, I., & Rennenberg, H. (2004). Spatial and
seasonal variation in amino compounds in the xylem sap of a mistletoe
(Viscum album) and its hosts (Populus spp. and Abies alba). Tree Physiol-
ogy, 24, 639-650.

Escher, P., Peuke, A. D., Bannister, P., Fink, S., Hartung, W., Jiang, F., &
Rennenberg, H. (2008). Transpiration, CO, assimilation, WUE, and sto-
matal aperture in leaves of Viscum album (L.): Effect of abscisic acid
(ABA) in the xylem sap of its host (Populus x euamericana). Plant Physi-
ology and Biochemistry, 46, 64-70.

Fiehn, O. (2002). Metabolomics—The link between genotypes and pheno-
types. In C. Town (Ed.), Functional genomics (pp. 155-171). Dordrecht:
Springer.

Fiehn, O., Kopka, J., Dérmann, P., Altmann, T., Trethewey, R. N., &
Willmitzer, L. (2000). Metabolite profiling for plant functional geno-
mics. Nature Biotechnology, 18, 1157-1161.

Gargallo-Garriga, A., Ayala-Roque, M., Sardans, J., Bartrons, M., Granda, V.,
Sigurdsson, B. D., ... Pefiuelas, J. (2017). Impact of soil warming on the
plant metabolome of icelandic grasslands. Metabolites, 7, 44.

Gargallo-Garriga, A., Preece, C., Sardans, J., Oravec, M., Urban, O., &
Pefiuelas, J. (2018). Root exudate metabolomes change under drought
and show limited capacity for recovery. Scientific Reports, 8, 1-15.

Gargallo-Garriga, A., Sardans, J., Llusia, J., Peguero, G., Asensio, D.,
Ogaya, R., ... Pefuelas, J. (2020). 31P-NMR metabolomics revealed
species-specific use of phosphorous in trees of a French Guiana
rainforest. Molecules, 25, 3960.

Gargallo-Garriga, A., Sardans, J., Pérez-Trujillo, M., Guenther, A., Llusia, J.,
Rico, L., ... Pefiuelas, J. (2016). Shifts in plant foliar and floral met-
abolomes in response to the suppression of the associated microbiota.
BMC Plant Biology, 16, 1-12.

Gargallo-Garriga, A., Sardans, J., Pérez-Truijillo, M., Oravec, M., Urban, O.,
Jentsch, A, ... Pefuelas, J. (2015). Warming differentially influences
the effects of drought on stoichiometry and metabolomics in shoots
and roots. New Phytologist, 207, 591-603.

Gargallo-Garriga, A., Sardans, J., Pérez-Trujillo, M., Rivas-Ubach, A,
Oravec, M., Vecerova, K., ... Pefiuelas, J. (2014). Opposite metabolic
responses of shoots and roots to drought. Scientific Reports, 4, 1-7.

Glatzel, G., & Geils, B. (2009). Mistletoe ecophysiology: Host-parasite
interactions. Botany, 87, 10-15.

Hartley, S. E., Green, J. P., Massey, F. P., Press, M. C. P., Stewart, A. J. A., &
John, E. A. (2015). Hemiparasitic plant impacts animal and plant com-
munities across four trophic levels. Ecology, 96, 2408-2416.

Harvey, J., Van Nouhuys, S., & Biere, A. (2005). Effects of quantitative vari-
ation in allelochemicals in Plantago lanceolata on development of a
generalist and a specialist herbivore and their endoparasitoids. Journal
of Chemical Ecology, 31, 287-302.

Hawksworth, F., & Wiens, D. (1996). Dwarf mistletoes: Biology, pathology,
and systematics. Washington, DC: Diane Publishing.

Hédar, J. A, Castro, J., & Zamora, R. (2003). Pine processionary caterpillar
Thaumetopoea pityocampa as a new threat for relict Mediterranean
Scots pine forests under climatic warming. Biological Conservation,
110, 123-129.

Hédar, J. A., Ldzaro-Gonzalez, A., & Zamora, R. (2018). Beneath the mistle-
toe: Parasitized trees host a more diverse herbaceous vegetation and
are more visited by rabbits. Annals of Forest Science, 75, 77.

Hédar, J. A., Zamora, R., & Castro, J. (2002). Host utilisation by moth and
larval survival of pine processionary caterpillar Thaumetopoea
pityocampa in relation to food quality in three Pinus species. Ecological
Entomology, 27, 292-301.

Hu, B., Sakakibara, H., Takebayashi, Y., Peters, F. S., Schumacher, J.,
Eiblmeier, M., ... Rennenberg, H. (2017). Mistletoe infestation mediates
alteration of the phytohormone profile and anti-oxidative metabolism

in bark and wood of its host Pinus sylvestris. Tree Physiology, 37,
676-691.

Kuijt, J. (1955). Dwarf mistletoes. The Botanical Review, 21, 569-627.

Lamont, B. (1983). Mineral nutrition of mistletoes. In M. Calder & P.
Berhard (Eds.), The biology of mistletoes (pp. 185-204). Dordrecht:
Springer.

Lazaro-Gonzalez, A., Hodar, J. A.,, & Zamora, R. (2019a). Mistletoe versus
host pine: Does increased parasite load alter the host chemical profile?
Journal of Chemical Ecology, 45, 95-105.

Lazaro-Gonzaélez, A., Hédar, J. A.,, & Zamora, R. (2019b). Mistletoe gener-
ates non-trophic and trait-mediated indirect interactions through a
shared host of herbivore consumers. Ecosphere, 10, e02564.

Lenth, R. V. (2016). Least-squares means: The R package Ismeans. Journal
of Statistical Software, 69, 1-33.

Lewis, J., McKane, R., Tingey, D., & Beedlow, P. (2000). Vertical gradients
in photosynthetic light response within an old-growth Douglas-fir and
western hemlock canopy. Tree Physiology, 20, 447-456.

Lima, M. R. M,, Felgueiras, M. L., Graga, G., Rodrigues, J. E. A., Barros, A,,
Gil, A. M., & Dias, A. C. P. (2010). NMR metabolomics of esca disease-
affected Vitis vinifera cv. Alvarinho leaves. Journal of Experimental Bot-
any, 61, 4033-4042.

Lépez-Saez, J., Catalan, P., & Saez, L. (2002). Plantas pardsitas de la penin-
sula Ibérica e Islas Baleares. Madrid, Spain: Mundiprensa.

Marshall, J. D., & Ehleringer, J. R. (1990). Are xylem-tapping mistletoes par-
tially heterotrophic? Oecologia, 84, 244-248.

Meijén, M., Feito, I, Oravec, M. Delatorre, C., Weckwerth, W.,
Majada, J., & Valledor, L. (2016). Exploring natural variation of Pinus
pinaster Aiton using metabolomics: Is it possible to identify the region
of origin of a pine from its metabolites? Molecular Ecology, 25,
959-976.

Mellado, A., Hobby, A., Lazaro-Gonzilez, A., & Watson, D. M. (2019).
Hemiparasites drive heterogeneity in litter arthropods: Implications for
woodland insectivorous birds. Austral Ecology, 44, 777-785.

Mellado, A., & Zamora, R. (2014). Generalist birds govern the seed dis-
persal of a parasitic plant with strong recruitment constraints.
Oecologia, 176, 139-147.

Mellado, A., & Zamora, R. (2017). Parasites structuring ecological commu-
nities: The mistletoe footprint in Mediterranean pine forests. Func-
tional Ecology, 31, 2167-2176.

Mellado, A., & Zamora, R. (2020). Ecological consequences of parasite host
shifts under changing environments: More than a change of partner.
Journal of Ecology, 108, 788-796.

Mutlu, S., llhan, V., & Turkoglu, H. I. (2016). Mistletoe (Viscum album) infes-
tation in the scots pine stimulates drought-dependent oxidative dam-
age in summer. Tree Physiology, 36, 479-489.

Nieminen, M., Suomi, J., Van Nouhuys, S., Sauri, P., & Riekkola, M. L.
(2003). Effect of iridoid glycoside content on oviposition host plant
choice and parasitism in a specialist herbivore. Journal of Chemical Ecol-
ogy, 29, 823-844.

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D.,
... Wagner, H. (2019). Vegan: Community ecology package.

Olson, T., & Samuelsson, G. (1972). The amino acid sequence of viscotoxin
A2 from the European mistletoe (Viscum album L., Loranthaceae). Acta
Chemica Scandinavica, 26, 585-595.

Parker, G. G., & Brown, M. J. (2000). Forest canopy stratification - is it use-
ful? American Naturalist, 155, 473-484.

Pate, J. S., True, K. C., & Kuo, J. (1991). Partitioning of dry matter and min-
eral nutrients during a reproductive cycle of the mistletoe Amyema lin-
ophyllum (Fenzl.) Tieghem parasitizing Casuarina obesa Miq. Journal of
Experimental Botany, 42, 427-439.

Pennings, S. C., & Callaway, R. M. (2002). Parasitic plants: Parallels and
contrasts with herbivores. Oecologia, 131, 479-489.

Pefuelas, J., & Sardans, J. (2009a). Ecology: Elementary factors. Nature,
460, 803-804.

85U80|7 SUOWLWOD aAeaID 8|qeot|dde ays Aq pausenob afe sejoiie YO ‘8sN JO s8Nl 10} Areiq1T8ulUQ AB]IA UO (SUORIPUOD-pUe-SLLBYLICD" A8 1M ATe1q U1 [UO//:SANY) SUORIPUOD PUe Swie 1 8us 88 *[7202/80/c2] Uo Areiqiauliuo AB11m ‘(ouleAnde) eqnopesy Aq 6/T+T80d/TTTT OT/I0p/wWoo A3 1M AR jeuljuoy/sdny wo.y pepeojumod ‘TT ‘TZ0Z ‘Ov0ES9ET



s | WILEY— ¥

LAZARO-GONZALEZ ET AL.

Pefiuelas, J., & Sardans, J. (2009b). Ecological metabolomics. Chemistry and
Ecology, 25, 305-309.

Pefuelas, J., Sardans, J., Stefanescu, C., Parella, T., & Filella, 1. (2006).
Lonicera implexa leaves bearing naturally laid eggs of the specialist her-
bivore Euphydryas aurinia have dramatically greater concentrations of
iridoid glycosides than other leaves. Journal of Chemical Ecology, 32,
1925-1933.

Pérez-Ramos, I. M., Cambrollé, J., Hidalgo-Galvez, M. D., Matias, L.,
Montero-Ramirez, A., Santolaya, S., & Godoy, 0. (2020). Phenological
responses to climate change in communities of plants species with
contrasting functional strategies. Environmental and Experimental Bot-
any, 170, 103852.

Peters, K., Worrich, A., Weinhold, A., Alka, O., Balcke, G., Birkemeyer, C,, ...
van Dam, N. M. (2018). Current challenges in plant eco-metabolomics.
International Journal of Molecular Sciences, 19, 1385.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. (2020). nime:
Linear and nonlinear mixed effects models.

Press, M., & Phoenix, G. (2005). Impacts of parasitic plants on natural com-
munities. New Phytologist, 166, 737-751.

R Core Team. (2020). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved
from https://www.R-project.org/.

Rivas-Ubach, A., Hédar, J., Sardans, J., Kyle, J., Kim, Y., Oravec, M, ...
Pefuelas, J. (2016). Are the metabolomic responses to folivory of
closely related plant species linked to macroevolutionary and plant-
folivore coevolutionary processes? Ecology and Evolution, 6, 4372-
4386.

Rivas-Ubach, A., Pérez-Trujillo, M., Sardans, J., Gargallo-Garriga, A.,
Parella, T., & Pefiuelas, J. (2013). Ecometabolomics: Optimized NMR-
based method. Methods in Ecology and Evolution, 4, 464-473.

Rivas-Ubach, A., Sardans, J., Hédar, J. A., Garcia-Porta, J., Guenther, A,
Oravec, M,, ... Pefuelas, J. (2016). Similar local, but different systemic,
metabolomic responses of closely related pine subspecies to folivory
by caterpillars of the processionary moth. Plant Biology, 18, 484-494.

Rohart, F., Gautier, B., Singh, A., & Lé Cao, K. A. (2017). mixOmics: An R
package for ‘omics’ feature selection and multiple data integration.
PLoS Computational Biology, 13, e1005752.

Sampedro, L., Moreira, X., & Zas, R. (2011). Costs of constitutive and
herbivore-induced chemical defences in pine trees emerge only under
low nutrient availability. Journal of Ecology, 99, 818-827.

Samuelsson, G. (1973). Mistletoe toxins. Systematic Biology, 22, 566-569.

Samuelsson, G., & Pettersson, B. M. (1971). The amino acid sequence of
Viscotoxin B from the European mistletoe (Viscum album L,
Loranthaceae). European Journal of Biochemistry, 21, 86-89.

Sardans, J., Gargallo-Garriga, A., Pérez-Truijillo, M., Parella, T. J., Seco, R,,
Filella, 1., & Pefuelas, J. (2014). Metabolic responses of Quercus ilex
seedlings to wounding analysed with nuclear magnetic resonance pro-
filing. Plant Biology, 16, 395-403.

Sardans, J., Gargallo-Garriga, A., Urban, O., Klem, K., Walker, T., Holub, P.,
... Pefiuelas, J. (2020). Ecometabolomics for a better understanding of

plant responses and acclimation to abiotic factors linked to global
change. Metabolites, 10, 239.

Sardans, J., Pefuelas, J., & Rivas-Ubach, A. (2011). Ecological met-
abolomics: Overview of current developments and future challenges.
Chemoecology, 21, 191-225.

Schulze, E.-D., Beck, E., Buchmann, N., Clemens, S., Miiller-
Hohenstein, K., & Scherer-Lorenzen, M. (2019). Nutrient relations. In
Plant ecology (pp. 367-399). Berlin Heidelberg: Springer.

Schulze, E.-D., & Ehleringer, J. R. (1984). The effect of nitrogen supply on
growth and water-use efficiency of xylem-tapping mistletoes. Planta,
162,268-275.

Schulze, E.-D., Turner, N. C., & Glatzel, G. (1984). Carbon, water and nutri-
ent relations of two mistletoes and their hosts: A hypothesis. Plant,
Cell & Environment, 7, 293-299.

Soler, M. H., Stoeva, S., Schwambornb, C., Wilhelmb, S., Stiefelb, T., &
Voelter, W. (1996). Complete amino acid sequence of the A chain of
mistletoe lectin |. FEBS Letters, 399, 153-157.

Soler, M. H., Stoeva, S., & Voelter, W. (1998). Complete amino acid
sequence of the B chain of mistletoe Lectin I. Biochemical and Biophysi-
cal Research Communications, 246, 596-601.

Stewart, G. R., & Press, M. C. (1990). The physiology and biochemistry of
parasitic angiosperms. Annual Review of Plant Physiology and Plant
Molecular Biology, 41, 127-151.

Strauss, S., & Zangerl, A. (2002). Plant-insect interactions in terrestrial eco-
systems. In C. M. Herrera & O. Pellmyr (Eds.), Plant-animal interactions:
An evolutionary approach (pp. 77-106). Oxford, UK: Blackwell Science.

Sutherland, J. P. (1981). The fouling community at Beaufort, North Caro-
lina: A study in stability. The American Naturalist, 118, 499-519.

Tomita, M., & Nishioka, T. (2005). Metabolomics: The frontier of systems
biology. Tokyo, Japan: Springer-Verlag.

Weckwerth, W. (2003). Metabolomics in systems biology. Annual Review
of Plant Biology, 54, 669-689.

Zuber, D. (2004). Biological flora of Central Europe: Viscum album L. Flora-
Morphology, Distribution, Functional Ecology of Plants, 199, 181-203.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version

of the article at the publisher's website.

How to cite this article: Lazaro-Gonzalez, A., Gargallo-Garriga,
A., Hdédar, J. A., Sardans, J., Oravec, M., Urban, O., Pefuelas, J.,
& Zamora, R. (2021). Implications of mistletoe parasitism for
the host metabolome: A new plant identity in the forest
canopy. Plant, Cell & Environment, 44(11), 3655-3666. https://
doi.org/10.1111/pce. 14179

85U80|7 SUOWLWOD aAeaID 8|qeot|dde ays Aq pausenob afe sejoiie YO ‘8sN JO s8Nl 10} Areiq1T8ulUQ AB]IA UO (SUORIPUOD-pUe-SLLBYLICD" A8 1M ATe1q U1 [UO//:SANY) SUORIPUOD PUe Swie 1 8us 88 *[7202/80/c2] Uo Areiqiauliuo AB11m ‘(ouleAnde) eqnopesy Aq 6/T+T80d/TTTT OT/I0p/wWoo A3 1M AR jeuljuoy/sdny wo.y pepeojumod ‘TT ‘TZ0Z ‘Ov0ES9ET


https://www.r-project.org/
https://doi.org/10.1111/pce.14179
https://doi.org/10.1111/pce.14179

	Implications of mistletoe parasitism for the host metabolome: A new plant identity in the forest canopy
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Study zone
	2.2  Experimental design
	2.3  Collection and preparation of tissue samples
	2.4  Analysis by liquid chromatography-mass spectrometry (LC-MS)
	2.5  Statistical analyses

	3  RESULTS
	3.1  Metabolomic profile differences between pine host and its hemiparasite
	3.2  Metabolomic responses of pine host to mistletoe
	3.3  Seasonality of the host-mistletoe system and the vertical within-canopy gradient

	4  DISCUSSION
	4.1  Metabolomic profile differences between the pine host and its hemiparasite
	4.2  Metabolomic responses of pine host to mistletoe
	4.3  Seasonality of the host-mistletoe system and the vertical within-canopy gradient
	4.4  The ecological consequences of mistletoe parasitism

	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  AUTHORS' CONTRIBUTIONS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


