
This is the **accepted version** of the journal article:

Munguía, Lucero; Jiménez-Murcia, Susana; Valenciano-Mendoza, Eduardo; [et al.]. «Risk patterns in food addiction : a Mexican population approach». *Eating and weight disorders*, Vol. 27, p.1077–1087, (2022). 11 pàg. Springer Nature. DOI 10.1007/s40519-021-01240-2

This version is available at <https://ddd.uab.cat/record/302013>

under the terms of the IN COPYRIGHT license

1 **Risk patterns in Food Addiction: a Mexican population approach**

2
3 Lucero Munguía¹, Susana Jiménez-Murcia^{1,2,3}, Eduardo Valenciano-Mendoza¹, Roser Granero⁴, Anahí⁴
4 Gaspar-Pérez¹, Rebeca M. E. Guzmán-Saldaña⁵, Manuel Sánchez-Gutiérrez⁶, Gilda Fazia⁷, Laura⁷
5 Gálvez¹, Ashley N Gearhardt⁸, Fernando Fernández-Aranda^{1,2,3}.

6
7 ¹Department of Psychiatry, Universitary Hospital of Bellvitge -IDIBELL, Barcelona, Spain.

8 ²Clinical Sciences Department, School of Medicine, Barcelona University, Barcelona, Spain.

9 ³CIBER Physiopathology, Obesity and Nutrition (CIBERobn), Health Institute Carlos III, Madrid, Spain.

10 ⁴Department of Psychobiology and Methodology, Autonomous University of Barcelona, Barcelona,
11 Spain.

12 ⁵Academic area of Psychology, Autonomous University of Hidalgo State, Hidalgo, Mexico.

13 ⁶Health Sciences Institute, Autonomous University of Hidalgo State, Hidalgo, Mexico.

14 ⁷Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy.

15 ⁸Department of Psychology, University of Michigan, USA.

16
17 **Abstract**

18
19 **Background:** Food addiction (FA) is a construct that has gained interest in recent years but its relevance
20 in Mexican population is still unexplored. **Aims:** The present study has the aims of explore FA in a
21 community of Mexican population, as well as identifying the risk patterns associated with it, in relation to
22 the different etiological factors that have been described such as impulsivity, emotional regulation and
23 eating styles. Furthermore, to identify a predictive model of FA severity. **Methods:** The sample consisted
24 of 160 female and male university students of Pachuca city in México, who volunteered to the current
25 study. Assessment included multidimensional measures for FA, eating disorder severity, eating disorder
26 styles, emotional regulation and impulsivity. **Results:** A screening of FA-probable was registered for
27 13.8% of the sample, while 8.1% met criteria for FA-present. The FA-present group differed from FA-
28 absent in the impulsivity levels and in emotional eating style. Patients with FA-present differed from FA-
29 probable in the impulsivity levels. Differences between FA-probable versus FA-absent were found in the
30 restrained eating style. Path-analysis evidenced that FA severity was directly associated with older age,
31 worse eating style profile and higher impulsivity levels, and indirectly related with the ED symptom
32 levels. **Conclusions:** Our findings suggest that it is possible to establish a specific predictive model of the
33 development of FA and its severity in Mexican population, in order to implement adequate prevention
34 and treatment strategies.

35
36 **Key words:** Food Addiction, Eating Disorders, Obesity, Mexico.

37

1 **Introduction**

2 Obesity has become a worldwide priority condition, considering the high levels of prevalence
3 and the different chronic disease associated with it. In addition, obesity is associated with poorer quality
4 of life and implies high public health costs (Dietz, 1998; Lee et al., 2016; Reilly & Kelly, 2011; Rtveladze
5 et al., 2014).

6 Mexico is becoming the country with the second place of obesity worldwide (Dávila-Torres, De
7 Jesús González-Izquierdo, & Barrera-Cruz, 2015), with 75.2% obesity and overweight in adult
8 population, 38.4% obesity and overweight in adolescent population and 35.6% in children (Instituto
9 Nacional de Salud Pública, Secretaría de Salud, & Instituto Nacional de Estadística y Geografía, 2018).
10 Despite the prevention strategies implemented at the national level, and that around 60% of the
11 population report being aware of them (Instituto Nacional de Salud Pública & Secretaría de Salud, 2016),
12 the prevalence rates keep increasing, and demonstrates the need to continue delving into the study of the
13 variables that might be involved in its development that could lead to better prevention and treatment
14 approaches.

15 Food addiction (FA) has become a topic of special interest as one of the key factors that might
16 explain the processes or behaviours that contribute to the development and maintenance of obesity and
17 certain eating disorders (A. N. Gearhardt, Boswell, & White, 2014). Present higher levels of FA have
18 been recently found as the most prominent psychosocial predictor of failure to lose weight in a diet-based
19 weight-loss intervention (Fielding-Singh, Patel, King, & Gardner, 2019). In spite of its importance, FA
20 has been little explored in Mexican population.

21 The FA model has been conceptualized by taking into account the similarities between the
22 mechanisms involved in substance use disorders (SUD) and the consumption of certain foods described
23 as potentially addictive (Schulte, Avena, & Gearhardt, 2015), as sugary, salty, fatty and processed foods
24 (Guerrero Pérez et al., 2018). Including the search and compulsive consumption of these foods despite
25 their negative consequences (Sevinçer, Konuk, Bozkurt, & Coşkun, 2016), the presence of tolerance,
26 withdrawal and a persistent desire or failure to cut down (Pursey, Stanwell, Gearhardt, Collins, &
27 Burrows, 2014), and the activation in the same brain areas (A. Gearhardt, Corbin, & Brownell, 2009; A.
28 Gearhardt, Grilo, DiLeone, Brownell, & Potenza, 2011).

29 A strong association between FA and impulsivity has been largely described in the literature
30 (Brunault et al., 2018; Pivarunas & Conner, 2015; Wolz et al., 2016). Although there is no consensus on
31 which sub-dimensions are specifically involved, positive and negative urgency, lack of perseverance, lack
32 of premeditation, motor and attentional impulsivity, rash impulsivity, among others, have been mentioned
33 to be related with FA behaviours (Kidd & Loxton, 2021; Maxwell, Gardiner, & Loxton, 2020; Minhas et
34 al., 2021).

35 Another factor associated with FA is emotion regulation, which refers to the way individuals
36 experience and express their emotions (Monell, Clinton, & Birgegård, 2018). High rates of emotion
37 dysregulation have been found in FA. Even though the precise role of this construct needs to be further
38 explored, FA behaviours could be used to cope negative emotions (Wolz, Granero, & Fernández-Aranda,
39 2017), related with an emotional eating style (Van Strien, Frijters, Bergers, & Defares, 1986).

1 As previously mentioned, FA has been little studied in Mexico, even though research on the
2 impact of high palatable and hyper-caloric foods on neural plasticity has gained interest (Cruz-Carrillo et
3 al., 2020; Morin et al., 2017; Muñoz-Escobar, Guerrero-Vargas, & Escobar, 2019).

4 As well, the Yale Food Addiction Scale was validated for Mexican population (Valdés-Moreno,
5 Rodríguez-Márquez, Cervantes-Navarrete, Camarena, & de Gortari, 2016), and the relationship between
6 body mass index and FA was evaluated in children (Rodríguez Santaolaya et al., 2019). However, no
7 exploration of the prevalence of FA in Mexican adult population or any study of the related variables and
8 its interaction-mediation for its development has been done.

9 Therefore, the aim of the present study was to explore FA in a sample of healthy Mexican
10 population in order to identify population at risk of FA. A second aim was to identify patterns associated
11 with the presence and the risk of FA, in relation to the different etiological factors described above:
12 impulsivity, emotional regulation and eating styles. Finally, to identify a predictive model of FA severity,
13 as a third aim.

14 We hypothesized that the presence of FA in our sample will be similar to the prevalence rates
15 found in healthy population in the United States and Spain, ranged from 11% to 40% (A. Gearhardt et al.,
16 2009; Granero et al., 2014). Also, we hypothesized that risk for FA would be positively associated with
17 the variables proposed, specifically higher levels of impulsivity, emotion dysregulation, and emotional
18 and external eating styles.

19 To our knowledge, this will be the first study that explores FA in Mexican population and
20 identifies factors associated with being at high risk for FA, which would provide a better characterization
21 of the FA construct in Mexico.

22

23 **Materials and methods**

24

25 **Participants:**

26 261 undergraduate students of the Faculty of Psychology from Pachuca city (Mexico), between 19 to 21
27 years old, were invited to participate in the study, and only those whom accepted the invitation were
28 considered for the assessment. The final sample consisted of 160 participants (n=121 female; 39 male),
29 with an average age of 20.1 years old (SD = 1.7). Participants were recruited as volunteers, and all of
30 them provided signed informed consent. No compensation for participating in the study was given.
31 Assessed by a questionnaire adapted from the structured clinical interview DSM-5 for ED: SCID-5 (First,
32 Williams, Karg, & Spitzer, 2015), only 8 participants reported to have had a lifetime ED (5 BN, 1 AN, 1
33 AN and BN, and 1 that do not provided the diagnoses).

34

35 **Assessment:**

36 Besides a specific socio-demographic questionnaire, which includes clinically relevant variables, the
37 following instruments were used. As well, Table S1 (supplementary material) includes the descriptive for
38 all the measures of the study. Table S2 (supplementary material) includes the correlation matrix for the
39 variables of the study.

1 ***Eating Disorder Inventory-2 (EDI-2)*** (Garner, 1998), is a 91-item multidimensional self-report
2 questionnaire that assesses psychological and behavioural characteristics relevant to eating disorders. It
3 consists of eleven subscales answered on a six-point Likert scale: drive for thinness, body dissatisfaction,
4 bulimia, ineffectiveness, perfectionism, interpersonal distrust, interoceptive awareness, maturity fears,
5 asceticism, impulse regulation and social insecurity. The internal consistence of the EDI-2 total score in
6 our sample was $\alpha=0.928$. The Spanish version of this questionnaire was used because the only validation
7 of it for Mexican population was done only for women (García-García, Vázquez-Velázquez, López-
8 Alvarenga, & Arcila-Martínez, 2003).

9 ***Yale Food Addiction Scale 2.0 (YFAS 2.0)*** (A. Gearhardt, Corbin, & Brownell, 2016), has been
10 validated in Spanish population (Granero et al., 2018), is a 35-item self-report questionnaire for
11 measuring addictive eating behaviours during the previous 12 months. This original instrument (YFAS)
12 was based on the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) (American
13 Psychiatric Association, 2010) criteria for substance dependence and was adapted to the context of food
14 consumption. The YFAS2.0, is based on DSM-5 (American Psychiatric Association, 2013) and evaluates
15 11 symptoms. The score produces two measurements: (a) a continuous symptom count score that reflects
16 the number of fulfilled diagnostic criteria (ranging from 0 to 11), and (b) a food addiction threshold based
17 on the number of symptoms (at least 2) and self-reported clinically significant impairment or distress.
18 This final measurement allows for the binary classification of food addiction (present versus absent).
19 Also, based on the revised DSM-5 (American Psychiatric Association, 2013) taxonomy, it is possible to
20 establish severity cut-offs: mild (2–3 symptoms), moderate (4–5 symptoms), and severe (6–11
21 symptoms). The original YFAS was validated for Mexican population (Valdés-Moreno et al., 2016),
22 however, the YFAS 2.0 has not been validated yet, for which the Spanish validation of the scale was
23 used. The internal consistency of the YFAS-2 in our sample was $\alpha=0.950$.

24 The FA severity groups were calculating as follow: FA absent, those who do not have any
25 diagnostic criteria in the YFAS 2.0; FA probable, those who meet 1 diagnostic criteria and those with two
26 or more criteria but that do not present clinical deterioration; and FA present, those who have 2 diagnostic
27 criteria and also present clinical deterioration. This way, FA probable group will correspond to the clinic
28 concept of the high-risk or sub-threshold, patients who do not strictly meet the diagnostic criteria of a
29 taxonomy but who show symptoms. Subthreshold psychiatric symptoms do not meet the full criteria for a
30 concrete disorder in a reference diagnostic taxonomy (such as the Axis-I disorders within the DSM), but
31 course with clinical significant impairment. In some cases, subthreshold symptoms are more common
32 than their respective Axis-I disorders, and empirical research has suggested that these groups are
33 associated with increased disability and many other negative consequences (Rai, Skapinakis, Wiles,
34 Lewis, & Araya, 2010). Even this categorization has not been used before in FA, it has been done taking
35 as a reference the distinction of high-risk group of subjects in contrast with a formal diagnostic, in other
36 addictive process. According the new taxonomy of the DSM-5 (American Psychiatric Association,
37 2013) for Gambling disorder, it is necessary to present at least 4 symptoms for a formal diagnosis.
38 However, even it have not been established from empirical evidence, some studies related with gambling
39 assessment have evaluated if those people that present 1 to 3 symptoms could form a high-risk group
40 called problematic gamblers (Stinchfield, 2014).

1 ***Difficulties in Emotion Regulation Strategies (DERS)*** (Gratz & Roemer, 2004), is a 36-item
2 scale used for the evaluation of emotion dysregulation. The DERS consists of six subscales: non
3 acceptance of emotional responses, difficulties engaging in goal-directed behaviour when having strong
4 emotions, impulse-control difficulties, lack of emotional awareness, limited access to emotional
5 regulation strategies, and lack of emotional clarity. Participants are asked to respond to each item using a
6 five-point Likert scale ranging from 1 (almost never) to 5 (almost always). Higher scores indicate greater
7 problems with emotion regulation. The DERS scale was validated for Mexican adolescents (Marin,
8 Robles, González -Forteza, & Andrade, 2012), however, the factorial structure of the original scale was
9 not replicated, and for the specific research purposes of this study, the Spanish validation (Wolz et al.,
10 2015) that contains the original 36 items was used, instead of the 24 items scale validated for Mexican
11 population. The internal consistency of the DERS total score in our sample was $\alpha=0.946$.

12 ***The UPPS-P*** (S. Whiteside & Lynam, 2001), has been validated in Spanish population
13 (Verdejo-García, Lozano, Moya, Alcázar, & Pérez-García, 2010), is a 59-item self-report that includes
14 five subscales: negative urgency (NU), the lack of perseverance (LP), the lack of premeditation (LPM),
15 sensation seeking (SS) and positive urgency (PU), that are used to measure five distinct dimensions of
16 impulse behaviour. Each item is rated on a 4-point Likert scale ranging from 1 “strongly agree” to 4
17 “strongly disagree.” Participants are asked to consider acts during the last 6 months. The internal
18 consistency values for the different UPPS-P scales in our sample are, NU: 0.867, LP: 0.744, LPM: 0.807,
19 SS: 0.779, PU: 0.922. The Spanish version of the questionnaire was used being that it is not validated for
20 Mexican population.

21 ***The Dutch Eating Behaviour Questionnaire (DEBQ)*** (Van Strien et al., 1986), has been
22 validated in Spanish population (Cebolla, Barrada, van Strien, Oliver, & Baños, 2014), is 33 item self-
23 report questionnaire to assess specific eating behaviours such as: emotional eating (eating in response to
24 emotional signals such as depression and anxiety) that includes 13 items, external eating (eating in
25 response to external food-related factors such as the sight or smell of food) includes 10 items, and
26 restrained eating (dietary control to lose weight) includes 10 items. Participants are asked to respond
27 using a five-point Likert scale ranging from 1 (never) to 5 (very often). The internal consistency values
28 for the different DEBQ scales in our sample are, DEBQ emotional: 0.949, DEBQ external: 0.899, and
29 DEBQ restrained: 0.902. The Spanish version of the questionnaire was used, being that it is not validated
30 yet for Mexican adult population.

31

32 ***Procedure***

33 Undergraduates in the second year of their degree were invited to participate as volunteers in the study
34 during school hours, and only those whom accepted were considered for the assessment. The
35 questionnaires were answered individually in a group evaluation, supervised by three experienced
36 psychologists. A total of six group evaluations were done, due to the sample were divided in smaller
37 groups in order to guaranty the privacy of the participants during the assessment. The participants had
38 enough space between them during the session, so they were not aware of other participants answering,
39 not been possible that group members' answers could influence each other. Each group session had two
40 hours of duration. Being that the scales used for the assessment were validated for Spanish population and

1 not for Mexican, the psychologists that assisted the evaluation were in charge to answer any question
 2 regarding the conceptualization of the phrases or words. In this regard, the psychologists were advised by
 3 colleagues from Spain. In accordance with the Declaration of Helsinki, the present study was approved by
 4 the proper local Ethics Committee, and signed informed consent was asked to the participants.

5

6

7 **Statistical analysis**

8 Statistical analysis was carried out with Stata16 for windows. The comparison of the means registered in
 9 the eating style (DEBQ), emotion dysregulation (DERS) and impulsivity (UPPS-P) profile was based on
 10 analysis of covariance (ANCOVA) adjusted for the participants sex, age and the eating severity (EDI-2
 11 total). The inclusion of the covariates sex, age and eating severity was done to avoid potential biases in
 12 the results due the confounding role of these variables in the study: since the objective of the work was to
 13 obtain the *specific contribution* of the FA on the eating style, emotion regulation and impulsivity, and
 14 previous researches have suggested the potential association between these variables with FA (Granero et
 15 al., 2014; Jiménez-Murcia et al., 2017; Pursey et al., 2014), the statistical control was required. For these
 16 ANCOVA procedures, Finner's method (a family wise error rate procedure which allows more powerful
 17 than the classical Bonferroni correction) was used to control increase in Type-I error due to multiple
 18 statistical tests (Finner, 1993). In addition, due the low sample size and the consequent low statistical
 19 power to identify the relationships in the data, effect size for the mean differences was measure with
 20 Cohen's-*d* (which is interpreted as a standardized measure of the mean difference not-depending on the
 21 sample size) (effect size was considered low-poor $|d|>0.20$, moderate-medium for $|d|>0.5$ and large-high
 22 for $|d|>0.8$; (Kelley & Preacher, 2012).

23 A predictive model of the FA severity group was obtained through multinomial logistic
 24 regression. This model constitutes a generalization of binary logistic regression to multiclass problems
 25 (categorical criteria with more than two levels), and therefore it allows to predict the probabilities of the
 26 different levels of a categorically distributed dependent variable considering a set of independent
 27 variables. This procedure was employed in this work for obtain a predictive model for a variable defined
 28 with three categories (FA absent, FA probable and FA present). The parameters of the model are
 29 interpreted close to log-odds achieved in a logistic regression with two levels of the outcome variable
 30 (Agresti, 2018). The multinomial regression was adjusted in two blocks: a) first block entered and fixed
 31 the participants' sex, age and eating severity (defined as covariates in this analysis); and b) the second
 32 block tested and automatically selected the most relevant predictors of the FA group through STEPWISE
 33 procedures (due the low sample size of the groups, significant and quasi-significant contributors were
 34 retained as relevant). Goodness-of-fit of the model was assessed with the deviance chi-square test (non-
 35 significant result is interpreted as adequate fit for the model) and the likelihood ratio test applied to the -2
 36 Log Likelihood test (significant result is interpreted as adequate fitting).

37 Pathways analysis was used to estimate the magnitude and significance of the relationships
 38 between the variables of the study with the FA severity level, including direct and indirect effects
 39 (mediational links). This analysis was used in this work as a case of structural equation modelling (SEM),
 40 using the maximum-likelihood estimation (MLE) method of parameter estimation (Kline, 2005). A latent

1 variable was defined as a measure of the eating style defined by the DEBQ scores, and a latent variable
 2 was defined measuring the impulsivity levels based on the UPPS-P scale scores (the two latent variables
 3 were defined with the aim to simplify data structure and to facilitate a more parsimonious interpretation
 4 and fitting). Goodness-of-fit was evaluated using standard statistical measures: the root mean square error
 5 of approximation (RMSEA), Bentler's Comparative Fit Index (CFI), the Tucker-Lewis Index (TLI), and
 6 the standardized root mean square residual (SRMR). Adequate model fit was considered for the following
 7 criteria (Barrett, 2007): RMSEA<0.08, TLI>0.9, CFI>0.9 and SRMR<0.1.

8

9

10 **Results**

11

12 *Association between FA severity group with eating style, emotion dysregulation and impulsivity*

13 Table 1 contains the results of the ANCOVA (adjusted for eating severity, sex and age)
 14 comparing the mean scores in the eating styles (DEBQ), emotion dysregulation (DERS) and impulsivity
 15 levels (UPPS-P) between the FA severity groups: absent (78.1%), probable (13.8%), and present (8.1%).
 16 Table S3 (supplementary material) includes the results of ANCOVA models excluding the adjustment by
 17 the ED severity levels.

18 Figure 1 shows the radar-chart with the z-standardized means. As a whole, the most
 19 dysfunctional profile was registered for the group who met the screening of FA-present, followed by FA-
 20 probable. Comparison between FA-absent versus FA-probable reported differences in the eating style,
 21 and most clearly in the emotional and restraint domains. FA-present differed from both FA-absent and
 22 FA-probable in eating style (emotional and external scales), emotion dysregulation (in the impulse-
 23 control difficulties and lack of emotional awareness domains) and impulsivity (lack of premeditation and
 24 negative urgency).

25

- Insert Table 1 and Figure 1-

26

Predictive model of the FA measures

27 Table 2 contains the results of the multinomial regression model with the most relevant
 28 predictors of the FA severity group in the study, after adjusted by sex, age and ED severity levels (these
 29 covariates were fixed in the first block-step). This model indicated that higher levels of restrained eating
 30 increased the odds of FA-probable compared to FA-absent. FA-present was more probable compared to
 31 FA-absent for patients with higher impulsivity levels (positive and negative urgency) and higher level in
 32 emotional eating style. And compared to FA-probable, the odds of FA-present is higher with patients with
 33 higher levels in positive and negative impulsivity. Results obtained in the deviance chi-square test
 34 ($p=.998$) and the likelihood ratio test indicate adequate fit for the model ($p<.001$). (Table S4,
 35 supplementary, includes the result of the multinomial regression without considering the EDI-2 total
 36 score as a covariate).

37

- Insert Table 2 -

38

Pathways analysis

39 Figure 2 shows the path-diagram with the standardized coefficients obtained in the SEM (Table
 40 S5, supplementary material, contains the complete results for the model, including test of direct, indirect

1 and total effects). Only significant parameters were retained in the final model (sex was excluded due the
 2 lack of relations with the other variables). Adequate fitting was achieved for all the fit statistics
 3 (RMSEA=0.078, CFI=0.946, TLI=0.912 and SRMR=0.057).

4 - Insert Figure 2 -

5 The three DEBQ scales (emotional, external and restrained) positively and significantly
 6 contributed on the latent variable defined as a measure of the eating style, while on the impulsivity latent
 7 variable the sensation seeking score did not significantly contributed. The results of the SEM indicated
 8 that FA severity level was directly associated with older age, worse eating style profile and higher
 9 impulsivity levels. The ED severity did contribute to FA through the mediational paths of DEBQ eating
 10 style and impulsivity: the higher the EDI-2 total score the more dysfunctional the DEBQ eating and the
 11 higher the impulsivity levels, and the higher scores in these two latent variables were associated with a
 12 higher FA total score.

13

14 **Discussion**

15 Research on FA has increased in the last few years (Fernandez-Aranda, Karwautz, & Treasure,
 16 2018), however, it has been little studied in Mexican population. The present study aimed to explore FA
 17 in healthy Mexican population, identifying individuals endorsing FA and in risk of develop it.
 18 Furthermore, we investigated factors that are associated with FA based on the presence and mediation-
 19 interaction of the key factors based on the prior the literature in other countries, specifically, impulsivity,
 20 emotional regulation and eating styles.

21 As we first hypothesized, the prevalence of FA in our sample was similar to the ranges reported
 22 in healthy population that goes from 11% to 40% (A. Gearhardt et al., 2009; Granero et al., 2014, 2018;
 23 Meule, Vögele, & Kübler, 2012; Meule, 2011); particularly considering other samples of undergraduates,
 24 where prevalence's of FA have been of 8.8% in Germany (Meule et al., 2012) and 11.4% in the U.S.A.
 25 (A. Gearhardt et al., 2009), which is coincident with our findings, being that 13.8% of the participants
 26 exhibit probable FA and 8.1% showed a clear presence of it.

27 Regarding our second objective, three groups were defined by FA severity: FA-present, FA-
 28 probable and FA-absence. As we hypothesized, between the FA-absence and FA-present groups we found
 29 statistically significant differences, being these high levels of emotion dysregulation and impulsivity,
 30 specifically in impulse control difficulties of the DERS subscale, and negative urgency and lack of
 31 premeditation of the UPPS, and, in the emotional and external eating style in the FA-present group. While
 32 FA-probable, imply middle levels of emotion dysregulation between the 3 groups, and the highest levels
 33 of lack of perseverance, and restrictive eating style, finding statistically significant differences in
 34 emotional and restrictive eating styles between FA-probable and FA-absent groups.

35 These results are in accordance with previous studies. Negative urgency and low levels of task
 36 persistence (lack of perseverance) were shown to be significantly and directly associated with FA
 37 (Murphy, Stojek, & MacKillop, 2014). In undergraduates, negative urgency, impulsivity when under
 38 distress, and emotion dysregulation positively predicted high scores on the YFAS (Pivarunas & Conner,
 39 2015).

1 It has already been hypothesized that FA behaviours serve as a way to regulate negative
2 emotions (Dingemans, Danner, & Parks, 2017), in a similar way that the behaviour (eating in this case) is
3 use to relieve negative emotional states, in other addictions (Davis et al., 2011; Granero et al., 2014, 2018;
4 Jiménez-Murcia et al., 2017; Pedram et al., 2013). In addition, it has been found that the association
5 between the presence of FA and higher emotional dysregulation is similar in eating disorders patients and
6 in healthy controls (Carlson et al., 2018).

7 The emotional and the external eating, which reflect a tendency to get triggered by external cues
8 associated with highly palatable food, were found in FA present group. In the case of Mexican
9 population, the consumption of highly palatable food has been a particular concern. Mexicans consume
10 unnatural, high-sugar drinks (over 80% of the population), highly palatable food (over 60% of the
11 population), and high-calorie street food (over 20% of the population) at high levels (Instituto Nacional
12 de Salud Pública et al., 2018). This is consistent with the FA model that specifically posits that highly
13 palatable foods with high levels of refined carbohydrates (like sugar) and fat have the greatest addictive
14 potential and are the most likely to trigger addictive eating (Schulte et al., 2015). A greater sensitivity to
15 cues for these highly palatable foods for individuals with FA, may influence to the difficulty in adhering
16 to other healthy food choices (A. Gearhardt et al., 2009).

17 Regarding the predictive value of the variables in FA severity, interesting results were found.
18 While to go from FA-absence to FA-probable the restrictive eating style discriminates as predictor, for
19 FA-presence impulsivity (negative and positive urgency) and emotional eating style appear as relevant
20 predictors.

21 Both, negative and positive urgency UPPS subscales represent the emotional related aspects of
22 impulsivity defined as the tendency to act rashly when experience extreme emotional states (Cyders, M.
23 A., & Smith, 2008; S. P. Whiteside & Lynam, 2001). In this line, for FA-present, our results are
24 confirmatory that impulsivity is highly associated with FA, that could be a predictor of it severity (Wolz
25 et al., 2016), and that it is related with the way to cope with emotions, in its positive and negative urgency
26 domains (Maxwell et al., 2020; Minhas et al., 2021). The predictive value of the emotional eating style
27 for FA-presence made possible to hypothesize that the over intake of certain foods respond as well to
28 states of emotional excitement, like anger, fear or anxiety (Turton, Chami, & Treasure, 2017; Van Strien
29 et al., 2013).

30 However, even if the emotional eating style was a predictor for FA-presence, for FA-probable
31 was the restricted eating style the one that has the highest predictive values. In Mexican population it has
32 been already probed the relation between food and eating related problems with body image discomfort,
33 and, as a consequence, that diets are chosen as the most common way to lose weight (Caamaño et al.,
34 2016; Peña & Moral, 2012), what might exacerbate the symptoms of FA related with tolerance,
35 withdrawal and craving once changes in food choices are done; as well, restrain could be used to manage
36 the drive for certain foods. In both circumstances, it could be possible to hypothesize that this restraint
37 could result into an addictive process. It has been shown that restrained eating may lead to overate once
38 self-control is undermined (Herman & Polivy, 2005), and that to abstain from addictive foods may trigger
39 to more disordered eating (Wilson, 2010). In relation with this last phenomenon further research is
40 needed.

1 Besides what has already been mentioned, based on the significance of the relationship between
2 variables in the study of the severity of FA, a worse eating profile, including the three eating styles
3 (restricted, emotional, and external), impulsivity levels and older age have a direct and significant
4 contribution, which is in accordance with previous studies mentioned above, but not the emotion
5 dysregulation as it was hypothesized.

6

7 **Strength and limits**

8 As was aforementioned, this is the first study carried out in Mexican population that claim for
9 the search of the clinical variables associated with FA in population with FA and in risk of its
10 development as well. However, the present findings must be considered taking into account its
11 limitations: the small size of the sample, as well as the fact that the sample was collected from only one
12 state of Mexico, which in turn may compromise the generalization of the results. In the same line, the
13 study was performed only in population of a specific range of age. Further studies should be considered
14 larger and inclusive samples. As well, the lack of proper validations of the scales used for the assessment
15 of the variables.

16

17 **Conclusions**

18 According our findings the relationship between FA and the variables involved in the study, are
19 in line with previous literature in other countries, that show coincidences between FA and other addictive
20 processes. Furthermore, the present study contributed by providing an initial specific predictive model of
21 the development of FA and its severity in Mexican population, considering the role of impulsivity and,
22 mainly, the contribution and effect of the three eating styles (emotional, restricted and external) in FA
23 severity. These findings may be particularly relevant in order to implement adequate prevention and
24 treatment strategies.

25

26 **What is already known on this subject?**

27 Food addiction (FA) has become a topic of special interest as one of the key factors that might explain the
28 processes or behaviours that contribute to the development and maintenance of obesity and certain eating
29 disorders. It has been related with different etiological factors associated as well with other addictive
30 process as impulsivity and emotion regulation.

31

32 **What does this study add?**

33 To our very own knowledge, this will be the first study that explores FA in Mexico. An initial specific
34 predictive model of the development of FA and its severity in Mexican population has been identified,
35 with special relevant results related with the presence and mediation-interaction of the different eating
36 styles on FA in Mexico.

37

38 **Declarations**

39

40 **Funding**

1 We thank CERCA Programme/Generalitat de Catalunya for institutional support; to the Instituto de Salud
2 Carlos III (ISCIII) (FIS PI17/01167); to PERIS (SLT006/17/00077); to the co-founded of FEDER
3 funds/European Regional Development Fund (ERDF), a way to build Europe. CIBERObn is an initiative
4 of ISCIII. LM is supported by a postdoctoral Grant of the Mexican Institution Consejo Naional de Ciencia
5 y Tecnología-CONACYT (Science and Technology National Counsel). AG is supported by a pre-doctoral
6 Grant of Fundación Carolina and the Secretaría de Relaciones Exteriores de los Estados Unidos
7 Mexicanos (Foreign relations secretary of the United States of Mexico).

8

9 **Conflict of interest**

10 The authors have no conflicts of interest to declare that are relevant to the content of this article.

11

12 **Authors' contributions**

13 Conceptualization: LM, SJ-M, FF-A; Methodology: RG; Formal analysis: RG; Data collection and
14 investigation: LM, EV-M, AGP, GF, LG; Writing - original draft preparation: LM, SJ-M, EV-M; RG, FF-
15 A; Writing - review and editing: LM, SJ-M, EV-M; RG, ANG, FF-A; Funding acquisition: LM, SJ-M,
16 FF-A; Resources: LM, SJ-M, FF-A; Supervision: LM, SJ-M, RMEG-S, MS, ANG, FF-A.

17

18 **Data availability**

19 The datasets generated during and/or analysed during the current study are not publicly available due to
20 ethical restrictions in order to protect the confidentiality of the participants, but are available from the
21 corresponding author on reasonable request.

22

23 **Ethics approval**

24 In accordance with the Declaration of Helsinki, the present study was approved by the proper local Ethics
25 Committee, and signed informed consent was asked to the participants.

26

27 **Informed consent**

28 Informed consent was obtained from all individual participants included in the study.

29

30 **References**

31 Agresti, A. (2018). *An introduction to categorical data analysis* (Wiley series in probability and
32 Statistics) (3rd editio). NJ, USA: Wiley-Blackwell.

33 American Psychiatric Association. (2010). *Diagnostic and statistical manual of mental disorders* (4th
34 ed.). Washington, DC: American Psychiatric Association.

35 American Psychiatric Association. (2013). *Diagnostic and statistical manual of mental disorders* (5th
36 ed.). Washington DC: American Psychiatric Association.

37 Barrett, P. (2007). Structural equation modelling: Adjudging model fit. *Personality and Individual
38 Differences*, 42(5), 815–824. <http://doi.org/10.1016/j.paid.2006.09.018>

- 1 Brunault, P., Ducluzeau, P. H., Courtois, R., Bourbao-Tournois, C., Delbachian, I., Réveillère, C., &
 2 Ballon, N. (2018). Food Addiction is Associated with Higher Neuroticism, Lower
 3 Conscientiousness, Higher Impulsivity, but Lower Extraversion in Obese Patient Candidates for
 4 Bariatric Surgery. *Substance Use and Misuse*. Taylor and Francis Ltd.
 5 <http://doi.org/10.1080/10826084.2018.1433212>
- 6 Caamaño, M. C., Ronquillo, D., Kimoto, R., García, O. P., Long, K. Z., & Rosado, J. L. (2016). Beliefs
 7 and motives related to eating and body size: A comparison of high-BMI and normal-weight young
 8 adult women from rural and urban areas in Mexico. *BMC Public Health*, 16.
 9 <http://doi.org/10.1186/s12889-016-3695-4>
- 10 Carlson, L., Steward, T., Agüera, Z., Mestre-Bach, G., Magaña, P., Granero, R., ... Fernández-Aranda, F.
 11 (2018). Associations of food addiction and nonsuicidal self-injury among women with an eating
 12 disorder: A common strategy for regulating emotions? *European Eating Disorders Review*, 26(6),
 13 629–637. <http://doi.org/10.1002/erv.2646>
- 14 Cebolla, A., Barrada, J. R., van Strien, T., Oliver, E., & Baños, R. (2014). Validation of the Dutch Eating
 15 Behavior Questionnaire (DEBQ) in a sample of Spanish women. *Appetite*, 73, 58–64.
 16 <http://doi.org/10.1016/j.appet.2013.10.014>
- 17 Cruz-Carrillo, G., Montalvo-Martínez, L., Cárdenas-Tueme, M., Bernal-Vega, S., Maldonado-Ruiz, R.,
 18 Reséndez-Pérez, D., ... Camacho-Morales, A. (2020). Fetal Programming by Methyl Donors
 19 Modulates Central Inflammation and Prevents Food Addiction-Like Behavior in Rats. *Frontiers in
 20 Neuroscience*, 14(452). <http://doi.org/10.3389/fnins.2020.00452>
- 21 Cyders, M. A., & Smith, G. T. (2008). Emotion-based dispositions to rash action: Positive and negative
 22 urgency. *Psychological Bulletin*, 134(6), 807–828.
- 23 Dávila-Torres, J., De Jesús González-Izquierdo, J., & Barrera-Cruz, A. (2015). *Panorama de la obesidad
 24 en México. Revista Médica del Instituto Mexicano del Seguro Social* (Vol. 53).
- 25 Davis, C., Curtis, C., Levitan, R. D., Carter, J. C., Kaplan, A. S., & Kennedy, J. L. (2011). Evidence that
 26 “food addiction” is a valid phenotype of obesity. *Appetite*, 57(3), 711–717.
 27 <http://doi.org/10.1016/j.appet.2011.08.017>
- 28 Dietz, W. H. (1998). Health consequences of obesity in youth: childhood predictors of adult disease.
 29 *Pediatrics*, 101(3), 518–525.
- 30 Dingemans, A., Danner, U., & Parks, M. (2017). Emotion regulation in binge eating disorder: A review.
 31 *Nutrients*. MDPI AG. <http://doi.org/10.3390/nu9111274>
- 32 Fernandez-Aranda, F., Karwautz, A., & Treasure, J. (2018). Food addiction: A transdiagnostic construct
 33 of increasing interest. *European Eating Disorders Review*. John Wiley and Sons Ltd.
 34 <http://doi.org/10.1002/erv.2645>
- 35 Fielding-Singh, P., Patel, M. L., King, A. C., & Gardner, C. D. (2019). Baseline Psychosocial and
 36 Demographic Factors Associated with Study Attrition and 12-Month Weight Gain in the DIETFITS
 37 Trial. *Obesity*, 27(12), 1997–2004. <http://doi.org/10.1002/oby.22650>
- 38 Finner, H. (1993). *On a Monotonicity Problem in Step-Down Multiple Test Procedures. Source: Journal
 39 of the American Statistical Association* (Vol. 88).
- 40 First, M., Williams, J., Karg, R., & Spitzer, R. (2015). *Structured Clinical interview for DSM-5-clinical
 41 version (SCID-5 for DSM-5, clinical version; SCID-5-CV, version 1.0. 0)*. Arlington: Arlington:
 42 American Psychiatric Association.

- 1 García-García, E., Vázquez-Velázquez, V., López-Alvarenga, J. C., & Arcila-Martínez, D. (2003).
2 *Validez interna y utilidad diagnóstica del Eating Disorder Inventory, en mujeres mexicanas. Salud*
3 *Pública de México* (Vol. 45).
- 4 Garner, D. M. (1998). *Inventario de Trastornos de la Conducta Alimentaria (EDI-2)—Manual*. Madrid,
5 Spain: TEA.
- 6 Gearhardt, A., Corbin, W., & Brownell, K. (2009). Preliminary validation of the Yale Food Addiction
7 Scale. *Appetite*, 52(2), 430–436. <http://doi.org/10.1016/j.appet.2008.12.003>
- 8 Gearhardt, A., Corbin, W., & Brownell, K. (2016). Development of the Yale Food Addiction Scale
9 Version 2.0. *Psychology of Addictive Behaviors*, 30, 113–121. <http://doi.org/10.1037/adb0000136>
- 10 Gearhardt, A., Grilo, C., DiLeone, R., Brownell, K., & Potenza, M. (2011). Can food be addictive? Public
11 health and policy implications. *Addiction*, 106, 1208–1212. <http://doi.org/10.1111/j.1360-0443.2010.03301.x>
- 13 Gearhardt, A. N., Boswell, R. G., & White, M. A. (2014). The association of “food addiction” with
14 disordered eating and body mass index. *Eating Behaviors*, 15(3), 427–433.
15 <http://doi.org/10.1016/j.eatbeh.2014.05.001>
- 16 Granero, R., Hilker, I., Agüera, Z., Jiménez-Murcia, S., Sauchelli, S., Islam, M. A., ... Fernández-Aranda,
17 F. (2014). Food addiction in a Spanish sample of eating disorders: DSM-5 diagnostic subtype
18 differentiation and validation data. *European Eating Disorders Review*, 22(6), 389–396.
19 <http://doi.org/10.1002/erv.2311>
- 20 Granero, R., Jiménez-Murcia, S., Gerhardt, A. N., Agüera, Z., Aymamí, N., Gómez-Peña, M., ...
21 Fernández-Aranda, F. (2018). Validation of the Spanish version of the Yale Food Addiction Scale
22 2.0 (YFAS 2.0) and clinical correlates in a sample of eating disorder, gambling disorder, and
23 healthy control participants. *Frontiers in Psychiatry*, 9, 321.
24 <http://doi.org/10.3389/fpsyg.2018.00208>
- 25 Gratz, K. L., & Roemer, L. (2004). Multidimensional assessment of emotion regulation and
26 dysregulation: Development, factor structure, and initial validation of the difficulties in emotion
27 regulation scale. *Journal of Psychopathology and Behavioral Assessment*.
28 <http://doi.org/10.1007/s10862-008-9102-4>
- 29 Guerrero Pérez, F., Sánchez-González, J., Sánchez, I., Jiménez-Murcia, S., Granero, R., Simó-Servat, A., ...
30 Fernández-Aranda, F. (2018). Food addiction and preoperative weight loss achievement in
31 patients seeking bariatric surgery. *European Eating Disorders Review*, 26(6), 645–656.
32 <http://doi.org/10.1002/erv.2649>
- 33 Herman, C., & Polivy, J. (2005). Normative influences on food intake. *Physiology and Behavior*, 86(5),
34 762–772. <http://doi.org/10.1016/j.physbeh.2005.08.064>
- 35 Instituto Nacional de Salud Pública, & Secretaría de Salud. (2016). Encuesta Nacional de Salud y
36 Nutrición de Medio Camino, 2016.
- 37 Instituto Nacional de Salud Pública, Secretaría de Salud, & Instituto Nacional de Estadística y Geografía.
38 (2018). Encuesta Nacional de Salud y Nutrición 2018.
- 39 Jiménez-Murcia, S., Granero, R., Wolz, I., Baño, M., Mestre-Bach, G., Steward, T., ... Fernández-
40 Aranda, F. (2017). Food addiction in gambling disorder: Frequency and clinical outcomes.
41 *Frontiers in Psychology*, 8, 473. <http://doi.org/10.3389/fpsyg.2017.00473>
- 42 Kelley, K., & Preacher, K. J. (2012). On effect size. *Psychological Methods*, 17(2), 137–152.
43 <http://doi.org/10.1037/a0028086>

- 1 Kidd, C., & Loxton, N. J. (2021). A narrative review of reward sensitivity, rash impulsivity, and food
 2 addiction in adolescents. *Progress in Neuro-Psychopharmacology and Biological Psychiatry*, 109.
 3 <http://doi.org/10.1016/j.pnpbp.2021.110265>
- 4 Kline, R. B. (2005). *Principles and Practice of Structural Equation Modeling* (2nd Editio). New York:
 5 The Guilford Press.
- 6 Lee, H., Pantazis, A., Cheng, P., Dennisuk, L., Clarke, P. J., & Lee, J. M. (2016). The Association
 7 Between Adolescent Obesity and Disability Incidence in Young Adulthood. *Journal of Adolescent*
 8 *Health*, 59(4), 472–478. <http://doi.org/10.1016/j.jadohealth.2016.05.015>
- 9 Marin, M., Robles, R., González -Forteza, C., & Andrade, P. (2012). Propiedades psicométricas de la
 10 escala “Dificultades en la Regulación Emocional” en español (DERS-E) para adolescentes
 11 mexicanos. *Salud Mental*, 35(6), 521–526. Retrieved from
 12 http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33252012000600010
- 13 Maxwell, A. L., Gardiner, E., & Loxton, N. J. (2020). Investigating the relationship between reward
 14 sensitivity, impulsivity, and food addiction: A systematic review. *European Eating Disorders*
 15 *Review*, 28(4), 368–384. <http://doi.org/10.1002/erv.2732>
- 16 Meule, A. (2011). How prevalent is “food addiction”? *Frontiers in Psychiatry*. Front Psychiatry.
 17 <http://doi.org/10.3389/fpsyg.2011.00061>
- 18 Meule, A., Vögele, C., & Kübler, A. (2012). Deutsche übersetzung und validierung der yale food
 19 addiction scale. *Diagnostica*, 58(3), 115–126. <http://doi.org/10.1026/0012-1924/a000047>
- 20 Minhas, M., Murphy, C. M., Balodis, I. M., Acuff, S. F., Buscemi, J., Murphy, J. G., & MacKillop, J.
 21 (2021). Multidimensional elements of impulsivity as shared and unique risk factors for food
 22 addiction and alcohol misuse. *Appetite*, 159. <http://doi.org/10.1016/j.appet.2020.105052>
- 23 Monell, E., Clinton, D., & Birgegård, A. (2018). Emotion dysregulation and eating disorders—
 24 Associations with diagnostic presentation and key symptoms. *International Journal of Eating*
 25 *Disorders*, 51(8), 921–930. <http://doi.org/10.1002/eat.22925>
- 26 Morin, J. P., Rodríguez-Durán, L. F., Guzmán-Ramos, K., Pérez-Cruz, C., Ferreira, G., Diaz-Cintra, S., &
 27 Pacheco-López, G. (2017). Palatable hyper-caloric foods impact on neuronal plasticity. *Frontiers in*
 28 *Behavioral Neuroscience*. Frontiers Research Foundation. <http://doi.org/10.3389/fnbeh.2017.00019>
- 29 Muñoz-Escobar, G., Guerrero-Vargas, N. N., & Escobar, C. (2019). Random access to palatable food
 30 stimulates similar addiction-like responses as a fixed schedule, but only a fixed schedule elicits
 31 anticipatory activation. *Scientific Reports*, 9. <http://doi.org/10.1038/s41598-019-54540-0>
- 32 Murphy, C. M., Stojek, M. K., & MacKillop, J. (2014). Interrelationships among impulsive personality
 33 traits, food addiction, and Body Mass Index. *Appetite*, 73, 45–50.
 34 <http://doi.org/10.1016/j.appet.2013.10.008>
- 35 Pedram, P., Wadden, D., Amini, P., Gulliver, W., Randell, E., Cahill, F., ... Sun, G. (2013). Food
 36 Addiction: Its Prevalence and Significant Association with Obesity in the General Population. *PLoS*
 37 *ONE*, 8(9). <http://doi.org/10.1371/journal.pone.0074832>
- 38 Peña, C., & Moral, J. (2012). Validación de la versión en español del Cuestionario Sobreingesta
 39 Alimentaria (OQ) en una Muestra de Mujeres Mexicanas. *Revista Intercontinental de Psicología Y*
 40 *Educación*, 14(2), 73–96. Retrieved from
 41 https://www.researchgate.net/publication/284883042_Validator_de_la_version_en_espanol_del_Cuestionario_Sobreingesta_Alimentaria_OQ_en_una_Muestra_de_Mujeres_Mexicanas
 42

- 1 Pivarunas, B., & Conner, B. T. (2015). Impulsivity and emotion dysregulation as predictors of food
2 addiction. *Eating Behaviors*, 19, 9–14. <http://doi.org/10.1016/j.eatbeh.2015.06.007>
- 3 Pursey, K. M., Stanwell, P., Gearhardt, A. N., Collins, C. E., & Burrows, T. L. (2014). The prevalence of
4 food addiction as assessed by the yale food addiction scale: A systematic review. *Nutrients*. MDPI
5 AG. <http://doi.org/10.3390/nu6104552>
- 6 Rai, D., Skapinakis, P., Wiles, N., Lewis, G., & Araya, R. (2010). Common mental disorders,
7 subthreshold symptoms and disability: Longitudinal study. *British Journal of Psychiatry*, 197(5),
8 411–412. <http://doi.org/10.1192/bjp.bp.110.079244>
- 9 Reilly, J. J., & Kelly, J. (2011). Long-term impact of overweight and obesity in childhood and
10 adolescence on morbidity and premature mortality in adulthood: Systematic review. *International
11 Journal of Obesity*. <http://doi.org/10.1038/ijo.2010.222>
- 12 Rodríguez Santaolaya, P., Bernárdez-Zapata, I., Iglesias Leboreiro, J., Vidaña Pérez, D., Ortega Cisneros,
13 C., Del Mar Monroy Olivares, M., ... López, J. (2019). *Asociación entre adicción a la comida e
índice de masa corporal en niños mexicanos de 10 a 16 años de edad*. Acta Médica Grupo Ángeles
14 (Vol. 17). Medigraphic. Retrieved from
15 www.medigraphic.org.mxArtículooriginAlwww.medigraphic.com/actamedica
- 16
- 17 Rtveladze, K., Marsh, T., Barquera, S., Sanchez Romero, L. M. ari., Levy, D., Melendez, G., ... Brown,
18 M. (2014). Obesity prevalence in Mexico: impact on health and economic burden. *Public Health
19 Nutrition*, 17(1), 233–239. <http://doi.org/10.1017/S1368980013000086>
- 20 Schulte, E. M., Avena, N. M., & Gearhardt, A. N. (2015). Which foods may be addictive? The roles of
21 processing, fat content, and glycemic load. *PLoS ONE*, 10(2).
22 <http://doi.org/10.1371/journal.pone.0117959>
- 23 Sevinçer, G. M., Konuk, N., Bozkurt, S., & Coşkun, H. (2016). Food addiction and the outcome of
24 bariatric surgery at 1-year: Prospective observational study. *Psychiatry Research*, 244, 159–164.
25 <http://doi.org/10.1016/j.psychres.2016.07.022>
- 26 Stinchfield, R. (2014). A Review of Problem Gambling Assessment Instruments and Brief Screens. In D.
27 Richard, A. Blaszczynski, & L. Nower (Eds.), *The Wiley-Blackwell Handbook of Disordered
28 Gambling* (First, pp. 165–203). New York: John Wiley & Sons, Ltd.
29 <http://doi.org/https://doi.org/10.1002/9781118316078.ch8>
- 30 Turton, R., Chami, R., & Treasure, J. (2017, June 1). Emotional Eating, Binge Eating and Animal Models
31 of Binge-Type Eating Disorders. *Current Obesity Reports*. Springer. [http://doi.org/10.1007/s13679-017-0265-8](http://doi.org/10.1007/s13679-
32 017-0265-8)
- 33 Valdés-Moreno, M. I., Rodríguez-Márquez, M. C., Cervantes-Navarrete, J. J., Camarena, B., & de
34 Gortari, P. (2016). Traducción al español de la escala de adicción a los alimentos de Yale (Yale
35 Food Addiction Scale) y su evaluación en una muestra de población mexicana. Análisis factorial.
36 *Salud Mental*, 39(6), 295–302. <http://doi.org/10.17711/SM.0185-3325.2016.034>
- 37 Van Strien, T., Cebolla, A., Etchemendy, E., Gutiérrez-Maldonado, J., Ferrer-García, M., Botella, C., &
38 Baños, R. (2013). Emotional eating and food intake after sadness and joy. *Appetite*, 66, 20–25.
39 <http://doi.org/10.1016/j.appet.2013.02.016>
- 40 Van Strien, T., Frijters, J., Bergers, G., & Defares, P. (1986). The Dutch Eating Behavior Questionnaire
41 (DEBQ) for assessment of restrained, emotional, and external eating behavior. *International
42 Journal of Eating Disorders*, 5(2), 295–315. [http://doi.org/10.1002/1098-108X\(198602\)5:2<295::AID-EAT2260050209>3.0.CO;2-T](http://doi.org/10.1002/1098-
43 108X(198602)5:2<295::AID-EAT2260050209>3.0.CO;2-T)
- 44 Verdejo-García, A., Lozano, Ó., Moya, M., Alcázar, M. Á., & Pérez-García, M. (2010). Psychometric
45 properties of a spanish version of the UPPS-P impulsive behavior scale: Reliability, validity and

- 1 association with trait and cognitive impulsivity. *Journal of Personality Assessment*, 92(1), 70–77.
2 <http://doi.org/10.1080/00223890903382369>
- 3 Whiteside, S., & Lynam, D. (2001). The five factor model and impulsivity: Using a structural model of
4 personality to understand impulsivity. *Personality and Individual Differences*, 30(4), 669–689.
5 [http://doi.org/10.1016/S0191-8869\(00\)00064-7](http://doi.org/10.1016/S0191-8869(00)00064-7)
- 6 Whiteside, S. P., & Lynam, D. R. (2001). The five factor model and impulsivity: Using a structural model
7 of personality to understand impulsivity. *Personality and Individual Differences*, 30(4), 669–689.
8 [http://doi.org/10.1016/S0191-8869\(00\)00064-7](http://doi.org/10.1016/S0191-8869(00)00064-7)
- 9 Wilson, G. T. (2010). Eating disorders, obesity and addiction. *European Eating Disorders Review*. Eur
10 Eat Disord Rev. <http://doi.org/10.1002/erv.1048>
- 11 Wolz, I., Agüera, Z., Granero, R., Jiménez-Murcia, S., Gratz, K. L., Menchón, J. M., & Fernández-
12 Aranda, F. (2015). Emotion regulation in disordered eating: Psychometric properties of the
13 difficulties in emotion regulation scale among spanish adults and its interrelations with personality
14 and clinical severity. *Frontiers in Psychology*, 6. <http://doi.org/10.3389/fpsyg.2015.00907>
- 15 Wolz, I., Granero, R., & Fernández-Aranda, F. (2017). A comprehensive model of food addiction in
16 patients with binge-eating symptomatology: The essential role of negative urgency. *Comprehensive
17 Psychiatry*, 74, 118–124. <http://doi.org/10.1016/j.comppsych.2017.01.012>
- 18 Wolz, I., Hilker, I., Granero, R., Jiménez-Murcia, S., Gearhardt, A. N., Dieguez, C., ... Fernández-
19 Aranda, F. (2016). “Food Addiction” in Patients with Eating Disorders is Associated with Negative
20 Urgency and Difficulties to Focus on Long-Term Goals. *Frontiers in Psychology*, 7.
21 <http://doi.org/10.3389/fpsyg.2016.00061>
- 22

1 **Table 1** Comparison between the groups based on the food addiction severity: ANOVA adjusted by eating severity, sex and age

	FA: Absent <i>n</i> =125		FA: Probable <i>n</i> =22		FA: Present <i>n</i> =13		Absent vs Probable		Absent vs Present		Probable vs Present	
	Mean	SD	Mean	SD	Mean	SD	<i>p</i>	$ d $	<i>p</i>	$ d $	<i>p</i>	$ d $
	<i>Eating styles: DEBQ</i>											
Emotional	20.77	7.37	24.97	11.10	33.44	14.52	.029*	0.45	<.001*	1.10†	.006*	0.66†
External	24.81	6.50	26.87	8.87	31.91	8.66	.216	0.27	.003*	0.93†	.059	0.57†
Restrained	18.14	7.24	22.39	7.95	19.92	7.60	.008*	0.56†	.434	0.24	.332	0.32
<i>Emotion dysregulation: DERS</i>												
Non acceptance emotions	12.92	6.11	13.33	6.29	14.11	7.19	.728	0.07	.477	0.18	.674	0.12
Goal directed behaviour	12.71	4.61	13.20	4.24	14.23	5.30	.621	0.11	.277	0.31	.506	0.22
Impulse control difficulties	11.82	4.14	12.20	6.05	16.81	6.75	.701	0.07	.001*	0.89†	.004*	0.72†
Lack emotional awareness	16.36	4.92	16.11	4.21	13.59	4.74	.814	0.05	.069	0.57†	.137	0.56†
Limited access emotion regul.	16.78	6.43	18.23	8.29	19.72	7.66	.247	0.20	.102	0.42	.456	0.19
Lack of emotional clarity	12.16	3.95	12.31	3.95	10.61	5.02	.846	0.04	.161	0.34	.168	0.37
Total score	82.76	22.76	85.38	26.58	89.08	28.23	.513	0.11	.269	0.25	.561	0.14
<i>Impulsivity: UPPS-P</i>												
Lack of premeditation	22.40	5.30	23.98	4.82	25.35	4.30	.200	0.31	.095	0.61†	.485	0.30
Lack of perseverance	20.72	4.59	22.51	3.47	20.94	6.47	.102	0.44	.887	0.04	.366	0.30
Sensation seeking	33.93	6.65	33.10	7.89	32.55	8.88	.610	0.11	.551	0.18	.830	0.07
Positive urgency	28.26	8.49	30.05	11.72	31.13	10.58	.383	0.17	.326	0.30	.739	0.10
Negative urgency	26.89	6.77	28.75	6.75	34.24	8.29	.217	0.27	.001*	0.97†	.023*	0.73†

2 Note. FA: food addiction. SD: standard deviation. *Bold: significant comparison (.05 level).

3 †Bold: effect size into the mild-moderate ($|d|>0.50$) to the high-large range ($|d|>0.80$).

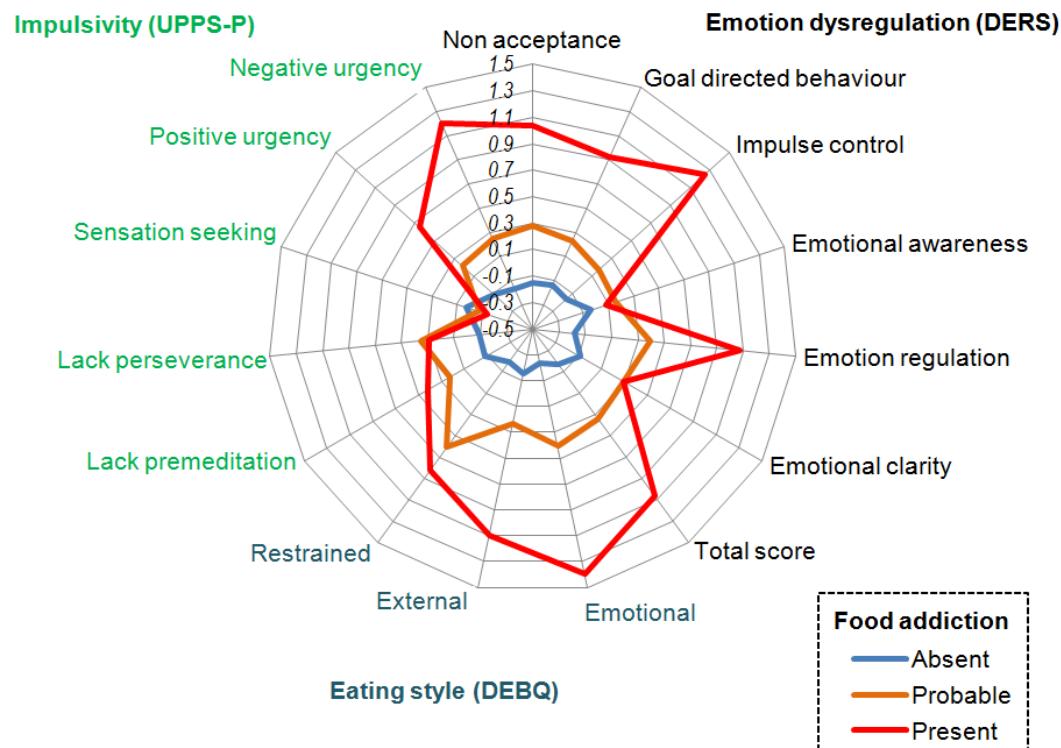
4

5

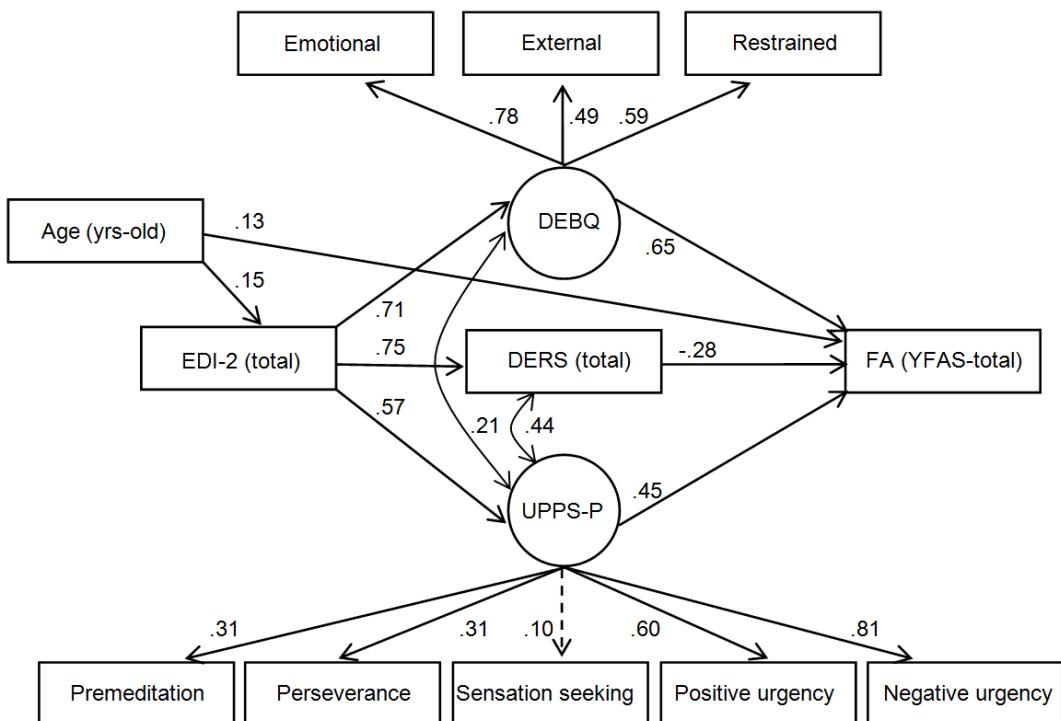
1

2 **Table 2** Predictive model of the food addiction severity group: multinomial logistic regression adjusted by eating severity, sex and
 3 age

	FA-probable vs FA-absent				FA-present vs FA-absent				FA-present vs FA-probable			
	B	SE	p	OR	B	SE	p	OR	B	SE	p	OR
<i>First block (covariates)</i>												
Sex (0=Female; 1=Male)	-0.650	0.721	.367	0.522	0.005	1.225	.997	1.005	0.655	1.345	.626	1.925
Age (years-old)	0.199	0.146	.172	1.221	-0.442	0.438	.312	0.643	-0.642	0.443	.147	0.526
Eating severity: EDI-total	-0.002	0.011	.850	0.998	0.004	0.020	.834	1.004	0.006	0.021	.766	1.006
$\Delta R^2 = .130$												
<i>Second block</i>												
UPPS-P Negative urgency	0.060	0.062	.332	1.061	0.323	0.109	.003*	1.382	0.264	0.116	.023*	1.302
UPPS-P Positive urgency	-0.007	0.045	.884	0.993	-0.170	0.074	.022*	0.844	-0.163	0.079	.039*	0.849
DEBQ Emotional	0.059	0.031	.057	1.061	0.129	0.050	.010*	1.138	0.070	0.049	.152	1.072
DEBQ Restrained	0.080	0.035	.022*	1.084	0.080	0.068	.236	1.084	0.000	0.070	.998	1.000
$\Delta R^2 = .156$												
<i>Model fitting</i>												
Deviance chi-square test: $\chi^2 = 145.578$, $p = .998$												
-2 Log Likelihood: Intercept only = 203.942; Final = 145.578												
Likelihood Ratio Test: $\chi^2 = 58.364$, $p < .001$												


4 Note. FA: food addiction. *Bold: significant parameter (.05 level). Stepwise procedure.

5 ΔR^2 : increase/change in Nagelkerke's pseudo R² coefficient. Sample size: $n = 160$.


6

1 **Figure legends**

2

3 **Figure 1** Radar-chart (*z*-standardized means are plotted) (*n*=160)

4

5 **Figure 2** SEM: standardized coefficients6 Note. Continuous line: significant parameter ($p \leq 0.05$). Dash line: non-significant parameter ($p > 0.05$).7 Sample size: $n=160$

8