

1 **Tracking temporal response dynamics in the ventral striatum during social**
2 **feedback in anorexia nervosa: A functional magnetic resonance imaging**
3 **exploratory study**

4 S Membrives^{1,2,3}, M López-Solà⁴, F Fernández-Aranda^{5,6,7}, I Sánchez^{5,6,7}, I Martínez-
5 Zalacaín^{5,6,7}, D Palao^{1,2,3}, J Pujol^{3,8}, JM Menchón^{3,5,7}, C G Davey⁹, B J Harrison⁹, C
6 Keating¹⁰, Susan L Rossell¹⁰, JC Oliva^{1,2,3}, C Soriano-Mas^{3,5,11}, N Cardoner^{1,2,3*}, E
7 Via^{12*}.

8 1. Department of Mental Health, Parc Taulí-University Hospital of Sabadell,
9 Sabadell, Spain.

10 2. Department of Psychiatry and Forensic Medicine, Autonomous University of
11 Barcelona, Barcelona, Spain.

12 3. Mental Health Networking Biomedical Research Centre (CIBERSAM), Barcelona,
13 Spain.

14 4. Serra Hunter Programme, Department of Medicine, School of Medicine and
15 Health Sciences, University of Barcelona, Barcelona, Spain.

16 5. Bellvitge University Hospital, Institut d'Investigació Biomèdica de Bellvitge
17 IDIBELL, Barcelona, Spain.

18 6. Carlos III Health Institute, Obesity and Nutrition Biomedical Research Centre
19 (CIBEROBN), Barcelona, Spain.

20 7. Department of Clinical Sciences, School of Medicine and Health Sciences,
21 University of Barcelona, Barcelona, Spain.

22 8. MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain.

23 9. Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of
24 Melbourne, Melbourne, Australia.

10. Centre for Mental Health, Faculty of Health Sciences, Art and Design, Swinburne
1
University of Technology, Melbourne, Australia.
2

11. Department of Psychobiology and Methodology in Health Sciences, Universitat
3
Autònoma de Barcelona, Barcelona, Spain.
4

12. Child and Adolescent Psychiatry and Psychology Department of Hospital Sant
5
Joan de Déu of Barcelona and Child and Adolescent Mental Health Research Group,
6
Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
7

8
Correspondence
9

10 Esther Via, Child and Adolescent Psychiatry and Psychology Department,
11 Hospital Sant Joan de Déu of Barcelona,
12 Sant Joan de Déu 2, 08950 Esplugues de Llobregat, Spain.
13
Email: evia@sjdhospitalbarcelona.org

14
15 Narcís Cardoner, Department of Mental Health,
16 Parc Taulí University Hospital of Sabadell,
17 Parc Taulí, 1, 08208 Sabadell, Barcelona, Spain.
18
Email: ncardoner@tauli.cat

19
Word count: abstract: 175; Main text: 1999.

20
Acknowledgements

21 The authors thank all the study participants as well as the staff from the
22 Department of Psychiatry of Bellvitge University Hospital.

23 This research was also partially funded by ISCIII (PI17/01167 and PI20/132).

24 CIBERSAM and CIBERobn are both initiatives of ISCIII.

Abstract

Objective: Research suggests abnormalities in reward-based processes in anorexia nervosa (AN). However, few studies have explored if such alterations might be associated with different temporal activation patterns. This study aims to characterize alterations in time-dependent processes in the ventral striatum (VS) during social feedback in AN using functional magnetic resonance imaging (fMRI).

Method: 20 women with restrictive-subtype AN and 20 age-matched healthy controls (HC) underwent a social judgment experimental fMRI task. Temporal VS hemodynamic responses were extracted in SPM for each participant and each social condition (acceptance/rejection). **Results:** Compared with age-matched HC, patients with AN showed a significant time by group interaction of peak VS response throughout the task, with a progressive blunting of peak activation responses, accompanied by a progressive increase in baseline activity levels over time. **Discussion:** The results suggest an attenuated response pattern to repetitive social rejection in the VS in patients with AN, together with a difficulty in returning to baseline. The information obtained from this study will guide future, design-specific studies to further explore alterations temporal dynamics.

KEYWORDS

anorexia nervosa, functional magnetic resonance imaging, reward system, social reward, ventral striatum

1. INTRODUCTION

Anorexia nervosa (AN) is commonly associated with an impairment of social information processing, considered a vulnerability factor for the

1 development and maintenance of the disorder (Treasure, Corfield & Cardi , 2012).

2 Social responses in normal development are partly processed by the same
3 mesocorticolimbic brain network involved in basic reward (Krach, 2010).

4 Literature supports differences in reward processing in AN within regions of the
5 reward circuit such as the ventral striatum (VS) (Zhu et al., 2012).

6 Our group conducted an fMRI experiment involving positive and negative
7 social feedback in women with AN to evaluate brain reward responses to social
8 stimuli (Via et al., 2015). While VS activation did not differ between groups in the
9 whole-brain analysis, its activity during negative feedback was positively
10 correlated with illness severity. The study did not evaluate temporal dynamics, and
11 we hypothesized that time-dependent processes of VS responses after repetitive
12 exposure to positive or negative feedback might have masked putative between-
13 group differences. To further explore this question, the present study presents a
14 secondary and exploratory analysis of the same data aiming to assess the temporal
15 response of the VS to social feedback in individuals with AN. The information
16 obtained from this study will guide future, design-specific studies.

17 Based on prior research (Kaye, Fudge, & Paulus, 2009; Wierenga et al.,
18 2014), we hypothesized that patients with AN would demonstrate progressively
19 attenuated VS activity to repeated acceptance feedback. As for the rejection
20 condition, we posed two possible scenarios. Considering the role of the VS in
21 regulating social distress and the heightened sensitivity to social rejection in AN
22 (Cardi, Matteo, Corfield, & Treasure, 2013), we anticipated that the AN group
23 would show a progressive increase (sensitization) in VS responses. Another
24 possible outcome would be a blunted activity to repetitive negative feedback
25 (habituation).

1

2. MATERIALS AND METHODS

2

3

2.1 Participants

4

5 Twenty women with AN, restricting subtype, according to DSM-IV-TR criteria
6 (American Psychiatric Association, 2000) were recruited from the day patient
7 program of the Bellvitge University Hospital Eating Disorders Unit (Barcelona) as
8 described in Via et al. (2015). Diagnoses were conducted by experienced
9 psychologists/psychiatrists (E.V., I.S., F.F-A.) using the Structured Clinical
10 Interview for DSM-IV Axis I Disorders (SCID) (First, 2007). Comorbid psychiatric
11 disorders, neurological conditions and substance abuse except for nicotine were
12 exclusion criteria. Twenty age-matched HC women were recruited from the same
13 sociodemographic area. This screening was conducted by means of the General
14 Health Questionnaire (GHC-28) (Artal & Pérez-Echeverría, 1986) and the SCID.
15 Control women had no history of psychiatric or neurological conditions. The
16 ethical committee of clinical research (CEIC) of the Bellvitge University Hospital
17 approved the study protocol, which was in compliance with the national legislation
18 and the principles expressed in the Declaration of Helsinki. All participants gave
19 written informed consent after detailed description of the study.

20

2.2 Clinical variables

21

22 Current eating disorder symptoms were assessed using the self-reported Eating
23 Disorder Inventory-2 (EDI-2) scale (Garner, 1991). Depressive and anxiety
24 symptoms were measured by the Hamilton Depression Rating Scale (HDRS)
(Hamilton, 1960) and the Hamilton Anxiety Rating Scale (HARS) (Hamilton, 1959).

1 **2.3 Social judgment paradigm**

2 The fMRI task used in the current study was a modification of the social judgment
3 experiment originally reported in Davey et al. (2010). Briefly, participants were
4 asked to participate in a multi-center study about the influence of first
5 impressions. They were shown a face database containing 70 people's faces and
6 asked to decide (Likert-type scale) whether they would like to meet them in
7 person or not (acceptance/rejection). Additionally, each participant had a picture
8 of themselves taken and was told that it would be sent and reciprocally scored by
9 the other participants. Five days after this first assessment, participants
10 underwent the fMRI social judgment task; they were shown 54 of the previously
11 rated faces and were informed of acceptance (happy face symbol on the screen) or
12 rejection (sad face symbol) feedback. Neutral faces formed the control condition
13 and appeared when people supposedly could not be contacted. The database
14 actually consisted of photographs selected from a larger public database (Martínez
15 & Benavente, 1998), and the real nature of the study was disclosed at the end of
16 the experiment.

17 **2.4 Behavioral measures**

18 After the scanning session, a 10-point Likert-type scale was used to evaluate the
19 participants' subjective experience after each type of feedback. Participants'
20 subjective experience when receiving each type of feedback was compared
21 between groups and conditions using a 3x2 analysis of variance (ANOVA).

23 **2.5 Clinical and sociodemographic analyses**

1 Sociodemographic variables were compared between groups using a two-sample t-
2 test. Additionally, two-sample t-tests were conducted to compare severity and
3 psychological eating disorders features (EDI-2), anxiety (HARS) and depressive
4 symptoms (HDRS) between groups. Analyses were performed in SPSS v22.0. Level
5 of significance was set at $p < 0.05$.

6

7 **2.6 Imaging acquisition and preprocessing**

8 Imaging data were collected with a 1.5-T Signal Excite system (General Electric
9 Milwaukee, WI, USA) magnetic resonance equipped with an 8-channel phased
10 array head coil and single-shot echoplanar imaging software. The functional
11 sequence consisted of gradient recalled acquisition in the steady state (repetition
12 time (RT) = 2,000 ms, echo time (TE) = 50 ms and pulse angle, 90 $^{\circ}$) in a 24 cm field
13 of view, 64 x 64 pixel matrix, slice thickness of 4 mm (inter-slice gap, 1.5 mm).
14 Twenty-two interleaved sections, parallel to the anterior-posterior commissure
15 line, were acquired to generate 216 whole-brain volumes (voxel size: 3.75 x 3.75 x
16 4). Four initial dummy volumes were excluded to allow the magnetization to reach
17 equilibrium.

18 Data were processed on a personal computer equipped with Microsoft
19 Windows operating system running Matlab 7.14 (The Math-Works, Inc.) and
20 statistical parametric software version 8 (SPM 8). Within participants, time-series
21 images were first slice-timing corrected to adjust for temporal differences in image
22 acquisition. Thereafter, images were realigned to the mean image (6-parameter
23 rigid body transformation), normalized (to the standard echoplanar imaging (EPI)
24 template in SPM) and resliced to Montreal Neurological Institute (MNI) space,
25 2mm 3 , and smoothed using an 8 mm isotropic Gaussian filter. Normalized and

smoothed images were routinely inspected for potential movement or artifacts (motion exclusion criteria being >2mm translational and >2° rotational movement). Criteria about movement parameters were met for all participants except one HC participant, who was excluded.

2.7 fMRI data processing and analysis

At first single-subject level of analysis, each stimulus duration was convolved with a canonical hemodynamic response function to model the acquired BOLD signal. The model was built using the finite impulse response analysis approach (FIR) in SPM. Temporal regressors were included in each first level general linear model (GLM) to model the temporal response of the VS along the social feedback stimulus and the entire duration of the task. We considered three phases of social feedback stimulus response (early response—2s after feedback presentation—, middle—2s to 4s—, and late response—4s to 6s—). Then, we also considered three periods of equal duration throughout the task (the 7,2-minute task was divided into three periods of 144 seconds—17 volumes—). Therefore, each one of the task conditions (acceptance, rejection and neutral) included 9 regressors corresponding to early-mid-late-feedback stimulus response phase for each of the three task periods (the total number of regressors was 27).

For the purpose of this study, only the acceptance and rejection conditions were carried into following analyses. Second level random-effects group analyses in SPM (a between-group t-test model) were used to extract VS temporal data for each one of the 9 modeled time points (e.g., early stimulus response phase for the first part of the task, early stimulus response phase for the mid part of the task, late stimulus response phase for the last part of the task, etc.), for each condition of

1 interest (acceptance/rejection), using the SPM eigenvariate function. We used a VS
2 mask created from a given set of coordinates (+/-9.9,-8; 8mm spheres)
3 corresponding to the nucleus accumbens (Harrison et al., 2009).

4

5 **2.8 fMRI statistical analysis**

6 Single-subject VS temporal activation data obtained for each condition were
7 transferred to a SPSS database. A first visual plotting of the data showed that the
8 mean VS stimulus response at task response was an inverted u-shape, with the
9 early and late responses to the stimuli (seconds 1-2 and 5-6) being the valleys of
10 the u-shape and the middle response (seconds 3-4) being the peak.

11 We used an ANOVA model to analyze changes in both the maximum peak
12 intensity and the valley points of this inverted-u along the three periods of the
13 task. In a first 3x2 repeated measures ANOVA, the Peak Response at the three parts
14 of the task was included as the within-group variable, and Group (AN patients, HC)
15 as the between-group variable. In a second 3x2 repeated measures ANOVA, the
16 sum of the two Valley Responses (seconds 0-2 and 4-6) at each one of the three
17 parts of the task were included as the within-group variable, and Group (AN
18 patients, HC) as the between-group variable. This was conducted separately for
19 both conditions (acceptance/rejection)

20

21 **3. RESULTS**

22 **3.1. Demographic variables and clinical behavioral assessments**

23 There were no statistically significant differences in age, handedness or
24 educational level between patients and controls. Mean EDI-2 scores, anxiety and
25 depressive symptoms were significantly higher in the AN group. There were no

1 interaction effects or between-group differences on the subjective experience after
2 any type of feedback, and all of them liked more being accepted than rejected
3 ($p<.001$) or receiving no feedback ($p<.001$).
4

5 **3.2. Main analyses**
6

7 **3.2.1. Acceptance**
8

9 **Peak Response:** There was a significant effect of time ($F(2,74)=6.84, p=.002$). The
10 effect was driven by an increase in the peak of the VS response between the first
11 and the third parts of the task ($F(1,37)=8.13, p=.007$), i.e. the mean intensity signal
12 at the peak of the VS shape response was higher at the end of the task (after
13 repetitive stimuli presentation) compared to the beginning. When stratifying by
14 group, this effect was only significant in controls ($F(1,18)=5.36, p=.033$).
15

16 **Valley Response:** There were no significant effects.
17

18 (Figure 1 and Table 1).
19

20 **3.2.2. Rejection**
21

22 **Peak Response:** There was a significant effect of time by group ($F(2,74)=4.64, p=.013$). The interaction was driven by an increased peak response between the
23 first and third parts of the task ($F(1,37)=9.66, p=.004$). When stratifying by group,
24 this effect was only significant in controls ($F(1,18)=7.61, p=.013$)

25 **Valley Response:** There was a significant effect of time ($F(2,74)=4.01, p=.022$).
26 The effect was driven by an increase of the valley response between the first and
27 third parts of the task ($F(1,37)=6.01, p=.019$) and between the second and third
28 parts of the task ($F(1,37)=4.14, p=.049$). When stratifying by group, this effect was
29

1 only significant in the patient's group and comparing the first and third parts of the
2 task ($F(1,19)=4.87$, $p=.040$).

3 The Rejection condition shows that patients present an increase in baseline
4 activation throughout the task in addition to a progressively blunted peak
5 response (Figure 1 and Table 1).

6 **4. DISCUSSION**

7 The evaluation of VS ventral striatum temporal dynamics in AN during social
8 feedback evidenced few, but some differences, that should be tested in a future
9 study designed to evaluate temporal dynamics in the VS. The most relevant result
10 was found during rejection: AN participants showed a progressive flattening of VS
11 peak response when exposed to repeated rejection, accompanied by a progressive
12 increase in baseline activity levels.

13 Evidence of temporal patterns of striatal response in healthy population has
14 shown a sustained striatal BOLD signal to salient stimuli (Delgado, 2007). The
15 difficulty of returning to baseline levels and the flattening effect of the peak VS
16 response observed in our AN group during social rejection might suggest a
17 maladaptive response of the VS in this context and could be interpreted as a
18 difficulty of the structure to flexibly adjust to challenging social scenarios, but
19 should be taken with caution and considering the limitations of this exploratory
20 study.

21 Several limitations warrant consideration. Given that the original task was
22 not specifically designed to evaluate temporal information and the small sample,
23 our results should be interpreted with caution. However, this fMRI approach might

1 provide useful information about temporal neural activity in AN using a larger
2 sample. Our study was limited to AN low-weight adult women with no
3 comorbidities, so future research should explore a variety of populations. The
4 study was conducted on a 1.5 Tesla magnet, which may have limited the ability to
5 detect signal from certain regions. Future, design-specific studies focused in the
6 temporal dynamics of brain activity should take into consideration these aspects.

7 **CONFLICT OF INTEREST**

8 The authors have no conflicts to declare.

9 **ETHICS STATEMENT**

10 The ethical committee of clinical research (CEIC) of the Bellvitge University
11 Hospital approved the study protocol, which was in compliance with the national
12 legislation and the principles expressed in the Declaration of Helsinki. All
13 participants gave written informed consent after detailed description of the study.

15 **DATA AVAILABILITY STATEMENT**

16 The data that support the findings of this study are available from the
17 corresponding author, EV and NC, upon reasonable request.

19 **ACKNOWLEDGMENTS**

20 The authors thank all of the study participants, as well as the staff from the
21 Department of Psychiatry of Bellvitge University Hospital and the CERCA Programme /
22 Generalitat de Catalunya.

1 This research was also partially funded by ISCIII (PI17/01167 and PI20/132). CIBERSAM
2 and CIBERobn are both initiatives of ISCIII.

3

4

5 REFERENCES

6 American Psychiatric Association (2000). *Diagnostic and statistical manual*
7 *of mental disorders*, (4th ed., text rev). Washington DC: Author.

8 Artal, J., & Pérez-echeverría, M. J. (1986). Validity of the scaled version of
9 the General Health Questionnaire (GHQ-28) in a Spanish population. *Psychological*
10 *Medicine*, 16(1), 135–140. doi:10.1017/S0033291700002579

11 Cardi, V., Matteo, R. Di, Corfield, F., & Treasure, J. (2013). Social reward and
12 rejection sensitivity in eating disorders: An investigation of attentional bias and
13 early experiences. *The World Journal of Biological Psychiatry*, 14(8), 622–633.
14 doi:10.3109/15622975.2012.665479

15 Davey, C. G., Allen, N. B., Harrison, B. J., Dwyer, D. B., & Yücel, M. (2010).
16 Being liked activates primary reward and midline self-related brain regions.
17 *Human Brain Mapping*, 31(4), 660–668. doi: 10.1002/hbm.20895

18 Delgado, M. R. (2007). Reward-related responses in the human striatum.
19 *Annals of the New York Academy of Sciences*, 1104, 70–88. doi:
20 10.1196/annals.1390.002

21 First, M. B., Spitzer R.L., Gibbon M., Williams J.B. (2007). Structured clinical
22 interview for DSM-IV axis I disorders —Non-patient edition (SCID-I/NP). New
23 York, NY: Biometrics Research, New York State Psychiatric Institute.

24 Garner, D. M. (1991). *Eating disorder inventory-2: Professional Manual*.
25 Odessa, Florida: Psychological Assessment Resources.

1 Hamilton, M. (1960). A rating scale for depression. *Journal of Neurology,*
2 *Neurosurgery, and Psychiatry*, 23: 56–62. doi: 10.1136/jnnp.23.1.56

3 Hamilton, M. (1959). The assessment of anxiety states by rating. *British*
4 *Journal of Medical Psychology*, 32(1), 50-5. doi: 10.1111/j.2044-
5 8341.1959.tb00467.x

6 Harrison, B. J., Soriano-Mas, C., Pujol, J., Ortiz, H., López-Solà, M., Hernández-
7 Ribas, R., ... Cardoner, N. (2009). Altered corticostriatal functional connectivity in
8 obsessive-compulsive disorder. *Archives of General Psychiatry*, 66(11), 1189–1200.
9 doi: 10.1001/archgenpsychiatry.2009.152

10 Kaye, W. H., Fudge, J. L., & Paulus, M. (2009). New insights into symptoms
11 and neurocircuit function of anorexia nervosa. *Nature Reviews Neuroscience*, 10(8),
12 573–584. doi: 10.1038/nrn2682

13 Krach, S. (2010). The rewarding nature of social interactions. *Frontiers in*
14 *Behavioral Neuroscience*. doi: 10.3389/fnbeh.2010.00022

15 Martinez AM, Benavente R. The AR Face Database CVC Tech. Report #24
16 [Internet]. 1998. Available: [http://www2.ece.ohio-
17 state.edu/~aleix/ARdatabase.html](http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html)

18 Treasure J., Corfield F., Cardi V. A three-phase model of the social emotional
19 functioning in eating disorders (2012). *European Eating Disorders Review*, 20, 431–
20 8. doi: 10.1002/erv.2181

21 Via, E., Soriano-Mas, C., Sánchez, I., Forcano, L., Harrison, B. J., Davey, C. G., ...
22 Cardoner, N. (2015). Abnormal social reward responses in anorexia nervosa: An
23 fmri study. *PLoS ONE*, 10(7). doi: 10.1371/journal.pone.0133539

24 Wierenga, C. E., Ely, A., Bischoff-Grethe, A., Bailer, U. F., Simmons, A. N., &
25 Kaye, W. H. (2014). Are Extremes of Consumption in Eating Disorders Related to

1 an Altered Balance between Reward and Inhibition? *Frontiers in Behavioral*

2 *Neuroscience*, 8(December), 1–11. doi: 10.3389/fnbeh.2014.00410

3 Zhu, Y., Hu, X., Wang, J., Chen, J., Guo, Q., Li, C., & Enck, P. (2012). Processing
4 of food, body and emotional stimuli in anorexia nervosa: A systematic review and
5 meta-analysis of functional magnetic resonance imaging studies. *European Eating
6 Disorders Review*, 20(6), 439–50. doi: 10.1002/erv.2197

7

8 **Figure Legend**

9 **FIGURE 1. Within and between-group ventral striatum peak and valley
10 activations along the task**

11 For each condition (acceptance, rejection), the task was divided into three
12 temporal periods. The mean ventral striatum (VS) stimulus activation response at
13 each one of these periods was an inverted u-shape, being the valleys of the u-shape
14 the first 2 seconds after feedback presentation (“early”) and the last 2 seconds of
15 feedback presentation (“late”), whereas the peak of the u-shape was the middle
16 response (seconds 3 and 4, “middle”). For the rejection condition, a significant
17 effect of time by group in the peak response is observed (patients are represented
18 by a red line, HC by a blue line). Additionally, there is a significant effect of time in
19 the valley response driven solely by the patients group (red line). The graphic
20 representation of these results shows both a progressive lack of return to baseline
21 levels in the patient group, as well as a progressive blunting of task shape
22 response. For the acceptance condition, it is observed a significant effect of time,
23 driven by the HC group, represented by a progressive increase in the peak
24 response (blue line).