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Semantic Monocular Depth Estimation based on
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Abstract—Depth estimation provides essential in-
formation to perform autonomous driving and driver
assistance. A promising line of work consists of in-
troducing additional semantic information about the
traffic scene when training CNNs for depth estimation.
In practice, this means that the depth data used for
CNN training is complemented with images having
pixel-wise semantic labels where the same raw training
data is associated with both types of ground truth, i.e.,
depth and semantic labels. The main contribution of
this paper is to show that this hard constraint can
be circumvented, i.e., that we can train CNNs for
depth estimation by leveraging the depth and seman-
tic information coming from heterogeneous datasets.
In order to illustrate the benefits of our approach,
we combine KITTI depth and Cityscapes semantic
segmentation datasets, outperforming state-of-the-art
results on monocular depth estimation.

Index Terms—Monocular Depth Estimation, Seman-
tic Segmentation, Multi-task learning.

I. Introduction
In contrast to stereo vision, monocular depth estimation

is a relatively young topic, which has become affordable
thanks to convolutional neural networks (CNNs).

Godard et al. [6] propose an unsupervised method to
learn a monocular depth estimator from stereo data; a
photometric loss function with terms accounting for left-
right consistency is used during CNN training. Kuznietsov
et al. [8] propose a semi-supervised method to estimate
inverse depth maps by combining an appearance matching
loss similar to [6] and a supervised objective function using
sparse depth ground truth (GT) from LIDAR.

Supervised methods, i.e. fully relying on depth GT,
are proposed by several authors too. Xu et al. [12] fuse
complementary information derived from multiple CNNs
by means of Conditional Random Fields (CRFs). Similarly,
Liu et al. [9] present a CNN with a CRF-based loss layer.
In Cao et al. [1] the depth GT is discretized into several
distance ranges for training a FCN-residual network that
predicts these ranges pixel-wise; which is followed by
a CRF post-processing enforcing local depth coherence.
Xu et al. [13] propose a structured attention model to
automatically regulate the amount of information trans-
ferred between CNN features at different scales. Luo et
al. [14] reformulate monocular depth estimation as a view
synthesis procedure followed by stereo matching; obtaining
competitive results by fine-tuning based on additional 200
high-quality disparity labels.

II. Monocular Depth Estimation
In this paper, we propose to leverage heterogeneous

datasets to train a CNN for depth estimation; i.e. training
can rely on one dataset having only depth GT, along with
a different dataset with only pixel-wise semantic GT. We
divide the training process into two phases.

In the first phase, we use multi-task learning [7] for
pixel-wise depth and semantic CNN-based classification
(Fig. 1). This means that at this stage depth is discretized,
a task that has been shown to be useful for supporting
instance segmentation [11]. We use a CNN architecture
consisting of a common feature extractor followed by two
task-specific branches. We denote the layers in the com-
mon sub-net as DSC (depth-semantic classification) layers,
the depth specific sub-net as DC layers, and the semantic
segmentation specific sub-net as SC layers. At training
time, we apply a conditional calculation of gradients dur-
ing back-propagation, which we call conditional flow. More
specifically, the common sub-net is always active, but the
origin of each data sample determines which specific sub-
net branch is also active during back-propagation (Fig. 1).
We alternate batches of depth and semantic GT samples.
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Fig. 1: Phase one: conditional backward passes (see main
text). We also use skip connections linking convolutional
and deconvolutional layers with equal spatial sizes.
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Fig. 2: Phase two: the pre-trained (DSC+DC) CNN is
augmented by regression layers for fine-tuning, resulting
in the (DSC-DRN) network for depth estimation.



Lower the better Higher the betterhhhhhhhhhhhApproaches
metrics cap (m) rel sq-rel rms rms-log log10 δ<1.25 δ<1.252 δ<1.253

Liu fine-tune [9] 80 0.217 1.841 6.986 0.289 - 0.647 0.882 0.961
Godard – K [6] 80 0.155 1.667 5.581 0.265 0.066 0.798 0.920 0.964
Godard – K + CS [6] 80 0.124 1.240 5.393 0.230 0.052 0.855 0.946 0.975
Cao [1] 80 0.115 - 4.712 0.198 - 0.887 0.963 0.982
kuznietsov [8] 80 0.113 0.741 4.621 0.189 - 0.862 0.960 0.986
Xu [12] 80 0.125 0.899 4.685 0.154 - 0.816 0.951 0.983
Xu [13] 80 0.122 0.897 4.677 - - 0.818 0.954 0.985
Luo [14](same dataset) 80 0.102 0.700 4.681 0.200 - 0.872 0.954 0.978
Luo [14](fine-tuned*) 80 0.094 0.626 4.252 0.177 - 0.891 0.965 0.984
Ours (DRN) 80 0.112 0.701 4.424 0.188 0.0492 0.848 0.958 0.986
Ours (DC-DRN) 80 0.110 0.698 4.529 0.187 0.0487 0.844 0.954 0.984
Ours 80 0.100 0.601 4.298 0.174 0.0440 0.874 0.966 0.989

Garg [4] 50 0.169 1.512 5.763 0.236 - 0.836 0.935 0.968
Godard – K [6] 50 0.149 1.235 4.823 0.259 0.065 0.800 0.923 0.966
Godard – K + CS [6] 50 0.117 0.866 4.063 0.221 0.052 0.855 0.946 0.975
Cao [1] 50 0.107 - 3.605 0.187 - 0.898 0.966 0.984
kuznietsov [8] 50 0.108 0.595 3.518 0.179 - 0.875 0.964 0.988
Luo [14] (same dataset) 50 0.097 0.539 3.503 0.187 - 0.885 0.960 0.981
Luo [14] (fine-tuned*) 50 0.090 0.499 3.266 0.167 - 0.902 0.968 0.986
Ours (DRN) 50 0.109 0.618 3.702 0.182 0.0477 0.862 0.963 0.987
Ours (DC-DRN) 50 0.107 0.602 3.727 0.181 0.0470 0.865 0.963 0.988
Ours 50 0.096 0.482 3.338 0.166 0.0420 0.886 0.980 0.995

TABLE I: Results on Eigen et al.’s KITTI split [3]. DRN - Depth regression network, DC-DRN - Depth regression
model with pretrained classification network, DSC-DRN - Depth regression network trained with our conditional flow
approach. Evaluation metrics as follows, rel: avg. relative error, sq-rel: square avg. relative error, rms: root mean square
error, rms-log: root mean square log error, log10: avg. log10 error, δ < τ : % of pixels with relative error < τ (δ ≥ 1; δ = 1
no error). Godard – K means using KITTI for training, and ”+ CS ” adding Cityscapes too. Bold stands for best,
underline for second best. Luo et al. [14] (fine-tuned*) approach uses additional 200 HQ disparity labels in training.

In the second phase, we focus on depth regression. In
particular, we add layers that perform regression taking
the depth classification layers as input (Fig. 2). We use
standard losses for classification and regression tasks, i.e.
cross-entropy and L1 losses, respectively.

III. Experimental Results
A. Datasets

We evaluate our approach on KITTI dataset [5], fol-
lowing the commonly used Eigen et al. [3] split for depth
estimation. It consists of 22,600 training images and 697
testing images, i.e. RGB images with associated LIDAR
data. To generate dense depth ground truth for each RGB
image we follow Premebida et al. [10]. We use half down-
sampled images, i.e. 188 × 620 pixels, for training and
testing. Moreover, we use 2,975 images from Cityscapes
dataset [2] with per-pixel semantic labels.

B. Results
We compare our approach to supervised methods such

as Liu et al. [9] and Cao et al. [1], Xu et al. [12] [13],
Luo et al. [14] and unsupervised methods such as Garg et
al. [4] and Godard et al. [6], and semi-supervised method
Kuznietsov et al. [8]. Quantitative results are shown in
Table I for two different distance ranges (cap), namely
[1,50]m and [1,80]m. As for the mentioned works, we
follow the metrics proposed by Eigen et al. [3]. Note how

our method outperforms the state-of-the-art models in
all metrics but one (being second best). Fig. 3 shows
qualitative results on KITTI comparing with Godard et
al. [6]. Fig. 4 shows similar results for Cityscapes; i.e.
illustrating generalization by the model trained on KITTI.

IV. Conclusion
The underlying assumption in the presented work is that

object contours are shared between depth and semantic
segmentation GT up to a large extend. Accordingly, we
have presented a method to train a CNN for monocular
depth estimation using datasets with depth GT, while
improving its accuracy by leveraging semantic GT from
other datasets as main novelty. The presented qualitative
and quantitative experiments confirm our assumption by
a multi-task training using KITTI RGB images with their
depth GT, as well as Cityscapes RGB images with their
semantic segmentation GT. In particular, we obtain state-
of-the-art results on the depth-from-mono task of the
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Fig. 3: Left to right: RGB image (KITTI), depth ground truth, Godard et al. [6] and our depth estimation results. In
this figure, we show on the right side of the image that Godard et al. [6] results yield poor detection quality along with
inaccurate depth estimation for specific relevant objects such as cars, tram or poles. On the other hand, our method
provides a more accurate depth estimation which can be seen on the right most column.
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