
This is the **accepted version** of the journal article:

Xiao, Tingting [et al.]. «Co-application of Se and a biostimulant at different wheat growth stages : Influence on grain development». *Plant Physiology and Biochemistry*, Vol. 160 (March 2021), p. 184-192 DOI 10.1016/j.plaphy.2021.01.025, PMID 33513465

This version is available at <https://ddd.uab.cat/record/324459>

under the terms of the license.

1 **Co-application of Se and a biostimulant at different wheat**
2 **growth stages: Influence on grain development.**

3

4 Tingting Xiao¹, Roberto Boada¹, Mercè Llugany^{2*}, Manuel Valiente¹

5

6 ¹GTS-UAB Research Group, Department of Chemistry, Faculty of Science,
7 Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

8 ²Plant Physiology Group (BABVE), Faculty of Biosciences, Universitat Autònoma
9 de Barcelona, 08193 Bellaterra, Spain

10

11 *Correspondence: merce.llugany@uab.cat, Tel: 3435811794

12

13 **ABSTRACT**

14

15 An appropriate selenium intake can be beneficial for human health. Se-biofortified
16 food in Se-deficient regions is becoming an increasingly common practice but there
17 are still issues to be addressed regarding the observed Se-induced toxicity to the
18 plant. In this respect, plant biostimulants are used to enhance nutrition efficiency,
19 abiotic stress tolerance and crop quality. In this work, the efficacy of a plant
20 biostimulant to counteract the Se-induced stress in wheat plants is experimentally
21 assessed. The co-application of different Se-biofortification treatments and the
22 biostimulant at different growth stages (tillering or heading stage) was investigated.
23 The use of micro focused X-ray spectroscopy allows us to confirm organic Se
24 species to be the main Se species found in wheat grain and that the proportion of
25 organic Se species is only slightly affected by the Se application stage. Our study
26 proves that the biostimulant had a key role in the enhancement of both the amount
27 of grains produced per spike and their dry biomass without hindering Se enrichment
28 process, neither diminishing the Se concentration nor massively disrupting the Se
29 species present. This information will be useful to minimize both plant toxicity and
30 economic cost towards a more effective and plant healthy selenium
31 supplementation.

32

33 Key words: Se speciation, XRF, XAS, Wheat, Grain, Plant biostimulant

34

35 **1. INTRODUCTION**

36 The importance of selenium (Se) for human health has been widely confirmed in
37 several human nutrient studies (Ellis and Salt, 2003; Navarro-Alarcon and Cabrera-
38 Vique, 2008; Thomson, 1998; Weekley et al., 2012). Se substitutes sulfur (S) in the
39 amino acid groups forming antioxidant enzymes such as glutathione peroxidase
40 (GPx), thioredoxin reductase (TrxR) and iodothyronine deiodinase (IDD) which are
41 important, among other things, for protecting against oxidative stress and for
42 regulating the thyroid hormone metabolism. Currently, inadequate dietary Se intake
43 affects up to 1 in 7 people globally with the associated risk of developing several
44 chronic degenerative diseases (Fordyce, 2013; James et al., 1989; Rayman, 2000).
45 To overcome this issue, Se supplementation has been extensively used (e.g. to
46 control Keshan disease in China, and as adjunctive therapy in the treatment of
47 Hashimoto's thyroiditis (Chen, 2012; Daniels, 1996; Toulis et al., 2010). Food
48 derived from plants is a natural source of Se since plants can transform inorganic
49 Se species present in soil into organic Se ones (e.g. seleno-amino acids) which are
50 the desired form of Se for human diet. Thus, Se level in soil has usually a direct
51 influence in the concentration of Se present in food and, subsequently, in the human
52 body (Navarro-Alarcon and Cabrera-Vique, 2008). Since 1984, soil fertilization
53 with Se has been applied in Finland to increase Se concentration of food in regions
54 with Se-deficient soils (Varo et al., 1988). However, the presence of high
55 concentration of Se in soil induces stress to the plant and may hamper its normal
56 development (Guerrero et al., 2014). In order to overcome this issue, genetic
57 engineering has been proposed as a strategy to enhance Se accumulation,
58 volatilization and/or tolerance (Lüttge, 1962). However, this approach has serious
59 potential risks since it might promote the presence of new allergens in food,
60 (Buchanan, 2001) and it may promote the accumulation of other undesired heavy
61 metals. Moreover, the rather elaborated procedures and challenges associated with
62 the Se-enriched methodologies based on genetic engineering also need to be
63 considered.

64

65 Alternatively, we propose to use a plant biostimulant, called Fyto-fitness (BIO Fitos,
66 S.R.O., Czech Republic), based on hybrid heteropolyoxometalates (containing Mo,

67 B, Si, W and V) of Keggin structure mixed with humic acid, as anti-stressor to
68 alleviate the Se-induced toxicity in the plant. Despite the fact that the application of
69 anti-stressors is an increasing field of research in agriculture (Calvo et al., 2014),
70 only few previous works have explored the possibility of applying a biostimulant
71 to crops exposed to Se fertilizers. In this respect, Peng et al. (2001) reported that
72 the use of fulvic acids as biostimulant has beneficial and antagonist effects
73 depending on the dosage of selenite. However, the authors did not provide any
74 information regarding the final Se concentration or the Se species present in the
75 plants which is important to assess the health benefits of the Se-enrichment process.
76

77 In this work, we have studied the biostimulant effect on counteracting the Se-
78 induced toxicity aiming to maintain the grain production yield, to minimize the Se-
79 induced stress and to optimize the Se supplementation methodology. We have
80 applied different Se treatments (selenite, selenate and a 1:1 mixture of both)
81 together with the biostimulant at two growing stages, tillering stage or heading stage,
82 until harvesting the grains once matured. We have determined the total Se
83 concentration in grain by ICP-MS and the spatial distribution of Se and other
84 relevant elements for the plant metabolism (e.g. Se, Ca, Zn) or for human nutrition
85 by μ XRF measurements. In addition, since determining the chemical state of Se is
86 crucial to assess the health benefits of the biofortification procedure, μ XANES
87 spectra were collected at the most representative regions of the grain to get detailed
88 information about the Se speciation. These measurements have allowed us to assess
89 the possible modifications induced by the application of the plant biostimulant on
90 the Se distribution and speciation in the wheat grain.

91

92 2. METHODOLOGY

93 2.1 Culture conditions

94 Wheat (*Triticum aestivum* L. cv. Pinzon) seeds (Fitó S.A., Spain) were germinated
95 on moist filter paper for 5 days at 25 °C in the dark. Seedlings were precultured in
96 continuously aerated $\frac{1}{2}$ strength Hoagland's nutrient solution (Arnon and Hoagland,
97 1940) (3mM KNO₃, 2mM Ca(NO₃)₂·4H₂O, 1mM KH₂PO₄, 0.5mM MgSO₄·7H₂O,
98 60 μ M FeNa-EDTA, 2 μ M MnCl₂·4H₂O, 3 μ M H₃BO₃, 0.1 μ M (NH₄)₆Mo₇O₂₄·4H₂O,
99 2 μ M ZnSO₄·7H₂O, 1 μ M CuSO₄·5H₂O) for two weeks before applying Se (12

100 plants per 6L pot). The pH of the solution was buffered at 6.0 with 2 mM MES (2-
101 morpholinoethanesulphonic acid) and adjusted with KOH (2 M) (both from VWR,
102 Spain). Plants were grown hydroponically in a controlled-environment growth
103 chamber until mature with the following conditions: 8h day/16h night photoperiod
104 with a light intensity of 320 $\mu\text{Em}^{-2}\text{s}^{-1}$.

105

106 **2.2 Selenium and biostimulant treatments**

107 Phyto-fitness (BIO Fitos S.R.O., Czech Republic) consists of an aqueous solution
108 containing a mixture of hetero-polyanions (HPA), such as phosphomolybdate,
109 silicotungstate, borovanadate, titanomolybdate and combinations thereof, esterified
110 by humic acids. In addition, it also contains elemental iodine and micro / nano
111 colloidal copper iodide. Both substances are responsible for the therapeutic effect
112 against fungal, bacterial and viral infections, and urea is also present for a better
113 absorption. Highest content of active substances in the used concentration is of
114 0.007% by weight.

115

116 In order to evaluate the effect of the plant biostimulant (Phyto-fitness) on the Se
117 uptake and on the Se accumulation in the plant, plants were grown with (FA, foliar
118 application) or absence (NB, no biostimulant) of the biostimulant. The foliar
119 application of the biostimulant was done by spraying the product 100 times diluted
120 in water on the leaves. Moreover, the plants were exposed to different Se treatments
121 in the Hoagland solution: No Selenium (No Se); 10 μM selenite (Se(IV)) as
122 Na_2SeO_3 (AMRESCO, USA), 10 μM selenate (Se(VI)) as Na_2SeO_4 (FLUKA, Spain)
123 and a 1:1 v/v mixture of both Se treatment solutions (Se(MIX)). Hence, a total of 8
124 different treatments were applied.

125

126 In addition, with the aim of assessing both the Se-induced toxicity to the plant and
127 minimizing the economic cost of Se supplementation, two batches of plants were
128 grown and the treatments were applied at two different growing stages: from the
129 tillering stage and from heading stage. In both cases, the treatments were
130 maintained until the grain became mature. Afterwards, plants and grains were
131 harvested and kept until further analysis. See the schematic diagram in Fig S1.

132

133 **2.3 Total Se analysis**

134 Powdered plant samples (n=4) were predigested overnight with HNO₃:H₂O₂ (7:3,
135 v/v) (VWR, Spain) and then digested in hot block (SC154-54-Well Hot BlockTM)
136 at 110 °C for 2 h. Mineral nutrient concentrations were analyzed by ICP-MS
137 (PerkinElmer Optima 8300) and ICP-OES (PerkinElmer Nexton 350D). Blanks
138 were included in each batch of samples for quality control.

139

140 **2.4 Statistics**

141 To check the reproducibility of the results, the entire experiment was repeated twice
142 in different seasons; spring and summer. The results are presented as the mean (n=4)
143 and the standard error (\pm SE) has been also included. All the data was checked for
144 normality and data not normally distributed was log transformed. Afterwards, to
145 assess the differences among treatments, two-way ANOVA followed by Fisher's
146 LSD test (P<0.05) was applied. All the statistic calculations were performed with
147 Statistica software version 6.0 (StatSoft Inc.).

148

149 **2.5 Synchrotron based X-ray Absorption Spectroscopic measurements.**

150 In order to obtain thin specimens for the μ XRF measurements, wheat grains were
151 immersed in 4 °C Milli-Q water. Then, the humected grains were embedded in
152 paraffin and thin sections were cut using a microtome (MICROM HM 325 Rotary
153 Microtome). The specimens were 60 μ m thickness containing embryo, endosperm
154 and outer layer.

155

156 μ XRF mapping and μ XANES measurements on the grain sections were performed
157 at I18 beamline (Mosselmans et al., 2009) of Diamond Light Source using a 4-
158 element Si drift fluorescence detector (Vortex). For the measurements, the
159 specimens were mounted on top of carbon tape disk which was stuck on to a
160 sapphire disk which was then glued onto the Al holder of the liquid Helium cryostat.
161 The measurements were performed at 10 K to minimize the effects of the radiation
162 damage. The spatial distribution of Se, Zn, Cu, Fe, K, Mn and Ca elements in the
163 grain was obtained from the μ XRF maps collected using an excitation energy of
164 12677 eV and a beam size of 20 μ m. The step size used was 20 μ m and the
165 acquisition time per point was set to 0.05 s. The μ XRF maps were processed using
166 DAWN software (Basham et al., 2015). For shake of comparison, the maps were
167 normalized to the maximum of counts on each grain for the element under study.

168 The tri-color maps were generated using the RGB mixer tool in DAWN which
169 allows combining XRF maps of three different elements. The different intensity of
170 the maps was balanced out to get the appropriated visualization of the three
171 elements. μ XANES spectra were collected at three different points of each part of
172 the grain (embryo, endosperm and outer layer) to account for any possible
173 inhomogeneities. The normalization of the μ XANES spectra and the speciation
174 analysis using linear combination fitting (LCF) was carried out with Athena
175 program of the Demeter software package (Ravel and Newville, 2005) following
176 standard procedures. For the LCF analysis, the XANES spectra of sodium selenite,
177 sodium selenate, seleno-L-methionine, seleno-L-cystine and Se-(Methyl)
178 selenocysteine hydrochloride (Sigma-Aldrich, Spain) measured in transmission
179 mode were used as Se references since they are the species expected to be present
180 in the plant. Further details about the measurements of the references and the LCF
181 methodology followed can be found elsewhere (Xiao et al., 2020).

182

183 **3. RESULTS AND DISCUSSION**

184 **3.1 Grain biomass**

185 Biomass parameters, such as the average dry weight (DW) of single spikes (Figure
186 1a,b) and of grains per spike (Figure 1c,d), and the number of grains per spike
187 (Figure 1e,f), were evaluated and compared among the different Se and
188 biostimulant treatments to assess their effect on wheat development and yield.

189

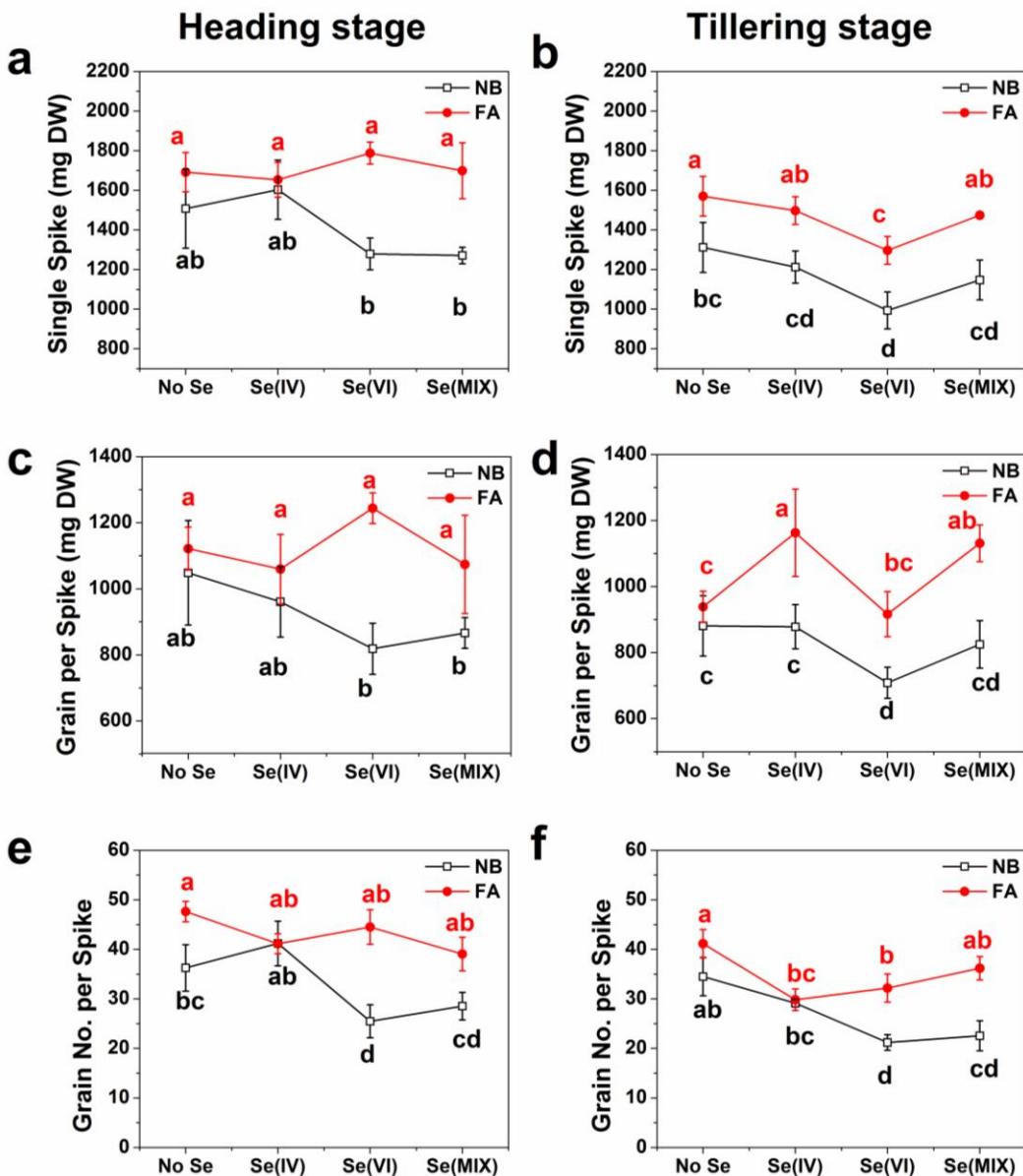
190 Selenium treatments applied at the heading stage caused no significant effect on
191 any of the biomass parameters studied except for Se(VI) that reduced significantly
192 the number of grains produced per spike (Figure 1e). When Se was applied at the
193 tillering stage, Se(VI) not only reduced the number of grains produced per spike but
194 also the weight of both grains and spikes (Figure 1b,d,f).

195

196 Thus, Se(VI) is the Se species that caused the most negative influence on wheat
197 yield specially when it was supplied during the production of tillers than at the later
198 stage of heading. This is in agreement with the results found by Longchamp
199 (Longchamp et al., 2015) who stated that the dry weight of *Zea mays* grains
200 decreased by 60% and 80% in Se(VI)-dosed and Se(IV)-dosed plants, respectively,

201 compared to control grains. Oppositely, the results from Wang's (Wang et al., 2013)
202 work support that Se(IV) could produce larger rice grains and higher yields.

203


204 At the heading stage, the application of the biostimulant (FA) clearly improved the
205 biomass parameters under Se(VI) and Se(MIX) treatments to values significantly
206 above NB ones (Figure 1a,c,e). Moreover, the biostimulant significantly increase
207 the number of grains produced per spike under control conditions (No Se) as shown
208 in Figure 1e. At tillering, the biostimulant counteracted the negative effects caused
209 by Se(VI) on all the biomass parameters studied (Figure 1b,d,f), reaching similar
210 values as the control treatment (NoSe, NB) and improving as well the weight of
211 both spike and grain under the other Se treatments (Figure 1b,d). Although the
212 nutrients are adequate during the plant growth, the extra Mo species from the
213 biostimulant might enhance the mitochondria activity on the physiology of vegetal
214 cells (Mendel and Kruse, 2012). It has also been pointed out that the biostimulant
215 supplied in the nutrient solution may increase wheat biomass production due among
216 other factors to the high level of Mo which is the essential for nitrogen acquisition
217 and assimilation (Xiao et al., 2020). These results were expected since
218 biostimulants are used to improve nutrient efficiency, abiotic stress tolerance and
219 crop quality. Actually, the effect of biostimulants on plants' performance are often
220 due to the combination and synergistic action of different compounds (Bulgari et
221 al., 2015).

222

223 Wheat plants are more sensitive to Se in the form of Se(VI) when it is supplied at
224 the tillering stage than when it is applied later on at the heading stage. This indicates
225 that time of exposure (stage of application and length of treatment) to Se(VI) is an
226 important factor to be considered because it diminishes the grain yield. In this
227 context the biostimulant has a key role in reestablishing both the amount of grains
228 produced per spike and their biomass (Figure 1b, d, f) as those obtained in control
229 plants.

230

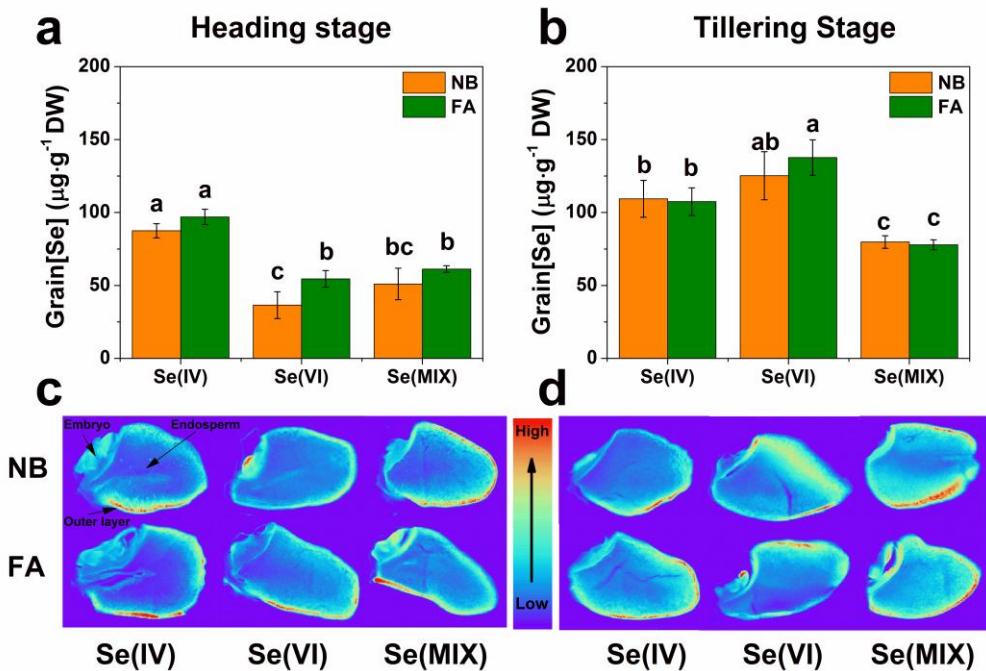
231

232

233 Figure 1. Grain biomass parameters of *T. aestivum* plants grown under different Se
 234 treatments (selenite, selenate and mixture of both selenium species (10 μ M)) and
 235 biostimulant application (No biostimulant-NB, Foliar Application-FA) at different
 236 growth stages: Heading (a, c, e), Tillering (b, d, f). Results shown are means \pm SE
 237 (n=4 plants). Different letters represent significant differences among groups (LSD).
 238 See text for details.

239

240 **3.2 Total Selenium concentration in grain**


241 The total Se levels found in grains for the different treatments indicate that Se-
 242 biofortification of grains was achieved with values within the range of 37-100 μ g·g⁻¹
 243 DW and of 75-138 μ g·g⁻¹ DW for heading and tillering stages, respectively (Figure
 244 2a, b).

245 The Se concentration in grains obtained from plants exposed to Se(IV) achieved
246 similar levels ($90\text{-}100 \mu\text{g}\cdot\text{g}^{-1}$ DW) in both stages of application. In contrast, the total
247 Se level in Se(VI) group was significantly higher in the tillering stage of application
248 than in the heading stage, being these levels the highest of all the Se treatments,
249 $125\text{-}138 \mu\text{g Se}\cdot\text{g}^{-1}$ DW. Similarly, in the Se(MIX) group, due to the presence of
250 Se(VI), total Se at tillering stage was found to be also higher, around 1.5-folds, than
251 that of the heading stage. This is due to the fact that Se(IV) is rapidly assimilated
252 into organic forms which are retained in roots, whereas Se(VI) is highly mobile in
253 xylem transport and not readily converted into organic Se compounds (Cubadda et
254 al., 2010; Curtin et al., 2006) and not only due to a longer exposure time determined
255 by the stage of application.

256

257 Although the application of biostimulants is considered to promote Se accumulation
258 in wheat grain (Peng et al., 2001), the increase observed in our study was only
259 statistically significant for Se(VI) treatment at the heading stage of application
260 (Figure 2a). Thus, the biostimulant does not increase Se accumulation in grains
261 under the different Se treatments assayed but it influences other plant physiological
262 parameters that enhances grain performance (weight and amount) counteracting the
263 negative effects of an early Se exposure (tillering stage), especially in the form of
264 Se(VI).

265

266

267 **Figure 2.** Total Se concentration (a, b) and X-ray fluorescence mapping of Se (c, d)
268 in wheat grains grown under different treatments applied (No biostimulant-NB,
269 Foliar Application-FA) at different growth stages: heading (a, c), tillering (b, d).
270 The total concentration is displayed as mean \pm SE (n=3). Different letters represent
271 significantly differences among groups (LSD). Warmer colors in XRF maps
272 indicate higher Se concentration.

273

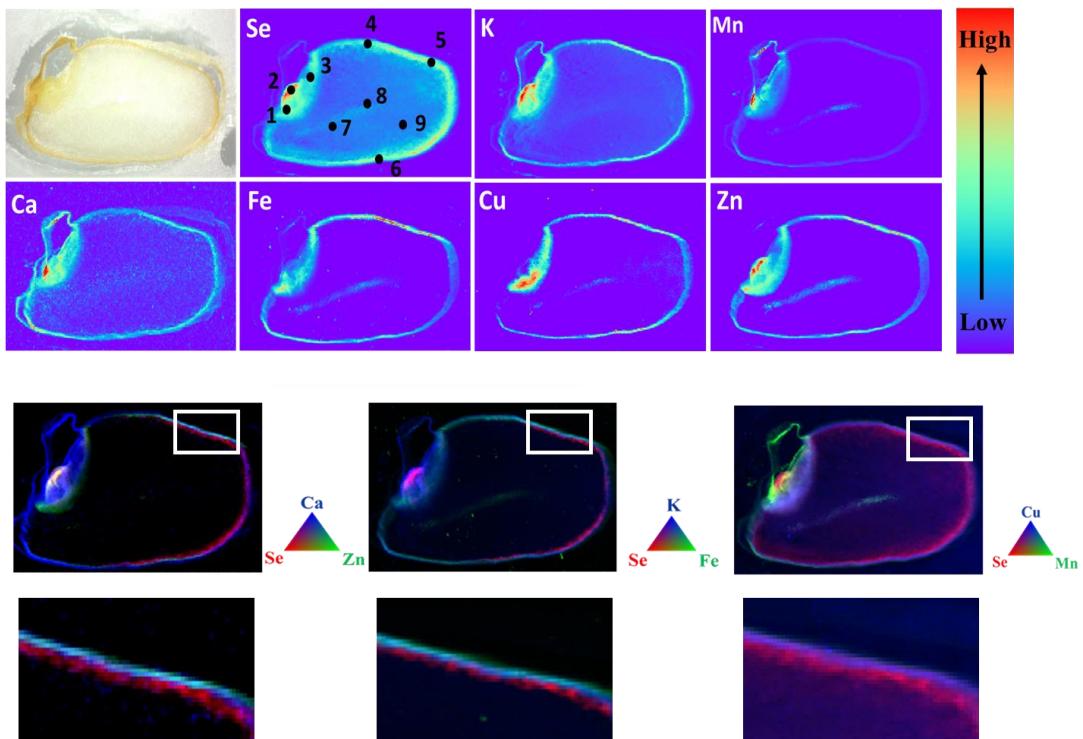
274 3.3 Selenium and nutrient distribution in grain by using μ XRF mapping

275 Despite the valuable information extracted from the analysis of the total Se in the
276 wheat grain, relevant information regarding the Se distribution in the grain is
277 missing. In this regard, X-ray fluorescence (XRF) measurements using a micro-
278 focused beam allow mapping grains sections providing a direct observation of the
279 Se distribution in the different parts of the wheat grain (germ, endosperm and outer
280 layer). As shown in the μ XRF maps displayed in Figure 2c, d, Se is unevenly
281 distributed in the grain (warmer colors indicate higher Se concentration). The
282 higher concentrations of Se are mostly found in the germ and outer layer regardless
283 the treatment applied. This is related to the fact that the outer layer, mostly the
284 aleurone, and the germ are the main regions containing proteins and therefore Se-
285 proteins assembled from seleno-aminoacids are located there (Gupta and Gupta,
286 2017; White, 2016). On the other hand, the images show much lower levels of Se

287 accumulation in the endosperm which is mostly constituted by starch and that
288 contains a small fraction of fibers and proteins.

289 In addition, μ XRF provides simultaneous information of the spatial distribution of
290 several elements accumulated in the grain. In our study, the μ XRF images for all
291 the treatments show similar elemental distribution as the one displayed in Figure 3
292 for the Se(VI) applied at heading treatment (similar comparatives for the rest of the
293 treatments can be found in Figure S2). The analysis of the μ XRF maps indicates
294 that aleurone and scutellum are major storage tissues for macro (P, K, Ca and Mg)
295 as well as micro (Fe, Zn, Cu and Mn) nutrients (Singh et al., 2014). This distribution
296 is quite consistent, and it does not get affected by neither Se species supplied in the
297 treatment nor the application of plant biostimulants at different growth stage.

298


299 Tricolor RGB map helps to visualize the distribution patterns and co-localization
300 of the nutrients and Se. As shown in Figure 3, K, Ca, Fe, Zn, Cu and Mn are located
301 mostly in the embryo and the outer layer covering the aleurone, seed coat and
302 pericarp (Singh et al., 2014). Selenium overlaps with them in some areas of the
303 outer layer, but, from the tricolor image, we can distinguish that Se is mostly located
304 in the most inner layer which it could be identified as the aleurone that is the part
305 of the outer layer containing higher level of proteins (Brouns et al., 2012).

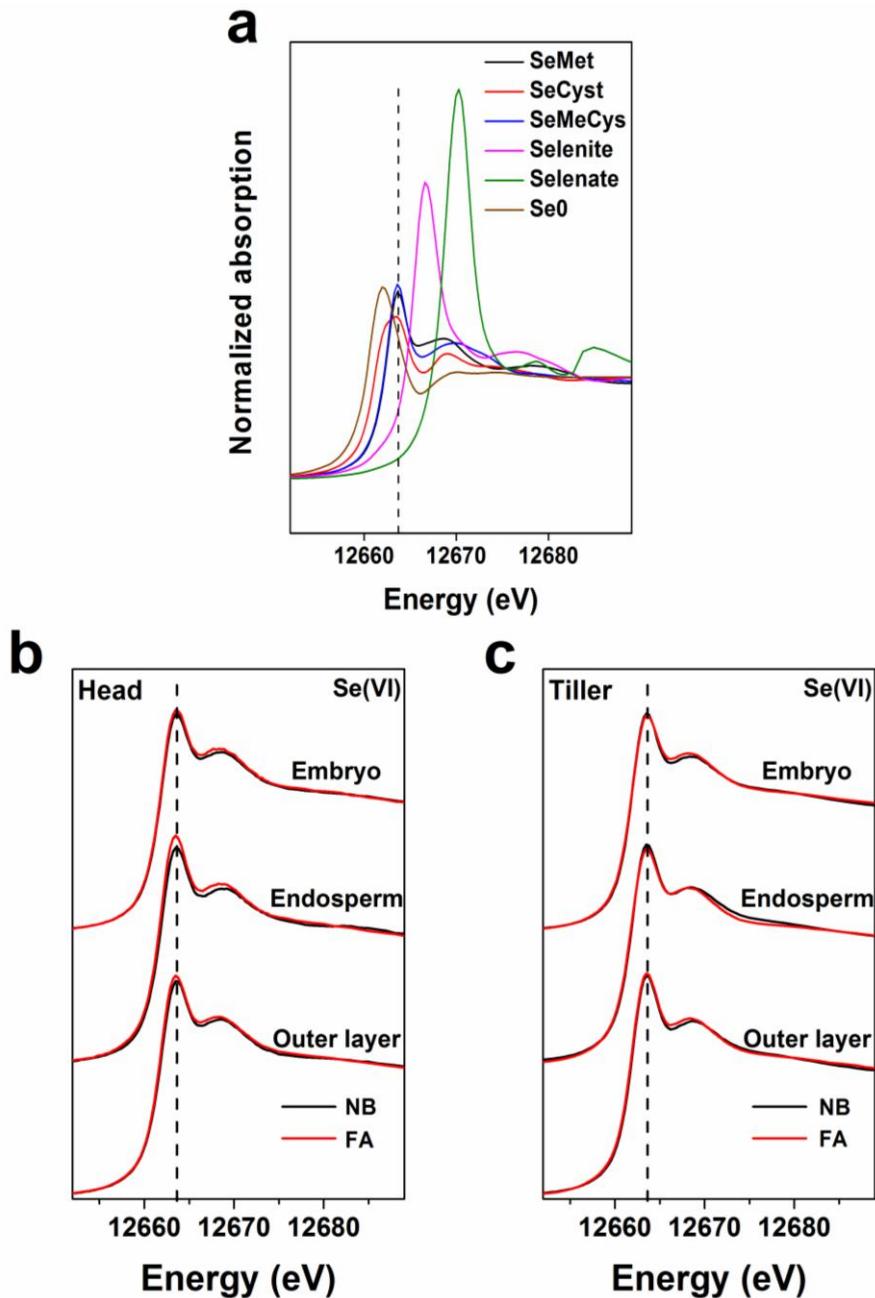
306

307 This knowledge of the grain tissue-specific element storage pattern can be useful in
308 cereal processing to achieve a more efficient consumption of nutrients (Cserhalmi,
309 2002). Indeed, despite that the outer layer is a reservoir of minerals in wheat grain
310 (Shewry, 2009), most of them are lost during the mechanical processing of wheat
311 flour (Cakmak, 2008), which is not often consumed by people.

312

313

314


315 Figure 3. Normalized μ XRF elemental maps of wheat grains for Se(VI) applied at
 316 heading stage. Warmer colors indicate higher element concentration. Top two rows:
 317 individual element distribution maps and optical microscope image (top left).
 318 Bottom two rows: tri-color merged images and corresponding enlarged areas.
 319 Colored triangle scales indicate the relative locations of elements color merged. The
 320 points marked in the Se μ XRF image denote the positions where the μ XANES were
 321 measured at the different parts of the grains (1-3 embryo, 4-6 outer layer, 7-8
 322 endosperm).
 323

324 **3.4 Selenium speciation in grain determined by μ XANES**

325 The level of Se accumulation, its localization in tissues within the grain together
 326 with other nutrients, and ultimately the chemical form of Se determine its dietary
 327 availability in cereals (Singh et al., 2014). Hence, it is important to understand how
 328 Se speciation might be affected when Se is co-located with other elements present
 329 in the grain for the different treatments. In order to compare the Se speciation in the
 330 different grain tissues μ XANES measurements were acquired at selected points of
 331 embryo, endosperm and outer layer. Figure 4b, c displays the comparative for all
 332 Se(VI) treatments as a representative case of study. The spectra collected on the
 333 grains were compared with Se references samples (Figure 4a): seleno-amino acids

334 (SeMet, SeCys, SeMeCys) and inorganic Se compounds (Se(0), Se(IV), Se(VI)).
335 All the samples display a similar spectral profile characterized by a prominent white
336 line at 12663.7 eV (marked with a vertical dashed line) which can be identified with
337 compounds containing C-Se-C bond (e.g. SeMet or SeMeCys). The subtle spectral
338 differences found among treatments suggest that the ratio among Se species may
339 not change much. Indeed, the biostimulat application (FA) has some mild effect on
340 the spectra respect NB in all the parts of the plant. On the other hand, little
341 differences are observed when comparing the different parts of the grain (embryo,
342 endosperm and outer layer) for the same treatment.

343

344

345 **Figure 4.** Normalized Se K-edge XANES spectra of Se references (a) and wheat
 346 grain grown under Se(VI) and biostimulant treatments (No biostimulant-NB, Foliar
 347 Application-FA) applied at different growth stage stages: heading (Head) (b), and
 348 tillering (Tiller) (c). The spectra for embryo, endosperm and outer layer have been
 349 shifted vertically for shake of comparison. Vertical line denotes to the white-line
 350 position of species containing a C-Se-C bond (e.g. SeMet or SeMeCys).

351

352 Characterizing the ratio of the Se species contained in the wheat grain to get an
 353 insight about the ratio of the seleno-amino acids formed is not only important to

354 understand Se mechanism in plant, but also essential to determine the benefits of
355 Se-enriched food for human health since different seleno-amino acids are
356 differently assimilated by the human body and they fulfill distinguished functions
357 related with specific health benefits. Indeed, to get a more quantitative information
358 of the Se species present in the grain, a linear combination fitting (LCF) analysis
359 has been performed using the afore mentioned Se references as standards, see
360 Figure 5. The values obtained from the LCF analysis have been included in Tables
361 S1 and S2 of the supporting information.

362

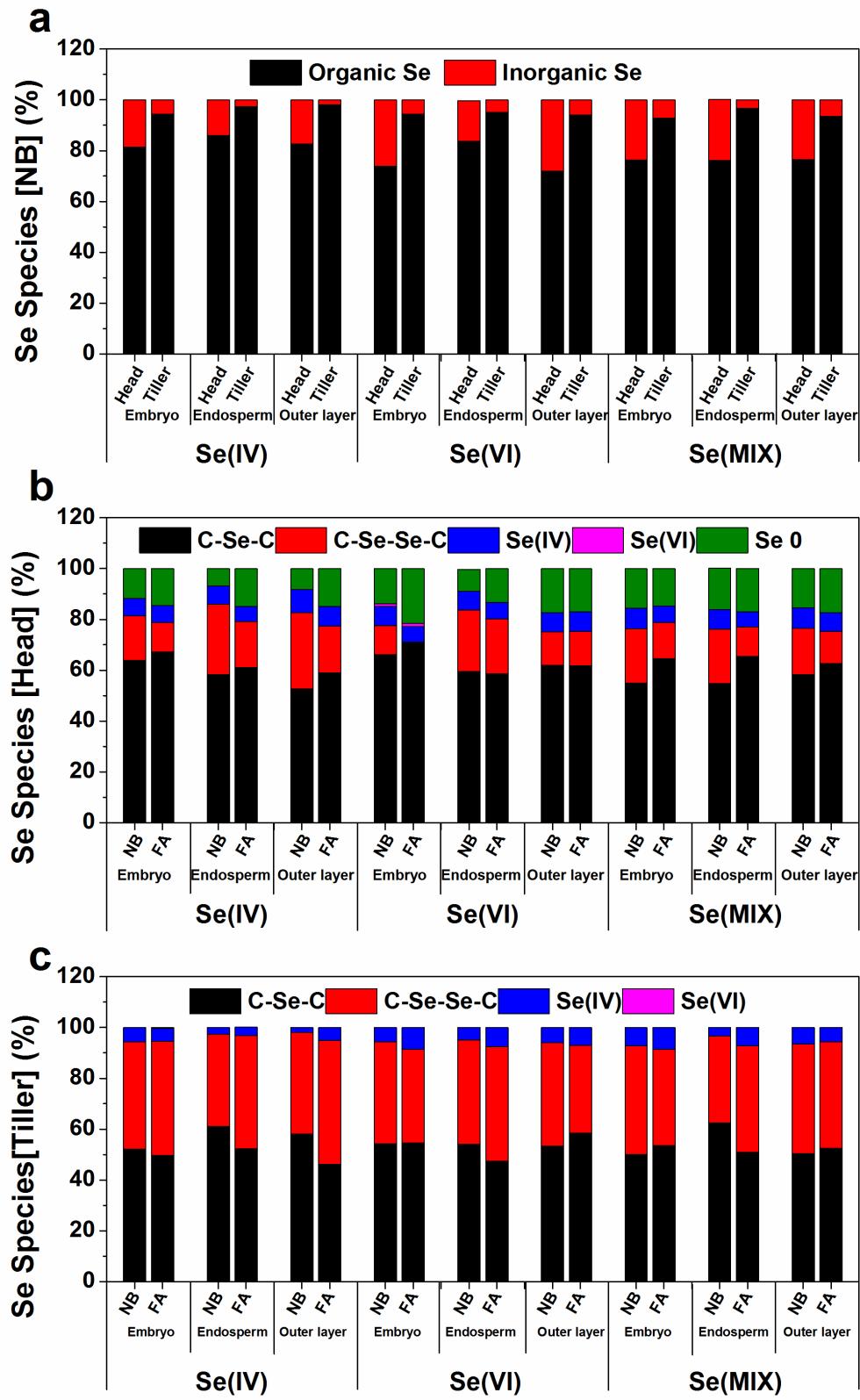
363 Figure 5a reports the ratio between inorganic and organic species for the NB
364 treatment applied at the heading and tillering stages. These results confirm that the
365 organic Se species are the main component in Se-biofortified wheat grains and that
366 FA treatment did not significantly influence this ratio (see Figure S3). These
367 observations are in agreement with previous studies reporting that the organic Se
368 species are the main Se species present in wheat grain (Eiche et al., 2015; Li et al.,
369 2008). This comparative also shows that the application of Se at different stages of
370 the plant growth affects the proportion of organic Se in wheat grains. The amount
371 of organic Se species found are always larger than 90% when the treatment is
372 applied at the tillering stage, whereas for the heading stage they are lower than 80%
373 in most of the cases. This indicates that the Se exposure stage and the length of the
374 treatment are important parameters in the conversion of inorganic Se to organic Se,
375 even in those cases reaching similar Se enrichment level (e.g. Se(IV) treatment).

376

377 A better insight in the composition is achieved when inspecting each independent
378 Se species included in the LCF analysis. As shown in (Figure 5b), Se organic
379 species containing a C-Se-C bond (SeMet and SeMeCys) are the main compounds
380 distributed in the different parts of the grain when the Se treatment is applied at
381 heading stage. However, when Se is applied at tillering stage (Figure 5c) the amount
382 of C-Se-C species is lower than in the heading stage group. In addition, grains from
383 plants under biostimulant treatment (FA) seems to accumulate more C-Se-C amino
384 acids and elemental Se in comparison with the control group (NB) when Se is
385 applied at heading stage (Figure 5b), even though the total amount of organic
386 species remains very similar for both treatments. Hence, the amount of C-Se-Se-C
387 (SeCyst) amino acid in NB is slightly larger than in FA ones in heading stage group.

388 It has been pointed out that SeCyst found in the plant are usually due to the
389 oxidation of SeCys since it is readily oxidized during the samples processing (Chan
390 et al., 2010). Thus, the level of SeCyst found reflects the original level of SeCys in
391 the plant.

392


393 Although both C-Se-C and SeCys species can be incorporated into proteins in place
394 of methionine and cysteine, leading to toxicity, C-Se-C species have less harmful
395 effects, since the incorporation of SeCys into the protein could interfere with the
396 formation of disulfide bridge affecting tertiary structure of S-proteins (Terry et al.,
397 2000). Our results show that when the Se treatment is applied at the heading stage,
398 the Se toxicity is less severe than when applied at the tillering stage. The effect
399 found in the grain is that the total Se content decreases together with the total
400 organic Se, and there is an increase of C-Se-C respect to the total organic Se found
401 in the heading group. Although FA group contains more C-Se-C and elemental Se
402 than NB treatment in heading group, the contribution of FA in the Se tolerance is
403 too mild to be conclusive.

404

405 By comparing Figure 5b and 5c, it can be noticed that Se(0) is only detected in the
406 heading stage group of grains and it is negligible in the tillering ones. Se(0) is one
407 of the product derived from SeCys via the action of a selenocysteine lyase (SL).
408 Elemental Se is comparatively innocuous, therefore this could be a potential Se
409 detoxification mechanism (Clemens, 2010; Van Hoewyk et al., 2005). This also
410 supports the idea that when applying Se at the heading stage, the Se toxicity in
411 wheat could be minimized due to the lower duration of the Se treatment (i.e., the
412 number of applications are reduced) compared with the tillering stage application
413 group. In the heading group, the abiotic stress caused by Se when the grain spike is
414 just appearing may stimulate the expression of SL in order to enhance Se tolerance
415 and maintain the growth cycle.

416

417

418

419 Figure. 5 Results from the linear combination fitting analysis of the μ XANES
 420 spectra collected at different parts of the wheat grain: organic and inorganic Se
 421 species comparison, (a); Se species for heading, Head, (b); and tillering, Tiller, (c)
 422 application stages. See text for details.

423

424 **4. CONCLUSIONS**

425 Our results show that the biostimulant have a key role increasing both the amount
426 of grains produced per spike and their biomass (DW) without diminishing the total
427 amount of Se and/or disrupting Se species present in the grain, which is the main
428 objective of biofortification processes. This is due to the combination and
429 synergistic action of different compounds of biostimulant, it is also probably due to
430 the catalytic influence of the Mo species from the biostimulant on the physiology
431 of vegetal cells through the enhancement of the mitochondria activity.

432

433 While only when Se(VI) was supplied at the tillering stage, the highest Se levels
434 present in the grain causes negative effects on wheat grain performance. Se-
435 biofortification of the wheat grain was achieved in both in Se stage of application,
436 heading and tillering, whereas when the Se treatment is applied at heading stage, it
437 seems to minimize the Se induced toxicity regardless the Se species used. This is
438 due to the lower duration of Se treatment compared to the tillering stage application
439 group.

440

441 Our study shows that organic Se species are the main species found in wheat grain
442 and that they are co-located with minerals in the outer layer and embryo parts of the
443 grain which contain higher fraction of proteins. This distribution does not get
444 affected by neither Se species supplied in the treatment nor the application of plant
445 biostimulant at different growth stages. The amount of organic Se species are
446 always larger than 90% when the treatment is applied at the tillering stage, whereas
447 for heading stage they are lower than 80% in most of the cases. Grain from plant
448 treated at the tillering application contains higher ratio of C-Se-C and lower C-Se-
449 Se-C than grain treated at heading stage for which the ratio of C-Se-C and C-Se-
450 Se-C is almost the same.

451

452 These results obtained from hydroponic cultivation set the basis for future studies
453 on soil cultures since the valuable information obtained about how the Se toxicity
454 influences the yield depending on the growing stage at which the Se is applied will
455 be relevant for practical applications.

456

457 **ABBREVIATIONS USED**

458 FA, Biostimulant Foliar Application; Head, Heading stage; LCF, Linear
459 Combination Fitting; MES, 2-Morpholinoethanesulphonic acid; NB, No
460 Biostimulants; Se(IV), Sodium Selenite; Se(VI), Sodium Selenate; Se(MIX),
461 50%Sodium Selenite + 50%Sodium Selenate; SeMet, SelenoMehtionine; SeCyst,
462 SelenoCystine; SeCys, SelenoCysteine; SeMeCys, Se-MethylSelenoCysteine;
463 Tiller, Tiller stage; XRF, X-Ray Fluorescence; XAS, X-ray absorption
464 spectroscopy.

465

466 **DECLARATION OF COMPETING INTEREST**

467 The authors declare that they have no known competing financial interests or
468 personal relationships that could have appeared to influence the work reported in
469 this paper.

470

471 **ACKNOWLEDGEMENTS**

472 This research was supported by the Spanish CTM2015-65414-C2-1-R project from
473 MINECO. We acknowledge Diamond light source beamtime no. SP18671-1 at I18
474 beamline. Roberto Boada acknowledges funding support from the European
475 Union's Horizon 2020 research and innovation program under the Marie
476 Skłodowska-Curie grant agreement No. 665919. Tingting Xiao acknowledges the
477 grant from China Scholarship Council (201608330235). We thank Dr. Tina Geraki
478 and Jorge Rodríguez-Martínez for her help during the μ XRF experiments at I18
479 beamline (Diamond Light Source), and Rosa Padilla from the plant physiology
480 group for her support.

481

482 **AUTHOR CONTRIBUTIONS**

483 T.X. contributed to the experimental design and setup, lab processing of samples,
484 data analysis, manuscript writing and discussion. M.V and M.L contributed equally
485 to the experimental design, data interpretation and in the writing and discussion of
486 the manuscript. R.B. contributed to XANES and μ XRF mapping data analysis and
487 interpretation as well as manuscript writing and discussion. All authors read and
488 approved the manuscript.

490 **REFERENCES**

- 491 Arnon, D.I., Hoagland, D.R., 1940. Crop production in artificial culture solutions and in soils with
492 special reference to factors influencing yields and absorption of inorganic nutrients. *Soil
493 Science* 50, 463–485.
- 494 Basham, M., Filik, J., Wharmby, M.T., Chang, P.C.Y., El Kassaby, B., Gerring, M., Aishima, J.,
495 Levik, K., Pulford, B.C.A., Sikkharulidze, I., Sneddon, D., Webber, M., Dhesi, S.S.,
496 Maccherozzi, F., Svensson, O., Brockhauser, S., Náray, G., Ashton, A.W., 2015. Data
497 Analysis WorkbeNch (DAWN). *Journal of Synchrotron Radiation* 22, 853–858.
498 <https://doi.org/10.1107/S1600577515002283>.
- 499 Brouns, F., Hemery, Y., Price, R., Anson, N.M., 2012. Wheat Aleurone: Separation, Composition,
500 Health Aspects, and Potential Food Use. *Critical Reviews in Food Science and Nutrition* 52,
501 553–568. <https://doi.org/10.1080/10408398.2011.589540>.
- 502 Buchanan, B.B., 2001. Genetic engineering and the allergy issue. *Plant Physiology* 126, 5–7.
503 <https://doi.org/10.1104/pp.126.1.5>
- 504 Bulgari, R., Cocetta, G., Trivellini, A., Vernieri, P., Ferrante, A., 2015. Biostimulants and crop
505 responses: A review. *Biological Agriculture and Horticulture* 31, 1–17.
506 <https://doi.org/10.1080/01448765.2014.964649>
- 507 Cakmak, I., 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification?
508 *Plant and Soil* 302, 1–17. <https://doi.org/10.1007/s11104-007-9466-3>
- 509 Calvo, P., Nelson, L., Kloepper, J.W., 2014. Agricultural uses of plant biostimulants. *Plant and
510 Soil* 383, 3–41. <https://doi.org/10.1007/s11104-014-2131-8>
- 511 Chan, Q., Afton, S.E., Caruso, J.A., 2010. Selenium speciation profiles in selenite-enriched
512 soybean (*Glycine max*) by HPLC-ICPMS and ESI-ITMS. *Metallomics* 2, 147–153.
513 <https://doi.org/10.1039/b916194e>
- 514 Chen, J., 2012. An original discovery: Selenium deficiency and Keshan disease (an endemic heart
515 disease). *Asia Pacific Journal of Clinical Nutrition* 21, 320.
516 <https://doi.org/10.6133/apjcn.2012.21.3.01>
- 517 Clemens, S., 2010. Cell Biology of Metals and Nutrients, *Cell Biology of Metals and Nutrients*.
518 <https://doi.org/10.1007/978-3-642-10613-2>
- 519 Cserhalmi, Z., 2002. Cereals processing technology, *Acta Alimentaria*.
520 <https://doi.org/10.1556/aalim.31.2002.2.11>
- 521 Cubadda, F., Aureli, F., Ciardullo, S., D'Amato, M., Raggi, A., Acharya, R., Reddy, R.A.V.,
522 Prakash, N.T., 2010. Changes in selenium speciation associated with increasing tissue
523 concentrations of selenium in wheat grain. *Journal of Agricultural and Food Chemistry* 58,
524 2295–2301. <https://doi.org/10.1021/jf903004a>
- 525 Curtin, D., Hanson, R., Lindley, T.N., Butler, R.C., 2006. Selenium concentration in wheat
526 (*Triticum aestivum*) grain as influenced by method, rate, and timing of sodium selenate
527 application. *New Zealand Journal of Crop and Horticultural Science* 34, 329–339.
528 <https://doi.org/10.1080/01140671.2006.9514423>

- 529 Daniels, L.A., 1996. Selenium metabolism and bioavailability. *Biological Trace Element Research*
530 54, 185–199. <https://doi.org/10.1007/BF02784430>
- 531 Eiche, E., Bardelli, F., Nothstein, A.K., Charlet, L., Göttlicher, J., Steininger, R., Dhillon, K.S.,
532 Sadana, U.S., 2015. Selenium distribution and speciation in plant parts of wheat (*Triticum*
533 *aestivum*) and Indian mustard (*Brassica juncea*) from a seleniferous area of Punjab, India.
534 *Science of the Total Environment* 505, 952–961.
535 <https://doi.org/10.1016/j.scitotenv.2014.10.080>
- 536 Ellis, D.R., Salt, D.E., 2003. Plants, selenium and human health. *Current Opinion in Plant Biology*
537 6, 273–279. [https://doi.org/10.1016/S1369-5266\(03\)00030-X](https://doi.org/10.1016/S1369-5266(03)00030-X)
- 538 Fordyce, F.M., 2013. Selenium deficiency and toxicity in the environment, in: *Essentials of*
539 *Medical Geology: Revised Edition*. Springer, London, pp. 375–416.
540 https://doi.org/10.1007/978-94-007-4375-5_16
- 541 Guerrero, B., Llugany, M., Palacios, O., Valiente, M., 2014. Dual effects of different selenium
542 species on wheat. *Plant Physiology and Biochemistry* 83, 300–307.
543 <https://doi.org/10.1016/j.plaphy.2014.08.009>
- 544 Gupta, M., Gupta, S., 2017. An Overview of Selenium Uptake, Metabolism, and Toxicity in
545 Plants. *Frontiers in Plant Science* 7, 2074. <https://doi.org/10.3389/fpls.2016.02074>
- 546 James, L.F., Panter, K.E., Mayland, H.F., Miller, M.R., Baker, D.C., 1989. Selenium Poisoning in
547 Livestock: A Review and Progress, in: *Selenium in Agriculture and the Environment*
548 *Seleniuminagric*. Soil Science Society of America and American Society of Agronomy,
549 Madison, WI, pp. 123–131. <https://doi.org/10.2136/sssaspecpub23.c7>
- 550 Li, H.F., McGrath, S.P., Zhao, F.J., 2008. Selenium uptake, translocation and speciation in wheat
551 supplied with selenate or selenite. *New Phytologist* 178, 92–102.
552 <https://doi.org/10.1111/j.1469-8137.2007.02343.x>
- 553 Longchamp, M., Castrec-Rouelle, M., Biron, P., Bariac, T., 2015. Variations in the accumulation,
554 localization and rate of metabolism of selenium in mature *Zea mays* plants supplied with
555 selenite or selenate. *Food Chemistry*. <https://doi.org/10.1016/j.foodchem.2015.02.137>
- 556 Lüttge, U., 1962. Progress in botany, *Nature*. <https://doi.org/10.1038/1941023a0>
- 557 Mendel, R.R., Kruse, T., 2012. Cell biology of molybdenum in plants and humans. *Biochimica et*
558 *Biophysica Acta - Molecular Cell Research* 1823, 1568–1579.
559 <https://doi.org/10.1016/j.bbamcr.2012.02.007>
- 560 Mosselmans, J.F.W., Quinn, P.D., Dent, A.J., Cavill, S.A., Moreno, S.D., Peach, A., Leicester,
561 P.J., Keylock, S.J., Gregory, S.R., Atkinson, K.D., Rosell, J.R., 2009. I18 - The microfocus
562 spectroscopy beamline at the Diamond Light Source. *Journal of Synchrotron Radiation* 16,
563 818–824. <https://doi.org/10.1107/S0909049509032282>
- 564 Navarro-Alarcon, M., Cabrera-Vique, C., 2008. Selenium in food and the human body: A review.
565 *Science of the Total Environment* 400, 115–141.
566 <https://doi.org/10.1016/j.scitotenv.2008.06.024>
- 567 Peng, A., Xu, Y., Wang, Z.J., 2001. The effect of fulvic acid on the dose effect of selenite on the
568 growth of wheat. *Biological Trace Element Research* 83, 275–279.

- 569 <https://doi.org/10.1385/BTER:83:3:275>
- 570 Ravel, B., Newville, M., 2005. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray
571 absorption spectroscopy using IFEFFIT. *Journal of Synchrotron Radiation* 12, 537–541.
572 <https://doi.org/10.1107/S0909049505012719>
- 573 Rayman, M.P., 2000. The importance of selenium to human health. *Lancet* 356, 233–241.
574 [https://doi.org/10.1016/S0140-6736\(00\)02490-9](https://doi.org/10.1016/S0140-6736(00)02490-9)
- 575 Shewry, P.R., 2009. Wheat. *Journal of Experimental Botany* 60, 1537–1553.
576 <https://doi.org/10.1093/jxb/erp058>
- 577 Singh, S.P., Vogel-Mikuš, K., Vavpetič, P., Jeromel, L., Pelicon, P., Kumar, J., Tuli, R., 2014.
578 Spatial X-ray fluorescence micro-imaging of minerals in grain tissues of wheat and related
579 genotypes. *Planta* 240, 277–289. <https://doi.org/10.1007/s00425-014-2084-4>
- 580 Terry, N., Zayed, A.M., de Souza, M.P., Tarun, A.S., 2000. Selenium in Higher Plants. Annual
581 Review. *Plant Physiol. Plant Mol. Biol.* 51, 401–432.
582 <https://doi.org/10.1080/00378941.1870.10829847>
- 583 Thomson, C.D., 1998. Selenium speciation in human body fluids. *Analyst* 123, 827–831.
584 <https://doi.org/10.1039/a707292i>
- 585 Toulis, K.A., Anastasilakis, A.D., Tzellos, T.G., Goulis, D.G., Kouvelas, D., 2010. Selenium
586 supplementation in the treatment of Hashimoto's thyroiditis: A systematic review and a
587 meta-analysis. *Thyroid* 26, 1681–1692. <https://doi.org/10.1089/thy.2009.0351>
- 588 Van Hoewyk, D., Garifullina, G.F., Ackley, A.R., Abdel-Ghany, S.E., Marcus, M.A., Fakra, S.,
589 Ishiyama, K., Inoue, E., Pilon, M., Takahashi, H., Pilon-Smits, E.A.H., 2005.
590 Overexpression of AtCpNifS enhances selenium tolerance and accumulation in arabidopsis.
591 *Plant Physiology* 139, 1518–1538. <https://doi.org/10.1104/pp.105.068684>
- 592 Varo, P., Alftan, G., Ekholm, P., Aro, A., Koivistoinen, P., 1988. Selenium intake and serum
593 selenium in Finland: Effects of soil fertilization with selenium. *American Journal of Clinical
594 Nutrition* 48, 324–329. <https://doi.org/10.1093/ajcn/48.2.324>
- 595 Wang, Y.D., Wang, X., Wong, Y.S., 2013. Generation of selenium-enriched rice with enhanced
596 grain yield, selenium content and bioavailability through fertilisation with selenite. *Food
597 Chemistry* 141, 2385–2393. <https://doi.org/10.1016/j.foodchem.2013.05.095>
- 598 Weekley, C.M., Aitken, J.B., Musgrave, I.F., Harris, H.H., 2012. Methylselenocysteine treatment
599 leads to diselenide formation in human cancer cells: Evidence from X-ray absorption
600 spectroscopy studies. *Biochemistry* 51, 736–738. <https://doi.org/10.1021/bi201462u>
- 601 White, P.J., 2016. Selenium accumulation by plants. *Annals of Botany* 117, 217–235.
602 <https://doi.org/10.1093/aob/mcv180>
- 603 Xiao, T., Boada, R., Marini, C., Llugany, M., Valiente, M., 2020. Influence of a plant biostimulant
604 on the uptake, distribution and speciation of Se in Se-enriched wheat (*Triticum aestivum* L.
605 cv. Pinzón). *Plant and Soil* 455, 409–423. <https://doi.org/10.1007/s11104-020-04686-y>