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ABSTRACT

An appropriate selenium intake can be beneficial for human health. Se-biofortified
food in Se-deficient regions is becoming an increasingly common practice but there
are still issues to be addressed regarding the observed Se-induced toxicity to the
plant. In this respect, plant biostimulants are used to enhance nutrition efficiency,
abiotic stress tolerance and crop quality. In this work, the efficacy of a plant
biostimulant to counteract the Se-induced stress in wheat plants is experimentally
assessed. The co-application of different Se-biofortification treatments and the
biostimulant at different growth stages (tillering or heading stage) was investigated.
The use of micro focused X-ray spectroscopy allows us to confirm organic Se
species to be the main Se species found in wheat grain and that the proportion of
organic Se species is only slightly affected by the Se application stage. Our study
proves that the biostimulant had a key role in the enhancement of both the amount
of grains produced per spike and their dry biomass without hindering Se enrichment
process, neither diminishing the Se concentration nor massively disrupting the Se
species present. This information will be useful to minimize both plant toxicity and
economic cost towards a more effective and plant healthy selenium

supplementation.
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1. INTRODUCTION

The importance of selenium (Se) for human health has been widely confirmed in
several human nutrient studies (Ellis and Salt, 2003; Navarro-Alarcon and Cabrera-
Vique, 2008; Thomson, 1998; Weekley et al., 2012). Se substitutes sulfur (S) in the
amino acid groups forming antioxidant enzymes such as glutathione peroxidase
(GPx), thioredoxin reductase (TrxR) and iodothyronine deiodinase (IDD) which are
important, among other things, for protecting against oxidative stress and for
regulating the thyroid hormone metabolism. Currently, inadequate dietary Se intake
affects up to 1 in 7 people globally with the associated risk of developing several
chronic degenerative diseases (Fordyce, 2013; James et al., 1989; Rayman, 2000).
To overcome this issue, Se supplementation has been extensively used (e.g. to
control Keshan disease in China, and as adjunctive therapy in the treatment of
Hashimoto's thyroiditis (Chen, 2012; Daniels, 1996; Toulis et al., 2010). Food
derived from plants is a natural source of Se since plants can transform inorganic
Se species present in soil into organic Se ones (e.g. seleno-amino acids) which are
the desired form of Se for human diet. Thus, Se level in soil has usually a direct
influence in the concentration of Se present in food and, subsequently, in the human
body (Navarro-Alarcon and Cabrera-Vique, 2008). Since 1984, soil fertilization
with Se has been applied in Finland to increase Se concentration of food in regions
with Se-deficient soils (Varo et al., 1988). However, the presence of high
concentration of Se in soil induces stress to the plant and may hamper its normal
development (Guerrero et al., 2014). In order to overcome this issue, genetic
engineering has been proposed as a strategy to enhance Se accumulation,
volatilization and/or tolerance (Liittge, 1962). However, this approach has serious
potential risks since it might promote the presence of new allergens in food,
(Buchanan, 2001) and it may promote the accumulation of other undesired heavy
metals. Moreover, the rather elaborated procedures and challenges associated with
the Se-enriched methodologies based on genetic engineering also need to be

considered.

Alternatively, we propose to use a plant biostimulant, called Fyto-fitness (BIO Fitos,

S.R.O., Czech Republic), based on hybrid heteropolyoxometalates (containing Mo,
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B, Si, W and V) of Keggin structure mixed with humic acid, as anti-stressor to
alleviate the Se-induced toxicity in the plant. Despite the fact that the application of
anti-stressors is an increasing field of research in agriculture (Calvo et al., 2014),
only few previous works have explored the possibility of applying a biostimulant
to crops exposed to Se fertilizers. In this respect, Peng et al. (2001) reported that
the use of fulvic acids as biostimulant has beneficial and antagonist effects
depending on the dosage of selenite. However, the authors did not provide any
information regarding the final Se concentration or the Se species present in the

plants which is important to assess the health benefits of the Se-enrichment process.

In this work, we have studied the biostimulant effect on counteracting the Se-
induced toxicity aiming to maintain the grain production yield, to minimize the Se-
induced stress and to optimize the Se supplementation methodology. We have
applied different Se treatments (selenite, selenate and a 1:1 mixture of both)
together with the biostimulant at two growing stages, tillering stage or heading stage,
until harvesting the grains once matured. We have determined the total Se
concentration in grain by ICP-MS and the spatial distribution of Se and other
relevant elements for the plant metabolism (e.g. Se, Ca, Zn) or for human nutrition
by uXRF measurements. In addition, since determining the chemical state of Se is
crucial to assess the health benefits of the biofortification procedure, pXANES
spectra were collected at the most representative regions of the grain to get detailed
information about the Se speciation. These measurements have allowed us to assess
the possible modifications induced by the application of the plant biostimulant on

the Se distribution and speciation in the wheat grain.

2. METHODOLOGY

2.1 Culture conditions

Wheat (Triticum aestivum L. cv. Pinzon) seeds (Fitdé S.A., Spain) were germinated
on moist filter paper for 5 days at 25 °C in the dark. Seedlings were precultured in
continuously aerated 'z strength Hoagland’s nutrient solution (Arnon and Hoagland,
1940) 3mM KNO3, 2mM Ca(NO3)24H>0, ImM KH>PO4, 0.5mM MgSO4-7H-0,
60uM FeNa-EDTA, 2uM MnCl,-4H,0, 3uM H3BO3, 0.1uM (NH4)sMo7024:4H,0,
2uM ZnSO4-7H20, 1pM CuSO4-5H20) for two weeks before applying Se (12
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plants per 6L pot). The pH of the solution was buffered at 6.0 with 2 mM MES (2-
morpholinoethanesulphonic acid) and adjusted with KOH (2 M) (both from VWR,
Spain). Plants were grown hydroponically in a controlled-environment growth
chamber until mature with the following conditions: 8h day/16h night photoperiod
with a light intensity of 320 uEm™s™".

2.2 Selenium and biostimulant treatments

Phyto-fitness (BIO Fitos S.R.O., Czech Republic) consists of an aqueous solution
containing a mixture of hetero-polyanions (HPA), such as phosphomolybdate,
silicotungstate, borovanadate, titanomolybdate and combinations thereof, esterified
by humic acids. In addition, it also contains elemental iodine and micro / nano
colloidal copper iodide. Both substances are responsible for the therapeutic effect
against fungal, bacterial and viral infections, and urea is also present for a better
absorption. Highest content of active substances in the used concentration is of

0.007% by weight.

In order to evaluate the effect of the plant biostimulant (Phyto-fitness) on the Se
uptake and on the Se accumulation in the plant, plants were grown with (FA, foliar
application) or absence (NB, no biostimulant) of the biostimulant. The foliar
application of the biostimulant was done by spraying the product 100 times diluted
in water on the leaves. Moreover, the plants were exposed to different Se treatments
in the Hoagland solution: No Selenium (No Se); 10 uM selenite (Se(IV)) as
NaSeO3 (AMRESCO, USA), 10 uM selenate (Se(VI)) as Na,SeO4 (FLUKA, Spain)
and a 1:1 v/v mixture of both Se treatment solutions (Se(MIX)). Hence, a total of 8

different treatments were applied.

In addition, with the aim of assessing both the Se-induced toxicity to the plant and
minimizing the economic cost of Se supplementation, two batches of plants were
grown and the treatments were applied at two different growing stages: from the
tillering stage and from heading stage. In both cases, the treatments were
maintained until the grain became mature. Afterwards, plants and grains were

harvested and kept until further analysis. See the schematic diagram in Fig S1.

2.3 Total Se analysis
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Powdered plant samples (n=4) were predigested overnight with HNO3:H20: (7:3,
v/v) (VWR, Spain) and then digested in hot block (SC154-54-Well Hot Block™)
at 110 °C for 2 h. Mineral nutrient concentrations were analyzed by ICP-MS
(PerkinElmer Optima 8300) and ICP-OES (PerkinElmer Nexton 350D). Blanks

were included in each batch of samples for quality control.

2.4 Statistics

To check the reproducibility of the results, the entire experiment was repeated twice
in different seasons; spring and summer. The results are presented as the mean (n=4)
and the standard error (+SE) has been also included. All the data was checked for
normality and data not normally distributed was log transformed. Afterwards, to
assess the differences among treatments, two-way ANOVA followed by Fisher’s
LSD test (P<0.05) was applied. All the statistic calculations were performed with

Statistica software version 6.0 (StatSoft Inc.).

2.5 Synchrotron based X-ray Absorption Spectroscopic measurements.

In order to obtain thin specimens for the pXRF measurements, wheat grains were
immersed in 4 °C Milli-Q water. Then, the humected grains were embedded in
paraffin and thin sections were cut using a microtome (MICROM HM 325 Rotary
Microtome). The specimens were 60 um thickness containing embryo, endosperm

and outer layer.

uXRF mapping and uXANES measurements on the grain sections were performed
at 118 beamline (Mosselmans et al., 2009) of Diamond Light Source using a 4-
element Si drift fluorescence detector (Vortex). For the measurements, the
specimens were mounted on top of carbon tape disk which was stuck on to a
sapphire disk which was then glued onto the Al holder of the liquid Helium cryostat.
The measurements were performed at 10 K to minimize the effects of the radiation
damage. The spatial distribution of Se, Zn, Cu, Fe, K, Mn and Ca elements in the
grain was obtained from the uXRF maps collected using an excitation energy of
12677 eV and a beam size of 20 um. The step size used was 20 pm and the
acquisition time per point was set to 0.05 s. The uXRF maps were processed using
DAWN software (Basham et al., 2015). For shake of comparison, the maps were

normalized to the maximum of counts on each grain for the element under study.
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The tri-color maps were generated using the RGB mixer tool in DAWN which
allows combining XRF maps of three different elements. The different intensity of
the maps was balanced out to get the appropriated visualization of the three
elements. pXANES spectra were collected at three different points of each part of
the grain (embryo, endosperm and outer layer) to account for any possible
inhomogeneities. The normalization of the pXANES spectra and the speciation
analysis using linear combination fitting (LCF) was carried out with Athena
program of the Demeter software package (Ravel and Newville, 2005) following
standard procedures. For the LCF analysis, the XANES spectra of sodium selenite,
sodium selenate, seleno-L-methionine, seleno-L-cystine and Se-(Methyl)
selenocysteine hydrochloride (Sigma-Aldrich, Spain) measured in transmission
mode were used as Se references since they are the species expected to be present
in the plant. Further details about the measurements of the references and the LCF

methodology followed can be found elsewhere (Xiao et al., 2020).

3. RESULTS AND DISCUSSION

3.1 Grain biomass

Biomass parameters, such as the average dry weight (DW) of single spikes (Figure
la,b) and of grains per spike (Figure 1c,d), and the number of grains per spike
(Figure le,f), were evaluated and compared among the different Se and

biostimulant treatments to assess their effect on wheat development and yield.

Selenium treatments applied at the heading stage caused no significant effect on
any of the biomass parameters studied except for Se(VI) that reduced significantly
the number of grains produced per spike (Figure le). When Se was applied at the
tillering stage, Se(VI) not only reduced the number of grains produced per spike but
also the weight of both grains and spikes (Figure 1b,d,f).

Thus, Se(VI) is the Se species that caused the most negative influence on wheat
yield specially when it was supplied during the production of tillers than at the later
stage of heading. This is in agreement with the results found by Longchamp
(Longchamp et al., 2015) who stated that the dry weight of Zea mays grains
decreased by 60% and 80% in Se(VI)-dosed and Se(IV)-dosed plants, respectively,
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compared to control grains. Oppositely, the results from Wang’s (Wang et al., 2013)
work support that Se(IV) could produce larger rice grains and higher yields.

At the heading stage, the application of the biostimulant (FA) clearly improved the
biomass parameters under Se(VI) and Se(MIX) treatments to values significantly
above NB ones (Figure 1a,c,e). Moreover, the biostimulant significantly increase
the number of grains produced per spike under control conditions (No Se) as shown
in Figure le. At tillering, the biostimulant counteracted the negative effects caused
by Se(VI) on all the biomass parameters studied (Figure 1b,d,f), reaching similar
values as the control treatment (NoSe, NB) and improving as well the weight of
both spike and grain under the other Se treatments (Figure 1b,d). Although the
nutrients are adequate during the plant growth, the extra Mo species from the
biostimulant might enhance the mitochondria activity on the physiology of vegetal
cells (Mendel and Kruse, 2012). It has also been pointed out that the biostimulant
supplied in the nutrient solution may increase wheat biomass production due among
other factors to the high level of Mo which is the essential for nitrogen acquisition
and assimilation (Xiao et al., 2020). These results were expected since
biostimulants are used to improve nutrient efficiency, abiotic stress tolerance and
crop quality. Actually, the effect of biostimulants on plants’ performance are often
due to the combination and synergistic action of different compounds (Bulgari et

al., 2015).

Wheat plants are more sensitive to Se in the form of Se(VI) when it is supplied at
the tillering stage than when it is applied later on at the heading stage. This indicates
that time of exposure (stage of application and length of treatment) to Se(VI) is an
important factor to be considered because it diminishes the grain yield. In this
context the biostimulant has a key role in reestablishing both the amount of grains
produced per spike and their biomass (Figure 1b, d, f) as those obtained in control

plants.
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Figure 1. Grain biomass parameters of 7. aestivum plants grown under different Se

treatments (selenite, selenate and mixture of both selenium species (10 uM)) and

biostimulant application (No biostimulant-NB, Foliar Application-FA) at different

growth stages: Heading (a, c, e), Tillering (b, d, f). Results shown are means + SE

(n=4 plants). Different letters represent significant differences among groups (LSD).

See text for details.

3.2 Total Selenium concentration in grain

The total Se levels found in grains for the different treatments indicate that Se-

biofortification of grains was achieved with values within the range of 37-100 pg-g

' DW and of 75-138 pg-g™! DW for heading and tillering stages, respectively (Figure

2a, b).
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The Se concentration in grains obtained from plants exposed to Se(IV) achieved
similar levels (90-100 pg-g' DW) in both stages of application. In contrast, the total
Se level in Se(VI) group was significantly higher in the tillering stage of application
than in the heading stage, being these levels the highest of all the Se treatments,
125-138 ug Se'g’! DW. Similarly, in the Se(MIX) group, due to the presence of
Se(VI), total Se at tillering stage was found to be also higher, around 1.5-folds, than
that of the heading stage. This is due to the fact that Se(IV) is rapidly assimilated
into organic forms which are retained in roots, whereas Se(VI) is highly mobile in
xylem transport and not readily converted into organic Se compounds (Cubadda et
al., 2010; Curtin et al., 2006) and not only due to a longer exposure time determined

by the stage of application.

Although the application of biostimulants is considered to promote Se accumulation
in wheat grain (Peng et al., 2001), the increase observed in our study was only
statistically significant for Se(VI) treatment at the heading stage of application
(Figure 2a). Thus, the biostimulant does not increase Se accumulation in grains
under the different Se treatments assayed but it influences other plant physiological
parameters that enhances grain performance (weight and amount) counteracting the
negative effects of an early Se exposure (tillering stage), especially in the form of

Se(VI).
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Figure 2. Total Se concentration (a, b) and X-ray fluorescence mapping of Se (c, d)
in wheat grains grown under different treatments applied (No biostimulant-NB,
Foliar Application-FA) at different growth stages: heading (a, c), tillering (b, d).
The total concentration is displayed as mean+SE (n=3). Different letters represent
significantly differences among groups (LSD). Warmer colors in XRF maps

indicate higher Se concentration.

3.3 Selenium and nutrient distribution in grain by using pXRF mapping

Despite the valuable information extracted from the analysis of the total Se in the
wheat grain, relevant information regarding the Se distribution in the grain is
missing. In this regard, X-ray fluorescence (XRF) measurements using a micro-
focused beam allow mapping grains sections providing a direct observation of the
Se distribution in the different parts of the wheat grain (germ, endosperm and outer
layer). As shown in the uXRF maps displayed in Figure 2c, d, Se is unevenly
distributed in the grain (warmer colors indicate higher Se concentration). The
higher concentrations of Se are mostly found in the germ and outer layer regardless
the treatment applied. This is related to the fact that the outer layer, mostly the
aleurone, and the germ are the main regions containing proteins and therefore Se-
proteins assembled from seleno-aminoacids are located there (Gupta and Gupta,

2017; White, 2016). On the other hand, the images show much lower levels of Se
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accumulation in the endosperm which is mostly constituted by starch and that
contains a small fraction of fibers and proteins.

In addition, uXRF provides simultaneous information of the spatial distribution of
several elements accumulated in the grain. In our study, the uXRF images for all
the treatments show similar elemental distribution as the one displayed in Figure 3
for the Se(VI) applied at heading treatment (similar comparatives for the rest of the
treatments can be found in Figure S2). The analysis of the uXRF maps indicates
that aleurone and scutellum are major storage tissues for macro (P, K, Ca and Mg)
as well as micro (Fe, Zn, Cu and Mn) nutrients (Singh et al., 2014). This distribution
is quite consistent, and it does not get affected by neither Se species supplied in the

treatment nor the application of plant biostimulants at different growth stage.

Tricolor RGB map helps to visualize the distribution patterns and co-localization
of the nutrients and Se. As shown in Figure 3, K, Ca, Fe, Zn, Cu and Mn are located
mostly in the embryo and the outer layer covering the aleurone, seed coat and
pericarp (Singh et al., 2014). Selenium overlaps with them in some areas of the
outer layer, but, from the tricolor image, we can distinguish that Se is mostly located
in the most inner layer which it could be identified as the aleurone that is the part

of the outer layer containing higher level of proteins (Brouns et al., 2012).

This knowledge of the grain tissue-specific element storage pattern can be useful in
cereal processing to achieve a more efficient consumption of nutrients (Cserhalmi,
2002). Indeed, despite that the outer layer is a reservoir of minerals in wheat grain
(Shewry, 2009), most of them are lost during the mechanical processing of wheat

flour (Cakmak, 2008), which is not often consumed by people.
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Figure 3. Normalized pXRF elemental maps of wheat grains for Se(VI) applied at
heading stage. Warmer colors indicate higher element concentration. Top two rows:
individual element distribution maps and optical microscope image (top left).
Bottom two rows: tri-color merged images and corresponding enlarged areas.
Colored triangle scales indicate the relative locations of elements color merged. The
points marked in the Se uXRF image denote the positions where the uXANES were
measured at the different parts of the grains (1-3 embryo, 4-6 outer layer, 7-8

endosperm).

3.4 Selenium speciation in grain determined by nXANES

The level of Se accumulation, its localization in tissues within the grain together
with other nutrients, and ultimately the chemical form of Se determine its dietary
availability in cereals (Singh et al., 2014). Hence, it is important to understand how
Se speciation might be affected when Se is co-located with other elements present
in the grain for the different treatments. In order to compare the Se speciation in the
different grain tissues LXANES measurements were acquired at selected points of
embryo, endosperm and outer layer. Figure 4b, ¢ displays the comparative for all
Se(VI) treatments as a representative case of study. The spectra collected on the

grains were compared with Se references samples (Figure 4a): seleno-amino acids
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(SeMet, SeCys, SeMeCys) and inorganic Se compounds (Se(0), Se(IV), Se(VI)).
All the samples display a similar spectral profile characterized by a prominent white
line at 12663.7 eV (marked with a vertical dashed line) which can be identified with
compounds containing C-Se-C bond (e.g. SeMet or SeMeCys). The subtle spectral
differences found among treatments suggest that the ratio among Se species may
not change much. Indeed, the biostimulat application (FA) has some mild effect on
the spectra respect NB in all the parts of the plant. On the other hand, little
differences are observed when comparing the different parts of the grain (embryo,

endosperm and outer layer) for the same treatment.
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Figure 4. Normalized Se K-edge XANES spectra of Se references (a) and wheat
grain grown under Se(VI) and biostimulant treatments (No biostimulant-NB, Foliar
Application-FA) applied at different growth stage stages: heading (Head) (b), and
tillering (Tiller) (c). The spectra for embryo, endosperm and outer layer have been
shifted vertically for shake of comparison. Vertical line denotes to the white-line

position of species containing a C-Se-C bond (e.g. SeMet or SeMeClys).

Characterizing the ratio of the Se species contained in the wheat grain to get an

insight about the ratio of the seleno-amino acids formed is not only important to
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understand Se mechanism in plant, but also essential to determine the benefits of
Se-enriched food for human health since different seleno-amino acids are
differently assimilated by the human body and they fulfill distinguished functions
related with specific health benefits. Indeed, to get a more quantitative information
of the Se species present in the grain, a linear combination fitting (LCF) analysis
has been performed using the afore mentioned Se references as standards, see
Figure 5. The values obtained from the LCF analysis have been included in Tables

S1 and S2 of the supporting information.

Figure 5a reports the ratio between inorganic and organic species for the NB
treatment applied at the heading and tillering stages. These results confirm that the
organic Se species are the main component in Se-biofortified wheat grains and that
FA treatment did not significantly influence this ratio (see Figure S3). These
observations are in agreement with previous studies reporting that the organic Se
species are the main Se species present in wheat grain (Eiche et al., 2015; Li et al.,
2008). This comparative also shows that the application of Se at different stages of
the plant growth affects the proportion of organic Se in wheat grains. The amount
of organic Se species found are always larger than 90% when the treatment is
applied at the tillering stage, whereas for the heading stage they are lower than 80%
in most of the cases. This indicates that the Se exposure stage and the length of the
treatment are important parameters in the conversion of inorganic Se to organic Se,

even in those cases reaching similar Se enrichment level (e.g. Se(IV) treatment).

A better insight in the composition is achieved when inspecting each independent
Se species included in the LCF analysis. As shown in (Figure 5b), Se organic
species containing a C-Se-C bond (SeMet and SeMeCys) are the main compounds
distributed in the different parts of the grain when the Se treatment is applied at
heading stage. However, when Se is applied at tillering stage (Figure 5¢) the amount
of C-Se-C species is lower than in the heading stage group. In addition, grains from
plants under biostimulant treatment (FA) seems to accumulate more C-Se-C amino
acids and elemental Se in comparison with the control group (NB) when Se is
applied at heading stage (Figure 5b), even though the total amount of organic
species remains very similar for both treatments. Hence, the amount of C-Se-Se-C

(SeCyst) amino acid in NB is slightly larger than in FA ones in heading stage group.
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It has been pointed out that SeCyst found in the plant are usually due to the
oxidation of SeCys since it is readily oxidized during the samples processing (Chan
et al., 2010). Thus, the level of SeCyst found reflects the original level of SeCys in
the plant.

Although both C-Se-C and SeCys species can be incorporated into proteins in place
of methionine and cysteine, leading to toxicity, C-Se-C species have less harmful
effects, since the incorporation of SeCys into the protein could interfere with the
formation of disulfide bridge affecting tertiary structure of S-proteins (Terry et al.,
2000). Our results show that when the Se treatment is applied at the heading stage,
the Se toxicity is less severe than when applied at the tillering stage. The effect
found in the grain is that the total Se content decreases together with the total
organic Se, and there is an increase of C-Se-C respect to the total organic Se found
in the heading group. Although FA group contains more C-Se-C and elemental Se
than NB treatment in heading group, the contribution of FA in the Se tolerance is

too mild to be conclusive.

By comparing Figure 5b and 5Sc, it can be noticed that Se(0) is only detected in the
heading stage group of grains and it is negligible in the tillering ones. Se(0) is one
of the product derived from SeCys via the action of a selenocysteine lyase (SL).
Elemental Se is comparatively innocuous, therefore this could be a potential Se
detoxification mechanism (Clemens, 2010; Van Hoewyk et al., 2005). This also
supports the idea that when applying Se at the heading stage, the Se toxicity in
wheat could be minimized due to the lower duration of the Se treatment (i.e., the
number of applications are reduced) compared with the tillering stage application
group. In the heading group, the abiotic stress caused by Se when the grain spike is
just appearing may stimulate the expression of SL in order to enhance Se tolerance

and maintain the growth cycle.
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419  Figure. 5 Results from the linear combination fitting analysis of the pXANES
420  spectra collected at different parts of the wheat grain: organic and inorganic Se
421  species comparison, (a); Se species for heading, Head, (b); and tillering, Tiller, (c)
422  application stages. See text for details.
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4. CONCLUSIONS

Our results show that the biostimulant have a key role increasing both the amount
of grains produced per spike and their biomass (DW) without diminishing the total
amount of Se and/or disrupting Se species present in the grain, which is the main
objective of biofortification processes. This is due to the combination and
synergistic action of different compounds of biostimulant, it is also probably due to
the catalytic influence of the Mo species from the biostimulant on the physiology

of vegetal cells through the enhancement of the mitochondria activity.

While only when Se(VI) was supplied at the tillering stage, the highest Se levels
present in the grain causes negative effects on wheat grain performance. Se-
biofortification of the wheat grain was achieved in both in Se stage of application,
heading and tillering, whereas when the Se treatment is applied at heading stage, it
seems to minimize the Se induced toxicity regardless the Se species used. This is

due to the lower duration of Se treatment compared to the tillering stage application

group.

Our study shows that organic Se species are the main species found in wheat grain
and that they are co-located with minerals in the outer layer and embryo parts of the
grain which contain higher fraction of proteins. This distribution does not get
affected by neither Se species supplied in the treatment nor the application of plant
biostimulant at different growth stages. The amount of organic Se species are
always larger than 90% when the treatment is applied at the tillering stage, whereas
for heading stage they are lower than 80% in most of the cases. Grain from plant
treated at the tillering application contains higher ratio of C-Se-C and lower C-Se-
Se-C than grain treated at heading stage for which the ratio of C-Se-C and C-Se-

Se-C is almost the same.

These results obtained from hydroponic cultivation set the basis for future studies
on soil cultures since the valuable information obtained about how the Se toxicity
influences the yield depending on the growing stage at which the Se is applied will

be relevant for practical applications.
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ABBREVIATIONS USED

FA, Biostimulant Foliar Application; Head, Heading stage; LCF, Linear
Combination Fitting; MES, 2-Morpholinoethanesulphonic acid; NB, No
Biostimulants; Se(IV), Sodium Selenite; Se(VI), Sodium Selenate; Se(MIX),
50%Sodium Selenite + 50%Sodium Selenate; SeMet, SelenoMehtionine; SeCyst,
SelenoCystine; SeCys, SelenoCysteine; SeMeCys, Se-MethylSelenoCysteine;
Tiller, Tillering stage; XRF, X-Ray Fluorescence; XAS, X-ray absorption

spectroscopy.
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