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Automatizing phenotype measurement will decisively contribute to increase plant breeding efficiency. Among phenotypes,
morphological traits are relevant in many fruit breeding programs, as appearance influences consumer preference. Often, these
traits are manually or semiautomatically obtained. Yet, fruit morphology evaluation can be enhanced using fully automatized
procedures and digital images provide a cost-effective opportunity for this purpose. Here, we present an automatized pipeline
for comprehensive phenomic and genetic analysis of morphology traits extracted from internal and external strawberry
(Fragaria x ananassa) images. The pipeline segments, classifies, and labels the images and extracts conformation features,
including linear (area, perimeter, height, width, circularity, shape descriptor, ratio between height and width) and multivariate
(Fourier elliptical components and Generalized Procrustes) statistics. Internal color patterns are obtained using an autoencoder
to smooth out the image. In addition, we develop a variational autoencoder to automatically detect the most likely number of
underlying shapes. Bayesian modeling is employed to estimate both additive and dominance effects for all traits. As expected,
conformational traits are clearly heritable. Interestingly, dominance variance is higher than the additive component for most of
the traits. Overall, we show that fruit shape and color can be quickly and automatically evaluated and are moderately heritable.
Although we study strawberry images, the algorithm can be applied to other fruits, as shown in the GitHub repository.

1. Introduction

Demographic pressure and climate change are two of the
major challenges of the 21st century. The worldwide popula-
tion continues growing exponentially, and it is expected to
reach ~9.8 x 10° in 2050 [1]. Climate change generated by
greenhouse gas emissions is possibly the greatest threat, as
it is leading to extreme weather conditions, increasing areas
of drought, and species extinction, among others [2-4]. In
this adverse context, food production needs to be increased
significantly. Increasing food production is not enough
though. Breeding programs should also consider food safety
and environmental care among their objectives [5, 6].
Artificial breeding is mainly responsible for the dramatic
rise in food production we have witnessed for over a century.
The main goal of plant and animal breeding is to utilize
genetic variability of complex traits to increase performance
and optimize use of resources. A current bottleneck in plant
breeding programs is the evaluation of hundreds of lines

under different environmental conditions [7, 8]. Plant breed-
ing involves both genomics and phenomics, i.e., the expression
of a genome in given environments. While available technolo-
gies can routinely and inexpensively scan the genome, high-
throughput phenotypic characterization remains a difficult
task [9, 10]. Automatizing phenotype measurement is then
needed to increase the pace of artificial selection and is, unsur-
prisingly, one of the main targets of “Precision Agriculture”
(11, 12].

The term “phenomics” or “phenometrics” was coined by
Schork [13] as an attempt to understand events happening in
between full genome and clinical endpoint phenotypes in
complex human diseases. The expression quickly spreads to
animal and plant breeding research as a concept that bridges
the gap between genotypes and the “end-phenotypes.”
Although the term phenomics was devised in line with
“genomics,” that is, to describe the whole phenome of any
organism, note that the phenome varies over time and
between cells or tissues and can never be fully portrayed [14].
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Although electronics applied to agriculture has a long his-
tory, a window of opportunities has emerged in the phenomics
field with recent improvements in robotics, electronics, and
computer science. The subjective, time-consuming, and often
destructive human data collection is being replaced by minia-
turized, cheap sensors, digital cameras, cell phones, unmanned
aerial vehicles, and mass spectrometry, among others, that
allow collecting hundreds of phenotype data objectively and
inexpensively [9, 15-17]. The challenge now is to develop
new and improved analytical tools, capable of transforming this
wealth of data into valuable knowledge [15]. This is a rapidly
evolving field, and numerous software and pipelines to autom-
atize phenotype collection are already available [18-22]. Many
of these tools focus on the analysis of root images and, as far as
we know, require more user intervention than we propose,
making it impractical to analyze hundreds of images.

Digital images are among the cheapest and most widely
available types of data. Imaging allows assessing morphological
traits, which are highly relevant in numerous plant breeding
schemes, since they can critically affect consumer acceptance
especially in fruits [23-25]. Nevertheless, consumer prefer-
ences on appearance traits differ around the world and
between communities. Like most traits, fruit shape is deter-
mined by genetic and environmental factors such as flower
morphology or insect-mediated pollination [26, 27]. In all,
morphological traits are among those with the highest herita-
bility, which has allowed breeders to rapidly modify shape,
size, and color patterns of agricultural products [20, 28-30].

Although numerous works have been developed in the
area of fruit morphology, most of them have focused in the
inheritance of linear measures, e.g., diameter, perimeter, and
circularity [20, 31-33]. By definition, however, morphological
traits are highly dimensional. Computing only linear, univar-
iate phenotype leads to a loss of information by extremely
simplifying the features of a shape [28, 34]. The use of
geometric-morphometric approaches for shape analysis is
warranted [35]. Further, fruit shape has been traditionally
evaluated subjectively [36] but can be enhanced by resorting
to automatized procedures. For instance, hundreds of fruit
pictures can be routinely and inexpensively collected, even
in the field, with a cell phone camera. Automatized image pro-
cessing and analysis can then dramatically change the way
shape and color traits are collected and characterized.

Here, we present a comprehensive phenomic and genetic
analysis pipeline for fruit morphology automatic analysis.
Two main issues are addressed: (1) converting the raw data
(fruit images) into a processed curated database and (2) design-
ing an efficient analysis workflow to analyze the fruit shape and
color phenome. Finally, genetic parameters are automatically
inferred from pedigree information. We apply the pipeline to
images of cultivated strawberry (Fragaria x ananassa) fruits.
In addition to previous similar works in strawberry, e.g.,
Feldmann et al. [18], we provide a wholly automatized pipe-
line and new tools to analyze shape and color patterns.

2. Materials and Methods

2.1. Plant Material and Imaging Acquisition. Lines employed
are part of the strawberry breeding program of the Planasa
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company (https://planasa.com/en/) and are routinely used
to develop new elite genotypes. The experiment consisted
of 24 crosses between 30 parental lines of F. x ananassa.
We evaluated 20 randomly chosen lines per cross for all but
2 crosses, for which we chose 19 lines at random. A total of
478 seedlings and 30 parental genotypes were evaluated
(Supp Table 1). Shape varied between the cultivars studied,
e.g., circular, ellipsoid, or rhomboid, and color ranged from
white to dark red.

Strawberries were grown in plastic semitunnel using
standard cultivation practices in South West Spain (Huelva,
37°16'59"N, 7°9’ 18"W). Fruits were collected from two
individual plants of each line at the end of April 2018 in only
one harvest event. Fruits from both plants were pooled in the
photographs. We took images of 1 to 7 sliced fruits per geno-
type using a Nikon D80 digital camera. Samples were laid on
a black surface, with the camera positioned at 35 cm height.
The focal length was 18 mm, the manual aperture was {/8,
and the exposure time was 1/8seconds. Illumination con-
sisted of two white light sources at both sides of the camera.
In total, we took 508 images of 3872 x 2592 pixels that con-
tained all external and internal sides of fruits and the label
for each genotype in the same image.

2.2. Preprocessing and Segmentation. The first step in the
pipeline is to segment and recognize the objects, since each
raw image contains internal and external fruits, a rule, a coin,
and a printed genotype (the strawberry line) label. Image seg-
mentation is needed for obtaining meaningful morphometric
and color information. However, most of available technolo-
gies to determine the boundaries of the objects at the pixel
level are usually semiautomatic and time-consuming [37-
40]. Our fully automatic python-based pipeline takes the
images of each strawberry line and outputs a curated data-
base of square images (1000 px) and reads the genotype label
(Figure 1). https://github.com/lauzingaretti/DeepAFS/blob/
main/main.ipynb explains how to apply the most expensive
part of this workflow to alternative experiments. Note that
after creating a curated database, a standard multivariate
analysis can be easily run using R/Python tools to shape
evaluation.

For segmentation, the three-channel digital signals
(RGB/BGR) are converted into grayscale and blurred using
Gaussian filtering of size 5, to remove undesirable noise.
The histogram information is used for image binarization,
i.e., splitting the background and foreground. Here, we binar-
ized the image using simply the mean value of the pixel as a
threshold. The pipeline also allows Otsu thresholding [41],
which is designed to automatically define the threshold by
minimizing the “overlap” between two classes. After binari-
zation, we performed erosion and dilation, the former
shrinks the edges, and the latter makes the image region
grow. Finally, the algorithm extracts the regions of interests
(ROI) and determines whether it is a strawberry or an image
label. The color pattern analysis allows us to classify the inter-
nal or external part of a fruit image. We here apply a k-means
clustering based on the information about the color mean,
color standard deviation, and the ratio between them for all
the fruits; i.e., we compute these 3 features for all the fruits,
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Ficure 1: Workflow for automatic segmentation and label recognition from strawberry images: (a) feature extraction; (b) feature

preprocessing and database generation.

and then, we classify these observations into 2 clusters to split
the internal and external part of the fruits. For the labels, the
Optical Character Recognition (OCR) algorithm from
PyTesseract library (https://pypi.org/project/pytesseract/) is
used to read the genotype name and automatically label the
image into the database. As a result, the algorithm delivers
a curated database of 508 folders labeled with the name of
each genotype and subfolders containing either the internal
or external strawberry pictures (Figure 1, Algorithm 1 in
Suppl. Info). All fruits are stored in square images (1000 px
size or user-defined), with the fruits placed in the center
and filled with black pixels.

2.3. Automatic Fruit Phenotyping. Once masks for either
internal or external fruit images are obtained, an automatic
phenotyping procedure is run for inside or outside parts sep-
arately (Figure 2). Classical linear descriptors and multivari-
ate and deep learning techniques are combined from a novel
perspective to dissect a variety of shape and color patterns. If
pedigree or marker information is available, a genetic analy-
sis can be employed to estimate variance components for

each of the fruit phenotypes. In the following, we describe
the main methods implemented in the pipeline of Figure 2.

2.4. Autoencoder and k-Means to Infer Internal Color
Patterns. We used an “autoencoder” (AE) network to per-
form an unsupervised clustering of the internal images. An
autoencoder (Figure 3(a)) is an unsupervised machine learn-
ing technique that applies backpropagation to train a neural
network where the outputs are the same values as the inputs
[42]. The AE gives new insight into image analysis by learn-
ing the structure about the data; i.e., it is not designed to copy
an exact replicate of the input but instead to learn the repeat-
able and most useful properties.

We used a convolutional AE, as convolutional operations
are especially suited for image analysis [42, 43]. These layers
create a feature map from the input image, preserving the
relationships between pixels in the original space
(Figure 3(a)). Each convolution outputs a scored-filtered
image, where a high score means a perfect match between
the original image and filtered image. The output layer is
obtained by applying the Rectified Linear Unit (ReLU)
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FIGURE 2: Data analysis workflow. The input is the segmented internal and external fruit images from workflow in Figure 1. External images
are used for linear and multidimensional shape analysis through different standard and machine learning approaches, including deep
learning. Internal images are used to estimate the color pattern of the internal fruit section. Additive and dominance genetic components
of each of the extracted morphometric and color phenotypes are estimated using Bayesian Linear Modeling using either pedigree or DNA
marker information. Code available at https://github.com/lauzingaretti/DeepAFS

activation function. Finally, as usual, in any convolutional
architecture, a max-pooling layer shrinks the output size
and achieves a smoother representation, summarizing adja-
cent neuron outputs by computing their maximum (see
accompanying GitHub).

The decoded images from an AE architecture are less
noisy than the original ones, making it easier to detect
repeatable/consistent color patterns. Our approach consists
in taking five colors as reference: a class for the back-
ground (black) and four classes for the internal fruit color
patterns, including calyx. The four “reference classes” were
“orange-like” (198, 99, 35, in RGB coordinates), “quasired”
(184, 46, 8), “pale” (194, 144, 78), and “green” (76, 75, 20)
for sepals. We then perform a k-means clustering with k
=4 after removing the background, and we assigned each
cluster to the nearest reference color using the Euclidean
distance between the average color of each cluster in the
sample and the reference coordinates. As a result of this
step, the surface of each of 1900 strawberry images is split
into four categories of colors.

2.5. Superpixel Algorithm to Remove the Calyx. Some of the
fruit pictures contain sepals that interfere with fruit shape
quantification and need to be removed prior to estimating
shape parameters. For that purpose, we applied the Simple
Linear Interactive Clustering (SLIC) algorithm [44] from
the Python skimage library. SLIC is based on the “superpixel”
concept. Basically, a superpixel is a group of pixels sharing
perceptual and semantic information; e.g., the pixels in a
superpixel are grouped together because of their color or tex-
ture features. The iterative algorithm starts with regularly
spaced K-centers at a given distance, user defined as S, which
are then relocated in the direction of the lowest gradient in a
3 x 3 neighborhood window to avoid being at the edges of the
image. Further, a pixel is assigned to a given cluster if its dis-
tance to the cluster’s center is smaller than the distance to the
other centers in the search area, as determined by S. Finally,
the centers are recalculated by averaging all the pixels belong-
ing to the superpixel. The iterative process ends when the
residual error (distance between previous centers and recom-
puted ones) does not exceed a fixed threshold. SLIC outputs a
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FIGURE 3: Autoencoder architectures: (a) architecture of convolutional autoencoder applied to the internal fruit images; (b) architecture of
convolutional variational autoencoder applied to external fruit. Unlike classical autoencoders, variational autoencoders are generative
process as they learn the parameters of a distribution, instead of the feature representation. The last network was trained using an image
of size 64 x 64, the encoder step consisted on 4 convolutional layers with a kernel size equal to 3, and the linear rectified “ReLU” as
activation function to perform feature extraction (see details in GitHub account). Finally, the convolution output is flattened, and the
mean and sigma parameters are extracted from a dense layer. In the last network, the decoder step starts with a vector sampled from the
latent distribution as input and reconstructs the input by performing deconvolution operations. The last deconvolution uses the sigmoid
as activation function. The loss function is the Kullback-Leibler (KL) divergence, which consists of both a “reconstruction” and a
“regularization” term. The first network is a classical autoencoder, which uses the classical mean squared error (MSE) as loss function.

set of meaningful clusters, splitting the background, the
calyx, and the fruit. Knowing that all our fruits are centered
in the image (the segmentation procedure outlined in
Figure 1 ensured that every image was centered), the super-
pixel containing the central pixel matches with the fruit.

2.6. Univariate Phenotypes: Linear Descriptors. Numerous
object shape descriptors exist in the literature. Particularly
for fruits, a controlled vocabulary was established in Brewer
et al. [20]. Here, we implement a custom script to compute
some standard linear measures: circularity, solidity, shape
aspect [32], ellipse ratio [20], fruit perimeter and area, fruit
width at 25% height, fruit width at 75% height, fruit width
at 50% of height, total height, and maximum width. Circular-
ity is a measure of the degree of roundness of a given object,
defined as the ratio between the area of a given object and the
area of a circle with the same convex perimeter; i.e., a value
near one means a “globe” o “circular” shape. Solidity is the
ratio between the area of the object and the area of the convex
hull of a given shape. Most of the linear descriptors used here
are standard in fruit shape analyses [18, 20, 32, 39, 45].

The external fruit color was measured using the CIELAB
space, where L indicates the luminosity and a and b are the
chromatic coordinates. The variation on the index a indicates
the transition between green to red, where a higher value
means a redder object. Variations in b reflect the change
between yellow and blue colors, i.e., a higher b value refers
to a “bluer” object.

2.7. Generalized Procrustes Analysis (GPA). Shape is usually
defined as all the geometric information that remains
unchanged after filtering out the location, scale, and rotation
effects of a given object [28]. The above shape linear descrip-
tors are standard in the literature but do not provide a whole
shape portrayal. Alternatively to linear descriptors, shape
variations can be described using “pseudolandmarks” [35],
which identify points around the outline of the object. Here,
50 pseudolandmarks were defined as the intersection
between 50 equally spaced conceptual lines starting from
the centroid and the fruit contour (Figure 4(a)). Next, we per-
formed a Procrustes analysis [46]. The Procrustes analysis is
aimed at finding the transformation T such that given two
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FIGURE 4: Summary of main analyses performed. (a) Generalized Procrustes Analysis output: landmarking superimposition for all external
fruit shapes. (b) Standard deviation of each of the 50 landmarks; the dotted line parallel to the x-axis corresponds to the average standard
regression coefficient. Landmarks with a coefficient above the average are the most variable regions. (c) The most variable regions, which
determine the fruit shape, are the tip, the neck, and both sides around the neck. (d) Two extreme Procrustes analysis plots: minimum and
maximum consensus for the fruit shape. (e¢) PCA of all linear shape descriptors; each dot represents a different sample, and the color is
proportional to the predicted proportion of fruit to each category from the clusters obtained by variational autoencoder. (f) Relationship

between the linear shape variables from the PCA.

matrices X, and X,, the product X, T best matches X,. The
Generalized Procrustes Analysis (GPA) is an extension of the
method devised to align many matrices simultaneously [46].
In a morphometric analysis, this is done by averaging the dis-
tance between all the landmarks on a target shape and the cor-
responding points on a reference. The pseudolandmarks of the
samples can then be analyzed as a multivariate object using, for
instance, a principal component analysis (PCA). In addition,
the pseudolandmark variability gives insight on the most
important regions that determine the differences between
shapes. We used the Momocs [47] and geomorph [48] R pack-
ages to run these analyses.

2.8. Elliptical Fourier Descriptors. An alternative approach to
morphometric analysis is elliptical Fourier transformation
[49]. This method describes a closed curve as a sum of sine
and cosine functions of growing frequencies. As its name
suggests, Fourier harmonics are ellipses, and a larger number
of harmonic means that more ellipses are fitted to a given
contour. The second-order harmonic is simply one ellipse
with the values of sine and cosine components for the x-
and y-axis, respectively. As the strawberry fruit is a relatively
simple shape, four harmonics were enough to describe all the
shapes in the database, giving a total of 16 coefficients. A PCA
of the Fourier components can also be employed to quantify
morphometric variability, as in the Procrustes analysis.
Geomorph [48] R package was employed for this purpose.

2.9. Conditional Variational Autoencoders (VAE) to Cluster
Shapes. Fruit shape can also be addressed from a completely
different angle, such as obtaining clusters of shapes to objec-
tively classify fruits in groups of similar morphology [18]. A
standard approach consists of flattening the image and
grouping the raw data, treating each pixel as a feature. Unfor-
tunately, clustering algorithms are not exempt from the
“curse of the dimensionality” problem [50] and they perform
poorly as the number of analyzed dimensions increases, espe-
cially if noise is high.

A natural way to solve the aforementioned issue is to
apply a dimension reduction technique before clustering.
Although the classical autoencoders seem to be a good
option, as shown above, AEs were conceived to perform a
nonlinear and not isometric dimensionality reduction, and
thus, they do not preserve the geometrical properties of the
original space [51]. Unlike traditional autoencoders, varia-
tional autoencoders (VAEs) [52-54] preserve distances and,
importantly, are generative models (Figure 3(b)). The main
difference between AE and VAE is that the latter encodes
the input as a distribution over a latent space. Basically, given
an input x, VAE creates a latent distribution p(z | x) and the
input reconstruction d(z) is obtained after sampling z from
the latent representation z ~ p(z | x). The VAE does not only
force the latent space to be continuous; it can also generate
meaningful information, even with images that it has never
seen before.
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The key aspect in VAE training lies in the loss function,
which includes a “reconstruction” and a “regularization”
term. The former is the usual loss or the joint log-
likelihood between the true and the VAE output, whereas
the second is the entropy corresponding to the Kullback-
Leibler divergence [42] between the latent distribution
N(u,,0,) and the standard normal distribution N(0, 1).
Without incorporating a regularization, the VAE behaves
as AE, where the latent space is neither complete nor
continuous. Regularization forces the latent distribution
to be close to the normal standard, generating a contin-
uous space of low variance centered in the origin, which
is suitable for data clustering and generation [42].

Here, we run standard k-means clustering of the latent
space, with k varying between 2 and 9 groups. We chose a
maximum k = 9 given that up to nine strawberry shapes have
been proposed in the literature, in particular in the Japanese
market [55]. We assessed the cluster robustness using the sil-
houette index [56]. This index determines how well each
object fits into its cluster, taking into account intra- and
between-class variations. The index ranges between -1 and
1, and a value close to 1 means that the cluster is compact
and homogeneous. Importantly, the combination of VAE
and clustering also allows us to use conditional VAE to gen-
erate the expected fruit pertaining to a specific group.

2.10. Genetic Parameter Inference. Genetic parameters deter-
mine how successful artificial selection will be and are there-
fore a critical parameter of any plant breeding scheme.
Heritability (k%) is the proportion of phenotypic variance
explained by the genetic variation [57]. To estimate h*, the
degree of resemblance between relatives using the pedigree
was used (see Supp Table 2). Take linear model

y=p+a+d+s, (1)

where y represents the phenotype vector, averaged for each
genotype; u is the intercept; a~N(0,Ac?),d ~ N(0,Dd?),
and e~ N(0,Eo?) are the additive effects and dominance
effects; and €~N(0,I0?) is the residual component,
respectively; A={a;} and D={d;} are the additive and
dominance covariance matrices, respectively. Both A and D
can be computed recursively from the pedigree [58]. In the
presence of marker information, A and D can be computed as
specified in [59, 60] and implemented in [61] but statistical
inference is otherwise identical. Posterior distributions of the
genetic parameters were obtained using Reproducing Kernel
Hilbert Space (RKHS) regression with the BGLR package
[62]. The additive and dominance variance fractions were

2 ~2
: 2222 2222
estimated as h, =s/(s; +s;+s;)and h;=s3/(s; +s;+57),
where s? is the mean posterior estimate of o?.

3. Results

3.1. Shape Descriptors. Shape linear descriptors, pseudoland-
marks, and elliptical Fourier transforms for fruit shape were
computed for the 1920 external images output from pipeline
in Figure 1 and Algorithm S1. Figure 4(d) shows the mini-

mum and maximum consensus for shape superimposition,
suggesting that shapes vary between a “globose-like” to an
“elongated-like” form in these samples. The standard devia-
tion of the first PCA from GPA coordinates (Supp Fig. 1)
of the tip, neck, and both sides around the neck is above
the mean (Figure 4(c)). This suggests that these regions are
responsible for the main shape variations in strawberry, in
agreement with Feldmann et al. [18]. Supp Fig. 1 shows the
fruit shape variations from the Procrustes principal compo-
nent analysis (Proc-PCA). The first principal component
describes the variations between “elongated”- to “globose”-
like. Observations with a negative score on that component
correspond to elongated fruits, while those who have positive
scores are “globose”-like fruits. A permutation-based Pro-
crustes analysis of variance was conducted to assess the effect
of the crosses on the fruit shape. The p value obtained after
100 permutations shows a significant effect of the lines, i.e.,
genotypes, in the fruit shape (p <0.01), suggesting that the
shape is heritable (Supp Table 3).

We also set a fourth-order elliptical Fourier to describe
the main strawberry shape variations (see Supp Figs. 2
and 3). As in the Procrustes analysis, variations in the first
principal component of the elliptical analysis show that
the strawberry shapes vary between “globose-like” to
“elongated-like” (see a few examples in Supp Fig. 7). Sim-
ilarly, the first component from elliptical PCA can also be
used as a “morphological” descriptor. A k-means cluster-
ing using the two first PCA components of Fourier trans-
form similarly detects the two previously defined groups of
shapes when setting k=2 (Supp Fig. 4).

Alternatively, one can directly identify the number of
different shapes from a collection of images. We used a
VAE (Figure 3(b)) to automatically discover the optimal
number of shapes in our database, which again was k=2
(Supp Fig. 5 and 6). About 35% of the strawberries belong
to the “globose-like” shape, whereas the remaining fruits
were classified as “elongated-like” (Figures 5(a) and 5(b)).

Figure 4(e) shows a PCA on the linear descriptors, where
the color of each sample is proportional to the predicted clus-
ter probability. A dark color corresponds to a fully elongated
shape, and a light blue, to a fully round fruit. Note that shape
gradient is mainly observed along the second principal
component. Interestingly, the most influential variables in
this component are the fruit ratio between main and
minor ellipse axis, the circularity, and solidity coefficients
(Figure 4(f)). All of these are shape-related variables. It
is not surprising that solidity and circularity are highly
correlated, since the convex hull area increases when a shape
digresses from a circle (circularity), and solidity approaches
zero. The area, perimeter, and height are quasi-independent
of the aforementioned descriptors and are not related with
the shape clusters.

3.2. Color Descriptors. For the external side color in our data-
set, the L channel ranged between 7.01 and 118.30, mean of
75.54; the b channel ranged between 127.9 and 184.8, mean
value of 167.1; and the a channel had a mean of 175.4, rang-
ing between 128.8 and 192.6.
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FIGURE 5: Images generated using the variational autoencoder combined with k-means in the latent space with k = 2: (a) images from the

“elongated-like” cluster; (b) images from the “globose-like” cluster.
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FI1GURE 6: Estimated percentage of each of the three reference colors in four picked strawberries.

Estimating the color of the internal fruit is more challeng-
ing than that of external parts, as it fluctuates in a wider range
of patterns. Figure 6 shows the estimated percentages of each
reference color for four chosen strawberries. Note that the
percentage of “quasired” is zero and most of the fruit is com-
puted as “pale” (~95%) for the first two, whitish fruits. Two
colors, “quasired” and “orange-like,” predominate in the
third fruit. Finally, the last fruit is almost red, as can be veri-
fied from the estimated quasired value (99%).

3.3. Genetic Parameter Estimation. Figure 7 shows the
Bayesian estimates of heritability for all automatically
extracted traits. We used the pedigree information to com-
pute the additive and dominance relationship matrices, since
we did not have genotypes. Like many polyploid species,
strawberry is clonally propagated [63]. Inferring the domi-
nance component in these cases is critical, as clonal propaga-
tion allows a straightforward utilization of gene interaction
[64]. Interestingly, we found that dominance variance was
higher than the additive component for most of the traits.

The sum of both components Ez + ﬁz ranged between 0.4
and 0.6, indicating that the traits are clearly heritable. The
ellipse ratio and the ratio between height and width were the
most heritable characters, exhibiting an important additive
component. Elliptical Fourier components, as well the per-

centage of fruits of each of both categories obtained from
VAE, also have a high heritability, for both additive and dom-
inance components. Regarding the internal color, we find that
the pale color has an important dominance component.

4. Discussion

Over the last decades, plant and animal breeding programs
have benefited from the development and cost reduction
on genomic technologies [65, 66]. Breeding nevertheless
depends of both genotype and phenotype, and our ability of
characterizing the latter is much more limited compared to
the former [9, 10]. In fact, one of the biggest challenges of
“Precision Agriculture” is to transform large-scale datasets
collected with sensors into phenotypic measurements that
can be used for genetic improvement.

Consumer attitudes are increasingly shaping agricultural
practices. In the case of fruits, consumer preferences are
based primarily on fruit appearance. However, measuring
this trait is not straightforward, as it is a complex mixture
of shape and color patterns. A crucial aspect for improving
appearance is then to characterize the color and shape of
the fruits in an inexpensive and fast way. In this paper,
we deliver a fully automatized pipeline that analyzes fruit
appearance as complex multivariate data. While this is not
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FiGuRrk 7: Estimation of additive (h2a, in pink) and dominance (h2d, in green) variance fractions for measured traits. Additive and dominance

effects were calculated as indicated in Genetic Parameter Estimation.

the first study characterizing fruit shape variations, our pro-
cedure is quite more automatized than their predecessors as
it requires minimal human intervention [18, 20, 40]. It also
incorporates new features such as the use of variational auto-
encoders (VAE) to automatically detect the most likely num-
ber of underlying shapes or to cluster the internal color.
The pipeline presented here or previous efforts to autom-
atize fruit morphology measurement by Feldmann et al. [18]

are important steps to increase agriculture efficiency. They
are by no means sufficient, and additional developments are
warranted. A first limitation is that algorithms need to be
trained in the specific dataset that will be used in production
and can sometimes be difficult to generalize to different
scenarios. A second limitation concerns the phenotypes
measured. For instance, uniformity of shape and lack of
blemishes (like depressions or creases) significantly impact
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the value of the product but were not studied here. Unifor-
mity of fruits can be easily quantified, e.g., measuring the
dispersion along landmarks (Figure 4(a)), whereas irregular-
ities in color that may mean fruit damage can be more chal-
lenging. In the lab, as done here, perhaps, a suitable color
clustering to associate color patterns with fruit damages
could be envisaged. To be really useful, however, fruit dam-
ages should be evaluated once the product has been pack-
aged, prior or after distribution, which would need
distinct code from that employed here. The number of
seeds is also important economically, but we found that
a very high resolution is needed to quantify them. Finally,
3D approaches have also been evaluated in fruits, includ-
ing strawberry [67, 68]. Three-D imaging is far more
demanding in terms of sample collection and computa-
tionally than 2D [69, 70]. This hampers using 3D technol-
ogies as massively as 2D, although 3D has a number of
advantages, mainly a far more realistic and comprehensive
fruit representation. For instance, Li et al. [71] utilize 3D
imaging to assess fruit uniformity and show that it can
be characterized by combining up to six linear parameters.

Our algorithm requires images being taken on a homoge-
neous black or white surface, and field images are not
allowed. To compare the shapes and colors, all shots must
be taken in the same conditions, using the same digital cam-
era placed at the same height and setting the same parame-
ters: focal length, manual aperture, exposure time, and
lighting. Scanned images are also allowed but the same scan-
ning conditions must be followed in all images.

Although 2D digital images are among the easiest pheno-
types to collect, analyzing them can be challenging, partly
because object boundaries must be determined, a process
known as feature extraction. Numerous classical [41, 44, 72]
and deep learning approaches [73, 74] have been developed
in computer vision and image processing to meet this objec-
tive. Here, we combined some of these methods to automati-
cally segment fruit snapshots and read the fruit label. The
main approach we used is not new, as it is based on an algo-
rithm developed in the late seventies [41]. However, we resort
to novel techniques in order to remove undesirable image
noise [75], and we characterize color pattern or classify fruits
through a variational autoencoder (Figure 3) [42].

In this work, we characterize shape and color variations
using several complementary methods, from naive linear
descriptors to multivariate and deep learning techniques. It
is important to point out that results from all approaches
are consistent and suggest that the fruits in our database
can be classified into two groups, “globose-like” and
“elongated-like” (Supp Figs. 5 and 6). We determine that
the most variable regions are the neck, neck sides, and the
tip of the fruit (Figures 4(b) and 4(c)). The “shape” linear
descriptor, i.e., the ratio between fruit shape and height, is a
good morphological descriptor (Figures 4(e) and 4(f)) and
is as discriminative as more complex multivariate character-
izations. An ANOVA on the Procrustes coordinates shows
that genotype is significant (p value < 0.01, Supp Tab 2),
another indirect indication that shape is heritable.

Shapes can be classified using standard clustering tech-
niques with the number of clusters k previously specified, as
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shown by Feldmann et al. in strawberry [18]. Our results
are in agreement with these authors’ in that we also find that
shape is heritable and that a few components may be needed
to classify shapes (Figure 4(f)). In addition to that approach,
here, we propose a completely unsupervised manner based
on variational autoencoders (Figure 3). The advantage of this
analysis is that shape discovery not only can be automatized
but also is capable of generating shapes not seen before. Pre-
dicting shapes and appearance of new genotypes can be a
powerful tool to design new crosses, as the breeder can eval-
uate not only the average shape but also their variability in
morphology. To our knowledge, VAEs have not been utilized
for these purposes yet.

Here, we have explored multiple methods to describe
fruit morphology. Although somewhat redundant, each met-
ric has its own advantages and limitations. For instance, pre-
vious works (e.g., [18, 20]) show that the classical linear
descriptor defined as the ratio between height and width is
an accurate way to describe fruit shape variations in fruits
like strawberries. The advantage of using this method lies in
the principle of parsimony; i.e., it is the simplest way to char-
acterize a shape. Albeit its simplicity, this measure is not
complete enough to describe the many variations that can
occur, since many vegetables and crops, like tomatoes,
melons, cucurbits, and even strawberries, exhibit enormous
morphological variations [30]. In these scenarios, multivari-
ate descriptors (like Fourier and Generalized Procrustes)
are more suitable for the analysis. In turn and as mentioned
above, generative methods (like deep variational autoenco-
ders) can describe variation, with the potential to generate
new fruit genotypes in silico, which may be useful for apply-
ing new breeding strategies. It is important to note that these
methods can also be applied to leaves, flowers, and roots,
which may have an even greater diversity of shapes compared
to fruits. Therefore, having different complementary analyses
available offers an important advantage to better understand
the complexity of shape.

Describing internal color patterns is challenging, mainly
because color is a quantitative multichannel character. We
addressed this problem by defining three reference colors
named as “quasired,” “orange-like,” and “pale.” We then
automatically determined the percentage of color corre-
sponding to each of these reference colors for each fruit using
an autoencoder for fruit denoising and a k-means for seg-
mentation. The algorithm calculates the Euclidean distance
between the three RGB coordinates obtained by means of
clustering to the target color coordinates and classifies the
cluster as belonging to one of the three targets whose distance
is minimal. The color patterns are satisfactorily dissected, as
can be seen in some picked images from the database
(Figure 6).

The phenotype results from a complex interaction
between the genotype and environmental factors. Portraying
the phenotypes would not be worthwhile for breeding if the
desirable characters could not be transmitted to the progeny.
Thus, quantifying the heritability of all of these traits is cru-
cial. Typically, genetic variance is decomposed in additive
and nonadditive effects [76]. Clonally propagated species like
strawberry allows direct utilization of dominance and
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epistatic interaction. We used Bayesian modeling to estimate
both additive and dominance effects. As can be observed in
Figure 7 and Supp. Table 4, most traits are moderately
heritable, and a high degree of variance is explained by the
dominance component. In this scenario, prediction accuracy
in genomic selection could possibly increase by including
dominance in the model [63].

Nevertheless, data are from a single sampling season,
making it not possible to estimate the variance caused by
genotype x environment (G X E). Therefore, heritabilities
reported are likely overestimated. Further, the pedigree uti-
lized considered only parents and offspring, while parents
themselves are related, which was ignored except in a subset
of parents. The effect in this case should be smaller than that
of G x E and should affect the variance of the estimates rather
than bias, since relationships decrease quadratically with
generation, and most information is contained in closest
relatives [77].

We estimated heritabilities using pedigree information,
but a similar study could be carried out if genetic markers
were available. This would have the extra benefit of allowing
to perform genome-wide association studies (GWAS) and to
implement genomic selection [63, 76]. It is straightforward to
implement these features in our pipeline. Association studies
in humans, apple, or tomato have revealed genes or markers
associated with human craniofacial shape [34, 78, 79], leaf
variation [80], and tomato morphology [29]. To the best of
our knowledge, there is not a similar study in strawberry
and there is still a long way to go to fully unravel the genetic
basis of strawberry shape [81].

5. Conclusion

There is a need to develop analysis pipelines for plant high-
throughput phenotyping, suitable to automate processes that
are often subjective and time-consuming. Our workflow
establishes a proof of concept in strawberry morphometrics,
which can be transferred to other visual phenotypes and
fruits with relatively minor modifications. We developed a
python-based pipeline (https://github.com/lauzingaretti/
DeepAFS/blob/main/main.ipynb) that shows how to apply
our methodology to other fruits like apples, tomatoes, citrus,
and prunus. This code is able to automatically read the fruit
image, to segment it, and to compute some linear and color
descriptors. This code also allows to save the segmented
images into a predefined folder, as well as the fruit outline
reference points used for posterior multivariate comparison.
Overall, our results show that, although fruit shape is made
up of a complex set of traits, it can be quickly and automati-
cally evaluated and is moderately heritable (Figures 1, 2,
and 7). Future improvements are still needed as, e.g.,
image segmentation is not always simple in field condi-
tions and many additional phenotypes are of commercial
interest (e.g., uniformity, blemishes). Future improvements
should also address additional technological developments
such as spectral and MIR images [17] and 3D imaging
[71]. Finally, a word of caution is that the user should
be aware that artificial intelligence tools need thorough
training in the specific conditions on which they are going
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to be employed and that optimizing algorithms may not
be that simple.

Data Availability

Code is available at https://github.com/lauzingaretti/Deep AFS.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

LMZ, AM, and MPE conceived the research. AM provided
data. LMZ developed methods and code. LMZ and MPE
wrote the manuscript with help from AM.

Acknowledgments

The authors would like to thank Planasa for providing the
strawberry fruits under the Planasa-IRTA collaboration
contract, headed by AM. LMZ was supported by a PhD grant
from the Ministry of Economy and Science (MINECO,
Spain). Work was funded by the MINECO grants
AGL2016-78709-R and PID2019-108829RB-I00 to MPE
and by the CERCA Programme/Generalitat de Catalunya.
We acknowledge the financial support from the Spanish
Ministry of Science and Innovation-State Research Agency
(AEI), through the “Severo Ochoa Programme for Centres
of Excellence in R&D” SEV-2015-0533 and CEX2019-
000902-S.

Supplementary Materials

Algorithm 1: create a segmented fruit database from raw
data. Supp Table 1: scheme of the crosses used in the experi-
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