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1 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain, 2 Centre de Recerca

Matemàtica, Cerdanyola del Vallès, Spain, 3 Departament de Matemàtiques, Universitat Autònoma de

Barcelona, Cerdanyola del Vallès, Spain, 4 Departament de Matemàtiques, EPSEB, Universitat Politècnica

de Catalunya, Barcelona, Spain, 5 Institut de Matemàtiques de la UPC-BarcelonaTech (IMTech), Universitat

Politècnica de Catalunya, Barcelona, Spain, 6 Program Against Cancer Therapeutic Resistance (ProCURE),

Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain, 7 Girona Biomedical Research

Institute, Salt, Girona, Spain

* talarcon@crm.cat

Abstract

Tumour cell heterogeneity is a major barrier for efficient design of targeted anti-cancer ther-

apies. A diverse distribution of phenotypically distinct tumour-cell subpopulations prior to

drug treatment predisposes to non-uniform responses, leading to the elimination of sensitive

cancer cells whilst leaving resistant subpopulations unharmed. Few strategies have been

proposed for quantifying the variability associated to individual cancer-cell heterogeneity

and minimizing its undesirable impact on clinical outcomes. Here, we report a computational

approach that allows the rational design of combinatorial therapies involving epigenetic

drugs against chromatin modifiers. We have formulated a stochastic model of a bivalent

transcription factor that allows us to characterise three different qualitative behaviours,

namely: bistable, high- and low-gene expression. Comparison between analytical results

and experimental data determined that the so-called bistable and high-gene expression

behaviours can be identified with undifferentiated and differentiated cell types, respectively.

Since undifferentiated cells with an aberrant self-renewing potential might exhibit a cancer/

metastasis-initiating phenotype, we analysed the efficiency of combining epigenetic drugs

against the background of heterogeneity within the bistable sub-ensemble. Whereas single-

targeted approaches mostly failed to circumvent the therapeutic problems represented by

tumour heterogeneity, combinatorial strategies fared much better. Specifically, the more

successful combinations were predicted to involve modulators of the histone H3K4 and

H3K27 demethylases KDM5 and KDM6A/UTX. Those strategies involving the H3K4 and

H3K27 methyltransferases MLL2 and EZH2, however, were predicted to be less effective.

Our theoretical framework provides a coherent basis for the development of an in silico plat-

form capable of identifying the epigenetic drugs combinations best-suited to therapeutically

manage non-uniform responses of heterogenous cancer cell populations.
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Author summary

Heterogeneity in cancer cell populations is one of the main engines of resistance to tar-

geted therapies, as it induces nonuniform responses within the population that clears the

sensitive subpopulation, whilst leaving unaffected the non-responsive cells. Although this

is a well-known fact, few successful approaches have been proposed aimed at both quanti-

fying the variability associated to cell heterogeneity, and characterising strategies that cir-

cumvent its drug-resistance inducing effects. Here we present a computational approach

that addresses these issues in the particular context of targeting epigenetic regulators (spe-

cifically, chromatin modifiers), which have been proposed as therapeutic targets in several

types of cancer and also in ageing-related diseases. Our model predicts that the more suc-

cessful combinations involve modulators of demethylase activity (specifically, KDM5/6

and UTX). By contrast, strategies involving EZH2 activity are predicted to be less effective.

Our results support the use of our framework as a platform for in silico drug trials, as it

accounts for non-homogeneous response of cell populations to drugs as well as identifying

which subpopulations are more likely to respond to specific strategies.

Introduction

Heterogeneity is a primary cause of de novo and acquired resistance to targeted treatments in

cancer therapeutics [1–3]. There is ample evidence of genetic diversity among cancer cells

both within and across tumours [4–6], with genomic instability being the main engine of het-

erogeneity [7]. However, it is now apparent that genetic variability alone does not account for

the whole variation in responses to targeted anti-cancer drugs [8, 9]. Non-genetic heterogene-

ity has two broad sources, epigenetic and stochastic, the latter being due to intrinsic factors

such as noise in gene expression [10–13] and asymmetric cell division [14, 15]. These sources

of heterogeneity can produce phenotype diversity even in genetically identical cells [8, 9, 16].

Not surprisingly, the analysis of the consequences of non-genetic cell-to-cell variability in the

cellular response to drugs and its potential impact for the treatment of human diseases includ-

ing cancer has become a crucial issue to understanding drug resistance phenomena and devel-

oping new targeted agents [1, 3, 17].

Beyond its well-documented role in development [18–20], bivalent chromatin is an emerg-

ing epigenetic trait of cancer that has been identified as a druggable therapeutic target [19, 21].

Genomic studies have found that there exists significant overlap between bivalent domains in

pluripotent stem cells and regions in cancer exhibiting abnormal patterns of methylation,

which pinpoints bivalency as a promising marker of tumourigenesis. Furthermore, different

bivalent chromatin regulators have been identified as targets for cancer therapeutics [22–24].

An outstanding example of such regulator is EZH2 (a histone methyl transferase which is the

catalytically active component of the PRC2 complex), which has been found to be mutated or

overexpressed in a number of cancers [23]. Specifically, somatic EZH2 mutations have a major

role in promoting lymphoid transformation in germinal-center leukemias [21]. Another fam-

ily of epigenetic regulators that has emerged as a potential target are the so-called lysine

demethylases (KDMs), whose expression has been found to be dysregulated in several types of

neoplasms [22, 24]. Flavahan et al. [25] have recently proposed bivalent chromatin regulators

as key factors in epigenetic plasticity, i.e. the epigenetically-driven alteration of the stability of

cellular states (phenotypes). Variations in the activity of certain epigenetic enzymes such as

EZH2 can lead to repressive states, where the epigenetic barriers are raised resulting in cells

locked in a certain state, regardless of the presence of signalling cues instructing them to exit
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such states. By contrast, such alterations can also produce permissive states in which the epige-

netic barriers are lowered so that cellular states change by the mere presence of random noise.

The latter states often lead to pathological plasticity and cell reprogramming [25–27].

The so-called Waddington or epigenetic landscape, a conceptual framework allowing the

integration of both genetic and non-genetic variability, was proposed over seven decades ago

[28]. In analogy to the potential energy landscape of physical systems, Waddington put for-

ward a representation of a cellular state in the form of an effective potential landscape where

the local minima correspond to cellular phenotypes. Phenotypic switch transitions occur when

cells transit to other minima by jumping over the barriers separating adjacent basins. Such

transitions are driven by intrinsic or extrinsic fluctuations [29, 30]. Noteworthy, the topogra-

phy of such landscapes depends on a complex set of biochemical interactions and, in particu-

lar, on the values of the corresponding set of rate constants [17, 31–34]. These constants

strongly depend on protein structure (e.g. the accessibility of a binding domain), which is

encoded within the DNA [32]. Thus, an epigenetic landscape emerges from a particular geno-

type [17], and therefore can be interpreted as a representation of the genotype-phenotype map

[35–40]. Beyond their dependence on DNA sequence, in the case of biochemical reactions

involving enzymatic catalysis, the associated rate constants depend also on the concentration

of metabolic cofactors [33, 34], which may differ among cells thus adding a further source of

cell-to-cell heterogeneity.

In order to shed some light on the role of bivalent chromatin as a therapeutic target, we pro-

pose a mathematical model of a simple gene regulatory circuit with a bivalent promoter (see

Fig 1a and 1b). Specifically, our model addresses mutual nonlinear feedbacks between marked

nucleosomes and transcription factors (TFs), which drive not only the rates of both addition of

new marks and TF synthesis [41–45], but also the heterogeneity of cellular populations [17, 33,

34, 46, 47].

The determination of epigenetic regulatory mechanisms has triggered an interest in devel-

oping mathematical models regarding both epigenetic regulation (ER) of gene expression [27,

33, 34, 41–43, 45, 48, 49, 52, 53] and epigenetic memory [48, 49, 52, 54–58]. Specifically, Snep-

pen et al. [41] were the first to propose a computational model to address the coupling between

transcription factor and epigenetic regulation and how it produces ultrasensitive behaviour,

but they did not consider bivalent chromatin. Such a coupling has been further studied in the

context of bivalent chromatin [42, 43, 45]. Although these works, similarly to the model pre-

sented here, describe bistability in gene regulatory systems with TF self-regulation, it should be

noted that they consider a self-activating TF with high intrinsic cooperativity (Hill coefficient

n = 3) [42, 43]. Moreover, noise-induced phenomena in gene regulatory networks have been

extensively studied [12, 59–63]. In particular, Biancalani and Assaf [12] have studied noise-

induced bistability in a regulatory network (toggle switch) of monomeric, self-activating,

mutually-inhibiting genes, but they did not consider ER.

Our model (whose main features are summarised in Fig 1) proves that bivalent chromatin

regulation can induce complex behaviour even in the simplest circuits of gene regulation,

which would not exhibit such features in the absence of bivalent regulation. We consider a

model of a self-regulatory, monomeric TF with a bivalent promoter (see Fig 1a), characterised

by a number of both positive and negative feedbacks identified in [42, 43] (and schematically

illustrated in Fig 1b). The resulting model, in spite its apparent simplicity, exhibits consider-

able complexity regarding its nonlinearities and multiplicity of time scales. In order to make

analytical progress, we exploit the latter and, by means of an asymptotic model reduction and

singular perturbation analysis, we reduce the model to a one variable stochastic system (Fig

1c). By doing so, we have been able to determine, both numerically and analytically, that the
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system exhibits three different behaviours: monostability, bistability, and noise-induced bist-

ability [64] (Fig 2a). Specifically, we show that the activity of the epigenetic enzymes directly

controls the effective cooperativity of the gene regulatory circuit, which impinges on its ability

to produce bistable behaviour (Fig 2b).

Our analysis of a bivalent TF is based on the explicit calculation of the Waddington land-

scape for the system under consideration, which allows us to exhaustively classify the set of

possible landscape topographies. We account for the effects of heterogeneous behaviour in the

epigenetic-regulatory system [46, 47] by means of an ensemble approach previously developed

[33, 34], in which we take advantage of the direct connection between landscape topography

and the rate constants that characterise the underlying biochemical networks from which it

emerges. After validating our ensemble approach against quantitative experimental data from

Refs. [20, 21, 65], we finally address the issue of what epigenetic strategies are more effective

regarding their ability to overcome heterogeneity. We conclude that those involving tackling

the activity of demethylases are more efficient than those that targeting the activity of

methyltransferases.

Fig 1. Summary of the model formulation. Panel (a) shows a schematic representation of the epigenetic-regulatory modifications considered in our

model (i.e. trimethylation of H3K4 and H3K27), which affect promoter/enhancer regions. We focus on a transcription factor (TF) which is self-

regulatory and monomeric. This panel also shows the different states of bivalent chromatin (open (closed) if H3K4me3 (H3K27me3) predominates,

poised if both marks are present) and how they affect TF expression. Diagram (b) depicts a scheme showing the feedbacks between ER modifications

and TF (full details given in Section S.1.1 in S1 Text). Plot (c) displays a schematic representation of the model reduction approximation, based on the

presence of multiple time scales. Such a separation of time scales allows for a hierarchical elimination of the faster variables (full details given in Section

S.1.2 in S1 Text). Here “QSS” stands for quasi-steady state; and “PDF” for probability density function.

https://doi.org/10.1371/journal.pcbi.1008408.g001
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Materials and methods

Model formulation

Here, we focus on an epigenetic regulation (ER) model that consists of four enzymatic reac-

tions, which account for the addition and removal of a 3-methyl, to be referred as “me3”, epi-

genetic mark to two specific lysine residues in the tail of the H3 histone (H3K4 and H3K27,

see Fig 1a). Each of these enzymatic reactions is modelled by means of the well-known Michae-

lis-Menten (MM) model of enzymatic catalysis (see [66] and S1 Text for details specific to our

model). We apply this model to address how specific enzymes catalyse the addition of the me3

mark to each residue (MLL2 to H3K4 and EZH2 to H3K27 [25]), and the removal of me3

from modified residues (specifically, KDM2/KMD5 from H3K4me3 and KDM6 from

H3K27me3 [67, 68]). Beyond the regular mechanisms of enzyme kinetics, epigenetic regula-

tion exhibits several feedback mechanisms that need to be taken into account [41, 54]. Modi-

fied residues enhance recruitment of epigenetic enzymes, providing a positive feedback

mechanism where residue modification increases the rate of further me3 addition (see Fig 1b).

Following previous models of ER [33, 34], we account for such positive feedbacks by taking

the rate constants associated to each of the me3-addition MM reactions to change linearly with

the number of corresponding modified residues (see Table A in S1 Text). Furthermore,

recruitment of epigenetic enzymes to H3K4 is also enhanced by the presence of transcription

factors [41–43] (see Fig 1b). Such positive feedback is also accounted for by assuming the rate

constants of the MM reaction associated with H3K4!H3K4me3 to change linearly with the

number of TF molecules. By contrast, TF presence hinders recruitment of me3-addition to

H3K27 [42, 43] (see Fig 1b). To take into account this negative feedback, we have assumed that

the rate corresponding to the back reaction of the MM reaction associated to

H3K27!H3K27me3 depends linearly on the number of TF molecules (see Table A in S1

Text).

Fig 2. Summary of the model results. Plots in (a) show results of direct simulation of the process (carried out by means of the Gillespie algorithm [50,

51]). These simulations illustrate the four type of behaviours afforded by the stochastic model (from top to bottom): inactive TF, bistability, noise-

induced bistability, and active TF. Plots in (b) illustrate one of our main results, namely, that the TF exhibits emergent, non-linear behaviour (e.g.

bistability) which could not be observed in the absence of bivalent chromatin. Specifically, we show that such behaviour is associated to the tunability of

the effective cooperativity, neff, of the TF regulatory circuit: by altering the activity of the chromatin-modifying enzymes we can control the quantity neff.
In the particular case shown in the figure, by varying K11 (which corresponds to the KM of the KDM that removes H3K27me3), the effective

cooperativity changes from neff> 1 (upper plot) to neff� 1 (lower plot). The response curve, R(x), and the neff of the TF are defined by

RðxÞ ¼ r 1þ C1

q�AðxÞx
lxq�I ðxÞþq

�
AðxÞx

� �
¼ r 1þ Ceff

xneff

leffþx
neff

� �
. Here q�AðxÞ and q�I ðxÞ are shown in green and orange lines, respectively.

https://doi.org/10.1371/journal.pcbi.1008408.g002
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Regarding the gene regulatory system, we consider a simple self-regulatory gene (see Fig

1a), i.e. a gene such that its protein stimulates its own expression, modelled by a simple Hill

model (with Hill constant α = 1, since we are considering a monomeric TF) [69] with natural

decay and basal production of the TF molecules. As shown in Fig 1, the feedback between TF

dynamics and ER is accounted for by assuming that the rate of TF binding to the gene’s pro-

moter region is proportional to the number of H3K4me3, whilst the rate TF unbinding is pro-

portional to the number of H3K27me3. A fully detailed account of the model formulation is

provided in Section S.1 in S1 Text.

Asymptotic analysis and model reduction

The model resulting from the previous discussion is rather complicated. In order to make

analytical progress, we exploit the presence of separation of time scales. In particular, we

resort to asymptotic model reduction techniques and singular perturbation analysis (see Fig

1c for a schematic representation). A fully detailed derivation is presented in Section S.1.1 in

S1 Text, which we summarise here. Under the assumptions considered in detail in S1 Text,

we have:

1. A fast dynamics in which the histone-modifying enzymes and associated complexes reach

quasi-equilibrium with the substrates, products, TF, and marks. Also, the binding sites in

the promoter of the gene reach quasi-equilibrium with TFs and ER products.

2. An intermediate dynamics in which epigenetic substrates and products reach quasi-equilib-

rium with TF and marks.

3. A slow dynamics in which the TF evolves in quasi-equilibrium with the fast and intermedi-

ate variables.

We proceed with our analysis in three stages. In the first step, the fast dynamics is studied

under adiabatic conditions with respect to the intermediate and slow variables, i.e. the latter

variables are considered as frozen and the fast variables can be analysed, specifically regarding

their quasi-steady state distribution (QSSD), with the intermediate and slow variables set to

constant. In the second stage, the intermediate variables are studied under adiabatic conditions

with respect to the slow variables and by sampling the fast variables from their fast QSSD. We

consider the usual assumptions regarding separation of time scales and the associated quasi-

steady state (QSS) approximations normally involved in the analysis of MM and Hill systems

(see [66, 69]). The third stage consists of studying the slow variables with the fast and interme-

diate ones in quasi-equilibrium, i.e. sampled from their associated QSSD.

Reduced model: Mean-field limit

We can reduce the dynamics of the whole system to that of three variables: the number of TF

molecules, corresponding to the slow variable x, and the number of H3K4me3 and H3K27me3

residues, corresponding to the intermediate variables pA and pI (all other intermediate vari-

ables can be ignored thanks to conservation laws). All variables are defined in Section S.1.1 in

S1 Text. The mean-field limit is obtained from letting the characteristic scales for the number

of H3K4/H3K27 and TF molecules tend to infinity (see Section S.1.2.1 in S1 Text for a detailed

derivation). In this limit, we keep the notation x for the TF and denote as qA and qI the limit of

the intermediate variables. The model reduction procedure leads to the following system of
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three differential equations (see Eqs. (S.24)-(S.26) in S1 Text):

dx
dt
¼ Bxðx; qA; qIÞ � Dxðx; qA; qIÞ; ð1Þ

�2

dqA
dt
¼ BAðx; qAÞ � DAðx; qAÞ; ð2Þ

�2

dqI
dt
¼ BIðx; qIÞ � DIðx; qIÞ; ð3Þ

where

Bx ¼ r 1þ ðC1 þ C4qIÞ
qAx

lxqI þ qAx

� �

;

BA ¼ LA
ðrA � qAÞðA1 þ qAxÞðA3 þ qAxÞ
ðrA � qAÞðA1 þ qAxÞ þ B2 þ K2qAx

;

and

BI ¼ LI
ðrI � qIÞðA7 þ qIÞðA9 þ qIÞ

ðrI � qIÞðA7 þ qIÞ þ B8 þ ðK8xþ K9ÞqI
:

Also,

Dx ¼ r C2xþ C4qI
qAx

lxqI þ qAx

� �

;DA ¼ LAlA
K6qA

qA þ K5

; and DI ¼ LIlI
K12qI

qI þ K11

:

The QSS concentration of H3K4me3, q�AðxÞ; and of H3K27me3, q�I ðxÞ, are the solutions of
dqA
dt ¼ 0 and

dqI
dt ¼ 0, respectively. Note that, stemming from the assumption that �2 ¼

OS
OT
⪡1,

where OS and OT are characteristic scales for the number of H3K4 and H3K27, and TF mole-

cules, respectively, the resulting reduced system, given by Eqs (1)–(3), still exhibits slow-fast

features (see Section S.1 in S1 Text).

Reduced stochastic model

The effects of intrinsic fluctuations on the mean-field limit can be studied by means of the

reduced stochastic model (see sections S.1.1 and S.1.2.1 in S1 Text for a detailed derivation and

Section S.1.2.2 in S1 Text for the details of the singular perturbation analysis). The reduced sto-

chastic model alse exhibits slow-fast features. The corresponding Master Equation (ME) reads:

@F

@t
¼ Hxðx; @xÞFþ

1

�2

HAðpA; @pAÞ þHIðpI; @pI Þ
� �

F ð4Þ

where the operators Hx, HA, and HI are given by

HxF ¼ OTðExþ
Bxðx; pA; pIÞFðx; pA; pI; tÞ þ Ex�

Dxðx; pA; pIÞFðx; pA; pI; tÞÞ;

HAF ¼ OSðEAþ
BAðx; pAÞFðx; pA; pI; tÞ þ EA�

DAðx; pAÞFðx; pA; pI; tÞÞ;
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and

HIF ¼ OSðEIþ
BIðx; pIÞFðx; pA; pI; tÞ þ EI�

DIðx; pIÞFðx; pA; pI; tÞÞ:

The step operators are defined in the usual manner [70, 71]: Ex�
¼ e�@x � 1,

EA�
¼ e�@pA � 1, and EI�

¼ e�@pI � 1 (the exponential operator is defined in Section S.1.2.2 in

the S1 Text).

In order to proceed forward we expand the PDF F(x, pA, pI, τ) in powers of �2:F ¼

F0 þ �2F1 þOð�2
2
Þ [64, 72]. In Section S.1.2.2 in S1 Text, we show that, at the lowest order, F0

can be written as F0(x,pA,pI,τ) = ϕx(x, τ)ϕA(pA|x)ϕI(pI|x), with ϕA and ϕI such that HA�A ¼ 0

and HI�I ¼ 0. The WKB solution to the latter equations is given by

�J ¼

N J exp � OS

R pJ
0

log
DJðs; xÞ
BJðs; xÞ

� �

ds
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BJðpJ ; xÞDJðpJ ; xÞ

p

with J = A, I. However, as usual with singularly-perturbed problems such as Eq (4), the lowest

order approximation does not provide any information regarding ϕx(x, τ) and we need to

resort to the next order [72, 73]. At steady state (see Section 1.2.2 in S1 Text), by considering

the appropriate solvability conditions, we can show that, to the lowest order,

�xðxÞ ¼ N xe� OTUðx;OT Þ; ð5Þ

where the effective potential, U , is given by:

U ¼ � S þ
log hBxi þ log hDxi

2OT
; S ¼

Z x

0

log
hBxi
hDxi

ds; ð6Þ

where hBxi ¼
R

DBx�A�IdpAdpI ¼ r 1þ ðC1 þ C4q�I ðxÞÞ
q�AðxÞx

lxqI�ðxÞþq�AðxÞx

h i
and

hDxi ¼

Z

D
Dx�A�IdpAdpI ¼ r C2xþ C4q

�

I ðxÞ
q�AðxÞx

lxq�I ðxÞ þ q�AðxÞx

� �

:

A fully detailed derivation of the asymptotic calculation is given in S1 Text, Section S.1.2.

The ensemble approach: Modelling heterogeneity and parameter sensitivity

analysis

Our ensemble approach serves two distinct but not unrelated purposes, namely, to perform a

parameter sensitivity analysis and to model heterogeneity observed in epigenetic regulatory

systems [46, 47]. Regarding the former, given the complexity of our model, we need to con-

sider carefully robustness to variations in parameter values. We consider such issue using an

ensemble approach introduced in [33, 34]. Briefly, we generate an ensemble of parameter sets.

A parameter set is described by means of a vector, θ, defined as (see Table B in S1 Text):

y ¼ ðA1;A3;B2;K2;K5;K6; lA; lx;A7;A9;B8;K8;K9;K11;K12; lIÞ:

Each component of θ is independently generated by sampling from a uniform prior distri-

bution within a certain prescribed range. Randomly generated parameter sets are accepted

only if the qA and qI are monostable (see Section S.1.4 in S1 Text). The sets of parameter values

thus generated are then classified into several sub-ensembles depending on the number of

roots of @xU ¼ 0, i.e. the number of modes of ϕx, and @xS ¼ 0, i.e. the number of mean-field

steady-states. We consider a monostable sub-ensemble composed by those θs such that both
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@xU ¼ 0 and @xS ¼ 0 have only one real, positive root. We split this set of parameters further

by considering a high gene expression (high GE) sub-ensemble if the modal point x� � xTHR;

and a low gene expression (low GE) sub-ensemble x� < xTHR. We consider a Bistable sub-

ensemble composed by those θs such that both equations have three roots. Last, the noise-

induced Bistable sub-ensemble comprises θs such that @xU ¼ 0 has three roots while @xS ¼ 0

has only one root. Representative examples of landscapes associated with systems, i.e. θ,

belonging to each of four sub-ensembles are shown in Fig 3. We then analyse the ensembles in

terms of the comparison of the marginal posterior PDFs for each of the components of θ and

also their correlations. We expect that by discerning which parameters present statistically sig-

nificant differences between sub-ensembles, we can identify which of them are key to produce

the behaviour associated to a particular sub-ensemble [33, 34]. We refer the reader to S1 Text,

Section S.1.4.2, for a full account of the details of the classification procedure and further statis-

tical analysis.

Fig 3. Representative examples of the four sub-ensembles. Plot (a) shows an example of a monostable, low gene expression system, belonging to the

Low GE sub-ensemble. Plots (b) and (c) show examples of systems within the bistable and the noise-induced Bistable sub-ensembles, respectively. Plot

(d) shows an example of a monostable, high gene expression system, belonging to the high GE sub-ensemble. See main text for details. Colour code: Red

lines show S0ðxÞ, blue lines correspond to U 0. Green and orange lines within the insets represent q�I ðxÞ and q�AðxÞ, respectively. Parameter values are

given in Tables F-I of S1 Text.

https://doi.org/10.1371/journal.pcbi.1008408.g003
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In order to characterise phenotypic heterogeneity in a biologically meaningful way, we use

a proxy or estimate for the enzymatic activity of the four chromatin modifiers included in our

model. Specifically, we take that our estimate of the rate of activity of the epigenetic enzymes is

the maximum of the average of the quantities BA, BI, DA, and DI defined above (see Eqs (2)

and (3)). These four quantities correspond to the rates at which me3 marks are added and

removed from the lysine residues and, therefore, they are direct measures of the rates of activ-

ity of the chromatin-modifying enzymes. Our proxy of the enzyme activity involves then aver-

aging BA, BI, DA, and DI with respect to the distribution ϕx (see Eq (6) and then taking the

maximum over q. The mathematical definitions of these estimates are given in S1 Table.

Experimental evidence of heterogeneity in ER systems comes from a number of sources. It

has been directly observed in single-cell CHIP-seq experiments [47]. Other studies have pro-

vided evidence that the de novo reprogramming potential is higher within selected subpopula-

tions of cells and that such pre-existing epigenetic heterogeneity can be tuned to make cells

more responsive to reprogramming stimuli [46]. Furthermore, Beguelin et al. [21] have

reported that the efficiency of drugs that target chromatin regulators, specifically EZH2 inhibi-

tors, is very heterogeneous: their IC50 varies from one cell type to another in two orders of

magnitude (see figure S.1 in the supplementary information of Ref. [21]). In order to mimic, at

least in part, the existing ER heterogeneity within a cell population from a particular tissue, the

generated ensemble of ER systems can be used to identify properties at the population level.

Our approach follows closely that of Ref. [33]. The above procedure provides us with an

ensemble of parameter sets, θ, that are compatible with each of the four behaviours we have

found (Low GE, High GE, bistability, and noise-induced bistability). In order to check whether

the heterogeneity within the ensemble is compatible with existing biological variability, we

compare with quantitative experimental data provided by Beguelin et al. [21].

Results

Validation of the ensemble model

We first validate our approach against qualitative and quantitative results [20, 21, 25, 65, 74].

Fig 4a–4c show summary statistics of the monostable and Bistable sub-ensembles. Specifically,

Fig 4a shows the distribution of modes of ϕx(x), x�, within the monostable sub-ensemble. Note

that this distribution is a distribution of x� as the parameters θ are varied so it is bimodal with

respect to the sub-ensemble. As we can see this distribution is bimodal, which supports the

definition of two monostable sub-ensembles: the low gene expression (Low GE) sub-ensemble

and the high gene expression (High GE) one.

Fig 4b shows a scatter plot of the effective potential barriers, DU0 and DU1, within the Bis-

table sub-ensemble. According to [25], there are several pathological situations that can be

described on the basis of such quantities. Repressive states, associated with higher barriers, and

permissive states, corresponding to lower barriers, appear in response to dysregulation of

chromatin modifiers. Both states are represented in our ensemble by those ER systems which

lay at the tails of Fig 4b (or within the tails of the histogram shown in Fig 4c). Other anomalies

of the epigenetic landscape involve lowering of both barriers which facilitate noise-driven

exploration of different phenotypes. These systems are also represented in our bistable ensem-

ble by those systems located in the lower left corner of Fig 4b, i.e. such that DU0 and DU1 are

both small and of the same order of magnitude.

Beyond qualitative arguments, quantitative validation is possible. Consider the data from

Bernstein et al. [20] regarding the number and relative expression levels of genes with bivalent

marks, H3K4me3-dominated genes, H3K27me3-dominated genes, and unmarked genes

(methylation status). Such data was provided for both embryonic stem cells (ESCs) and several
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Fig 4. Validation of the ensemble model. Plots (a), (b), and (c) show summary statistics regarding the monostable and Bistable sub-ensembles. Plot (a)

shows the distribution of modes, x�, within the monostable sub-ensemble. Plot (b) shows the scatter plot of the effective potential barriers, DU0 and

DU1, within the Bistable sub-ensemble. Plot (c) shows the histogram of the ratio DU1=DU0 within the Bistable sub-ensemble. Panels (d) and (e) show

data regarding statistics of the Bistable, High GE, and Low GE sub-ensembles. Plot (d) displays sub-ensemble averages of the H3K27me3 marks and (e)

shows the boxplots of the TF levels (specifically, we use the modal TF concentration, x� as a proxy) for each of the sub-ensembles. These data are to be

compared with the experimental results from [21]. Plots (f)-(i) show the boxplots of the distributions of activity of the chromatin modifiers for each of
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types of differentiated cells (DCs) (shown in figures 2 and 4 in [20], respectively). Fig 4j–4m

address our results regarding methylation status patterns. Fig 4k–4m show results of the fre-

quency of each methylation status for all three sub-ensembles. The pattern exhibited by the

Bistable sub-ensemble is the same as the ESCs data from Ref. [20] (see figure 2 in Ref. [20]):

the frequency of unmarked, bivalent and H3K4me3-dominated is of the same order, whilst the

frequency of negatively (H3K27me3) marked systems is much lower. High GE sub-ensemble

shows the same pattern as DCs: the frequency of positive marks is much increased with respect

to ESCs, whereas the frequency of bivalent marks is considerably reduced to the same level as

the frequency of negative marks. By contrast, the Low GE pattern is not compatible with any

of the patterns reported by Bernstein et al. [20].

Fig 4n–4p address the comparison with the levels of TF expression. We use the distribution

of modal TF expression, x�, for each methylation status. Fig 4n shows that the patterns of the

Bistable sub-ensemble match the experimental behaviour of ESCs (see figure 4 in Ref. [20]), as

the expression of H3K4me3-marked TFs is between 1 and 2 orders of magnitude larger than

the levels exhibited by bivalent and H3K27me3-marked TFs. We also observe that TF expres-

sion is largely suppressed in bivalent systems, their levels being only slightly larger than that of

H3K27me3-marked TFs. The pattern of TF expression within the High GE expression shown

in Fig 4o fits that of DCs: H3K4me3-marked systems exhibit higher TF expression than that of

H3K27me3-marked and bivalent systems, but the overall levels of expression are much more

uniform than in the case of the Bistable sub-ensemble. The pattern of TF expression of the

Low GE ensemble shown in Fig 4p are not consistent with any of the results of Bernstein et al.
Further validation of the ensemble model can be obtained by comparing to Beguelin et al.

[21], who studied the role of somatic mutations of EZH2 on lymphoid transformation in ger-

minal centre leukemias. They determined that EZH2 mutants, specifically Y641F and Y641N,

lock B cells in an undifferentiated state during the germinal centre reaction. Such undifferenti-

ated state can eventually lead to unchecked cell duplication (by silencing the cell-cycle inhibi-

tor p27) and malignant progression. Beguelin et al. quantified the levels of H3K27me3 in cells

carrying the wild-type (WT) EZH2 and cells carrying the mutants Y641F and Y641N

(Figure 3b in [21]). They also collected quantitative information of the relative levels of expres-

sion of certain differentiation TFs (specifically IRF4, figure S.4 in the supplementary informa-

tion of Ref. [21]). These data can be compared with our ensemble model, as shown in Fig 4d

and 4e.

Fig 4d shows the sub-ensemble average of the number of H3K27me3-marked residues (see

S1 Text, Section S.1.5 for details) for the Bistable, High GE, and Low GE sub-ensembles. The

predicted levels of H3K27me3 in the Bistable sub-ensemble doubles those in the High GE.

This is consistent with the relative increase of H3K27me3 in the Y641F and Y641N mutants

relative to WT (although in absolute numbers, our model prediction is slightly lower than

those measured experimentally, figure 3b in [21]). The Low GE sub-ensemble exhibits a 4-fold

increase in H3K27me3 with respect to the High GE sub-ensemble, which is out of the scale

observed experimentally. Fig 4e shows boxplots of TF expression (specifically, of the modal

level of expression, x�) for each sub-ensemble. Comparing the results for the High GE and

the sub-ensembles (see S1 Table). Finally, plots (j) to (p) report statistics of the Bistable, High GE, and Low GE sub-ensembles regarding their

comparison to quantitative data provided in [20]. Plot (j) shows the empirical cumulative density function (CDF) for the ratio hqI|θix/hqA|θix for each of

the sub-ensembles. Plots (k), (l), and (m) show the proportion of elements of each sub-ensemble with no detectable methylation marks (which we

define as those systems such that hqA|θix< 0.05), dominant K4me3 marks (hqI|θix< 0.8), dominant H3K27me3 marks (hqI|θix/hqA|θix< 5), and

bivalent marks. These are to be compared with data from figure 2 in [20]. Plots (n), (o), and (p) show the modal TF expression, x�, for H3K4me3

marked systems, H3K27me3 marked systems, and bivalent systems for the bistable, High GE, and Low GE sub-ensembles, respectively. These results

are to be compared with figure 4 in [20]. We have used the abbrevations “LGE” and “HGE” for Low GE and High GE, respectively.

https://doi.org/10.1371/journal.pcbi.1008408.g004
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Bistable sub-ensembles, we notice that, consistently with Beguelin et al. (figure S.4 in the sup-

plementary information of [21]), there are between 1 and 2 orders of magnitude of difference,

average TF levels being higher in the High GE.

Finally, Fig 4f–4i show boxplots for activity of the chromatin modifiers (see Eqs (1)–(3) and

S1 Table) for each of the four sub-ensembles. By inspection, whilst there are obvious differ-

ences between the Low GE PDFs and those corresponding to the High GE and the Bistable

sub-ensembles, the difference between the latter ones is much less obvious. Specifically, activity

of EZH2 is higher in the Bistable sub-ensemble than in its High GE counterpart. By contrast,

MLL2 activity is lower in the Bistable sub-ensemble than in the High GE sub-ensemble. These

results are consistent with the roles of EZH2 and MLL2 as poor prognosis factors in several

types of cancers: while elevated activity of EZH2 is a poor prognosis indicator [75–79], impair-

ing of MLL2 activity leads to poorer projected diagnosis [80–82].

Furthermore, quantitative analysis performed for four parameters related to the enzymatic

kinetics of EZH2 (see Eq (3)) for each of the four sub-ensembles (see S1 Text, Section S.1.4 for

full analysis) shows again no obvious differences between the Low GE PDFs and those corre-

sponding to the High GE and the Bistable sub-ensembles. Statistical analysis (see S1 Text)

shows significant differences, but with p-values very close to the significance level. This obser-

vation is consistent with direct in vitro measurements of the Michaelis-Menten constant, KM,

and the catalytic constant, kcat, of the wild-type EZH2 and Y641F and Y641N mutants by [65],

who found that in all variants of the enzyme, the KMs retained similar values within the error

bars (see Fig F in S1 Text).

Taken together, these results validate two essential aspects of our model. First, the ensemble

variability appears to be consistent with the amount of heterogeneity observed in the experi-

ments carried out in [20, 21, 65]. Furthermore, these results allow us to identify the systems

within the Bistable sub-ensemble (and probably also the Noise-Induced Bistable one) with

ESCs/undifferentiated cells, whereas the High GE systems can be identified with differentiated

cell types. The Low GE sub-ensemble exhibits properties which are incompatible with either

type.

Bivalency allows for bistability and tunable cooperativity

Our analysis reveals that our model of a bivalent TF exhibits an array of complex behaviours,

which are inaccessible to the gene regulatory system in the absence of bivalent ER (see [41]),

and give rise to a variety of topographies of the epigenetic landscape, Ueff . Such behaviours are

illustrated in Figs 2a and 3. In particular, besides the expected monostable behaviour (with

both low and high TF expression, Fig 3a and 3d, respectively), Fig 3b shows that the bivalent

TF model exhibits bistability. Such behaviour is associated with effective cooperativity neff> 1

(see caption of Fig 2b), in contrast to the monomeric self-regulating gene with no bivalent ER

(which has neff = 1). By means of a sensitivity analysis, we determine that variation of key

parameters associated with the activity of ER enzymes, specifically, B2, B8, K5 and K11 (see Eqs

(2) and (3), provides us with ability to control neff thus allowing to suppress bistable behaviour,

since variations of neff can drive the system through a saddle-node (s-n) bifurcation, thus

removing pathological equilibria (see Fig 5). Such result is consistent with current experimen-

tal evidence, whereby controlling the activity of the ER enzymes, specifically of EZH2 [21, 83],

has the effect of reducing pathologically-heightened epigenetic barriers and allow for physio-

logical differentiation. Specifically, Fig 5 shows the change of the steady state concentration of

TF as B2 and B8 vary. The s-n bifurcation causes sharp transitions at both the lower and upper

yellow boundaries of Fig 5b, which enclose the region of bistability. The variety of dynamical

behaviours exhibited by our system is depicted by several examples shown in the panels: (b1)
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monostability with TF at ON state (high level of expression); (b2)-(b3) with bistability behav-

iour; and (b4) monostability with the TF at OFF state (low level of expression).

In the case of bistable behaviour, it is interesting to analyse the variation of the basin of

attraction (BA) of the high (ON) and low (OFF) TF concentration steady states as the activity

of the chromatin-modifying enzymes changes. Specifically, for concreteness, we analyse how

the BAs change as B2 and B8 vary (see Fig B in S1 Text), which impinge upon the activity of

Fig 5. Equilibria in the parameter space (B2,B8). Panel (a) shows the equilibrium concentration of the TF (variable x) in the parameter space (B2,B8),

the upper (resp., lower) sheet corresponding to the high (resp., low) level of expression, labelled as ON (resp., OFF) state. Panel (b) displays an enlarged

view within the range contained in the cube in (a), namely 0� B2,B8� 50. The region contained in the central orangish area corresponds to bistability.

(b1-b4) Phase portraits showing the dynamics in the parameter space (x,qA) for the combination of parameters B2,B8 indicated with dashed lines in (b),

computed using � = 0.1. The orange and blue orbits correspond to the dynamics achieving the ON and OFF states, respectively. Note that both (b2) and

(b3) fall into the region of bistability. Panels (c) and (d) show the relative size of the basin of attraction of the OFF equilibrium for parameter sets within

the bistability region: (c) Parameter plane B8 �
~B2, where K11 is set to be 94.155549; (d) Parameter plane K11 �

~B2, where B8 is set to be 30. For the sake

of visualisation, ~B2 stands for a normalization of parameter B2, see (S.34) in Section S.1.3 in the S1 Text Other constants are fixed according to the

parameter set 2 (see Table I in S1 Text).

https://doi.org/10.1371/journal.pcbi.1008408.g005
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MLL2 and EZH2, respectively. Within the bistability region, the probability of reaching either

state is sensitive to parameter variation. In Fig 5c and 5d, we show the results of exploring the

region of bistability within the parametric space (B2,B8,K11) by computing the relative size, Poff,
of the basin of attraction of the OFF state (note that Poff + Pon = 1) using a Monte Carlo proce-

dure. This quantity provides an approximation of the probability that a given combination of

TF molecules and methylated histones evolve towards the OFF state. From Fig 5, we show

that, as we increase the value of any of the three factors (B2, B8 and K11), the system is more

likely to evolve towards an OFF state. This result illustrates that ON-OFF transitions can occur

upon variation of the activity of epigenetic-regulatory enzymes in a deterministic way.

From the mechanistic point of view, a necessary (but not sufficient) condition for bistable

behaviour (neff� 1) is that the QSS mark concentrations, q�AðxÞ and q�I ðxÞ (see Eqs (2) and (3)

and S1 Text), exhibit the X-like pattern we observe in Figs 2b and 3b. When this condition is

satisfied, if x fluctuates below its crossover value, the system enters a regime that favours a con-

tinued decrease in gene expression since the negative marks dominate over the positive ones,

and viceversa, thus inducing ultrasensitive behaviour associated with neff� 1 and bistability.

From this perspective, the mechanism behind the role of the activity of the ER enzymes is

clear: by changing the value of key parameters, we can alter such pattern and induce transi-

tions in the system (s-n bifurcations) from bistable to monostable behaviour (Fig 3a and 3d).

Bivalency causes noise-induced bistability

Besides bistable behaviour, the bivalent TF model also exhibits noise-induced bistability, i.e.

the ability of the system to sustain two stable steady-states only if the system is affected by

noise. An example of this behaviour is shown in Fig 3c, where we show that ϕx(x) is bimodal

for finite system size (OT = 200). Such behaviour is lost for vanishing levels of noise in the sys-

tem (when OT!1). This feature is confirmed by direct Gillespie simulations of the stochas-

tic process described by Eq (4). Results are displayed in Figs 2a and 6, where we present

simulations of the system for different system sizes, which show that, in agreement with our

Fig 6. Noise-induced transition to bistable behaviour. This figure shows stochastic simulation results supporting the analytical prediction that our

system exhibits a noise-induced transition form mono- to bi-stable behaviour. The plot shows how, asO decreases (i.e. the level of noise increases), the

PDF of the system undergoes a transition from mono- to bi-modality.

https://doi.org/10.1371/journal.pcbi.1008408.g006
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analytical approximation, noise-induced bistability ensues when the system size is reduced

below its predicted critical value. Furthermore, we have ascertained that variations in ER

enzyme activity induces noise-induced bistable behaviour. Fig E in S1 Text shows that modifi-

cation of parameters controlling ER enzyme activity (specifically, B2, B8, and K11) remove

mean-field bistability but preserve bimodality of the PDF (i.e. bistable behaviour is noise-

induced). However, noise-induced bistability remains a scarcely robust phenomenon within

the bivalent TF model: the percentage of noise-induced bistable θs within the generated

ensemble is*0.4% (see Table D in S1 Text) and the percentage of bistable θs that respond to

parameter change by becoming noise-induced bistable barely reaches a 10% of the size of the

Bistable sub-ensemble (see Fig E in S1 Text).

Tackling heterogeneity

Heterogeneity in cellular populations is one of the main obstacles regarding resistance to tar-

geted therapies in cancer [1, 3]. Since the effects of drugs is not uniform on a heterogeneous

cell population, those cells whose response is poorer become a resistant subpopulation that

compromises drug efficiency. Heterogeneity has thus become a major factor in developing

strategies to circumvent the emergence of resistance [84]. ER enzymes such as EZH2 have

been recently proposed as targets to treat certain types of B cell leukemias [21, 83]. Since recent

single-cell studies have revealed that heterogeneity also occurs in ER status [47], it is necessary

to evaluate its effect on therapies that target ER enzymes.

Following [33, 34], where we put forward that heterogeneity in ER enzyme activity can be

traced back to heterogeneity in the metabolic state of the cells, we analyse the effect of hetero-

geneity in terms of the response of the sub-ensemble of pathological θ-systems to changes in

parameters that are relevant to ER enzyme activity. In this case, based on our previous discus-

sion that allows us to identify systems within the Bistable sub-ensemble as compatible with the

class of undifferentiated cells (see Fig 4k), we analyse the response of the Bistable sub-ensemble

to three generic strategies: altering the activity of H3K4-modifying enzymes, altering the activ-

ity of the H3K27-modifying enzymes, and mixed strategies involving several combinations

(see Fig 7c–7e, respectively). The sensitivity of the sub-ensemble to changes in parameter val-

ues, or combinations therein, is measured as the proportion of systems that become mono-

stable (i.e. the proportion of systems that change from the Bistable into to either the High GE

or the Low GE systems). Our results are shown in Fig 7 (see also Section S.1.4 in S1 Text).

We characterise heterogeneity within the (sub)ensemble using two statistics, namely, the

posterior marginal PDF for each of the parameters (see Fig C in S1 Text) and the linear corre-

lations between them. The former allows us to identify systematic, statistically significant bias

in the values of each of the parameters associated with an specific behaviour (in this case, bist-

ability) [33, 34]. In Fig 7a, we plot the p−value corresponding to the Kolmogorov-Smirnov

(KS) test comparing the marginal PDFs of the Bistable sub-ensemble with those of the Low

GE, High GE and noise-induced bimodal sub-ensembles. Provided that p is smaller than the

significance level, the smaller the p-value, the more statistically significant is the difference

between the marginal PDFs. Such information allows us to identify the subset of parameters

which are more likely to drive the behaviour of the system from one sub-ensemble (e.g. bis-

table) into another (e.g. Low GE or High GE).

In order to perform our analysis, we choose the subset of parameters for which the KS test

gives smaller p-values for the comparison of the Bistable sub-ensemble with the Low GE and

the High GE sub-ensembles: A3, B2, K2, B8, K8, K11, and K12 (see Fig 7a). The motivation for

such a choice is that this set of parameters are the ones that are more relevant to bistable behav-

iour [33, 34]. We have analysed the response of the Bistable sub-ensemble by measuring the
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proportion of bistable θs that become monostable when these parameters are modified (one at

a time) by a factor ν (see Fig 7d). According to such a metric, our results show that the parame-

ters that fare better concerning their ability to beat heterogeneity are the rescaled Michaelis-

Menten parameters for the KDMs (i.e. K5 and K6 for KDM2/KDM5 which remove me3 from

trimethylated H3K4 residues and K11 and K12 for KDM6 which remove trimethyl from

Fig 7. Tackling heterogeneity via parameter sensitivity analysis. Plot (a): p-values of the Kolmogorov-Smirnov comparison of the marginal

distribution for each component of θ = (A1, A3, B2, K2, K5, K6, λA, λx, A7, A9, B8, K8, K9, K11, K12, λI) corresponding to each of the sub-ensembles (see S1

Text, Section S.1.4.2 for details). Plot (b): correlations with the Bistable sub-ensemble. Red squares correspond to pairs such that the null hypothesis that

the parameters are uncorrelated can be rejected (p-value< 0.05), dark blue, corresponds to p-values> 0.5 (uncorrelated pairs), and light blue, to p-

values ≳ 0.05, i.e. pairs of parameters for which the evidence of absence of correlations is weaker. Plots (c) to (e) show the sensitivity analysis

corresponding to the Bistable sub-ensemble. Recall that, according to our validation results, we are identifying the systems within this sub-ensemble

with ESCs or undifferentiated cell states. Plots (c), (d), and (e) show the sensitivity to changes in kinetic parameters affecting the enzymes modifying

H3K4, H3K27, and several combinations, respectively. Plots (f), (g), and (h) show the effect on the activity of chromatin modifiers under three

therapeutic protocols (K6! νK6, K12! νK12, and the combined K6! νK6, K12! f(ν)K12, respectively). Here we have defined f(ν) = 2 − ν.

https://doi.org/10.1371/journal.pcbi.1008408.g007
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H3K27me3). By contrast, our analysis shows that targeting the activity of MLL2 or EZH2 is a

much poorer strategy regarding the aim of producing a maximally homogeneous sub-ensem-

ble response.

Single parameter variations have limitations of two kinds. First, when considering ν > 1,

the response curve is nonlinear but very quickly saturates to a response between 35%-65%,

approximately (see Fig 7c and 7d). By contrast, if ν< 1, the response curve is approximately

linear. Whilst this scenario is more favourable than the ν > 1 one, ideally we would like to

have a combination of both: a sigmoidal response curve with saturation value close to 100%.

Such scenario is achieved when considering combinations of parameters (see Fig 7e). Specif-

ically, of the combinations that we have explored, the most efficient combination is K6-K12,

i.e. those involving both parameters regulating KDM activity. The reason for the enhanced

efficiency of this specific combination is that K6 and K12 are correlated (see Fig 7b). All

other combinations that we have tried involved uncorrelated parameters and performed

worse than the K6-K12 one. Our result that a combination of epigenetic therapies is more

efficient than the single agent ones is complementary to recent mathematical results sug-

gesting that combinations of proliferation blockers (cytostatic drugs) and cell death enhanc-

ers (cytotoxic drugs) are more efficient at controlling drug resistance phenomena driven by

cell plasticity [85, 86]. By using the characterisation of the heterogeneity in our system in

terms of the activities of the chromatin modifiers, we can analyse the effect of the different

epigenetic therapies in terms that are more amenable to biological interpretation and to

comparison with existing results in the experimental and clinical literature. Our results can

be summarised as follows.

Effects on EZH2 activity

The combinatorial therapeutic approach failed to alter the median of the activity of EZH2 (see

Fig 7h) but markedly suppressed those outliers with the highest level of EZH2 activity, which

remained largely unresponsive to single-targeted protocols (see Fig 7f and 7g). Therefore,

although those “EZH2-high” systems with a higher biological aggressiveness [75] are more

responsive to combinatorial therapy, those with lower EZH2 activity are likely to be more

insidious and more difficult to clear using drugs targeting chromatin modifiers.

Effects on UTX activity

The most effective combination therapy leads to an increase in the activity of UTX (see Fig

7h). This can be better appreciated by comparing with single-target therapies, Fig 7f and 7g, in

which the UTX distribution is barely affected. Such a restoration of UTX activity by efficient

therapies is consistent with the role of UTX as a well-known tumour suppressor in certain can-

cer types [86]; however, it should be acknowledged that UTX inactivation has non-uniform

effects and demands further investigation of specific outcomes in different human malignan-

cies [87, 88].

Effects on MLL2 activity

MLL2 followed a similar pattern to that of EZH2. Thus, whereas the median activity of MLL2

was not apparently affected by either of the therapies, those “MLL2-high” outliers were the

most responsive, particularly to the combined therapy.

There were no discernible patterns in the behaviour of KDM5.
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Discussion

Tumor cell heterogeneity is a major barrier for efficient design of targeted anti-cancer thera-

pies. A diverse distribution of phenotypically distinct tumour-cell subpopulations prior to

drug treatment predisposes to non-uniform responses, leading to the elimination of sensitive

cancer cells whilst leaving resistant subpopulations unharmed. Despite tumour cell heteroge-

neity has been recognized as a bona fide engine for drug resistance [1, 3, 84], few successful

approaches [17] have been proposed aimed at formulating strategies capable of quantifying the

variability associated to individual cancer cell heterogeneity and minimizing its undesirable

impact on clinical outcomes. Our current work accepts this challenge to provide a computa-

tional approach that allows the rational design of combinatorial therapies involving epigenetic

drugs against cancer-driving chromatin modifiers [89–91].

To analyse the effects of targeted therapies which affect the enzymatic efficiency of specific

chromatin modifiers and combinations, thereupon we have formulated a stochastic model of a

bivalent transcription factor [42, 43, 45, 58], for which we have been able to derive the steady-

state probability distribution function via singular perturbation and model reduction analysis.

This result allows us to characterise the different qualitative behaviours of the system (open

(High GE), closed (Low GE), bistable, and noise-induced bistability). In order to tackle hetero-

geneity, we follow [33, 34] and generate an ensemble of models which we then classify into

four sub-ensembles according to their qualitative behaviour. Comparison between analytical

results and experimental data allows us to determine that the so-called Bistable and the High

GE sub-ensembles show the same behaviour as undifferentiated and differentiated cell types,

respectively. By contrast, the Low GE sub-ensemble failed to show any behaviour that could be

identified as any cell type previously studied in [20, 21].

Since undifferentiated cells, i.e., locked in a self-renewing phenotype, have been identified

as aberrant phenotypes which, if left unchecked, will eventually give rise to a tumour [21, 25,

33, 34], we have focused on analysing the role of heterogeneity within the Bistable sub-ensem-

ble regarding their response to targeted epigenetic therapies. Such therapies are assumed to

affect the value of specific parameters which alter the enzymatic activity of the corresponding

chromatin modifiers and, lastly, the rate of me3 editing (addition/removal) at H3K27/K4 biva-

lent chromatin (Fig 8). Although our ensemble approach provided a rationale to choose those

parameters to which undifferentiated (bistable) behaviour should be more sensitive [33, 34], it

was not surprising that single-targeted strategies mostly failed to circumvent the therapeutic

problems represented by tumour heterogeneity whereas combinatorial strategies fared much

better. Specifically, those strategies involving the H3K27 and H3K4 methyltransferases EZH2

and MLL2 were predicted to be notably less effective than those involving a positive modula-

tion of the H3K27 and H3K4 demethylating activities of KDM6A/UTX and KDM2/5.

Trithorax-like group complex containing the histone demethylases KDM6A/UTX acts

antagonistically to the PRC2 complex containing the EZH2 methylase in maintaining the

dynamics of the activation and repression of gene expression through H3K27 methylation.

Although numerous studies have uncovered EZH2 as a useful therapeutic target using small

molecule inhibitors, it has become clear that EZH2 inhibition alone may not be highly effec-

tive in certain tumors [92]. To circumvent this issue, a majority of investigators have focused

on synthetic lethality approaches aimed to illuminate which tumor (sub)types harboring

inactivating mutations in other epigenetic genes such as KDM6 are highly sensitive to EZH2

inhibition. Accordingly, rebalancing of H3K27me3 levels at specific genes through EZH2

inhibitors has been proposed as a therapeutic strategy in cases of multiple myeloma and

urothelial bladder carcinomas harboring KDM6A/UTX mutations [93, 94]. However,

although our ability to predict EZH2 sensitivity is improving, one should acknowledge that
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more work is required to develop highly predictive biomarkers for maximizing EZH2 thera-

peutic benefit. Crucially, identification of non-mutational mechanisms capable of conferring

EZH2 dependence to tumors could increase tumor and patient eligibility. In this regard, we

now propose that stochastic dynamics of epigenetic switching suffices to dictate the emer-

gence (and persistence) of tumor cell sub-populations with distinct degrees of responsiveness

to EZH2 inhibitors in the absence of inactivating mutations of the EZH2 epigenetic partner

KDM6A. Accordingly, we are accumulating evidence that transcriptional differentiation pro-

grams governed by KDM6A/UTX can enforce and safeguard cellular identity in several can-

cer types, thereby hindering highly aggressive cancer types by blocking epigenetic roads to

de-differentiation [95–97]. On-off alterations in the normal functioning of methylating-

demethylating epigenetic duos can offer therapeutic benefits beyond the EZH2/KDM6A one.

Thus, inhibition of KDM5 is a valuable approach for the treatment of tumors lacking MLL2/

KMT2D-regulated H3K4me3 [98] while KDM6A/UTX inhibitors can be valuable drugs in

SAMRC2-deficient tumors exhibiting aberrant accumulation of H3K27me3 [99].

Our current framework, in which the intrinsic variability in the functioning of the EZH2/

KDM6A and MLL2/KDM5 switches might drive the dependency of specific cancer cell types

(e.g., tumor-initiating/therapy-resistant cancer stem cell-like states) on certain rates of me3

editing (addition/removal) at H3K27/K4 bivalent chromatin (Fig 8) might illuminate a purely

epigenetic manner to maximize the therapeutic benefits of EZH2 and KDM inhibitors for clin-

ical management of intratumoral heterogeneity.

Fig 8. The heterogenous behaviour of epigenetic-regulatory systems as a determinant of the therapeutic efficacy of epigenetic drugs. The

heterogenous functioning of the EZH2/KDM6A and MLL2/KDM5 switches may lead to cell-to-cell variability in terms of the addiction of cellular

epi-states to certain rates of me3 editing (addition/removal) at H3K27/K4 bivalent chromatin. The proposed paradigm might accelerate future tool

developments on epi-drugs applications with capability for patient stratification based on the dominant cell subtype in individual tumours. Our

theoretical framework provides a coherent basis for the development of an in silico platform capable of identifying the epigenetic drugs combinations

best-suited to therapeutically manage non-uniform responses of heterogenous cancer cell populations. Specifically, the more successful combinations

involve modulators of the histone H3K4 and H3K27 demethylases KDM5 and KDM6A/UTX.

https://doi.org/10.1371/journal.pcbi.1008408.g008
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