
This is the **accepted version** of the journal article:

Villagrasa, Eduard; Palet i Ballús, Cristina; López-Gómez, Irene; [et al.]. «Cellular strategies against metal exposure and metal localization patterns linked to phosphorus pathways in *Ochrobactrum anthropi* DE2010». *Journal of hazardous materials*, Vol. 402 (January 2021), art. 123808. DOI 10.1016/j.jhazmat.2020.123808

This version is available at <https://ddd.uab.cat/record/307101>

under the terms of the license

1 **Cellular strategies against metals exposure and metal localization**
2 **patterns linked to phosphorus metabolic pathways in *Ochrobactrum***
3 ***anthropi* DE2010**

4 Eduard Villagrasa¹, Cristina Palet², Irene López-Gómez¹, Diana Gutiérrez¹,
5 Isabel Esteve¹, Alejandro Sánchez-Chardi^{3,4*}, and Antonio Solé^{1*}

6 ¹ Departament de Genètica i Microbiologia. Facultat de Biociències. Universitat
7 Autònoma de Barcelona. Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain

8 ² GTS-UAB Research Group, Department of Chemistry. Facultat de Ciències.
9 Universitat Autònoma de Barcelona. Bellaterra, Cerdanyola del Vallès, 08193
10 Barcelona, Spain

11 ³ Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de
12 Biologia, Universitat de Barcelona. 08028 Barcelona, Spain

13 ⁴ Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola
14 del Vallès, 08193 Barcelona, Spain

15

16 **Co-Correspondence:**

17 Antonio Solé, PhD. Assistant Professor. Departament de Genètica i
18 Microbiologia. Facultat de Biociències. Universitat Autònoma de Barcelona.
19 Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain **Email:**
20 Antoni.Sole@uab.cat

21

22 Alejandro Sánchez-Chardi, PhD. Research Technician. Servei de Microscòpia,
23 Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193
24 Barcelona, Spain. **Email:** Alejandro.Sanchez.Chardi@uab.cat.

25 **Abstract**

26 Cytotoxic, chemical, biochemical, compositional, and morphometric
27 responses against heavy metal exposure were analyzed in *Ochrobactrum*
28 *anthropi* DE2010, an heterotrophic bacterium isolated from Ebro Delta microbial
29 mats (Tarragona, NE Spain). Several parameters of effect and exposure were
30 evaluated to determine tolerance to a range of Cd(II), Pb(II), Cu(II), Cr(III) and
31 Zn(II) concentrations. Moreover, removal efficiency, polyphosphate production
32 and metal localization patterns were analyzed. High resistance till 20 mM for Zn
33 and 10 mM for the other metals, and removal capacity till 90% for Pb(II) and
34 40% for Cr(III) were showed in *O. anthropi* DE2010. Moreover, polyphosphate
35 production was strongly correlated with heavy metal concentration, and three
36 clear cell localization patterns of metals were evidenced with compositional and
37 imaging techniques: (i) extracellular in polyphosphate granules for Cu(II), (ii) in
38 periplasmic space forming crystals with phosphorus for Pb(II), and (iii)
39 intracytoplasmic in polyphosphate inclusions for Pb(II), Cr(III) and Zn. Both the
40 high resistance and metal sequestration capacity, highlight the great potential of
41 *O. anthropi* DE2010 for bioremediation strategies, especially in Pb and Cr
42 polluted areas.

43 **Keywords:** active process; bacterium; bioaccumulation; biomineralization;
44 heavy metal; polyphosphate production; sequestration

45 **1. Introduction**

46 Heavy metals are persistent pollutants widely spread in ecosystems
47 worldwide. Among them, non-essential heavy metals such as Pb and Cd have
48 no known role in biological systems, often inducing high toxic effects in biota

49 even at low concentrations and times of exposure (Olmedo et al. 2013; revision
50 in Abtahi et al. 2017; revision in Yilmaz et al. 2018; Rani et al. 2019; Zhu et al.
51 2020). In contrast, low amounts of essential metals such as Cu, Cr and Zn are
52 necessary for the right metabolic functioning of plant and animal cells, but they
53 turn out to be hazardous when environmental levels and/or body burdens
54 increase (revision in Nagajyoti et al. 2010; Prashanth et al. 2015; Hirve et al.
55 2020).

56 Especially sensitive areas are deltas, fragile coastal wetlands with unique
57 species and ecosystems highly disturbed both by pollutants transported through
58 the river and by *in situ* anthropogenic impacts (Bruins et al. 2000; Selvin et al.
59 2009; Masindi and Muedi 2018). The protected area of Ebro Delta (Tarragona,
60 NE Spain) has historically polluted by industry, agriculture, hunting and
61 domestic effluents, becoming a representative example of the environmental
62 status of deltas worldwide (Mañosa et al. 2001; Sánchez-Chardi and López-
63 Fuster, 2009; Dhanakumar et al. 2015). Consequently, increases of metals such
64 as Cd, Pb, Cu, Cr, and Zn were reported in waters, soils, plants, and animals of
65 this coastal wetland (revision in Mañosa et al. 2001). Deltas are also the
66 suitable habitats for microbial mats formed by different microorganisms, mainly
67 phototrophs (algae and cyanobacteria) and heterotrophs (bacteria), with crucial
68 ecological functions such as sediment stabilization (Seder-Colomina et al. 2013;
69 Millach et al. 2019). Several microorganisms have also been reported as highly
70 efficient capturing heavy metals both in natural habitats and axenic laboratory
71 cultures (Zhang et al., 2013; Coelho et al. 2015; Chaturvedi et al. 2015; Yin et
72 al., 2016; Li et al., 2018; Maleke et al., 2019; revision in Yin et al., 2019).
73 However, little is known about their specific strategies of immobilization and

74 localization patterns as well as their morphological responses against metal
75 exposure. Some phototrophic (*Microcoleus chthonoplastes* DE2006,
76 *Scenedesmus* sp. DE2009, *Geiltherinema* sp. DE2011) and heterotrophic
77 (*Paracoccus* sp. DE2007, *Micrococcus luteus* DE2008, *Ochrobactrum anthropi*
78 DE2010) microorganisms from Ebro Delta mats have been tested in axenic
79 laboratory cultures for analyzing their ability to capture metals such as Cr(III),
80 Pb(II), and Cu(II) (e.g. Burnat et al. 2009; Burgos et al. 2013; Maldonado et al.
81 2010a,b; Puyen et al. 2012; Millach et al. 2015; Villagrasa et al. 2019, 2020a).
82 Interestingly, all these isolated microorganisms have the capacity to sequester
83 metals externally (biosorption) in extracellular polymeric substances (EPS),
84 becoming especially high in *Micrococcus luteus* DE2008 and Cu(II) and Pb(II)
85 metals (Puyen et al. 2012). Additionally, some of them, mainly phototrophic,
86 have also demonstrated the capacity to accumulate metals intracellularly
87 (bioaccumulation) in polyphosphate (polyP) inclusions, being especially
88 interesting for bioremediation of contaminated environments. Among those
89 microorganisms, the gram-negative heterotrophic bacterium *O. anthropi*
90 DE2010 has recently emerged as an interesting species due to relevant
91 genomic findings concerning polyP production and heavy metal concentration
92 and its high efficiency to remove and to accumulate Cr(III) in intracytoplasmic
93 polyphosphate (polyP) inclusions and EPS (Villagrasa et al.,2020a, b). This
94 species easily grows in liquid and solid cultures and could become a suitable
95 model for experimental studies of heavy metals. However, its capacity and
96 efficiency in capturing and accumulating essential and non-essential heavy
97 metals with ecotoxicological interest remain lacking. Taking this into
98 consideration, a multi-analytical approach assessing several parameters related

99 to Cd, Pb, Cu, Cr, and Zn effect and exposure was performed using
100 microbiological cell counts using optical profilometer (OP), growth curves,
101 minimal inhibitory concentration (MIC), and half-maximal inhibitory
102 concentration (IC_{50}). Moreover, analytical chemistry (inductively coupled plasma
103 optical emission spectrometer (ICP-OES)), and analytical and morphometric
104 high-resolution (HR) microscopy (transmission electron microscopy (TEM) and
105 field emission scanning electron microscopy (FESEM)) techniques have been
106 applied in qualitative and quantitative manners.

107 With all this in mind, the main goals of the present study with this
108 bacterium *O. anthropi* DE2010 exposed to a range of Cd, Pb(II), Cu(II), Cr(III)
109 and Zn concentrations were: (i) to analyze bacterial responses against metal
110 exposure quantifying cell survival, uptake efficiency and removal capacity at 24
111 h after growing exposed to a single metal dose; (ii) to evaluate ultrastructural
112 changes due to metal exposure; (iii) to localize metals at nanoscale showing
113 patterns related to polyP production and structure as a mechanism to
114 immobilize potentially toxic elements; and (iv) to discuss the potential
115 applications of this species in metal immobilization.

116 **2. Materials and methods**

117 2.1 Microorganism, single heavy metals stock solutions and culture sample
118 preparations

119 *O. anthropi* DE2010 isolated from *Scenedesmus* consortium from Ebro
120 Delta microbial mats was recently characterized and identified (Villagrasa et al.
121 2019). Bacterium was cultured in Luria-Bertani (LB) rich medium containing

122 tryptone (10 g L⁻¹), yeast extract (5 g L⁻¹), sodium chloride (10 g L⁻¹) and
123 bacteriological agar (15 g L⁻¹) at 27 °C (pH 7.0).

124 Stock solutions of each heavy metal (50 mM) were prepared in sterile
125 double deionized water from the following salts: Cd from cadmium chloride
126 (Acros Organics), Pb(II) from lead nitrate (Merk), Cu(II) from copper sulphate
127 (Merk), Cr(III) from chromium nitrate (Sigma-Aldrich), and Zn from zinc sulphate
128 (Riedel-deHäen). Then, experimental solutions were freshly prepared by diluting
129 the stock solutions in LB medium to obtain the tested concentrations: 0.5, 2, 5,
130 7, and 10 mM for Cd, Pb(II), Cu(II) and Cr(III); and 2, 5, 10, 15, and 20 mM for
131 Zn. The pH of all experimental solutions was adjusted at 5.5 for preventing
132 heavy metal precipitation.

133 For all experiments, unpolluted (0 mM) and polluted cultures were
134 prepared at the same conditions for each heavy metal in the following manner:
135 2 mL of 24 h culture of *O. anthropi* DE2010 grown in LB (OD₆₀₀) ranging
136 between 1.4-1.6 (approximately 10¹⁰ cfu mL⁻¹) were inoculated into 18 mL of LB
137 liquid medium with the different tested concentrations for each heavy metal
138 (final volume 20 mL). All cultures were incubated in an orbital shaker (Infors HT,
139 Ecotron) (150 rpm) at 27 °C during 24 h. The pH of all the cultures was adjusted
140 at 5.5 for preventing heavy metal precipitation.

141 2.2 Minimal inhibitory concentration (MIC), growth curves and half maximal
142 inhibitory concentration (IC₅₀)

143 MIC of each heavy metal assayed was determined in triplicate adding 10
144 µL (one drop) of each experimental metal solution (concentrations tested in a
145 range of 0.5-25 mM) onto LB agar plates surfaces in which *O. anthropi* DE2010

146 was just before spread over. MIC is considered as the metal concentration at
147 which no bacterial growth was detected in the drop zone (Luli et al. 1983) after
148 bacterial growing at 27 °C during 48 h.

149 For growth curves assays, aliquots of *O. anthropi* DE2010 were
150 dispensed in a 96-well microplate (20 µL per well), achieving the different tested
151 metal concentrations (0, 0.5, 2, 5, 7, and 10 mM for Cd, Pb(II), Cu(II) and Cr(III));
152 and 0, 2, 5, 10, 15, and 20 mM for Zn) in final volume per well of 200 µL. Blank
153 samples (bacterial free LB medium exposed or not with metals) and a control
154 (bacterial LB medium without metal) were included in each 96-well microplate
155 (Villagrassa et al. 2020a). The *O. anthropi* DE2010 growth was determined in a
156 Varioskan plate reader (Thermo Fisher Scientific) by turbidity measurements
157 (λ = 600 nm) every 30 min at 27 °C during 24 h. The half maximal inhibitory
158 concentration (IC₅₀) from samples was determined for each heavy metal sample
159 as described by Volpe et al. (2014).

160 2.3 Cell counts by Optical profilometer (OP)

161 All exposed and non-exposed *O. anthropi* DE2010 samples were
162 prepared in glass slides with surface coated with poly-L-lysine (Sigma-Aldrich)
163 depositing 8 µL of sample inside a 1 cm² square and then spreading onto the
164 surface creating a thin monolayer of bacterial cells. Samples were fixed with
165 temperature and coated with a thin layer of Au-Pd using E5000 Sputter Coater
166 (Bio-Rad) to improve their contrast. Quantitative surface measurements of
167 bacterial cells were obtained using an OP Leica DCM 3D (Leica microsystems)
168 with dual technology (confocal and interferometric). Triplicates of vertical
169 scanning interferometry images with an area of 250.64x190.90 µm² were

170 randomly obtained for each sample and analyzed in quality topography mode
171 using Leica map DCM 3D, version 6.2.6561 (Leica Microsystems).

172 2.4 Metal quantification by Inductively Coupled Plasma Optical Emission
173 Spectrometry (ICP-OES)

174 Cd, Pb(II), Cu(II), Cr(III) and Zn concentrations immobilized into the cells
175 were quantified in *O. anthropi* DE2010 cultures to measure cell uptake
176 efficiency and their heavy metal removal capacity. All the samples were
177 centrifuged at 5,000x g at 4 °C for 20 min (Eppendorf 5804R). Resulting
178 supernatants of those samples and blank samples were analyzed as described
179 by Villagrasa et al. (2020a). Cd, Pb(II), Cu(II), Cr(III), and Zn concentrations
180 were quantified at 228.80, 220.40, 327.40, 267.72, and 206.20 nm respectively,
181 in triplicate assays using an ICP-OES spectrometer Optima 4300Dv (Perkin
182 Elmer).

183 2.5 Cell lysis and quantification of polyphosphate (PolyP) production

184 For polyP extraction, metal and control cultures were centrifugated at
185 5,500x g at 4 °C for 15 min, supernatants discarded, and resuspended in 50
186 mM Tris-HCl buffer (pH 7.0). Samples were then ultrasonicated in SONOREX
187 (Bandelin) in an ice bath for 15 min, followed by centrifugation at 5,500x g at 4
188 °C for 20 min to remove cell debris. The resultant supernatants were treated
189 with a protease inhibitor cocktail tablet (Roche). The polyP content was
190 determined through the reaction of molybdenum blue method (Ansvhutz et al.
191 2016) with reactive phosphorus content. All assays were performed in triplicates
192 for each sample, and polyP production (μmol of polyP per g⁻¹ dry weight of
193 biomass) results were obtained taking into account the difference between total

194 and soluble cellular phosphorus following the protocol described by Eixler et al.
195 (2005).

196 2.6 Ultrastructural and analytical assessment with electron microscopy

197 A complete evaluation of ultrastructural morphometry and sub-cellular
198 metal localization was performed with four high-resolution (HR) electron
199 microscopy techniques. Metal exposed and non-exposed cultures of *O. anthropi*
200 DE2010 were centrifuged at 5,000x g during 20 min at 4 °C in a refrigerated
201 centrifuge (Eppendorf 5804R), the resulting pellets were included in soft agar
202 (3% agarose) and processed following conventional transmission electron
203 microscopy (TEM) procedures optimized to this type of samples (Maldonado et
204 al. 2010a; Villagrasa et al. 2019; Solé et al. 2019). Briefly, samples were fixed
205 with 2.5% glutaraldehyde (Merck) in 0.1 M Millonig buffer (Millonig 1961) during
206 2 h, postfixed in 1% osmium tetroxide containing 0.8% potassium
207 hexoferrocyanide in Millonig buffer during 1 h, dehydrated in acetone,
208 embedded in Spurr resin, and polymerized at 60 °C during 48 h. Ultrathin
209 sections (70 nm) of selected areas from semithin sections (1 µm) were obtained
210 with an ultramicrotome UCT7 (Leica Microsystems).

211 For ultrastructural studies with TEM, a set of ultrathin sections were
212 placed in carbon coated Cu grids (200 mesh) and contrasted following routine
213 protocol of uranyl acetate and lead citrate solutions. Randomly distributed
214 sections of at least 2 grids of each sample were analyzed in a TEM JEM-1400
215 (Jeol) equipped with an Erlangshen CCD camera (Gatan) and operating at
216 80kV.

217 For analytical studies, with TEM and field emission scanning electron
218 microscope (FESEM), another set of samples were placed in carbon coated Au
219 grids (100 mesh) and observed without contrasting in HR microscopes. For HR-
220 TEM, samples were analyzed in a TEM JEM-2011 (Jeol) equipped with an 895
221 USC 4000 CCD camera (Gatan) and operating at 200 kV. Compositional and
222 crystallographic studies of polyP aggregates (granules and inclusions) were
223 performed with energy dispersive X-ray (EDX) analysis and selected area
224 electron diffraction (SAED), respectively. The obtained diffraction powder ring
225 patterns allowed us to know the kind of sample following this description: (i)
226 amorphous (diffuse rings), (ii) crystalline (bright spots), and (iii)
227 polynanocrystalline (small spots making up rings) (Meshi et al., 2012). For HR-
228 SEM, the same samples were observed in a FESEM Merlin (Zeiss) operating at
229 2 kV and equipped with a backscattered (BSE) detector.

230 **2.7 Statistical analysis**

231 Quantitative data were tested both for normal distribution and
232 homogeneity of variances with Kolmogorov-Smirnov and Levene tests,
233 respectively. Statistical comparisons between groups were carried out by one-
234 way analysis of variance (ANOVA), Bonferroni pairwise test and Tukey
235 multiple comparison *post-hoc* test. Significant differences in ANOVA,
236 Bonferroni's and Tukey's test were accepted at $p \leq 0.05$. The analyses were
237 performed using SPSS software (version 20.0 for Windows 7). All quantitative
238 data are expressed as mean \pm standard error of the mean.

239

240 **3. Results and discussion**

241 In the present study, a combination of qualitative and quantitative
242 microbiological, morphological, and analytical techniques was selected to show
243 a complete overview of the bacterium *O. anthropi* DE2010 responses to heavy
244 metals exposure.

245 3.1 Cytotoxic effect of heavy metals

246 Cytotoxic effect of heavy metals exposure in *O. anthropi* DE2010 cultures
247 was determined using IC₅₀ and MIC values (Fig. S1, supplementary material).
248 Results from both parameters showed the same cellular responses against
249 each metal exposure. Then, the IC₅₀ values remained in the same range (3.5
250 mM in Cd to 5 mM in Pb(II)) but being highest for Zn (10 mM). These values in
251 *O. anthropi* DE2010 were slightly higher than those obtained in environmental
252 bacteria for Cu(II) and Cd (2.65 and 4.30 mM, respectively) (Nweke et al. 2007),
253 in *Salmonella* sp. for Zn (0.8 mM) (Bestawy et al. 2013) and for Cd, Pb(II) and
254 Cu(II) of 0.005, 0.006, 0.03 mM, respectively for *Photobacterium phosphoreum*
255 T3S (Zeb et al. 2017). The MIC values obtained for *O. anthropi* DE2010 were
256 10 mM for Cd, Pb(II), Cu(II) and Cr(III) and 20 mM for Zn. These values exceed
257 the MIC obtained by *Escherichia coli* ATCC25922, which has been treated as a
258 reference in MIC assays (Bhardwaj et al. 2018). All this information pointed to
259 the high resistance of *O. anthropi* DE2010 to exposure at high concentrations of
260 heavy metals, especially to Zn, considered toxic for other microbial species.
261 these bacterial cells, such as extracellular sequestration, intracellular
262 sequestration, active export and enzymatic detoxification, which help them
263 interact with metals as well as tolerate rapid environmental changes in metal
264 levels (revision in Yin et al., 2019).

265

266 The descriptive statistics of cell counts at each metal concentration
267 evaluated with an OP are shown in Fig. 1. Interestingly, the cell number
268 decrease when metal concentration increase, reaching the minimum values at
269 the highest metal concentrations (10 mM for Cd; Pb(II); Cu(II); and Cr(III); and
270 20 mM for Zn). According to this perfect correlation, the most evident cytotoxic
271 effect resulting in an abrupt cell decrease, around 40 and 25% was detected
272 between 0.5 and 2 mM for Cd and Pb(II) respectively, and more than 30%
273 between 2 and 5 mM for the rest of metals.

274 Significant differences ($p < 0.05$) in cell counts obtained with ANOVA
275 comparison were found among all the metal concentrations for Cd ($F=68.76$),
276 Pb(II) ($F= 56.25$), Cu(II) ($F= 107.1$), Cr(III) ($F= 330.4$), and Zn ($F= 16.39$).
277 Significant reductions in cell count of 85 % for Cd, 80 % for Pb(II), 79 % for
278 Cu(II), 84 % for Cr(III) and 47 % for Zn were observed comparing controls with
279 samples exposed to 10 mM of each metal. These percentages agree with those
280 obtained for IC_{50} and MICs and strongly suggest that metal toxicity for
281 *O.anthropi* DE2010 is Cd>Cr(III)>Pb(II)>Cu(II)>Zn being the cadmium the most
282 toxic and the zinc the least. Moreover, the presence of live cells at all metal
283 concentrations demonstrates the high tolerance of this bacterium to deleterious
284 effects of each of the five heavy metals strongly suggesting a similar behaviour
285 against exposure to other potentially toxic elements.

286

287 3.2 Heavy metals removal and uptake efficiencies

288 Descriptive statistics of metal removal and uptake efficiency by *O.*
289 *anthropi* DE2010 for each metal and concentration are shown in Tables 1 and
290 S1 (supplementary material). The highest removal capacity found in *O. anthropi*

291 DE2010 was around 90% for Pb(II), followed by around of 40% for Cr(III). Lower
292 capacities of 20%, 10% and 3.0% were detected to remove Zn, Cd and Cu(II),
293 respectively. Moreover, similar ranges of metal removal
294 ($\text{Pb(II)} > \text{Cr(III)} > \text{Cd} > \text{Zn} > \text{Cu(II)}$) and uptake efficiency
295 ($\text{Pb(II)} > \text{Cr(III)} > \text{Cu(II)} > \text{Cd} > \text{Zn}$) were found at the highest common concentration
296 for all metals (10 mM). Significant differences ($p < 0.05$) obtained with ANOVA
297 comparison were found among all the metal concentrations for Cd ($F = 20.66$),
298 Pb(II) ($F = 13,271$), Cu(II) ($F = 19.53$), Cr(III) ($F = 1,190$), and Zn ($F = 22.76$),
299 respectively. Moreover, Tukey multiple comparisons were labelled in Table 1.
300 Comparing between metals, *O. anthropi* DE2010 is able to capture 82-fold more
301 Pb than Cu, and their q values were 15-fold more for Pb ($q = 1,548 \text{ mg g}^{-1}$) than
302 for Zn ($q = 102 \text{ mg g}^{-1}$). Removal rates of 36 % for Cd, 18 % for Pb(II), 13 % for
303 Cu(II), 39 % for Cr, 9.0 % for Zn (Chatterjee et al. 2010) and of 15 % for Cr
304 (Joutey et al. 2014) were previously described in an environmental isolate
305 bacterium and *Serratia proteamaculans*, respectively. Moreover, q values
306 around of 200 mg g⁻¹ for Pb(II) in *Klebsiella* strain R19 (Bowman et al. 2018)
307 and of 29.80 mg g⁻¹ in *Exiguobacterium* sp. ZM-2 for Cr were reported (Alam
308 and Ahmad, 2011). Comparing between these species, *O. anthropi* DE2010
309 emerges as an extremely efficient bacterium to remove heavy metals,
310 especially Pb and Cr.

311

312 3.3 Heavy metals induction of PolyP production

313 PolyP production in *O. anthropi* DE2010 cultures varied according to the
314 heavy metal and its concentration (Fig. 2). Significant differences ($p < 0.05$)
315 obtained with ANOVA comparison were found for Pb(II) ($F = 77.50$), Cu(II) ($F =$

316 521.7), Cr(III) (F= 671.9), and Zn (F= 679.7). Moreover, Bonferroni pairwise
317 test were labelled in Figure 1. The levels of polyP ($\mu\text{mol of polyp per g}^{-1}$ dry
318 weight of biomass) were clearly correlated with the increment of Pb(II), Cu(II),
319 Cr(III), and Zn, being 3, 3.5, 4, and 4.5-fold more in higher metal concentrations
320 compared to control. These findings agree with those obtained by Francisco et
321 al. (2011) and Andreeva et al. (2014) demonstrating that polyP concentration
322 increased in microbial cultures exposed to heavy metals. In marked contrast,
323 the concentration of polyP is practically invariable among all range of Cd
324 concentrations (Fig 2A) in spite of 10% of Cd captured by *O. anthropi* DE2010.
325 Neither induced polyP production nor Cd bioaccumulation in intracytoplasmic
326 polyP inclusions strongly suggests a different bacterial response for Cd. This
327 metal probably could be adsorbed in extracellular polymeric substances (EPS)
328 also due to the sorption ability of *O. anthropi* DE2010 recently reported for Cr
329 (Villagrassa et al. 2020).

330

331 3.4 Heavy metals localization patterns and cellular survival strategies
332 Imaging of morphological alterations and cellular localization of heavy
333 metals in *O. anthropi* DE2010 at nanoscale was performed with four high-
334 resolution microscopy techniques (Fig. 3). Ultrastructure of unpolluted cultures
335 showed typical morphology (size and shape) of bacterial cells with scarce and
336 small polyP inclusions (Figs. 3 A1 and A2), as reported in Villagrassa et al.
337 (2019). Those inclusions act as a phosphorus reservoir without detectable metal
338 content by EDX and BSE and with amorphous structure by SAED (Figs. 3 A2-
339 A4). In contrast, heavy metals exposure disturbed normal cell metabolism
340 altering the bacterial morphology. Moreover, intracellular ultrastructure indicated

341 different degrees of alteration, including evident cytoplasm disorganization and
342 retraction (Figs. 3 B1-F1) as well as an increase of pleomorphic cells in Pb(II),
343 Cr(III) and Cu(II) exposed cells (Figs. 3 C1-E1, respectively). The high toxicity of
344 these metals in aquatic environments and their relationship with the presence of
345 pleomorphic cells have been reported in microbial species (e.g. Hasnain and
346 Sabri, 1992; Villegas et al. 2013; Bulaev et al. 2017).

347 The analytical studies with EDX and BSE demonstrated that polyP
348 aggregates containing phosphorus are the main storage structures of metals in
349 *O. anthropi* DE2010 cells and have metal-specific patterns of sub-cellular
350 localization (Fig.3 B2-E2, B4-E4). Cu(II) induced granules mainly located
351 extracellularly in the outer membrane surface (Fig. 3 D2), besides Cr(III) and Zn
352 induced inclusions mostly in the cell cytoplasm (Figs. 3 E2 and F2,
353 respectively), and Pb(II) in both the periplasmic space and the cytoplasm (Fig. 3
354 C2). In marked contrast, the results in Cd(II) exposed cultures showed no
355 evident morphological changes and polyP inclusions evidenced no metal
356 content (Fig. 3 B2). It must be noted that the different electron diffraction/SAED
357 patterns obtained from the polyP aggregates showed a general amorphous type
358 of crystallographic structure, (Figs. 3 B3, D3-F3), as often occurs in biological
359 systems, except for Pb(II), which is crystalline (Fig. 3 C3). This particular result
360 indicates that *O. anthropi* DE2010 not only is able to bioaccumulate Pb(II) but
361 also can biomimicrize it highly efficiently, as a mechanism to reduce its
362 bioavailability and, therefore, biological impact in bacterial cells.

363 Overall, these results show rapid, varied, and specific responses to
364 different metal stressors and the great importance of polyP production in metal
365 chelation by active processes of bacterial bioaccumulation and/or

366 biomineralization. This metal bioimmobilization is an effective mechanism in
367 reducing metal bioavailability, preventing and/or avoiding toxic effects.
368 Moreover, this ultrastructural information about metal toxicity can be confirmed
369 by metal localization in bacterial cells.

370

371 3.5 Potential applications in metal immobilization

372 *O. anthropi* DE2010 cells can rapidly respond to metals exposure using
373 different strategies as bioaccumulation and biomimetic mineralization in combination
374 with biosorption. These pathways were extremely efficient to quellate Pb and Cr.
375 Also, Zn cellular bioaccumulation and the ability to store Cu(II) in external
376 polyphosphate granules were evidenced. All of these processes can be taken
377 into account for potential applications due to the reduction of bioavailability of
378 these metals often highly toxic for biota in aquatic environments (Sánchez-
379 Chardi et al. 2007; Sánchez-Chardi and López-Fuster 2009; Seder-Colomina et
380 al. 2013). Finally, Cd biosorption in EPS physicochemical binding could be
381 easily broken by other competitors (e.g. cations, quencher, etc.), resulting in
382 secondary pollution when used in bioremediation strategies. All our findings with
383 *O. anthropi* DE2010 pointed out in the high efficiency of this bacterial species to
384 quellate metals from the environment using different metabolic pathways. These
385 data suggest high metabolic plasticity in *O. anthropi* DE2010 (e.g Comte et al.
386 2013, Guerrero and Berlanga, 2016).

387 In addition to our promising results, more specific studies are needed to
388 evaluate the advantages of each bacterial strategy to localize and bind
389 specific metals and different chemical species. Moreover, further analysis of the
390 capacity of *O. anthropi* DE2010 to remove them in mixed metal solutions and

391 microcosm experiments are also crucial to consider the feasibility of this
392 bacterium in bioremediation processes in natural ecosystems. Up to now, our
393 results with individually high concentrations of five widely distributed heavy
394 metals strongly suggest that this bacterial species can be considered as a
395 valuable player in future bioremediation strategies with biological systems,
396 especially in Pb and Cr polluted environments, more so when concentrations of
397 these metals are lethal for other prokaryotic and eukaryotic organisms.

398

399 **4. Conclusions**

400 *O. anthropi* DE2010, isolated from polluted Ebro Delta microbial mats,
401 exhibited resistance to high concentrations of heavy metals and an unusual
402 ability to sequestrate Pb(II) and Cr(III), which is especially high for Pb(II). In an
403 active process, bacterial cells immobilized heavy metals in polyP inclusions
404 and/or granules, besides phosphorus crystalline structures to reduce their
405 biological toxic effects. Those structures followed a metal-specific pattern in cell
406 distribution.

407 In summary, *O. anthropi* DE2010 revealed specific responses as survival
408 strategies for each heavy metal exposure, including bioaccumulation (for Pb(II),
409 Cu(II), Cr(III), and Zn), biosorption (for Cd), and biominerilization (for Pb(II)).

410

411 **CRediT author statement.**

412 **Eduard Villagrassa:** Conceptualization, Methodology, Formal analysis,
413 Investigation, Data Curation, Writing - original draft. **Cristina Palet:** Writing –
414 review % editing, Funding acquisition. **Irene Lopez-Gómez:** Investigation, Data
415 curation. **Diana Gutierrez:** Investigation, Data curation. **Isabel Esteve:** Writing -

416 review and editing. **Alejandro Sanchez-Chardi**: Conceptualization,
417 Methodology, Investigation, Writing - review and editing. **Antonio Solé**:
418 Conceptualization, Methodology, Writing - review and editing, Supervision,
419 Funding acquisition.

420 **Declaration of Competing Interest**

421 The authors declare no conflict of interests.

422 **Acknowledgments**

423 We express our thanks for the assistance of the UAB staff of Servei de
424 Micròscopia (<http://sct.uab.cat/microscopia/>) especially Dr Emma Rossinyol,
425 and the UAB Servei de Anàlisi Química (<http://sct.uab.cat/saq>) especially Dr
426 Ignacio Villarroya. We also thanks to two anonymous reviewers for their helpful
427 comments and suggestions on an earlier draft of the manuscript. Authors are
428 greatly indebted to Mr. M. Stefanowski and three reviewers of
429 www.papertrue.com for revising the English. We also appreciate the help of
430 Cristina Sosa, Anna Rovirosa and Estefania Solsona. This research was
431 supported by the following grants of Ministerio de Economía y Competitividad:
432 CTQ2014-54553-C3-2-R and CGL2008-01891 both for AS and UAB
433 postgraduate scholarship to EV.

434 **References:**

435 Abtahi, M., Fakhri, Y., Conti, G.O., Keramati, H., Zandsalimi, Y., Bahmani, Z.,
436 Pouya, R.H., Sarkhosh, M., Bigard Moradi, Amanidaz, N., Ghasemi, S.M.
437 2017. Heavy metals (As, Cr, Pb, Cd and Ni) concentrations in rice (*Oryza*
438 *sativa*) from Iran and associated risk assessment: a systematic review,

439 Toxin Reviews 36:(4)331-341.
440 <http://dx.doi.org/10.1080/15569543.2017.1354307>

441 Alam, M.Z. and Ahmad, S. 2011. Chromium removal through biosorption and
442 bioaccumulation by bacteria from tannery effluents contaminated soil.
443 Clean (Weinh) 39: 226-237. <https://doi.org/doi:10.1002/clen.201000259>.

444 Andreeva, N., Ryazanova, L., Dmitriev, V., Kulakovskaya, T., Kulaev, I. 2014.
445 Cytoplasmic inorganic polyphosphate participates in the heavy metal
446 tolerance of *Cryptococcus humicola*. Folia Microbiol 59 (5):381-389.
447 <https://doi.org/10.1007/s12223-014-0310-x>.

448 Bestawy, E.E., Helmy, S., Hussien, H., Fahmy, M., Amer, R. 2013.
449 Bioremediation of heavy metal-contaminated effluent using optimized
450 activated sludge bacteria. Appl Water Sci 3:181–192.
451 <https://doi.org/10.1007/s13201-012-0071-0>.

452 Bhardwaj, R., Gupta, A., Garg, J.K. 2018. Impact of heavy metals on inhibitory
453 concentration of *Escherichia coli*—a case study of river Yamuna system,
454 Delhi, India. Environ Monit Assess 190:674.
455 <https://doi.org/10.1007/s10661-018-7061-0>.

456 Bowman, N., Patel, D., Sanchez, A. et al. 2018. Lead-resistant bacteria from
457 Saint Clair River sediments and Pb removal in aqueous solutions. Appl
458 Microbiol Biotechnol 102, 2391–2398. <https://doi.org/10.1007/s00253-018-8772-4>

460 Bruins, M.R., Kapil, S., Oehme, F.W. 2000. Microbial resistance to metals in the
461 environment. Ecotoxicol Environ Saf 45 (3): 198–207.
462 <https://doi.org/10.1006/eesa.1999.1860>.

463 Bulaev, A.G., Erofeeva, T.V., Labyrich, M.V., Mel'nikova, E. A. 2017.
464 Resistance of *Acidiplasma* archaea to heavy metal ions. Microbiology
465 86:583–589. <https://doi.org/10.1134/S002626171705006X>.

466 Burgos, A., Maldonado, J., De los Rios, A., Solé, A., Esteve, I. 2013. Effect of
467 copper and lead on two consortia of phototrophic microorganisms and
468 their capacity to sequester metals. Aquat Toxicol 140–141:324–336.
469 <https://doi.org/10.1016/j.aquatox.2013.06.022>.

470 Burnat, M., Diestra, E., Esteve, I., Sole, A. 2009. In situ determination of the
471 effects of lead and copper on cyanobacterial populations in microcosms.
472 PLoS ONE 4(7):e6204. <https://doi.org/10.1371/journal.pone.0006204>.

473 Chatterjee, S.K., Bhattcharjee, I., Chandra, G. 2010. Biosorption of heavy
474 metals from industrial waste water by *Geobacillus thermodenitrificans*. J
475 Hazard Mater 175(1):117-125.
476 <https://doi.org/10.1016/j.jhazmat.2009.09.136>.

477 Chaturvedi, A.D., Pal, D., Penta, S., Kumar, A. 2015. Ecotoxic heavy metals
478 transformation by bacteria and fungi in aquatic ecosystem. World J
479 Microbiol Biotechnol (2015) 31: 1595. <https://doi.org/10.1007/s11274-015-1911-5>

481 Coelho, L.M., Rezende, H.C., Coelho, L.M., de Sousa, P.A.R., Melo D.F.O.,
482 Coelho, N.M.M. 2015. Chapter 1: Bioremediation of polluted waters using
483 microorganisms. In Advances in Bioremediation of Wastewater and
484 Polluted Soil. InTech. <https://doi.org/10.5772/60770>.

485 Comte, J., Fauteux, L., del Giorgio, P. 2013. Links between metabolic plasticity
486 and functional redundancy in freshwater bacterioplankton communities.
487 Frontiers in Microbiology 4:112. <https://doi.org/10.3389/fmicb.2013.00112>.

488 Dhanakumar, S., Solaraj, G., Mohanraj, R. 2015. Heavy metal partitioning in
489 sediments and bioaccumulation in commercial fish species of three major
490 reservoirs of river Cauvery delta region India. Ecotoxicol Environ Saf 113:
491 145-151. <https://doi.org/10.1016/j.ecoenv.2014.11.032>.

492 Eixler, S., Selig, U., Karsten, U. 2005. Extraction and detection methods for
493 polyphosphate storage in autotrophic planktonic organisms. Hydrobiologia
494 533(1-3):135–143. <https://doi.org/10.1007/s10750-004-2406-9>.

495 Francisco, R., de Abreu, P., Plantz, B.A., Schlegel, V.L., Carvalho, R.A.,
496 Vasconcelos-Morais, P. 2011. Metal-induced phosphate extracellular
497 nanoparticulate formation in *Ochrobactrum tritici* 5bvl1. J Hazard Mater
498 198:31-39. <https://doi.org/10.1016/j.jhazmat.2011.10.005>.

499 Guerrero, R., Berlanga, M. 2016. From the Cell to the Ecosystem: The
500 Physiological Evolution of Symbiosis. *Evol Biol* 43:543–552.
501 <https://doi.org/10.1007/s11692-015-9360-5>.

502 Hasnain, S and Sabri, N.A. 1992. Effects of temperature and pH on conjugal
503 transfer of zinc-resistant plasmids residing in Gram-negative bacteria
504 isolated from industrial effluents. *Environ Pollut* 76(3): 245-249.
505 [https://doi.org/10.1016/0269-7491\(92\)90143-X](https://doi.org/10.1016/0269-7491(92)90143-X).

506 Hirve, M., Jain, M., Rastogi, A., Kataria, S. 2020. Chapter 8 - Heavy metals,
507 water deficit, and their interaction in plants: an overview. Editor(s):
508 Durgesh Kumar Tripathi, Vijay Pratap Singh, Devendra Kumar Chauhan,
509 Shivesh Sharma, Sheo Mohan Prasad, Nawal Kishore Dubey, Naleeni
510 Ramawat. *Plant Life Under Changing Environment*. Academic Press p.
511 175-206. <https://doi.org/10.1016/B978-0-12-818204-8.00009-6>.

512 Joutey, N.T, Bahafid, W., Sayel, H., Ananou, S., El Ghachoui, N. 2014.
513 Hexavalent chromium removal by a novel *Serratia proteamaculans*
514 isolated from the bank of Sebou River (Morocco). *Environ Sci Pollut Res*
515 21:3060–3072. <https://doi.org/10.1007/s11356-013-2249-x>.

516 Luli, G.W., Talnagi, J.W., Strohl, W.R., Pfister, R.M. 1983. Hexavalent
517 chromium-resistant bacteria isolated from river sediments. *Appl Environ
518 Microbiol* 46(4):846-854.

519 Maldonado, J., Diestra, E., Domènech, A.M., Villagrasa, E., Puyen, Z.M.,
520 Esteve, I., Solé, A. 2010a. Isolation and identification of a bacterium with
521 high tolerance to lead and copper from a marine microbial mat in Spain.
522 *Ann Microbiol* 60(1):113-120. <https://doi.org/10.1007/s13213-010-0019-2>.

523 Maldonado, J., de los Rios, A., Esteve, I., Ascaso, C., Puyen, Z.M., Brambilla,
524 C., Solé, A. 2010b. Sequestration and in vivo effect of lead on DE2009
525 microalga, using high-resolution microscopic techniques. *J Hazard Mater*
526 183 (1–3):44-50. <https://doi.org/10.1016/j.jhazmat.2010.06.085>.

527 Maleke, M., Valverde, A., Vermeulen, J.G., Cason, E., Moloantoa, K., Swarth,
528 H., Van Heerden, E., Castillo, J., 2019. Biomineralization and

529 bioaccumulation of europium by a thermophilic metal resistant bacterium.
530 Front. Microbiol. 10, 81. <https://doi.org/10.3389/fmicb.2019.00081>.

531 Mañosa, S., Mateo, R., Guitart, R. 2001. A review of the effects of agricultural
532 and industrial contamination on the Ebro Delta biota and wildlife. Environ
533 Monit Assess 71:187–205. <https://doi.org/10.1023/A:1017545932219>.

534 Masindi V. and Muedi, K.L. 2018. Environmental contamination by heavy
535 metals. Heavy Metals, Hosam El-Din M. Saleh and Refaat F. Aglan,
536 IntechOpen, <https://doi.org/10.5772/intechopen.76082>.

537 Meshi, L. 2012. Image formation in the electron microscope. In: Kolb U.,
538 Shankland K., Meshi L., Avilov A., David W. (eds). Uniting electron
539 crystallography and powder diffraction. NATO science for peace and
540 security series B: physics and biophysics. Springer, Dordrecht

541 Millach, L., Solé, A., Esteve, I. 2015. Role of *Geitlerinema* sp. DE2011 and
542 *Scenedesmus* sp. DE2009 as bioindicators and immobilizers of chromium
543 in a contaminated natural environment. BioMed Res Int Article ID 519769.
544 <https://doi.org/10.1155/2015/519769>.

545 Millach, L., Villagrasa, E., Solé, A., Esteve, I. 2019. Combined confocal laser
546 scanning microscopy techniques for a rapid assessment of the effect and
547 cell viability of *Scenedesmus* sp. DE2009 under metal stress. Microsc
548 Microanal 25(4):998-1003. <https://doi.org/10.1017/S143192761901465X>.

549 Millonig, G. 1961. A modified procedure for lead staining of thin sections. J
550 Biophys Biochem Cytol 11(3):736–739.

551 Nagajyoti, P.C., Lee, K.D., Sreekanth, T.V.M. 2010. Heavy metals, occurrence
552 and toxicity for plants: a review. Environ Chem Lett 8 :199–216.
553 <https://doi.org/10.1007/s10311-010-0297-8>

554 Nweke, C.O., Alisi, C.S., Okolo, J.C., Nwanyanwu, C.E. 2007. Toxicity of zinc to
555 heterotrophic bacteria from a tropical river sediment. Appl Eco Environ
556 Res 5(1):123–132.

557 Olmedo, P., Pla, A., Hernández, A.F., Barbier, F., Ayouni, L., Gil, F. 2013.
558 Determination of toxic elements (mercury, cadmium, lead, tin and arsenic)

559 in fish and shellfish samples. Risk assessment for the consumers. Environ
560 Int 59: 63-72. <https://doi.org/10.1016/j.envint.2013.05.005>.

561 Prashanth, L., Kattapagari, K.K., Chitturi, R.T., Baddam, V.R.R., Prasad, L.K.
562 2015. A review on role of essential trace elements in health and disease.
563 J. Dr. NTR Univ Health Sci 4: 75. [https://doi.org/10.4103/2277-
564 8632.158577](https://doi.org/10.4103/2277-8632.158577).

565 Puyen, Z.M., Villagrasa, E., Maldonado, J., Diestra, E., Esteve, I., Solé, A.
566 2012. Biosorption of lead and copper by heavy-metal tolerant *Micrococcus*
567 *luteus* DE2008. Bioresour Technol 126:233–237.
568 <https://doi.org/10.1016/j.biortech.2012.09.036>.

569 Rani, P., Upadhye, S.P. 2019. Review article: Status and prospects of
570 bacterial/strains to cadmium resistant and their diversity isolated from
571 waste sludge, Plant Archives, 19(1):827-844. e-ISSN:2581-6063 (online),
572 ISSN:0972-5210.

573 Sánchez-Chardi, A., López-Fuster, M.J., Nadal, J. 2007. Bioaccumulation of
574 lead, mercury, and cadmium in the greater white-toothed shrew, *Crocidura*
575 *russula*, from the Ebro Delta (NE Spain): Sex- and age-dependent
576 variation. Environ Pollut 145(1):7-14.
577 <https://doi.org/10.1016/j.envpol.2006.02.033>.

578 Sánchez-Chardi, A., López-Fuster, M.J., 2009. Metal and metalloid
579 accumulation in shrews (Soricomorpha, Mammalia) from two protected
580 Mediterranean coastal sites. Environ Pollut 157(4), 1243-1248 .
581 <https://doi.org/10.1016/j.envpol.2008.11.047>.

582 Seder-Colomina, M., Burgos, A., Maldonado, J., Solé, A., Esteve, I. 2013. The
583 effect of copper on different phototrophic microorganisms determined in
584 vivo and at cellular level by confocal laser microscopy. Ecotoxicology
585 22:199–205. <https://doi.org/10.1007/s10646-012-1014-0>.

586 Selvin, J., Priya, S.S., Kiran, G.S., Thangavelu, T., Bai, N.S. 2009. Sponge-
587 associated marine bacteria as indicators of heavy metal pollution.
588 Microbiol Res 164(3):352-363.
589 <https://doi.org/10.1016/j.micres.2007.05.005>.

590 Solé, A., Calvo, M.A., Lora, M.J., Sánchez-Chardi, A., 2019. Chapter 12-
591 Electron microscopy techniques applied to bioremediation and
592 biodeterioration studies with molds. Araceli Tomasini Campocosio and
593 Hector Hugo Leon Santiesteban. Fungal Bioremediation: Fundamentals
594 and applications. CRC press. p 354.
595 <https://doi.org/10.1201/9781315205984>.

596 Villagrassa, E., Ferrer-Miralles, N., Millach, L., Obiol, A., Creus, J., Esteve, I.,
597 Solé, A., 2019. Morphological responses to nitrogen stress deficiency of a
598 new heterotrophic isolated strain of Ebro Delta microbial mats.
599 Protoplasma 256:105-116. <https://doi.org/10.1007/s00709-018-1263-8>.

600 Villagrassa, E., Ballesteros, B., Obiol, A., Millach, L., Esteve, I., Solé, A., 2020a.
601 Multi-approach analysis to assess the chromium(III) immobilization by
602 *Ochrobactrum anthropi* DE2010. Chemosphere 238:124663.
603 <https://doi.org/10.1016/j.chemosphere.2019.124663>

604 Villagrassa, E., Egea, R., Ferrer-Miralles, N., Solé, A., 2020b. Genomic and
605 biotechnological insights in stress-linked polyphosphate production
606 induced by chromium(III) in *Ochrobactrum anthropi* DE2010. World journal
607 of microbiology and biotechnology, under revision.

608 Villegas, L.B., Pereira, C.E., Colin, V.L., Abate, C.M., 2013. The effect of
609 sulphate and phosphate ions on Cr(VI) reduction by *Streptomyces* sp.
610 MC1, including studies of growth and pleomorphism. Int Biodeter Biodegr
611 82:149-156. <https://doi.org/10.1016/j.ibiod.2013.01.017>.

612 Volpe, D.A., Hamed, S.S., Zhang, L.K., 2014. Use of different parameters and
613 equations for calculation of IC50 values in efflux assays: potential sources
614 of variability in IC50 determination. AAPS J 16:172.
615 <https://doi.org/10.1208/s12248-013-9554-7>.

616 Yilmaz, A., Yanar, A., Alkan, E., 2018. Review of heavy metal accumulation in
617 aquatic environment of northern east mediterranean sea. Part II: Some
618 non-essential metals. Pollution, 4(1), pp. 143-181.
619 <https://doi.org/10.22059/poll.2017.236121.287>.

620 Yin, K., Lv, M., Wang, Q., Wu, Y., Liao, C., Zhang, W., Chen, L., 2016.
621 Simultaneous bioremediation and biodetection of mercury ion through
622 surface display of carboxylesterase E2 from *Pseudomonas aeruginosa*
623 PA1. *Water Res.* 103, 383–390.
624 <https://doi.org/10.1016/j.watres.2016.07.053>.

625 Yin, K., Wang, Q., Lv, M., Chen, L., 2019. Microorganism remediation strategies
626 towards heavy metals. *Chem. Eng. J.* 360, 1553–1563.
627 <https://doi.org/10.1016/j.cej.2018.10.226>.

628 Zeb, B., Ping, Z., Mahmood, Q., Lin, Q., Pervez, A., Irshad, M., Bilal, M., Bhatti,
629 Z.A., Shaheen, S., 2017. Assessment of combined toxicity of heavy metals
630 from industrial wastewaters on *Photobacterium phosphoreum* T3S. *Appl
631 Water Sci* 7:2043–2050. <https://doi.org/10.1007/s13201-016-0385-4>.

632 Zhang, W., Yin, K., Li, B., Chen, L., 2013. A glutathione S-transferase from
633 *Proteus mirabilis* involved in heavy metal resistance and its potential
634 application in removal of Hg²⁺. *J. Hazard. Mater.* 261, 646–652.
635 <https://doi.org/10.1016/j.jhazmat.2013.08.023>.

636 Zhu, Q.L., Bao, J., Liu, J., Zheng, J.L., 2020. High salinity acclimatization
637 alleviated cadmium toxicity in *Dunaliella salina*: Transcriptomic and
638 physiological evidence. *Aquat Toxicol* 223:105492.
639 <https://doi.org/10.1016/j.aquatox.2020.105492>

640

641 **Figure captions**

642 Figure 1. Polyphosphate content (μmol of polyP per g^{-1} dry weight of biomass)
643 in the *O. anthropi* DE2010 cultures grown at increasing concentrations of Cd
644 (A), Pb(II) (B), Cu(II) (C), Cr(III) (D) and Zn (E) (mean \pm SE).

645 Figure 2. High resolution imaging by electron microscopy techniques: TEM (1),
646 TEM-EDX (2), TEM-SAED (3) and FESEM BSE (4) in the *O. anthropi* DE2010
647 cultures grown at unpolluted culture (A); besides they grown at 10 mM of Cd
648 (B), Pb(II) (C), Cu(II) (D), Cr(III) (E) and 20 mM of Zn (F) polluted cultures. The
649 arrows of EDX analyses showed the representative peak of phosphorus and the
650 assayed heavy metal, respectively. The scale bars represent 1 μm , 0.5 μm , 5
651 nm^{-1} and 1 μm for TEM, TEM-EDX, TEM-SAED and FESEM BSE, respectively.

652 In the TEM figures: Cytoplasm retraction (CR); periplasmic space precipitate
653 (PSP); pleomorphic forms (PF); polyP granules (PG) and polyP inclusions
654 (PPI).