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Abstract

Cytotoxic, chemical, biochemical, compositional, and morphometric
responses against heavy metal exposure were analyzed in Ochrobactrum
anthropi DE2010, an heterotrophic bacterium isolated from Ebro Delta microbial
mats (Tarragona, NE Spain). Several parameters of effect and exposure were
evaluated to determine tolerance to a range of Cd(ll), Pb(ll), Cu(ll), Cr(lll) and
Zn(Il) concentrations. Moreover, removal efficiency, polyphosphate production
and metal localization patterns were analyzed. High resistance till 20 mM for Zn
and 10 mM for the other metals, and removal capacity till 90% for Pb(Il) and
40% for Cr(lll) were showed in O. anthropi DE2010. Moreover, polyphosphate
production was strongly correlated with heavy metal concentration, and three
clear cell localization patterns of metals were evidenced with compositional and
imaging techniques: (i) extracellular in polyphosphate granules for Cu(ll), (ii) in
periplasmic space forming crystals with phosphorus for Pb(ll), and (iii)
intracytoplasmic in polyphosphate inclusions for Pb(ll), Cr(lll) and Zn. Both the
high resistance and metal sequestration capacity, highlight the great potential of
O. anthropi DE2010 for bioremediation strategies, especially in Pb and Cr

polluted areas.

Keywords: active process; bacterium; bioaccumulation; biomineralization;

heavy metal; polyphosphate production; sequestration

1. Introduction

Heavy metals are persistent pollutants widely spread in ecosystems
worldwide. Among them, non-essential heavy metals such as Pb and Cd have

no known role in biological systems, often inducing high toxic effects in biota
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even at low concentrations and times of exposure (Olmedo et al. 2013; revision
in Abtahi et al. 2017; revision in Yilmaz et al. 2018; Rani et al. 2019; Zhu et al.
2020). In contrast, low amounts of essential metals such as Cu, Cr and Zn are
necessary for the right metabolic functioning of plant and animal cells, but they
turn out to be hazardous when environmental levels and/or body burdens
increase (revision in Nagajyoti et al. 2010; Prashanth et al. 2015; Hirve et al.

2020).

Especially sensitive areas are deltas, fragile coastal wetlands with unique
species and ecosystems highly disturbed both by pollutants transported through
the river and by in situ anthropogenic impacts (Bruins et al. 2000; Selvin et al.
2009; Masindi and Muedi 2018). The protected area of Ebro Delta (Tarragona,
NE Spain) has historically polluted by industry, agriculture, hunting and
domestic effluents, becoming a representative example of the environmental
status of deltas worldwide (Mafiosa et al. 2001; Sanchez-Chardi and Lépez-
Fuster, 2009; Dhanakumar et al. 2015). Consequently, increases of metals such
as Cd, Pb, Cu, Cr, and Zn were reported in waters, soils, plants, and animals of
this coastal wetland (revision in Mafiosa et al. 2001). Deltas are also the
suitable habitats for microbial mats formed by different microorganisms, mainly
phototrophs (algae and cyanobacteria) and heterotrophs (bacteria), with crucial
ecological functions such as sediment stabilization (Seder-Colomina et al. 2013;
Millach et al. 2019). Several microorganisms have also been reported as highly
efficient capturing heavy metals both in natural habitats and axenic laboratory
cultures (Zhang et al., 2013; Coelho et al. 2015; Chaturvedi et al. 2015; Yin et
al., 2016; Li et al., 2018; Maleke et al., 2019; revision in Yin et al.,2019).

However little is known about their specific strategies of immobilization and
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localization patterns as well as their morphological responses against metal
exposure. Some phototrophic (Microcoleus chthonoplastes DE2006,
Scenedesmus sp. DE2009, Geiltherinema sp. DE2011) and heterotrophic
(Paracoccus sp. DE2007, Micrococcus luteus DE2008, Ochrobactrum anthropi
DE2010) microorganisms from Ebro Delta mats have been tested in axenic
laboratory cultures for analyzing their ability to capture metals such as Cr(lll),
Pb(Il), and Cu(ll) (e.g. Burnat et al. 2009; Burgos et al. 2013; Maldonado et al.
2010a,b; Puyen et al. 2012; Millach et al. 2015; Villagrasa et al. 2019, 2020a).
Interestingly, all these isolated microorganisms have the capacity to sequester
metals externally (biosorption) in extracellular polymeric substances (EPS),
becoming especially high in Micrococcus luteus DE2008 and Cu(ll) and Pb(ll)
metals (Puyen et al. 2012). Additionally, some of them, mainly phototrophic,
have also demonstrated the capacity to accumulate metals intracellularly
(bioaccumulation) in polyphosphate (polyP) inclusions, being especially
interesting for bioremediation of contaminated environments. Among those
microorganisms, the gram-negative heterotrophic bacterium O. anthropi
DE2010 has recently emerged as an interesting species due to relevant
genomic findings concerning polyP production and heavy metal concentration
and its high efficiency to remove and to accumulate Cr(lll) in intracytoplasmic
polyphosphate (polyP) inclusions and EPS (Villagrasa et al.,2020a, b). This
species easily grows in liquid and solid cultures and could become a suitable
model for experimental studies of heavy metals. However, its capacity and
efficiency in capturing and accumulating essential and non-essential heavy
metals with ecotoxicological interest remain laking. Taking this into

consideration, a multi-analytical approach assessing several parameters related
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to Cd, Pb, Cu, Cr, and Zn effect and exposure was performed using
microbiological cell counts using optical profilometer (OP), growth curves,
minimal inhibitory concentration (MIC), and half-maximal inhibitory
concentration (ICs0). Moreover, analytical chemistry (inductively coupled plasma
optical emission spectrometer (ICP-OES)), and analytical and morphometric
high-resolution (HR) microscopy (transmission electron microscopy (TEM) and
field emission scanning electron microscopy (FESEM)) techniques have been

applied in qualitative and quantitative manners.

With all this in mind, the main goals of the present study with this
bacterium O. anthropi DE2010 exposed to a range of Cd, Pb(ll), Cu(ll), Cr(lll)
and Zn concentrations were: (i) to analyze bacterial responses against metal
exposure quantifying cell survival, uptake efficiency and removal capacity at 24
h after growing exposed to a single metal dose; (ii) to evaluate ultrastructural
changes due to metal exposure; (iii) to localize metals at nanoscale showing
patterns related to polyP production and structure as a mechanism to
immobilize potentially toxic elements; and (iv) to discuss the potential

applications of this species in metal immobilization.

2. Materials and methods

2.1 Microorganism, single heavy metals stock solutions and culture sample

preparations

O. anthropi DE2010 isolated from Scenedemus consortium from Ebro
Delta microbial mats was recently characterized and identified (Villagrasa et al.

2019). Bacterium was cultured in Luria-Bertani (LB) rich medium containing
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tryptone (10 g L), yeast extract (5 g L), sodium chloride (10 g L'*) and

bacteriological agar (15 g L) at 27 °C (pH 7.0).

Stock solutions of each heavy metal (50 mM) were prepared in sterile
double deionized water from the following salts: Cd from cadmium chloride
(Acros Organics), Pb(ll) from lead nitrate (Merk), Cu(ll) from copper sulphate
(Merk), Cr(lll) from chromium nitrate (Sigma-Aldrich), and Zn from zinc sulphate
(Riedel-deHaen). Then, experimental solutions were freshly prepared by diluting
the stock solutions in LB medium to obtain the tested concentrations: 0.5, 2, 5,
7, and 10 mM for Cd, Pb(ll), Cu(ll) and Cr(lll); and 2, 5, 10, 15, and 20 mM for
Zn. The pH of all experimental solutions was adjusted at 5.5 for preventing

heavy metal precipitation.

For all experiments, unpolluted (O mM) and polluted cultures were
prepared at the same conditions for each heavy metal in the following manner:
2 mL of 24 h culture of O. anthropi DE2010 grown in LB (ODsoo) ranging
between 1.4-1.6 (approximately 101° cfu mLt) were inoculated into 18 mL of LB
liquid medium with the different tested concentrations for each heavy metal
(final volume 20 mL). All cultures were incubated in an orbital shaker (Infors HT,
Ecotron) (150 rpm) at 27 °C during 24 h. The pH of all the cultures was adjusted

at 5.5 for preventing heavy metal precipitation.

2.2 Minimal inhibitory concentration (MIC), growth curves and half maximal

inhibitory concentration (ICso)

MIC of each heavy metal assayed was determined in triplicate adding 10
UL (one drop) of each experimental metal solution (concentrations tested in a

range of 0.5-25 mM) onto LB agar plates surfaces in which O. anthropi DE2010
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was just before spread over. MIC is considered as the metal concentration at
which no bacterial growth was detected in the drop zone (Luli et al. 1983) after

bacterial growing at 27 °C during 48 h.

For growth curves assays, aliquots of O. anthropi DE2010 were
dispensed in a 96-well microplate (20 uL per well), achieving the different tested
metal concentrations (0, 0.5, 2, 5, 7, and 10 mM for Cd, Pb(ll), Cu(ll) and Cr(lll);
and 0, 2, 5, 10, 15, and 20 mM for Zn) in final volume per well of 200 pL. Blank
samples (bacterial free LB medium exposed or not with metals) and a control
(bacterial LB medium without metal) were included in each 96-well microplate
(Villagrasa et al. 2020a). The O. anthropi DE2010 growth was determined in a
Varioskan plate reader (Thermo Fisher Scientific) by turbidity measurements
(A= 600 nm) every 30 min at 27 °C during 24 h. The half maximal inhibitory
concentration (ICso) from samples was determined for each heavy metal sample

as described by Volpe et al. (2014).
2.3 Cell counts by Optical profilometer (OP)

All exposed and non-exposed O. anthropi DE2010 samples were
prepared in glass slides with surface coated with poly-L-lysine (Sigma-Aldrich)
depositing 8 pL of sample inside a 1 cm? square and then spreading onto the
surface creating a thin monolayer of bacterial cells. Samples were fixed with
temperature and coated with a thin layer of Au-Pd using E5000 Sputter Coater
(Bio-Rad) to improve their contrast. Quantitative surface measurements of
bacterial cells were obtained using an OP Leica DCM 3D (Leica microsystems)
with dual technology (confocal and interferometric). Triplicates of vertical

scanning interferometry images with an area of 250.64x190.90 um? were
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randomly obtained for each sample and analyzed in quality topography mode

using Leica map DCM 3D, version 6.2.6561 (Leica Microsystems).

2.4 Metal quantification by Inductively Coupled Plasma Optical Emission

Spectrometry (ICP-OES)

Cd, Pb(Il), Cu(ll), Cr(lll) and Zn concentrations immobilized into the cells
were quantified in O. anthropi DE2010 cultures to measure cell uptake
efficiency and their heavy metal removal capacity. All the samples were
centrifuged at 5,000x g at 4 °C for 20 min (Eppendorf 5804R). Resulting
supernatants of those samples and blank samples were analyzed as described
by Villagrasa et al. (2020a). Cd, Pb(ll), Cu(ll), Cr(lll), and Zn concentrations
were quantified at 228.80, 220.40, 327.40, 267.72, and 206.20 nm respectively,
in triplicate assays using an ICP-OES spectrometer Optima 4300Dv (Perkin

Elmer).
2.5 Cell lysis and quantification of polyphosphate (PolyP) production

For polyP extraction, metal and control cultures were centrifugated at
5,500x g at 4 °C for 15 min, supernatants discarded, and resuspended in 50
mM Tris-HCI buffer (pH 7.0). Samples were then ultrasonicated in SONOREX
(Bandelin) in an ice bath for 15 min, followed by centrifugation at 5,500x g at 4
°C for 20 min to remove cell debris. The resultant supernatants were treated
with a protease inhibitor cocktail tablet (Roche). The polyP content was
determined through the reaction of molybdenum blue method (Ansvhutz et al.
2016) with reactive phosphorus content. All assays were performed in triplicates
for each sample, and polyP production (umol of polyP per g dry weight of

biomass) results were obtained taking into account the difference between total
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and soluble cellular phosphorus following the protocol described by Eixler et al.

(2005).

2.6 Ultrastructural and analytical assessment with electron microscopy

A complete evaluation of ultrastructural morphometry and sub-cellular
metal localization was performed with four high-resolution (HR) electron
microscopy techniques. Metal exposed and non-exposed cultures of O. anthropi
DE2010 were centrifuged at 5,000x g during 20 min at 4 °C in a refrigerated
centrifuge (Eppendorf 5804R), the resulting pellets were included in soft agar
(3% agarose) and processed following conventional transmission electron
microscopy (TEM) procedures optimized to this type of samples (Maldonado et
al. 2010a; Villagrasa et al. 2019; Solé et al. 2019). Briefly, samples were fixed
with 2.5% glutaraldehyde (Merck) in 0.1 M Millonig buffer (Millonig 1961) during
2 h, postfixed in 1% osmium tetroxide containing 0.8% potassium
hexoferrocyanide in Millonig buffer during 1 h, dehydrated in acetone,
embedded in Spurr resin, and polymerized at 60 °C during 48 h. Ultrathin
sections (70 nm) of selected areas from semithin sections (1 um) were obtained

with an ultramicrotome UCT7 (Leica Microsystems).

For ultrastructural studies with TEM, a set of ultrathin sections were
placed in carbon coated Cu grids (200 mesh) and contrasted following routine
protocol of uranyl acetate and lead citrate solutions. Randomly distributed
sections of at least 2 grids of each sample were analyzed in a TEM JEM-1400
(Jeol) equipped with an Erlangshen CCD camera (Gatan) and operating at

80kV.
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For analytical studies, with TEM and field emission scanning electron
microscope (FESEM), another set of samples were placed in carbon coated Au
grids (100 mesh) and observed without contrasting in HR microscopes. For HR-
TEM, samples were analyzed in a TEM JEM-2011 (Jeol) equipped with an 895
USC 4000 CCD camera (Gatan) and operating at 200 kV. Compositional and
crystallographic studies of polyP aggregates (granules and inclusions) were
performed with energy dispersive X-ray (EDX) analysis and selected area
electron diffraction (SAED), respectively. The obtained diffraction powder ring
patterns allowed us to know the kind of sample following this description: (i)
amorphous (diffuse rings), (ii) crystalline (bright spots), and (iii)
polynanocrystalline (small spots making up rings) (Meshi et al., 2012). For HR-
SEM, the same samples were observed in a FESEM Merlin (Zeiss) operating at

2 kV and equipped with a backscattered (BSE) detector.

2.7 Statistical analysis

Quantitative data were tested both for normal distribution and
homogeneity of variances with Kolmogorov-Smirnov and Levene tests,
respectively. Statistical comparisons between groups were carried out by one-
way analysis of variance (ANOVA), Bonferroni pairwaise test and Tukey
multiple comparison post-hoc test. Significant differences in ANOVA,
Bonferroni’s and Tukey’s test were accepted at p <0.05. The analyses were
performed using SPSS software (version 20.0 for Windows 7). All quantitative

data are expressed as mean + standard error of the mean.

3. Results and discussion

10
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In the present study, a combination of qualitative and quantitative
microbiological, morphological, and analytical techniques was selected to show
a complete overview of the bacterium O. anthropi DE2010 responses to heavy

metals exposure.

3.1 Cytotoxic effect of heavy metals

Cytotoxic effect of heavy metals exposure in O. anthropi DE2010 cultures
was determined using ICso and MIC values (Fig. S1, supplementary material).
Results from both parameters showed the same cellular responses against
each metal exposure. Then, the ICso values remained in the same range (3.5
mM in Cd to 5 mM in Pb(ll)) but being highest for Zn (10 mM). These values in
O. anthropi DE2010 were slightly higher than those obtained in environmental
bacteria for Cu(ll) and Cd (2.65 and 4.30 mM, respectively) (Nweke et al. 2007),
in Salmonella sp. for Zn (0.8 mM) (Bestawy et al. 2013) and for Cd, Pb(ll) and
Cu(ll) of 0.005, 0.006, 0.03 mM, respectively for Photobacterium phosphoreum
T3S (Zeb et al. 2017). The MIC values obtained for O. anthropi DE2010 were
10 mM for Cd, Pb(ll), Cu(ll) and Cr(lll) and 20 mM for Zn. These values exceed
the MIC obtained by Escherichia coli ATCC25922, which has been treated as a
reference in MIC assays (Bhardwaj et al. 2018). All this information pointed to
the high resistance of O. anthropi DE2010 to exposure at high concentrations of
heavy metals, especially to Zn, considered toxic for other microbial species.
these bacterial cells, such as extracellular sequestration, intracellular
sequestration, active export and enzymatic detoxification, which help them
interact with metals as well as tolerate rapid environmental changes in metal

levels (revision in Yin et al., 2019).
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266 The descriptive statistics of cell counts at each metal concentration

267  evaluated with an OP are shown in Fig. 1. Interestingly, the cell number

268 decrease when metal concentration increase, reaching the minimum values at
269 the highest metal concentrations (10 mM for Cd; Pb(ll); Cu(ll); and Cr(lll); and
270 20 mM for Zn). According to this perfect correlation, the most evident cytotoxic
271  effect resulting in an abrupt cell decrease, around 40 and 25% was detected
272 between 0.5 and 2 mM for Cd and Pb(ll) respectively, and more than 30%

273  between 2 and 5 mM for the rest of metals.

274 Significant differences (p <0.05) in cell counts obtained with ANOVA

275  comparison were found among all the metal concentrations for Cd (F=68.76),
276 Pb(ll) (F= 56.25), Cu(ll) (F= 107.1), Cr(lll) (F= 330.4), and Zn (F= 16.39).

277  Significant reductions in cell count of 85 % for Cd, 80 % for Pb(ll), 79 % for

278  Cu(ll), 84 % for Cr(Ill) and 47 % for Zn were observed comparing controls with
279  samples exposed to 10 mM of each metal. These percentages agree with those
280  obtained for ICso and MICs and strongly suggest that metal toxicity for

281  O.anthropi DE2010 is Cd>Cr(llI1)>Pb(Il)>Cu(Il)>Zn being the cadmium the most
282  toxic and the zinc the least. Moreover, the presence of live cells at all metal

283  concentrations demonstrates the high tolerance of this bacterium to deleterious
284  effects of each of the five heavy metals strongly suggesting a similar behaviour
285  against exposure to other potentially toxic elements.

286

287 3.2 Heavy metals removal and uptake efficiencies

288 Descriptive statistics of metal removal and uptake efficiency by O.

289  anthropi DE2010 for each metal and concentration are shown in Tables 1 and

290 S1 (supplementary material). The highest removal capacity found in O. anthropi
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DE2010 was around 90% for Pb(ll), followed by around of 40% for Cr(lll). Lower
capacities of 20%, 10% and 3.0% were detected to remove Zn, Cd and Cu(ll),
respectively. Moreover, similar ranges of metal removal
(Pb(ID>Cr(II)>Cd>Zn>Cu(ll)) and uptake efficiency
(Pb(ID>Cr(II)>Cu(ll)>Cd>Zn) were found at the highest common concentration
for all metals (10 mM). Significant differences (p < 0.05) obtained with ANOVA
comparison were found among all the metal concentrations for Cd (F= 20.66),
Pb(ll) (F=13,271), Cu(ll) (F= 19.53), Cr(Ill) (F= 1,190), and Zn (F= 22.76),
respectively. Moreover, Tukey multiple comparisons were labelled in Table 1.
Comparing between metals, O. anthropi DE2010 is able to capture 82-fold more
Pb than Cu, and their g values were 15-fold more for Pb (g= 1,548 mg g!) than
for Zn (= 102 mg g!). Removal rates of 36 % for Cd, 18 % for Pb(l1),13 % for
Cu(ll), 39 % for Cr, 9.0 % for Zn (Chatterjee et al. 2010) and of 15 % for Cr
(Joutey et al. 2014) were previously described in an environmental isolate
bacterium and Serratia proteamaculans, respectively. Moreover, q values
around of 200 mg g* for Pb(ll) in Klebsiella strain R19 (Bowman et al. 2018)
and of 29.80 mg g in Exiguobacterium sp. ZM-2 for Cr were reported (Alam
and Ahmad, 2011). Comparing between these species, O. anthropi DE2010
emerges as an extremely efficient bacterium to remove heavy metals,

especially Pb and Cr.

3.3 Heavy metals induction of PolyP production
PolyP production in O. anthropi DE2010 cultures varied according to the
heavy metal and its concentration (Fig. 2). Significant differences (p < 0.05)

obtained with ANOVA comparison were found for Pb(ll) (F= 77.50), Cu(ll) (F=

13
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521.7), Cr(lll) (F=671.9), and Zn (F= 679.7). Moreover, Bonferroni pairwaise
test were labelled in Figure 1. The levels of polyP (umol of polyp per g dry
weight of biomass) were clearly correlated with the increment of Pb(ll), Cu(ll),
Cr(lll), and Zn, being 3, 3.5, 4, and 4.5-fold more in higher metal concentrations
compared to control. These findings agree with those obtained by Francisco et
al. (2011) and Andreeva et al. (2014) demonstrating that polyP concentration
increased in microbial cultures exposed to heavy metals. In marked contrast,
the concentration of polyP is practically invariable among all range of Cd
concentrations (Fig 2A) in spite of 10% of Cd captured by O. anthropi DE2010.
Neither induced polyP production nor Cd bioaccumulation in intracytoplasmic
polyP inclusions strongly suggests a different bacterial response for Cd. This
metal probably could be adsorbed in extracellular polymeric substances (EPS)
also due to the sorption ability of O. anthropi DE2010 recently reported for Cr

(Villagrasa et al. 2020).

3.4 Heavy metals localization patterns and cellular survival strategies

Imaging of morphological alterations and cellular localization of heavy
metals in O. anthropi DE2010 at nanoscale was performed with four high-
resolution microscopy techniques (Fig. 3). Ultrastructure of unpolluted cultures
showed typical morphology (size and shape) of bacterial cells with scarce and
small polyP inclusions (Figs. 3 Al and A2), as reported in Villagrasa et al.
(2019). Those inclusions act as a phosphorus reservoir without detectable metal
content by EDX and BSE and with amorphous structure by SAED (Figs. 3 A2-
A4). In contrast, heavy metals exposure disturbed normal cell metabolism

altering the bacterial morphology. Moreover, intracellular ultrastructure indicated
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different degrees of alteration, including evident cytoplasm disorganization and
retraction (Figs. 3 B1-F1) as well as an increase of pleomorphic cells in Pb(ll),
Cr(lll) and Cu(ll) exposed cells (Figs. 3 C1-E1, respectively). The high toxicity of
these metals in aquatic environments and their relationship with the presence of
pleomorphic cells have been reported in microbial species (e.g. Hasnain and
Sabri, 1992; Villegas et al. 2013; Bulaev et al. 2017).

The analytical studies with EDX and BSE demonstrated that polyP
aggregates containing phosphorus are the main storage structures of metals in
O. anthropi DE2010 cells and have metal-specific patterns of sub-cellular
localization (Fig.3 B2-E2, B4-E4). Cu(ll) induced granules mainly located
extracellularly in the outer membrane surface (Fig. 3 D2), besides Cr(lll) and Zn
induced inclusions mostly in the cell cytoplasm (Figs. 3 E2 and F2,
respectively), and Pb(ll) in both the periplasmic space and the cytoplasm (Fig. 3
C2). In marked contrast, the results in Cd(Il) exposed cultures showed no
evident morphological changes and polyP inclusions evidenced no metal
content (Fig. 3 B2). It must be noted that the different electron diffraction/SAED
patterns obtained from the polyP aggregates showed a general amorphous type
of crystallographic structure, (Figs. 3 B3, D3-F3), as often occurs in biological
systems, except for Pb(ll), which is crystalline (Fig. 3 C3). This particular result
indicates that O. anthropi DE2010 not only is able to bioaccumulate Pb(Il) but
also can biomineralizate it highly efficiently, as a mechanism to reduce its
bioavailability and, therefore, biological impact in bacterial cells.

Overall, these results show rapid, varied, and specific responses to
different metal stressors and the great importance of polyP production in metal

chelation by active processes of bacterial bioaccumulation and/or
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biomineralization. This metal bioimmobilization is an effective mechanism in
reducing metal bioavailability, preventing and/or avoiding toxic effects.
Moreover, this ultrastructural information about metal toxicity can be confirmed

by metal localization in bacterial cells.

3.5 Potential applications in metal immobilization

O. anthropi DE2010 cells can rapidly respond to metals exposure using
different strategies as bioaccumulation and biomineralization in combination
with biosorption. These pathways were extremely efficient to quelate Pb and Cr.
Also, Zn cellular bioaccumulation and the ability to store Cu(ll) in external
polyphosphate granules were evidenced. All of these processes can be taken
into account for potential applications due to the reduction of bioavailability of
these metals often highly toxic for biota in aquatic environments (Sanchez-
Chardi et al. 2007; Sdnchez-Chardi and Lopez-Fuster 2009; Seder-Colomina et
al. 2013). Finally, Cd biosorption in EPS physicochemical binding could be
easily broken by other competitors (e.g. cations, quelator, etc.), resulting in
secondary pollution when used in bioremediation strategies. All our findings with
O. anthropi DE2010 pointed out in the high efficiency of this bacterial species to
quelate metals from the environment using different metabolic pathways. These
data suggest high metabolic plasticity in O. anthropi DE2010 (e.g Comte et al.
2013, Guerrero and Berlanga, 2016).

In addition to our promising results, more specific studies are needed to
evaluate the advantages of each bacterial strategy to localizate and bind
specific metals and different chemical species. Moreover, further analysis of the

capacity of O. anthropi DE2010 to remove them in mixed metal solutions and
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microcosm experiments are also crucial to consider the feasibility of this
bacterium in bioremediation processes in natural ecosystems. Up to now, our
results with individually high concentrations of five widely distributed heavy
metals strongly suggest that this bacterial species can be considered as a
valuable player in future bioremediation strategies with biological systems,
especially in Pb and Cr polluted environments, more so when concentrations of

these metals are lethal for other prokaryotic and eukaryotic organisms.

4. Conclusions

O. anthropi DE2010, isolated from polluted Ebro Delta microbial mats,
exhibited resistance to high concentrations of heavy metals and an unusual
ability to sequestrate Pb(ll) and Cr(lll), which is especially high for Pb(ll). In an
active process, bacterial cells immobilized heavy metals in polyP inclusions
and/or granules, besides phosphorus crystalline structures to reduce their
biological toxic effects. Those structures followed a metal-specific pattern in cell
distribution.

In summary, O. anthropi DE2010 revealed specific responses as survival
strategies for each heavy metal exposure, including bioaccumulation (for Pb(ll),

Cu(ll), Cr(lll), and Zn), biosorption (for Cd), and biomineralization (for Pb(ll)).
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Figure captions

Figure 1. Polyphosphate content (umol of polyP per g* dry weight of biomass)
in the O. anthropi DE2010 cultures grown at increasing concentrations of Cd

(A), Pb(Il) (B), Cu(ll) (C), Cr(ll) (D) and Zn (E) (mean + SE).

Figure 2. High resolution imaging by electron microscopy techniques: TEM (1),
TEM-EDX (2), TEM-SAED (3) and FESEM BSE (4) in the O. anthropi DE2010
cultures grown at unpolluted culture (A); besides they grown at 10 mM of Cd
(B), Pb(Il) (C), Cu(ll) (D), Cr(lll) (E) and 20 mM of Zn (F) polluted cultures. The
arrows of EDX analyses showed the representative peak of phosphorus and the
assayed heavy metal, respectively. The scale bars represent 1 um, 0.5 pm, 5
nmt and 1 um for TEM, TEM-EDX, TEM-SAED and FESEM BSE, respectively.
In the TEM figures: Cytoplasm retraction (CR); periplasmic space precipitate
(PSP); pleomorphic forms (PF); polyP granules (PG) and polyP inclusions

(PPI).
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