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Abstract. We study the basic reproduction number (Rg) in an epidemic model where infected in-
dividuals are initially asymptomatic and structured by the time since infection. At the beginning
of an epidemic outbreak the computation of Ry relies on limited data based mostly on symptomatic
cases, since asymptomatic infected individuals are not detected by the surveillance system. Ry has been
widely used as an indicator to assess the dissemination of infectious diseases. Asymptomatic individuals
are assumed to either become symptomatic after a fixed period of time or they are removed (recovery
or disease-related death). We determine Ry understood as the expected secondary symptomatic cases
produced by a symptomatic primary case through a chain of asymptomatic infections. Ry is computed
directly by interpreting the model ingredients and also using a more systematic approach based on the
next-generation operator. Reported Covid-19 cases data during the first wave of the pandemic in Spain
are used to fit the model and obtain both values of Ry before and after the severe lockdown imposed
in March 2020. The results confirm that SARS-CoV-2 was expanding within the population before the
lockdown whereas the virus spreading was controlled two weeks after the lockdown.
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1. INTRODUCTION

Emergence of infectious diseases is a problem that humans are doomed to face over and over. Beyond the
particularities of each new pathogen, the dynamics of epidemics depend on similar processes. This makes
mathematical models a useful tool to evaluate the possible outcomes as a function of certain key parameters.

The expansion of an epidemics is usually monitored by means of two indicators: the exponential growth rate
of the disease and the basic reproduction number, denoted by Ry. The former corresponds to the change in the
number of active cases normalised by the prevalence at a given time, so that negative exponential growth rates
indicate that the number of infected individuals is decaying exponentially whereas positive exponential growth
rates mean that the number of infections is growing exponentially. The latter indicator, Ry, is usually defined
as the number of new infections an infected individual will produce in a wholly susceptible population, so that
if it is larger than one each infected individual produces more than one secondary infection and the disease is
able to disseminate whereas if it is smaller than one this cannot happen (see [11] for an historical review on Ry).
As expected by the above definitions, the sign of the exponential growth rate coincides with the sign of Ry — 1
(in [20] a proof of this relation is proven for deterministic models dealing with infinite dimensional variables, as
the model analysed in this article). Although the two indicators seem to be equivalent in regard to the analysis
of the epidemic, the mechanistic interpretation of Ry and its, often, explicit dependence on relevant parameters
of the model, makes it especially well suited to design and evaluate social measures intended to control and
eradicate the epidemics [9].

As it has been discussed elsewhere different reproduction numbers can be defined depending on what is
understood as a birth event, which in an epidemiological context could correspond to a new infection or,
alternatively, to a new reported case [5,9]. The choice of Ry could be motivated by the strategy used to control
the epidemics [9]. For example, at the beginning of a pandemic only reported cases can be used to monitor how
it spreads, so that it is natural to consider to focus on how the number of reported cases grow.

In this study we consider an extension of the infection-age structured compartmental model introduced
by Kermack and McKendrick in 1927 ( [15]) where we take into account the existence of individuals that
experience the disease with no (or very mild) symptoms making them undetectable for the health system as
long as systematic testing is not being applied to the population.

That is, we divide the infected population into two groups: asymptomatic individuals (we also include
here symptomatic with mild symptoms) for which no isolation measures have been taken and symptomatic
individuals. The role of infected asymptomatic individuals seems to be very important for certain diseases [7,13]
and in particular for Covid-19 (see for instance [2,8,9,13] for models considering asymptomatic individuals
and [1,16] for applications to Covid-19).

We denote by S(t) the number of individuals that are susceptible to the disease. Let 7 denote the age of
infection (time elapsed since infection) and i(7,t) the density with respect to 7 of infected individuals at time
t that are asymptomatic (here the term “asymptomatic” refers to individuals without symptoms at a given
time, which could or could not develop symptoms in the future). We assume that a newly infected individual is
asymptomatic. J(t) stands for the number of symptomatic individuals (detected by the health system). Finally
R(t) denotes the number of individuals who have been infected and then removed from the chain of infection (in
the sense that they cannot be infected again). Thus, R(t) are either asymptomatic individuals that recovered
without being detected or symptomatic individuals that recovered or symptomatic individuals that died due to
the disease.

The usual mass-action incidence is assumed. Specifically, denoting by (1(7) the transmission rate of asymp-
tomatic individuals (i.e. the number of contacts per unit of time of an asymptomatic individual multiplied by
the probability that the contact between an asymptomatic individual and a susceptible one results in trans-

mission of the disease) and by N the total population (see (2) below) we have that % is the probability that
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the contact is indeed with a susceptible! and therefore 61(7)% gives the number of susceptible individuals
that become infected per unit of time per each infectious asymptomatic individual of infection-age 7. Notice in
particular that the model includes the possibility of latency (or incubation time) by assuming S;(7) vanishing
for small infection-age. Analogously, denoting by [s the transmission rate of symptomatic individuals, 52%
will be the number of susceptible individuals that become infected per unit of time per symptomatic individual.
Whereas some other parameters of the model can usually be measured experimentally, both 8;(7) and 3, are
difficult to measure directly because they depend on the number of contacts and the probability of transmission,
which are not easy to determine. Since symptomatic cases are aware of being infectious, they presumably will
avoid contacts with others (i.e. they will self-isolate) making 2 to be smaller that £ (this is observed in section
5 where real data is analysed). The recovery rate of an asymptomatic individual of age 7 is given by 7 (7) and
7o is the so-called recovery rate of the symptomatic population (which is in fact the sum of the actual recovery
rate and the disease-related death rate).

The model reads:

S'(t) = —S(t) [y Bi(r, t)dr — S(t)B2.(1),

it(7,t) + i (7, t) + (7)i(r,¢) =0, 7€]10,7T],
J'(t) = pi(T,t) — 72 J (1), (1)

R(t) = [f v(r)i(r,t)dr + (1 = p)i(T,t) + 72 (t),

i(0,t) = S(t) [y B i(r t)dr + S(t)22.(1),
where T is the time after which asymptomatic individuals which have not recovered yet, either, with proba-
bility p develop symptoms and are detected by the health system passing then to the J-compartment or, with
probability 1 — p recover and become immune passing then to the R-compartment. The sudden onset of severe
symptoms seems to be a characteristical feature of the Covid-19 [19]. The subscripts ¢ and 7 in the second
equation denote the partial derivative of function ¢ with respect ¢t and 7 respectively. All parameters are non

negative and (2, 72 and p are assumed to be strictly positive to avoid some limiting cases.

Notice that we have assumed that the time scale of the epidemic is much faster than the time scale for
demographic processes (natural birth and death), and therefore these are not included in the model and the
total population is then constant and given by

N =S+ / e e+ () L R forall 30, @)
0

Notice also that the dynamics of S, ¢ and J are independent of the variable R. Hence in what follows we will
concentrate on the three first equations of (1) plus the boundary condition (the fifth equation), noting that
from the knowledge of S(t), i(t) and J(t) one easily can compute R(t) integrating the fourth equation in time
or directly using that the total population is constant, i.e. equation (2).

The paper is structured as follows: in Section 2 we compute the characteristic equation of the linearization of
the model around the disease free equilibrium and give a threshold for the spectral bound of the linear operator
and so a threshold for the stability/instability of this steady state. In Section 3 we compute the so-called
basic reproduction number Ry ; defined here as the expected number of symptomatic individuals produced by
a single newly symptomatic one and check the well known general result that Ry, is larger than one if and
only if the spectral bound is positive, and less than one if and only if the spectral bound is negative. In Section
4 we use results on the reproduction number in continuously structured populations to compute Ry as the

1Actually this is an approximation since the total population N includes a small fraction of deceased individuals by the disease.
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FIGURE 1. Flow diagram representing the dynamics of the model (1). Per capita new (hidden)
infections per unit of time (arrows departing from the Susceptible class) are fOT ﬁlT(T)i(T, t)dr

and ’%J (t), produced by asymptomatic and symptomatic individuals respectively, whereas
new (physically observable) infections per unit of time are pi(7,t). Exposed individuals can
be included into the asymptomatic class for small ages where (81(7) is zero.

spectral bound of the so-called next generation operator. Finally, in Section 5 we consider a simplified model,
determine parameters based on the Spanish record data of the Covid-19 pandemic during the springtime peak
and compute the corresponding values of Ry s before and immediately after the lockdown. The last section is
devoted to some concluding remarks.

2. EXPONENTIAL GROWTH
Let us consider the (initial) situation when the number of infected individuals is very small compared to
the (possibly fully) susceptible population. Then the dynamics of the infected population is described by the
linearized equations for the infected population at the disease-free steady state (N, 0,0,0) of (1) which are
it(7,t) + i (7, t) + 1 (7)i(r,¢) =0, 7€]0,7T],
. T .
Z(O, t) = fO /81 (T)Z(T, t)dT =+ ,BQJ(t), (3)

J'(t) = pi(T,t) — 12 (t).

System (3) can be written as

d
dtz(t) = Bz(t) — Mz(t),
with
i(7,t) 0 0 Or+vm O
2(t)(1) == , B:= , M= ; (4)
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where 1 stands for the evaluation operator at the point 7 = T" and the first order differential operator M is
supplemented with the boundary condition given by the second equation in (3). The main reason to consider
the decomposition in operators B and M is that it allows to compute the so-called next generation operator
when the “birth event” is the emergence of a symptomatic case (see section 4).

Since —M is the infinitesimal generator of a positive semigroup in L(0,7) x R with domain

T
D = {(z’, J) € WH(0,T) x R : i(0) = /0 B1(r)i(r)dr +ﬁ2J} (5)

and B is a bounded linear operator in the domain of M endowed with the graph norm we get that B — M is
the infinitesimal generator of a positive semigroup (see Section 3.2 in [5]).
Since the equations in (3) are linear we look for separable solutions, i.e. solutions of the form

( i((]ﬂt’;) ) _ eAt( y(jf) )

A1)+ v (1) + (n)y(r) =0,

Substituting them in (3) we obtain

y(0) = [ Bi(r)y(r)dr + Baj, (6)
A = py(T) =725

The solution of the first equation in (6) is y(7) = y(0)e~*"~T(") where I'(7) = Jo 71(s)ds. Substituting it in
the second equation in (6) yields

T
y0) = y(0) [ AT+ @
0
and substituted in the third equation in (6) gives

Aj = py(0)e M) — 5 (8)

Equations (7) and (8) constitute a linear homogeneous system for the unknown (y(0), j)* with nontrivial solution
if and only if X is a solution (real or complex) of the characteristic equation

T
pe M-I g, (2 +A) (1 — / 51 (T)@fM*F(T)dT) =0,
0

or, equivalently, if A is a solution of

O = pe 5 - ©)
= (72 4 )\) (1 _ fOT 61(T)€_)\T_F(T)d7-) — 1.

Since the solutions of (3) with positive initial conditions are positive (B — M generates a positive semigroup),
the maximum of the real part of the roots of the characteristic equation is a (real) root of it (the spectral bound
of a positive semigroup is a spectral value). Moreover, as the exponential behaviour of the semigroup generated
by B — M is determined by the spectral bound of B — M, the larger real solution of the characteristic equation
determines the exponential growth or decay of the solution [12].
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Notice that the second factor in the denominator of f(\) is an increasing function with limit 1 when A tends
to co. Moreover f is a strictly decreasing continuous function with limit 0 when A tends to oo whenever this
second factor is positive and A > —~,.

Let us consider two cases:

o fOT Bi(t)e Tdr > 1.
In this case f has a positive singularity (or equal to zero) and for A bigger than this singularity,
f decreases from oo to zero. Therefore there exists at least one positive value of A such that f(A) =
1. This implies the existence of solutions that grow exponentially, i.e., the disease can invade the
susceptible population. Notice that this is independent in this case of the values of the parameters of
the symptomatic population. On the other hand, a look at equation (9) confirms that its real solution
A can be made arbitrarily large by increasing the product pgs.
Since from (8) we have that the proportion of symptomatic idividuals to the asymptomatic ones is given
by
j peAT-T(T)

y(0) AT + 72
it follows that large values of 81 (to have the integral larger than 1) and of 3 (to have the solution
of (9) large) could lead to a quick spreading of the epidemics with, initially, very small numbers of
symptomatic individuals compared to the asymptomatic ones (see the Discussion).
o fOT Bi(t)e TMdr < 1.

In this case f is a continuous function on [0, c0), decreasing for A > 0 and with limit 0 when A tends
to oo which implies that (9) has a positive solution if and only if f(0) > 1. That means that there will be
solutions growing exponentially if f(0) > 1 whereas if f(0) < 1 all solutions will decrease exponentially.

Summarizing the discussion above we have:
Let

_ B 1 (1)
0) =2 . 10
f(0) 721—f0Tﬂ1(r)e—F(f)dre p (10)

e If f(0) <0 or f(0) > 1, the infected population grows exponentially.
e If f(0) € (0,1), the infected population decreases exponentially.

3. BASIC REPRODUCTION NUMBER

In this section we show that the threshold parameter that we have defined in the previous section (10) is
indeed the expected number of symptomatic individuals that a symptomatic individual will produce provided
that fOT Bi(m)e Tdr < 1.

First notice that % is the expected duration of the symptomatic period and fs is the number of infections
per unit of time that a symptomatic individual produces.

Thus the expected number of susceptible individuals infected by a symptomatic individual and becoming
then asymptomatic infected individuals is

B

Y2
Each one of them will remain infected without symptoms for a time bigger than 7(< T') with probability e~
and, during the interval (7,7 + d7), will infect ;1 (7)d7 susceptible individuals, in such a way that, on average,

(11)

r'(r)

fOT Bi(r)e T ("dr new asymptomatic individuals will be produced. Each one of them will again infect, on
average, the same number of susceptibles, and the process will continue in a recursive way.

Therefore, the expected total number of infected asymptomatic individuals produced by each secondary
asymptomatic infected by the original symptomatic individual will be, counting the first asymptomatic as well
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and assuming that fOT Bi(r)e 'Mdr < 1,

= —F T)d _ 1
kZ:O / NG r) P YE——— (12)

whereas they will be infinitely many in the opposite case.
For each one of these individuals the probability of reaching the end of the asymptomatic period and becoming
then symptomatic is

e T, (13)
The product of (11), (12) and (13) gives the following (see [9] for the same argument in a simpler model):

_ ! Ty (14)
721 — fO Bl _F(T)dT

whenever fOT Bi(1)e T (Mdr < 1, so that the right hand side of (10) coincides with Ry .

Notice that in the case that fOT Bi(T)e T dr > 1, i.e. when the average number of secondary infections
produced by an infected individual during the asymptomatic phase is greater than one, the common ratio of
the previous geometric sequence is bigger than or equal to 1 and therefore the expected number of infected
individuals produced by each asymptomatic individual would be infinite (not by direct contact but counting all
“generations”). The basic reproduction number would in this case be infinite (as in [9] and [4]). However we
should not forget on the one hand that we are not taking into account how much time it takes so that all the
infections happen (which could be very big) and on the other hand that we are analysing a linearised model
in which we have assumed that the number of susceptibles remains constant. When this is not the situation
anymore, the nonlinear model (1) has to be analysed with different mathematical tools.

In addition, analogously to the derivation above, we can compute the asymptomatic reproduction number
(the expected secondary asymptomatic cases produced by an asymptomatic primary case) as:

T
:/ Bu(r)e T dr 4 P22 Bap o~ T(T)
0 72

since the first term corresponds to the infections produced by the primary case during the asymptomatic phase
and the second term corresponds to the infections produced by the primary case during the symptomatic phase
(provided it becomes symptomatic) multiplied by the probability that it becomes symptomatic. This is the
reproduction number commonly used in epidemiology and defined as the expected number of new infections
a newly infected individual will produce in a wholly susceptible population over the full course of the disease.
Notice that Ry, > 1 if and only if Ry s > 1 and Ry, < 1 if and only if Ry, < 1.

4. NEXT-GENERATION OPERATOR

Another way, more systematic, to obtain the basic reproduction number Ry consists in computing it as the
spectral radius of the so-called next-generation operator ( [3,10,14]). For the numerical computation of Ry see
the efficient method introduced in [6]. The next generation operator is defined as BM~! where M (transi-
tion/mortality operator) is a linear operator such that —M is the generator of a strongly continuous semigroup
of positive linear operators, whose spectral bound is strictly negative (s(—M) < 0) and B (birth/infections
operator) is a positive linear operator such that B — M (the operator defining the original model considered) is
the infinitesimal generator of a positive semigroup.

Such a decomposition of the generator is not generally unique and therefore one can define different next-
generation operators and consequently different basic reproduction numbers for the same model. Nevertheless
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for all of them one has that the solutions of the linear system will grow exponentially if Ry > 1 and decrease
exponentially if Ry < 1 ( [9,10,20]).

For system (3) we have defined the operators B and M in (4). Assuming that s(—M) < 0 and so the
operator M is invertible, since BM 1! is a one dimensional range operator we will have that Rg s coincides with
the second component of

1 (0
w0,

To find the preimage of (0,1) € L'(0,7) x R under the linear operator M with domain given in (5), we

consider
. . 0
(Z(}—)>€DM such that <Z(})>_M1<1>,

which implies, by applying M to both sides,

< i'(7) + 71 (7)i(7) > _ ( 0 ) | i) = (0)e- Ji m)ie |

V2] 1 J=1/7
Since i( fo B1(7)i(7)dT + B2J because the pair (i, J) € Dy, the value of i(0) can be expressed in terms of
the parameters
_ b2 1
Y21 — fO ,81 6 —-I'(s)ds
Therefore,
B2 1 —1"(~)
e < 0 > _ Y2 1— fo B1 T)e*r(ﬂd‘r
1 1
Y2
and )
Ro = 52 e Ty, (15)

(1_ 1 By (r)e T dT)

The condition on the spectral bound of —M coincides with the condition fOT Bi(r)e T(Mdr < 1 above.

Just to show the flexibility of the introduced age-dependent model (1) in describing different epidemic sce-
narios, let us illustrate the following biologically meaningful example. We can assume an increasing infection
transmission, e.g. £1(7) = B- (1 — 1), B > 0, with support [I,T], since the viral load in the host eventually
increases in time until the appearance of the first symptoms. On the other hand, for the recovery and disease-
induced mortality, we can take one of the survival probabilities mostly used in population dynamics, e.g. either
L(r)=e M7, 4 >0,0or (1) = (1—7/T)* T > T, a > 0. For instance, taking the former I' and 8; with [ =0
above, we get the basic reproduction number from (15) as

_ Bop Vet
Yo 41— B[l — (1 +nT)enT]’

0,s —

which is well-defined whenever 3 < 57 and it is a decreasing function of T, ranging from [ifp

when there is no
asymptomatic period (T = 0), to vanish when the asymptomatic period is very large.

Interestingly enough, the behaviour of Ry s as a function of the asymptomatic period T is very different

when 3 > 2. In this case it is still decreasing for small 7' (until 7' = ,,Yi In( 5 ﬁ,ﬂ )) but for larger values of T' it
1 N

increases and becomes unbounded for a finite value of T. Summarizing, a longer asymptomatic period reduces
the basic reproduction number (and so it is beneficial) when the infectiousness of asymptomatic individuals is
small compared to their rate of recovery but in the contrary case, it can become very harmful, to the extreme of
making the pandemic uncontrollable with actions directed only at the population of symptomatic individuals.
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5. SIMPLIFICATIONS AND COVID-19

The main practical difficulty of models like (1) is not really the mathematical analysis that, at least, could be
done numerically, but the estimation of the parameters involved, especially functional parameters like 5; and
~1 in (1).

In order to simplify the situation we can assume that [; is constant and that v;4 = 0. This means that
asymptomatic disease transmission does not change during the period without symptoms and that asymptomatic
individuals do not recover before a fixed time T

More precisely, 51 constant means that we are assuming that the number of contacts of asymptomatic
individuals does not change, which could be a natural hypothesis when neglecting environmental changes. It
also means though that the viral load (and therefore the success of infection in a contact) does not change which
is much more arguable. However we assume it here for the sake of simplicity.

Under these assumptions, from the results in section 2 we have that $;7 > 1 implies exponential growth of
the disease and Ry s = oo whereas if 51T < 1 we have from (14),

Bap
Ros: A= AT (16)

Notice that, if p = 1 and T' = 0, i.e. if the asymptomatic period is neglected, Ry s reduces to the basic
reproduction number of the ODE Kermack-McKendrick SIR model).

We can distinguish different kinds of parameters in (16). p, T and -9 are intrinsic parameters of the disease: p
is the probability that an infected asymptomatic individual becomes symptomatic, 7" is the time from infection
until the development of symptoms (or until recovery) and 5 s the average length of the symptomatic period.
Since SARS-CoV-2 is a new virus, all of them are pretty unknown. However, they are probably rather fixed
until a treatment is found and in principle they have similar values in all countries affected by the disease.

On the other hand B, and (; are epidemiological parameters that depend on the number of contacts, which
might differ in each country because of socio-economic and cultural reasons. Moreover these are not constant
parameters, they can be, and have been controlled with quarantine measures.

From (3) we see that ¢ is a hidden variable and that the available daily data corresponds to the new “de-
tected” cases and to the sum of disease-related deaths and recovered, which amount (approximately) to p (T, )
and o J(t) respectively. We denote the new detected cases by D(t), i.e. D(¢t) := pi(T,t). The knowledge of p
and T would allow to find #(0,t) (daily new infected cases) as well as 81 and Sa.

Under the assumption that 4, vanishes identically, the first equation in (3) can be trivially integrated yielding
i(r,t) = i(0,t — 7). So, using the second equation in (3) we can write

D(t) = pi(T,t) = pi(0,t = T) = By [ pi(r,t — T)dr +pBaJ(t — T)
(17)
=5 fOTpi(T,t — )T +pBaJ(t —T) = B ftt_T D(s)ds + Bap J(t —T).

A procedure to estimate the parameters 8, and S5 would proceed as follows. Let us assume we have a daily series
of values of new cases D; := D(t;) and also the total number of symptomatic individuals J; := J(t;) beginning
at time —7T' 4+ 1 =: t_p4; and ending at some positive time ¢ = ¢x. The trapezoidal rule to approximate the
integral in (17) for ¢t € [0,ty] gives, for j = 1,..., N, and assuming that T' (an integer number of days) and p
are known,

1 _ 1
Dj =0/ <2Dj_T + E;rzlle—T-‘ri + 2Dj> + Bop Jj_T =: ﬂlXj + ﬂQYj, (18)

which is an overdetermined linear system (if N > 2) for 51 and f2. The method of least squares gives the
following formulas for these parameters:
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daily repo?ted removed removed removed per day/
new active per reported p= 0,5
. accumulated .
cases (D) infected (J) day active infected T= 7
171
march 11 582 2039 238 67 0,0329
march 12 869 2871 275 37 0,0129
march 13 2086 4906 326 51 0,0104
march 14 1159 5678 713 387 0,0682
march 15 1597 7177 811 98 0,0137
march 16 1954 9070 872 61 0,0067
march 17 1884 10265 1561 689 0,0671 X Y
march 18 2943 11311,5 1019,5
march 19 3308 13711,5 1435,5
march 20 3494 15635 2453
march 21 3925 17722 2839
march 22 3272 19942,5 3588,5
march 23 6368 22987 4535
march 24 6922 27713 5132,5
b1 0,21817 B2 0,10483
61T 1,52719 Ro,s oo

TABLE 1. Spanish data during the March outbreak of the pandemic. (T > 1 implies
an infinite value of Ry s, which means that a symptomatic causes infinitely many secondary
symptomatic cases due to the spread of the virus through the asymptomatic population. The
values in columns X and Y are obtained according to equation (18) in the main text.

Data source: https://www.worldometers.info/coronavirus/country/spain/

_ YZXD-XYYD

1 — P — 2 )
X2y2 XY
X2YD-XY XD
2 — —
X2YZ XY’

where the overline notation means the average of the values in the vector.

In Table 1 Spanish data are collected from two weeks beginning on March 11th and we assume T' = 7 (days)
and p = 0.5 (this choice is based on global clinical information [18,19], not related to data used here). During
this period it appears that the number of infections caused by asymptomatic were so large that 5, T" was larger
than 1 and consequently Ry s was infinite.

A few days later (see Table 2 where data between March 21 and April 3 are considered), with strict quarantine
measures (which started on March 14th but were re-inforced on March 28th) the situation seemed completely
different since Ry s turned out to be already less than 1, as computed using (16). Here 2 was estimated as
an average value of the quotient between the number of reported removed individuals per day (recovery plus
deaths) and the total number of active infected individuals. This gives an average duration of the disease (i.e.
the symptomatic phase) of 22 days. According to our previous comments on different types of parameters, a
more intrinsic value (obtained from clinical observations) could be used.

Notice that Ry s and also the solutions of the characteristic equation f(A) =1 do not depend separately on
the values of the parameters p and 2 but only on their product. This allows to compute Ry s (and the real
root of the characteristic equation) without a priori knowledge of p, just using directly J;_r instead of Y;, thus
estimating via the least squares method the values of 8 and Bap.
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daily repohrted removed removed removed per day/
new active per reported p= 0,5
. accumulated .
cases (D) infected (J) day active infected T= 7
2681
march 21 4750 21990 3506 825 0,0375
march 22 4113 24421 4347 841 0,0344
march 23 7687 29470 5666 1319 0,0448
march 24 8041 35273 6785 1119 0,0317
march 25 9686 40501 9014 2229 0,0550
march 26 10637 46406 11380 2366 0,0510
march 27 11048 51224 14495 3115 0,0608 X Y
march 28 7516 57345 10995
march 29 6875 60109  12210,5
march 30 7846 61569,5 14735
march 31 7967 61612  17636,5
april 1 8195 60829,5 20250,5
april 2 6120 57825,5 23203
april 3 7472 53779 25612
o 0,0450
1/7v2 22,2033 days
B 0,12219 Bo 0,0120
/T 0,85535 Ro.s 0,923
TABLE 2. Spanish data during the lockdown. Notice that after the lockdown (which started

on 15/03/20) the value of /51 is half the previous one, which added to a much smaller value of
B2, imply (using equation (16) in the main text) a value of Ry s which is already smaller than
1. The values in columns X and Y are obtained according to equation (18) in the main text.

Data source: https://www.worldometers.info/coronavirus/country/spain/

Nevertheless, a separate estimation of both parameters is necessary for practical purposes. Indeed, let us go
back to Section 2 and let us assume that 43 =0 and f(A\) = 1. Then (8) implies that an exponential solution of
(3) is of the form

< e— AT
(.0, 90) = 0 (7 p ),
A+ 72
where A only depends on the product Sop. But p appears alone multiplying the second component (the symp-
tomatic population), the knowledge of which is of crucial importance for the sanitary system.

6. DISCUSSION

More often than not, the underlying variables that determine the dynamics of a population are not directly
measurable due to technical limitations. This entails the dilemma on how to choose a good model to describe
the observations. The more detailed a model is, the more close it is to reality. However, a too detailed model
could be useless to make predictions if the available data is not enough to estimate properly its parameters.
This phenomenon was elegantly showed in [17] by considering a complex model to be the reality, generating
partial data according to this model, fitting the “real” complex model and a “wrong” simpler model with that
data, and finally showing that the more accurate predictions were given by the simpler model due to the large
discrepancy between the real parameters of the original complex model and the ones obtained with the fit.

The spread of a pathogen is a clear example in which the available data is limited. Indeed, unless wide
screening tests are performed, data consist solely on those individuals manifesting symptoms and reporting
them to the health system. Asymptomatic individuals are in some sense hidden and cannot be quantified. To
address the importance of the unreported cases in the spread of a disease, in this article we have analysed a model
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suited for epidemics in which the prevalence of asymptomatic individuals can be large. Conditions guaranteeing
its expansion or decay are given in terms of general functional parameters. Afterwards, a particular class of
functional parameters, namely constant functions, has been used to fit the model with Spanish data of Covid-19.

We have found the transmission rate of asymptomatic individuals times the duration of the asymptomatic
period, namely 17T, to be a critical parameter of the model. This value being larger than one means that
the pathogen is spreading unnoticedly because each infected individual causes, on average, more than one
other infection during the asymptomatic phase. Our results suggest that this was the case in Spain before the
lockdown started on 14th march, since according to the data 517 ~ 1.5. The model also indicates that, once the
lockdown was well established, not only $;7 was smaller than one but also the reproduction number, namely
Ry,s, was. Specifically the data give Ry s ~ 0.9. This means that during the symptomatic phase an infected
individual caused, on average, less than one secondary symptomatic case (was it directly or indirectly through
the asymptomatic population), so that the spread of the disease was controlled thanks to the lockdown.

The reproduction number derived in this article represents an alternative indicator to the ones currently
used to determine if the epidemic spans or shrinks. In order to be more confident on the results derived from
this indicator, however, our knowledge on the parameters p and T should be improved. Moreover, a better
understanding of the infection process would allow to work with more realistic models. For example, the model
presented here could be generalized to allow asymptomatic individuals to become symptomatic at different ages
of infection: instead of assuming that all asymptomatic become symptomatic or cure 7' units of time after
infection, a functional parameter would determine the rate at which this process occurs depending on the age
of infection. An equation for the reproduction number in this more general case can be obtained following the
same approach, but the simplifications to estimate the parameters should be different.
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