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REPRODUCTION NUMBER FOR AN AGE OF INFECTION
STRUCTURED MODEL*
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Abstract. We study the basic reproduction number (Rp) in an epidemic model where infected indi-
viduals are initially asymptomatic and structured by the time since infection. At the beginning of an
epidemic outbreak the computation of Ry relies on limited data based mostly on symptomatic cases,
since asymptomatic infected individuals are not detected by the surveillance system. Ry has been widely
used as an indicator to assess the dissemination of infectious diseases. Asymptomatic individuals are
assumed to either become symptomatic after a fixed period of time or they are removed (recovery
or disease-related death). We determine Ry understood as the expected secondary symptomatic cases
produced by a symptomatic primary case through a chain of asymptomatic infections. Ry is computed
directly by interpreting the model ingredients and also using a more systematic approach based on the
next-generation operator. Reported Covid-19 cases data during the first wave of the pandemic in Spain
are used to fit the model and obtain both values of Ry before and after the severe lockdown imposed
in March 2020. The results confirm that SARS-CoV-2 was expanding within the population before the
lockdown whereas the virus spreading was controlled two weeks after the lockdown.
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1. INTRODUCTION

Emergence of infectious diseases is a problem that humans are doomed to face over and over. Beyond the
particularities of each new pathogen, the dynamics of epidemics depend on similar processes. This makes
mathematical models a useful tool to evaluate the possible outcomes as a function of certain key parameters.

The expansion of an epidemics is usually monitored by means of two indicators: the exponential growth rate
of the disease and the basic reproduction number, denoted by Ry. The former corresponds to the change in the

*This research was funded by Ministerio de Ciencia e Innovacién, grants number MTM2017-84214-C2-2-P and RED2018-
102650-T.

Keywords and phrases: Age of infection, Basic reproduction number, Covid-19.

I Departament de Matematiques, Universitat Autonoma de Barcelona, 08193 Bellaterra (Cerdanyola del Valles), Barcelona,
Spain.

2 Centre de Recerca Matematica, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain.

3 Departament d’Informatica, Matematica Aplicada i Estadistica, Universitat de Girona.

** Corresponding author: silvia@mat.uab.cat

© The authors. Published by EDP Sciences, 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


https://doi.org/10.1051/mmnp/2021033
https://www.mmnp-journal.org/
https://orcid.org/0000-0002-4612-5533
https://orcid.org/0000-0003-2585-0039
https://orcid.org/0000-0003-2051-2030
https://orcid.org/0000-0002-1186-0175
mailto:silvia@mat.uab.cat
https://creativecommons.org/licenses/by/4.0

2 C. BARRIL ET AL.

number of active cases normalised by the prevalence at a given time, so that negative exponential growth rates
indicate that the number of infected individuals is decaying exponentially whereas positive exponential growth
rates mean that the number of infections is growing exponentially. The latter indicator, Ry, is usually defined
as the number of new infections an infected individual will produce in a wholly susceptible population, so that
if it is larger than one each infected individual produces more than one secondary infection and the disease is
able to disseminate whereas if it is smaller than one this cannot happen (see [12] for an historical review on Ry).
As expected by the above definitions, the sign of the exponential growth rate coincides with the sign of Ry — 1
(in [20] a proof of this relation is proven for deterministic models dealing with infinite dimensional variables, as
the model analysed in this article). Although the two indicators seem to be equivalent in regard to the analysis
of the epidemic, the mechanistic interpretation of Ry and its, often, explicit dependence on relevant parameters
of the model, makes it especially well suited to design and evaluate social measures intended to control and
eradicate the epidemics [9].

As it has been discussed elsewhere different reproduction numbers can be defined depending on what is
understood as a birth event, which in an epidemiological context could correspond to a new infection or,
alternatively, to a new reported case [5, 9]. The choice of Ry could be motivated by the strategy used to control
the epidemics [9]. For example, at the beginning of a pandemic only reported cases can be used to monitor how
it spreads, so that it is natural to consider to focus on how the number of reported cases grow.

In this study we consider an extension of the infection-age structured compartmental model introduced by
Kermack and McKendrick in 1927 ([15]) where we take into account the existence of individuals that experience
the disease with no (or very mild) symptoms making them undetectable for the health system as long as
systematic testing is not being applied to the population.

That is, we divide the infected population into two groups: asymptomatic individuals (we also include here
symptomatic with mild symptoms) for which no isolation measures have been taken and symptomatic individ-
uals. The role of infected asymptomatic individuals seems to be very important for certain diseases [7, 13] and
in particular for Covid-19 (see for instance [2, 8, 9, 13] for models considering asymptomatic individuals and
[1, 16] for applications to Covid-19).

We denote by S(¢) the number of individuals that are susceptible to the disease. Let 7 denote the age of
infection (time elapsed since infection) and i(7,t) the density with respect to 7 of infected individuals at time
t that are asymptomatic (here the term “asymptomatic” refers to individuals without symptoms at a given
time, which could or could not develop symptoms in the future). We assume that a newly infected individual is
asymptomatic. J(t) stands for the number of symptomatic individuals (detected by the health system). Finally
R(t) denotes the number of individuals who have been infected and then removed from the chain of infection (in
the sense that they cannot be infected again). Thus, R(t) are either asymptomatic individuals that recovered
without being detected or symptomatic individuals that recovered or symptomatic individuals that died due to
the disease.

The usual mass-action incidence is assumed. Specifically, denoting by 51 (7) the transmission rate of asymp-
tomatic individuals (i.e. the number of contacts per unit of time of an asymptomatic individual multiplied by
the probability that the contact between an asymptomatic individual and a susceptible one results in transmis-
sion of the disease) and by N the total population (see (1.2) below) we have that % is the probability that
the contact is indeed with a susceptible! and therefore 34 (T)% gives the number of susceptible individuals
that become infected per unit of time per each infectious asymptomatic individual of infection-age 7. Notice in
particular that the model includes the possibility of latency (or incubation time) by assuming /31 (7) vanishing
for small infection-age. Analogously, denoting by fs the transmission rate of symptomatic individuals, 62%
will be the number of susceptible individuals that become infected per unit of time per symptomatic individual.
Whereas some other parameters of the model can usually be measured experimentally, both 1 (7) and (2 are
difficult to measure directly because they depend on the number of contacts and the probability of transmis-
sion, which are not easy to determine. Since symptomatic cases are aware of being infectious, they presumably
will avoid contacts with others (i.e. they will self-isolate) making B2 to be smaller that 81 (this is observed in

L Actually this is an approximation since the total population N includes a small fraction of deceased individuals by the disease.
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Section 5 where real data is analysed). The recovery rate of an asymptomatic individual of age 7 is given by
~1(7) and 75 is the so-called recovery rate of the symptomatic population (which is in fact the sum of the actual
recovery rate and the disease-related death rate).

The model reads:

S'(t) = —=S(t) fi B t)dr — S(t)B2.0(1),

J'(t) = pi(T,t) — 72 J (1), (1.1)

R(t) = [y n(r)i(r,t)dr + (1= p)i(T,t) + 12 (1),

i(0,8) = S(t) [, B i(r t)dr + S(t) 227 (1),

where T is the time after which asymptomatic individuals which have not recovered yet, either, with probability p
develop symptoms and are detected by the health system passing then to the J-compartment or, with probability
1 — p recover and become immune passing then to the R-compartment. The sudden onset of severe symptoms
seems to be a characteristical feature of the Covid-19 [19]. The subscripts ¢ and 7 in the second equation denote
the partial derivative of function ¢ with respect ¢t and 7 respectively. All parameters are non negative and (o,
2 and p are assumed to be strictly positive to avoid some limiting cases.

Notice that we have assumed that the time scale of the epidemic is much faster than the time scale for
demographic processes (natural birth and death), and therefore these are not included in the model and the
total population is then constant and given by

N =5S(t) + /Ti(T, t)dr + J(t) + R(t) for all t>0. (1.2)
0

Notice also that the dynamics of S, ¢ and J are independent of the variable R. Hence in what follows we
will concentrate on the three first equations of (1.1) plus the boundary condition (the fifth equation), noting
that from the knowledge of S(t), i(¢) and J(¢) one easily can compute R(t) integrating the fourth equation in
time or directly using that the total population is constant, i.e. equation (1.2). See Figure 1 for an schematic
representation of the model, showing the infection, recovery and transition processes.

The paper is structured as follows: in Section 2 we compute the characteristic equation of the linearization of
the model around the disease free equilibrium and give a threshold for the spectral bound of the linear operator
and so a threshold for the stability /instability of this steady state. In Section 3 we compute the so-called basic
reproduction number Ry ; defined here as the expected number of symptomatic individuals produced by a single
newly symptomatic one and check the well known general result that R s is larger than one if and only if the
spectral radius is positive, and less than one if and only if the spectral radius is negative. In Section 4 we use
results on the reproduction number in continuously structured populations to compute Ry s as the spectral
radius of the so-called next generation operator. Finally, in Section 5 we consider a simplified model, determine
parameters based on the Spanish record data of the Covid-19 pandemic during the springtime peak and compute
the corresponding values of Ry s before and immediately after the lockdown. The last section is devoted to some
concluding remarks.

2. EXPONENTIAL GROWTH

Let us consider the (initial) situation when the number of infected individuals is very small compared to
the (possibly fully) susceptible population. Then the dynamics of the infected population is described by the
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FIGURE 1. Flow diagram representing the dynamics of the model (1.1). Per capita new (hidden)
infections per unit of time (arrows departing from the Susceptible class) are fo Bul T) i(r, t)dr

and 82.J(t (t), produced by asymptomatic and symptomatic individuals respectlvely, whereas
new (N hysically observable) infections per unit of time are pi(T,t). Exposed individuals can be
included into the asymptomatic class for small ages where (1 (7) is zero.

linearized equations for the infected population at the disease-free steady state (N,0,0,0) of (1.1) which are
it(7,t) + i (7, t) + (7)i(r,t) =0, 7€]10,7T),
fO 61 T t)dT—‘rﬁgJ( ) (21)

J(t) = pi(T,t) = 72J ().

System (2.1) can be written as

d
az( ) = Bz(t) — Mz(t)
with
(7, 1) 0 0 o-+m O
z(t)(7) == ) B:= , M := ) (2.2)
J(t) por 0O 0 Y2

where dr stands for the evaluation operator at the point 7 = T and the first order differential operator M is
supplemented with the boundary condition given by the second equation in (2.1). The main reason to consider
the decomposition in operators B and M is that it allows to compute the so-called next generation operator
when the “birth event” is the emergence of a symptomatic case (see Sect. 4).

Since —M is the infinitesimal generator of a positive semigroup in L'(0,7) x R with domain

DM_{(i,J) e WHH0,T) xR : /Bl dr+ﬂgj} (2.3)

and B is a bounded linear operator in the domain of M endowed with the graph norm we get that B — M is
the infinitesimal generator of a positive semigroup (see Sect. 3.2 in [5]).
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Since the equations in (2.1) are linear we look for separable solutions, i.e. solutions of the form
( i(7:t) > Y ( y(7) ) _
J(t) J

My(T) + 9 (7) + 1 (r)y(r) =0,

Substituting them in (2.1) we obtain

= Jy Bu(m)y(r)dr + Baj, (2.4)
A = py(T) = 72J.

The solution of the first equation in (2.4) is y(7) = y(0)e=*"~T(") where T'(7 fo ~1(s)ds. Substituting it in
the second equation in (2.4) yields

T
y0) =9(0) [ Bi(r)e T Odr + (2
0
and substituted in the third equation in (2.4) gives

Aj = py(0)e M I — . (2.6)

Equations (2.5) and (2.6) constitute a linear homogeneous system for the unknown (y(0),5)" with nontrivial
solution if and only if A is a solution (real or complex) of the characteristic equation

T
pef)\TfI‘(T)BQ ~ (et /\)(1 _/ 51(T)€7A77F(T)d7') -0,
0

or, equivalently, if A is a solution of

pef)\TfI‘(T)B2
FO) = . =1 (2.7)
(’)/2 + )\) (1 — fO ﬁl (T)e_)\T—F(T)dT)

Since the solutions of (2.1) with positive initial conditions are positive (B — M generates a positive semigroup),
the maximum of the real part of the roots of the characteristic equation is a (real) root of it (the spectral bound
of a positive semigroup is a spectral value). Moreover, as the exponential behaviour of the semigroup generated
by B — M is determined by the spectral bound of B — M, the larger real solution of the characteristic equation
determines the exponential growth or decay of the solution [11].

Notice that the second factor in the denominator of f(A) is an increasing function with limit 1 when X tends
to 0o. Moreover f is a strictly decreasing continuous function with limit 0 when A tends to co whenever this
second factor is positive and A > —~,.

Let us consider two cases:

- fO Bl F(T dr > 1.
In thls case f has a positive singularity (or equal to zero) and for A bigger than this singularity, f decreases
from oo to zero. Therefore there exists at least one positive value of A such that f(\) = 1. This implies
the existence of solutions that grow exponentially, i.e., the disease can invade the susceptible population.
Notice that this is independent in this case of the values of the parameters of the symptomatic population.
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On the other hand, a look at equation (2.7) confirms that its real solution A can be made arbitrarily large
by increasing the product pfs.
Since from (2.6) we have that the proportion of symptomatic individuals to the asymptomatic ones is
given by

j peMT-T(T)

y(0) A+

)

it follows that large values of 31 (to have the integral larger than 1) and of B2 (to have the solution of (2.7)
large) could lead to a quick spreading of the epidemics with, initially, very small numbers of symptomatic
individuals compared to the asymptomatic ones (see the Discussion).

- fO ﬁl F(T dr < 1.
In thls case f is a continuous function on [0, c0), decreasing for A > 0 and with limit 0 when A tends to
oo which implies that (2.7) has a positive solution if and only if f(0) > 1. That means that there will be
solutions growing exponentially if f(0) > 1 whereas if f(0) < 1 all solutions will decrease exponentially.

Summarizing the discussion above we have:
Let

B2 1 1 (1)
0 . 2.8
10 = e (2.9

— If f(0) <0 or f(0) > 1, the infected population grows exponentially.
— If f(0) € (0,1), the infected population decreases exponentially.

3. BASIC REPRODUCTION NUMBER

In this section we show that the threshold parameter that we have defined in the previous section (2.8) is

indeed the expected number of symptomatic individuals that a symptomatic individual will produce provided
T 7F('r

that [; B1(7 dr <1.

First notlce that 7— is the expected duration of the symptomatic period and fs is the number of infections
per unit of time that a symptomatic individual produces.

Thus the expected number of susceptible individuals infected by a symptomatic individual and becoming
then asymptomatic infected individuals is

&. (3.1)
Y2
Each one of them will remain infected without symptoms for a time bigger than 7(< T) with probability
e~T(") and, during the interval (7,7 + dr), will infect 8;(7)dr susceptible individuals, in such a way that, on
average, fOT ﬁl(T)e_F(T)dT new asymptomatic individuals will be produced. Each one of them will again infect,
on average, the same number of susceptibles, and the process will continue in a recursive way.
Therefore, the expected total number of infected asymptomatic individuals produced by each secondary
asymptomatic infected by the original symptomatic individual will be, counting the first asymptomatic as well

and assuming that fOT Bi(r)e TMdr < 1,

,i ( /0 ' ﬁl(f)e*“f)ch)k = ! =y (3.2)

1_f0 Br(r

whereas they will be infinitely many in the opposite case.
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For each one of these individuals the probability of reaching the end of the asymptomatic period and becoming
then symptomatic is

e Ty, (3.3)

The product of (3.1), (3.2) and (3.3) gives the following (see [9] for the same argument in a simpler model):

1
bz e Ty (3.4)

0,5 —
7217‘[‘0 ﬁl 6 T(rdr

whenever fOT B1(1)e (M dr < 1, so that the right hand side of (2.8) coincides with R .

Notice that in the case that fOT 51 (T)e’F(T)dT > 1, i.e. when the average number of secondary infections
produced by an infected individual during the asymptomatic phase is greater than one, the common ratio of
the previous geometric sequence is bigger than or equal to 1 and therefore the expected number of infected
individuals produced by each asymptomatic individual would be infinite (not by direct contact but counting
all “generations”). The basic reproduction number would in this case be infinite (as in [9] and [4]). However we
should not forget on the one hand that we are not taking into account how much time it takes so that all the
infections happen (which could be very big) and on the other hand that we are analysing a linearised model
in which we have assumed that the number of susceptibles remains constant. When this is not the situation
anymore, the nonlinear model (1.1) has to be analysed with different mathematical tools.

In addition, analogously to the derivation above, we can compute the asymptomatic reproduction number
(the expected secondary asymptomatic cases produced by an asymptomatic primary case) as:

/ Bu(r)e T d 4 Bep )
V2

since the first term corresponds to the infections produced by the primary case during the asymptomatic phase
and the second term corresponds to the infections produced by the primary case during the symptomatic phase
(provided it becomes symptomatic) multiplied by the probability that it becomes symptomatic. This is the
reproduction number commonly used in epidemiology and defined as the expected number of new infections
a newly infected individual will produce in a wholly susceptible population over the full course of the disease.
Notice that Ry, > 1 if and only if Ry s > 1 and Ry, < 1 if and only if Ry, < 1.

4. NEXT-GENERATION OPERATOR

Another way, more systematic, to obtain the basic reproduction number R consists in computing it as the
spectral radius of the so-called next-generation operator ([3, 10, 14]). For the numerical computation of Ry see
the efficient method introduced in [6]. The next generation operator is defined as BM ! where M (transi-
tion/mortality operator) is a linear operator such that —M is the generator of a strongly continuous semigroup
of positive linear operators, whose spectral bound is strictly negative (s(—M) < 0) and B (birth/infections
operator) is a positive linear operator such that B — M (the operator defining the original model considered) is
the infinitesimal generator of a positive semigroup.

Such a decomposition of the generator is not generally unique and therefore one can define different next-
generation operators and consequently different basic reproduction numbers for the same model. Nevertheless
for all of them one has that the solutions of the linear system will grow exponentially if Ry > 1 and decrease
exponentially if Ry < 1 ([9, 10, 20]).

For system (2.1) we have defined the operators B and M in (2.2). Assuming that s(—M) < 0 and so the
operator M is invertible, since BM ~! is a one dimensional range operator we will have that Ry s coincides with



8 C. BARRIL ET AL.

pat (1),

To find the preimage of (0,1) € L*(0,7) x R under the linear operator M with domain given in (2.3), we

consider
i(7) i(r) \ _ a1 0
( J >€DM such that < 7 >M <1>,

which implies, by applying M to both sides,

( (1) + 7 (7)i() > _ < 0 ) L i) _ i(0)e- I3 0o |

the second component of

’YQJ 1 J = 1/’}/2
Since (0 fo B1(1)i(7)dT + B2J because the pair (i,.JJ) € Dy, the value of 4(0) can be expressed in terms of
the parameters
721 - fOT B1(s)e T(®)ds
Therefore,
B2 1 -T()
1 ( 0 ) %2 T[T Bi(r)e Tar ©
M~ = ,
1 1
Y2
and
1
Ry, = Bz e Ty, (4.1)

2 (1= f) Bu(r)eTar)

The condition on the spectral bound of —M coincides with the condition fOT ﬁl(T)e_F(T)dT < 1 above.

Just to show the flexibility of the introduced age-dependent model (1.1) in describing different epidemic
scenarios, let us illustrate the following biologically meaningful example. We can assume an increasing infection
transmission, e.g. B1(7) = 8- (7 — 1), B > 0, with support [I,T], since the viral load in the host eventually
increases in time until the appearance of the first symptoms. On the other hand, for the recovery and disease-
induced mortality, we can take one of the survival probabilities mostly used in population dynamics, e.g. either
[(r)=e M7, 4 >0,or I'(7) = (1—7/T)*, T >T, a> 0. For instance, taking the former I and £; with [ =0
above, we get the basic reproduction number from (4.1) as

_ Pap e T
P e B (I T)e ]

which is well-defined whenever 3 < 57 and it is a decreasing function of T, ranging from B,;“p when there is no
asymptomatic period (7' = 0), to vanish when the asymptomatic period is very large.
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Interestingly enough, the behaviour of Ry as a function of the asymptomatic period 7' is very different
8
B
increases and becomes unbounded for a finite value of T'. Summarizing, a longer asymptomatic period reduces
the basic reproduction number (and so it is beneficial) when the infectiousness of asymptomatic individuals is
small compared to their rate of recovery but in the contrary case, it can become very harmful, to the extreme of

making the pandemic uncontrollable with actions directed only at the population of symptomatic individuals.

when § > 47. In this case it is still decreasing for small 7" (until 7' = = In( )) but for larger values of T it

5. SIMPLIFICATIONS AND CoOVID-19

The main practical difficulty of models like (1.1) is not really the mathematical analysis that, at least, could
be done numerically, but the estimation of the parameters involved, especially functional parameters like (5,
and v in (1.1).

In order to simplify the situation we can assume that (; is constant and that y; = 0. This means that
asymptomatic disease transmission does not change during the period without symptoms and that asymptomatic
individuals do not recover before a fixed time T

More precisely, £ constant means that we are assuming that the number of contacts of asymptomatic
individuals does not change, which could be a natural hypothesis when neglecting environmental changes. It
also means though that the viral load (and therefore the success of infection in a contact) does not change which
is much more arguable. However we assume it here for the sake of simplicity.

Under these assumptions, from the results in Section 2 we have that 5,7 > 1 implies exponential growth of
the disease and Ry s = oo whereas if 51T < 1 we have from (3.4),

Bap
Ry s : = BT (5.1)

Notice that, if p =1 and T' = 0, ¢.e. if the asymptomatic period is neglected, Ry s reduces to the basic
reproduction number of the ODE Kermack-McKendrick SIR model).

We can distinguish different kinds of parameters in (5.1). p, T and 72 are intrinsic parameters of the disease: p
is the probability that an infected asymptomatic individual becomes symptomatic, 7" is the time from infection
until the development of symptoms (or until recovery) and 5 s the average length of the symptomatic period.
Since SARS-CoV-2 is a new virus, all of them are pretty unknown. However, they are probably rather fixed
until a treatment is found and in principle they have similar values in all countries affected by the disease.

On the other hand 81 and B are epidemiological parameters that depend on the number of contacts, which
might differ in each country because of socio-economic and cultural reasons. Moreover these are not constant
parameters, they can be, and have been controlled with quarantine measures.

From (2.1) we see that i is a hidden variable and that the available daily data corresponds to the new
“detected” cases and to the sum of disease-related deaths and recovered, which amount (approximately) to
pi(T,t) and y2J (t) respectively. We denote the new detected cases by D(t), i.e. D(t) := pi(T,t). The knowledge
of p and T would allow to find #(0,¢) (daily new infected cases) as well as 8; and fs.

Under the assumption that 7, vanishes identically, the first equation in (2.1) can be trivially integrated
yielding i(7,t) = #(0,t — 7). So, using the second equation in (2.1) we can write

D(t) = pi(T,t) = pi(0,t = T) = By [ pi(r,t — T)d7 +pBaJ(t — T)
(5.2)
=5 fOTpi(T,t — 7)Y +pBaJ(t—T) = B ftth D(s)ds+ Bap J(t —T).

A procedure to estimate the parameters 8; and B2 would proceed as follows. Let us assume we have a daily series
of values of new cases D; := D(t;) and also the total number of symptomatic individuals J; := J(¢;) beginning
at time =7+ 1 =: t_741 and ending at some positive time ¢ = tn. The trapezoidal rule to approximate the
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integral in (5.2) for t € [0,¢y] gives, for j =1,..., N, and assuming that 7' (an integer number of days) and p
are known,

1 _ 1
Dj =0 <2Dj_T + 23:11Dj—T+i + 2Dj> + Baop Jj_T =: ﬂlXj + 52}?, (5.3)

which is an overdetermined linear system (if N > 2) for 81 and SB3. The method of least squares gives the
following formulas for these parameters:

Y2XD-XYYD
1= p——
X2Y2 - XY~

_ X?YD-XYXD
X2Y2 XY~

2

where the overline notation means the average of the values in the vector.

In Table 1 Spanish data are collected from two weeks beginning on March 11th and we assume T = 7 (days)
and p = 0.5 (this choice is based on global clinical information [18, 19], not related to data used here). During
this period it appears that the number of infections caused by asymptomatic were so large that 81 T was larger
than 1 and consequently Ry s was infinite.

A few days later (see Table 2 where data between March 21 and April 3 are considered), with strict quarantine
measures (which started on March 14th but were re-inforced on March 28th) the situation seemed completely
different since Ry s turned out to be already less than 1, as computed using (5.1). Here 2 was estimated as
an average value of the quotient between the number of reported removed individuals per day (recovery plus
deaths) and the total number of active infected individuals. This gives an average duration of the disease (i.e.
the symptomatic phase) of 22 days. According to our previous comments on different types of parameters, a
more intrinsic value (obtained from clinical observations) could be used.

Notice that Ry s and also the solutions of the characteristic equation f(A) =1 do not depend separately on
the values of the parameters p and 5 but only on their product. This allows to compute Ry (and the real
root of the characteristic equation) without a priori knowledge of p, just using directly J;_r instead of Yj;, thus
estimating via the least squares method the values of 8, and Bap.

Nevertheless, a separate estimation of both parameters is necessary for practical purposes. Indeed, let us go
back to Section 2 and let us assume that 43 = 0 and f(A\) = 1. Then (2.6) implies that an exponential solution
of (2.1) is of the form

. R efiT
(i(r.1), () = y(0)e ™ <p - 72),

where A only depends on the product Sap. But p appears alone multiplying the second component (the
symptomatic population), the knowledge of which is of crucial importance for the sanitary system.

6. DIsCcUSSION

More often than not, the underlying variables that determine the dynamics of a population are not directly
measurable due to technical limitations. This entails the dilemma on how to choose a good model to describe
the observations. The more detailed a model is, the more close it is to reality. However, a too detailed model
could be useless to make predictions if the available data is not enough to estimate properly its parameters.
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TABLE 1. Spanish data during the March outbreak of the pandemic. 517 > 1 implies an infinite
value of Ry s, which means that a symptomatic causes infinitely many secondary symptomatic
cases due to the spread of the virus through the asymptomatic population. The values in

columns X and Y are obtained according to equation (5.3) in the main text.

Data source: https://www.worldometers.info/coronavirus/country/spain/

Daily Repqrted Removed Removed  Removed per day/
new active mulated per reported p= 0.5
cases (D) infected (J) aceu day active infected = 7
171
March 11 582 2039 238 67 0.0329
March 12 869 2871 275 37 0.0129
March 13 2086 4906 326 51 0.0104
March 14 1159 5678 713 387 0.0682
March 15 1597 7177 811 98 0.0137
March 16 1954 9070 872 61 0.0067
March 17 1884 10265 1561 689 0.0671 X Y
March 18 2943 11311.5 1019.5
March 19 3308 13711.5  1435.5
March 20 3494 15635 2453
March 21 3925 17722 2839
March 22 3272 19942.5  3588.5
March 23 6368 22987 4535
March 24 6922 27713 5132.5
51 0.21817 B2 0.10483
61T 1.52719 Ro,s 0

TABLE 2. Spanish data during the lockdown. Notice that after the lockdown (which started
on 15/03/20) the value of 3; is half the previous one, which added to a much smaller value of
B2, imply (using equation (5.1) in the main text) a value of Ry s which is already smaller than
1. The values in columns X and Y are obtained according to equation (5.3) in the main text.
Data source: https://www.worldometers.info/coronavirus/country/spain/.

Daily Repqrted Removed Removed Removed per day/
new active mulated per reported p= 0.5
cases (D) infected (J) aceu day active infected = 7
2681
March 21 4750 21990 3506 825 0.0375
March 22 4113 24421 4347 841 0.0344
March 23 7687 29470 5666 1319 0.0448
March 24 8041 35273 6785 1119 0.0317
March 25 9686 40501 9014 2229 0.0550
March 26 10637 46406 11380 2366 0.0510
March 27 11048 51224 14495 3115 0.0608 X Y
March 28 7516 57345 10995
March 29 6875 60109 12210.5
March 30 7846 61569.5 14735
March 31 7967 61612 17636.5
April 1 8195 60829.5  20250.5
April 2 6120 57825.5 23203
April 3 7472 53779 25612
Y2 0.0450
1/7v2 22.2033 days
B1 0.12219 B2 0.0120
61T 0.85535 Ry, s 0.923

>

11


https://www.worldometers.info/coronavirus/country/spain/
https://www.worldometers.info/coronavirus/country/spain/

12 C. BARRIL ET AL.

This phenomenon was elegantly showed in [17] by considering a complex model to be the reality, generating
partial data according to this model, fitting the “real” complex model and a “wrong” simpler model with that
data, and finally showing that the more accurate predictions were given by the simpler model due to the large
discrepancy between the real parameters of the original complex model and the ones obtained with the fit.

The spread of a pathogen is a clear example in which the available data is limited. Indeed, unless wide
screening tests are performed, data consist solely on those individuals manifesting symptoms and reporting
them to the health system. Asymptomatic individuals are in some sense hidden and cannot be quantified. To
address the importance of the unreported cases in the spread of a disease, in this article we have analysed a model
suited for epidemics in which the prevalence of asymptomatic individuals can be large. Conditions guaranteeing
its expansion or decay are given in terms of general functional parameters. Afterwards, a particular class of
functional parameters, namely constant functions, has been used to fit the model with Spanish data of Covid-19.

We have found the transmission rate of asymptomatic individuals times the duration of the asymptomatic
period, namely 5,7, to be a critical parameter of the model. This value being larger than one means that
the pathogen is spreading unnoticedly because each infected individual causes, on average, more than one
other infection during the asymptomatic phase. Our results suggest that this was the case in Spain before the
lockdown started on 14th march, since according to the data 517 ~ 1.5. The model also indicates that, once the
lockdown was well established, not only 81T was smaller than one but also the reproduction number, namely
Ry s, was. Specifically the data give Ry, ~ 0.9. This means that during the symptomatic phase an infected
individual caused, on average, less than one secondary symptomatic case (was it directly or indirectly through
the asymptomatic population), so that the spread of the disease was controlled thanks to the lockdown.

The reproduction number derived in this article represents an alternative indicator to the ones currently
used to determine if the epidemic spans or shrinks. In order to be more confident on the results derived from
this indicator, however, our knowledge on the parameters p and T should be improved. Moreover, a better
understanding of the infection process would allow to work with more realistic models. For example, the model
presented here could be generalized to allow asymptomatic individuals to become symptomatic at different
ages of infection: instead of assuming that all asymptomatic become symptomatic or cure 7" units of time after
infection, a functional parameter would determine the rate at which this process occurs depending on the age
of infection. An equation for the reproduction number in this more general case can be obtained following the
same approach, but the simplifications to estimate the parameters should be different.
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