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Abstract
Objective
This study aimed to identify long-term prognostic protein biomarkers associated with disease
progression in patients with progressive multiple sclerosis (MS).

Methods
CSF samples were collected from a discovery cohort of 28 patients with progressive MS who
participated in a clinical trial with interferon beta. Patients were classified into high and low
disability progression phenotypes according to numeric progression rates (NPR) and step-
based progression rates (SPR) after a mean follow-up time of 12 years. Protein abundance was
measured by shotgun proteomics. Selected proteins from the discovery cohort were quantified
by parallel reaction monitoring in CSF samples from an independent validation cohort of 41
patients with progressive MS classified also into high and low disability progression phenotypes
after a mean follow-up time of 7 years.

Results
Of 2,548 CSF proteins identified in the discovery cohort, 10 were selected for validation based
on their association with long-term disability progression: SPATS2-like protein, chitinase
3–like 2 (CHI3L2), plasma serine protease inhibitor, metallothionein-3, phospholipase D4,
beta-hexosaminidase, neurexophilin-1, adipocyte enhancer-binding protein 1, cathepsin L1,
and lipopolysaccharide-binding protein. Only CHI3L2 was validated, and patients with high
disability progression exhibited significantly higher CSF protein levels compared with patients
with low disability progression (p = 0.03 for NPR and p = 0.02 for SPR). CHI3L2 levels showed
good performance to discriminate between high and low disability progression in patients with
progressive MS (area under the curve 0.73; sensitivity 90% and specificity 63%).

Conclusions
Although further confirmatory studies are needed, we propose CSF CHI3L2 as a prognostic
protein biomarker associated with long-term disability progression in patients with progressive
MS.
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Classification of Evidence
This study provides Class II evidence that high CSF CHI3L2 levels identified higher disability progression in patients with
progressive MS.

Multiple sclerosis (MS) is a neurodegenerative immune-
mediated disorder of the CNS and an important cause of
disability among young adults.1 Although the etiology of MS
is unknown, it is assumed that both a complex genetic back-
ground and environmental triggers contribute to disease
manifestation.2-6 In approximately 80%–85% of patients, MS
starts with acute episodes of neurologic dysfunction and fol-
lows a relapsing-remitting course (RRMS).1 However, over
time, a significant number of these patients will enter a sec-
ondary progressive phase of the disease which is characterized
by maintained neurologic deterioration with or without fur-
ther relapses.7 The remaining 15%–20% of patients with MS
follow a progressive course from disease onset, and they are
referred to as primary progressive MS (PPMS).8 Whereas
currently available therapies in MS are highly effective to
suppress the predominantly inflammatory component ob-
served in patients with RRMS, these therapies have proven to
be ineffective in patients with progressive forms of MS in
whom a neurodegenerative component dominates.9,10 In this
setting, a more in-depth understanding of the prognostic
factors associated with disability progression will be critical to
stratify patients with progressive MS according to disease
evolution and ultimately may set the rationale for the design
of more specific therapeutic approaches to prevent disease
progression. In this study, we aimed to identify long-term
prognostic biomarkers predictive of heightened disability
progression in patients with progressive MS.

Methods
Discovery Cohort
Twenty-eight patients with progressive MS (17 patients with
primary progressive forms [PPMS]11 and 11 patients with
transitional progressive forms8) who participated in a 2-year
phase II randomized, double-blind, placebo-controlled trial of
interferon beta (IFNβ)-1b12 were included in this study. Se-
lection of patients was performed based on the availability of
CSF samples during the trial, and as shown in Table 1, this
cohort was representative of the entire cohort that partici-
pated in the trial for demographics and clinical characteristics.

Thirteen patients (46.4%) received IFNβ during the 2-year
trial. Except for 1 patient treated with IFNβ during the trial
who received mitoxantrone for 1 year after trial completion
and then was treated with IFNβ for 11 additional years, the
remaining 27 patients included in this study were un-
treated during the whole follow-up period. Progression
rate variables were created by dividing Expanded Disability
Status Scale (EDSS) changes, confirmed after 6 months, by
the time on follow-up. Because many patients were in the
range of EDSS where a change in 0.5 points corresponds to
1 EDSS step increase, 2 different variables were computed
using these 2 different approaches: numeric progression
rates (NPR) and step-based progression rates (SPR).
Progression rates were computed between the time of trial
onset and the last visit, and between the time after trial
completion and the last visit. High disability progression
was defined by the presence of NPR or SPR above the 75th
percentile of disability progression. Patients with pro-
gression rates below the 75th percentile were defined as
low disability progression. Demographic and clinical
characteristics of patients with high and low disability
progression are summarized in eTable, links.lww.com/
NXI/A581.

Chromatographic and Mass Spectrometric
Analysis in the Discovery Cohort
CSF samples were collected by lumbar puncture during the
trial both in placebo and IFNβ-treated patients (mean time
[range] from trial onset: 13 months [8.8–17.9]). CSF
samples were centrifuged to remove cells, and the remaining
volume was aliquoted and conserved at −80°C until used.
For each sample, 120 μL of CSF were used for protein
precipitation in cold acetone overnight at 4°C. Pellets were
then solubilized in 6 M urea in 200 mM ammonium bi-
carbonate, reduced with 100 mM dithiothreitol, and alky-
lated with 200 mM iodoacetamide. Proteins were then
digested with LysC 1:10 ratio (w:w; enzyme:substrate) at
37°C overnight followed by trypsin 1:10 ratio (w:w; enzyme:
substrate) at 37°C for 8 hours. Tryptic peptide mixtures were
desalted using a C18 UltraMicroSpin column (The Nest
Group).

Glossary
AEBP1 = adipocyte enhancer-binding protein 1; AGC = auto gain control; CHI3L2 = chitinase 3–like 2; CIS = clinically
isolated syndrome; CTSL = cathepsin L1; EDSS = Expanded Disability Status Scale; HEXB = hexosaminidase; IFNβ =
interferon beta-1b; MS = multiple sclerosis; MT3 = metallothionein-3; NFL = neurofilament light chain; NPR = numeric
progression rates; NXPH1 = neurexophilin-1; PLD4 = phospholipase D4; PPMS = progressive MS; PRM = parallel reaction
monitoring;ROC = receiver operating characteristic;RRMS = relapsing-remitting course; SERPINA5 = plasma serine protease
inhibitor; SPATS2L = SPATS2-like protein; SPR = step progression rates; UPLC = ultra-performance liquid chromatography.

2 Neurology: Neuroimmunology & Neuroinflammation | Volume 8, Number 6 | November 2021 Neurology.org/NN

http://links.lww.com/NXI/A581
http://links.lww.com/NXI/A581
http://neurology.org/nn


Peptide mixtures were analyzed in an Orbitrap Fusion Lumos
with anEASY-Spray source coupled to a nano-ultra-performance
liquid chromatography (UPLC) system (EASY-nanoLC 1000
liquid chromatography) equipped with a reverse-phase chro-
matography 25-cm column with an inner diameter of 75 μm,
packed with 1.9 μm C18 particles (Nikkyo Technos, Japan).
Chromatographic gradients started at 7% buffer B with a flow
rate of 250 nL/minute and gradually increased to 35% in 120
minutes. After each run, the column was washed for 15 minutes
with 90% buffer B (buffer A: 0.1% formic acid inwater and buffer
B: 0.1% formic acid in acetonitrile). The mass spectrometer was
operated in data-dependent acquisitionmode, with fullMS scans
over a mass range of m/z 350–1,500 with detection in the
Orbitrap (120K resolution) and with auto gain control (AGC)
set to 100,000. In each cycle of data-dependent acquisition
analysis, after each survey scan, the most intense ions above a
threshold ion count of 10,000 were selected for fragmentation
with HCD at normalized collision energy of 28%. The number
of selected precursor ions for fragmentation was determined by
the “top speed” acquisition algorithm (maximum cycle time of 3
seconds), and a dynamic exclusion of 60 seconds was set.
Fragment ion spectra were acquired in the ion trap with an AGC
of 4,000 and a maximum injection time of 300 ms.

Acquired data were analyzed using the Proteome Discoverer
software suite (v2.0, Thermo Fisher Scientific), and peptides
were identified using the Mascot search engine (v1.6.0.16,
Matrix Science). Data were searched against a human protein
database derived from the SwissProt database (as in April
2015) plus the most common contaminants. The precursor
ion mass tolerance was 7 ppm at the MS1 level, and up to 3
missed cleavages for trypsin were allowed. The fragment ion

mass tolerance was set to 0.5 Da, methionine oxidation was
set as variable modification, and cysteine carbamidomethyla-
tion was set as fixed modification. The identified peptides
were filtered by 5% false discovery rate. Peptide areas were
obtained using the “precursor ions area detector” module in
the Proteome Discoverer software suite (v2.0, Thermo Fisher
Scientific). Protein abundance in each condition was esti-
mated using the log-transformed average of the 3most intense
peptides per protein group.

Selection of Candidate Proteins Associated
With Disability Progression for Validation
Selection of proteins for validation in an independent cohort of
patients with progressive MS was performed based on the dif-
ferences in CSF protein levels between patients with high and low
disability progression according toNPR and SPR at trial onset and
after trial completion, and correlations betweenCSF protein levels
and numeric and step progression rates at trial onset and after trial
completion. Those proteins exhibiting a statistically significant
abundance change (p value <0.05) or significant correlation (p
value <0.05) in most (n ≥ 5) of the disability progression criteria
reported in Table 3 were selected for further validation.

Validation Cohort
An independent cohort of 41 patients with PPMS was in-
cluded in this study to validate selected proteins from the
targeted quantitative proteomics approach. Patients were
recruited from 4 MS centers (Barcelona—Hospital de Bell-
vitge [n = 7], Barcelona—Hospital Clinic [n = 11],
Madrid—Puerta de Hierro [n = 6], and Madrid—Ramón y
Cajal [n = 17]), and CSF sampling was performed as de-
scribed above. NPR and SPR were calculated between the

Table 1 Demographic and Clinical Characteristics of Patients With Progressive MS Belonging to the Discovery Cohort

Characteristics Discovery cohort Whole cohort

N 28 72

Age (y)a 49.6 (9.4) 49.3 (8.2)

Female/male (% women) 12/16 (42.9) 37/35 (50.7)

PP/PT (% PP) 17/11 (61.0) 48/24 (66.0)

Follow-up time onset/off (y)b 12.5 (4.6)/10.9 (4.0) 12.1 (4.6)/10.3 (4.4)

EDSS onset/lastc 6.0 (4.0–6.0)/8.0 (6.5–8.5) 6.0 (4.0–6.0)/8.0 (6.5–8.8)

Numeric progression rate onset/offd 0.3 (0.7)/0.2 (0.1) 0.3 (0.5)/0.2 (0.3)

Step progression rate onset/offd 0.6 (1.3)/0.3 (1.3) 0.5 (1.0)/0.4 (0.4)

Patients treated with IFNβ (%)e 13 (46.4) 35 (47.9)

Abbreviations: EDSS = Expanded Disability Status Scale, IFNβ = interferon beta-1b.
All data are expressed as mean SD unless otherwise stated. EDSS is expressed as median (interquartile range).
PP/PT refers to the number of patients with primary progressive and transitional progressive MS.
a Refers to age at the time of trial onset.
b Refers to time from trial onset to the last visit (onset) and from the time after trial completion to the last visit (off).
c Refers to EDSS at trial onset (onset) and at the time of last visit (last).
d Refers to numeric and step-based progression rates from trial onset to the last visit (onset) and from the time after trial completion to the last visit (off).
e Refers to patients under IFNβ treatment at the time of CSF collection. Whole cohort refers to all the patients who participated in the double-blind, placebo-
controlled trial of interferon beta.
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time of CSF collection performed at each recruiting center for
diagnostic purposes and the time of last visit. As in the discovery
cohort, patients in the validation cohort were classified according
to the 75th percentiles of confirmed disability progression based
on NPR and SPR. Patients were untreated for the whole follow-
up period. A summary of demographics and clinical character-
istics of the validation cohort is given in Table 2.

Standard Protocol Approvals, Registrations,
and Patient Consents
Written informed consent was obtained from each partici-
pant. This study was approved by the corresponding local
Ethics Committees, and written informed consent was
obtained from each participant.

Quantification of CSF Levels of Selected
Proteins in the Validation Cohort
Levels of selected proteins were measured after a targeted
proteomics approachwith parallel reactionmonitoring (PRM).
For each patient, 80 μL of CSF were used for protein pre-
cipitation in cold acetone overnight at 4°C. Pellets were then
solubilized in 6 M urea in 200 mM ammonium bicarbonate,
reduced with 100 mM dithiothreitol, alkylated with 200 mM
iodoacetamide, and digested with LysC 1:10 ratio (w:w; en-
zyme:substrate) at 37°C overnight followed by trypsin 1:10
ratio (w:w; enzyme:substrate) at 37°C for 8 hours. Tryptic
peptide mixtures were desalted using a C18 UltraMicroSpin
column (The Nest Group, Inc). For each targeted peptide, an
isotopically labeled counterpart (13C6,

15N2-Lys and
13C6,

15N4-
Arg, Pepotec Peptides; Thermo Fisher Scientific) was spiked in
the peptide mixtures and used as internal standard for quan-
tification purposes. Up to 2 unique peptides per protein were
selected for targeted protein quantification. For each selected
peptide, an isotopically labeled peptide (13C6,

15N4-Arg and
13C6,

15N2-Lys) was spiked in the samples and used as internal
standard for quantification by PRM. The amount of internal
standard peptide to be spiked in each sample was evaluated
using dilution curves, and the final concentration was chosen
based on the following criteria: (1) to be within the concen-
tration range in which a linear response of the peptide was
observed and (2) to have an area as close to the endogenous
peptide area as possible.

Digested samples were analyzed by PRM using an Orbitrap
Eclipse coupled to an EASY-nanoLC 1200 UPLC system
(Thermo Fisher Scientific) with a 50-cm C18 chromato-
graphic column (Easy-Spray Column, PepMap RSLC C18).
Peptide mixes were separated with a chromatographic gradi-
ent starting at 5% B with a flow rate of 300 nL/minute and
going up to 22% B in 79 minutes and to 32% B in 11 minutes
(buffer A: 0.1% formic acid in water and buffer B: 0.1% formic
acid in acetonitrile). The Orbitrap Eclipse was operated in
positive ionization mode with an EASY-Spray nanosource at
1.4 kV and at a source temperature of 275°C.

A scheduled PRMmethod was used for data acquisition with a
quadrupole isolation window set to 1.4 m/z and MS2 scans

over a mass range of m/z 300–2,000, with detection in the
Orbitrap mass analyzer at a 30K resolution. MS2 fragmenta-
tion was performed using HCD fragmentation at 30 nor-
malized collision energy; the AGC was set at 1E5 and the
maximum injection time at 54 ms. The size of the scheduled
window was 6 minutes, and the maximum cycle time was 1
seconds. All data were acquired using XCalibur software.

Product ion chromatographic traces corresponding to the
targeted precursor peptides were evaluated using Skyline
software v.20.1 based on (1) co-elution of endogenous and
internal standard peptides, (2) the number of detected traces,
(3) correlation of the trace relative intensities between en-
dogenous and internal standard peptides, and (4) expected
retention time. Normalization was performed based on the
median abundance of the internal standard peptides across all
runs. Protein abundance estimates were performed using the
software package MSstats 3.8.2.

The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium (proteomecentral.proteo-
mexchange.org) through the Proteomics IdentificationsDatabase
partner repository13 with the data set identifier PXD022958.

Quantification of Neurofilament Light Chain
Levels in CSF by Single-Molecule Array
Levels of neurofilament light chain (NFL) were measured in
CSF samples from 36 patients with PPMS belonging to the
validation cohort using commercially available NFL immu-
noassay kits (Quanterix, Billerica, MA, cat no. 103186) and
run on a single-molecule array (Simoa) HD-1 Analyzer
(Quanterix). Samples were run in duplicate in line with
manufacturers’ instructions using appropriate standards and

Table 2 Demographic and Clinical Characteristics of
Patients With Progressive MS Belonging to the
Validation Cohort

Characteristics Validation cohort

N 41

Age (y)a 51.9 (9.1)

Female/male (% women) 28/13 (68.3)

Follow-up time (y)b 7.3 (5.1)

EDSS at CSF collection 3.0 (2.5–4.0)

EDSS at last visit 6.0 (3.5–6.8)

Numeric progression ratec 0.4 (0.5)

Step progression ratec 0.4 (0.6)

Abbreviation: EDSS = Expanded Disability Status Scale.
All data are expressed as mean SD unless otherwise stated. EDSS is
expressed as median (interquartile range).
a Refers to age at the time of CSF collection.
b Refers to time from CSF collection to the last visit.
c Refers to numeric and step-based progression rates from the time of CSF
collection to the last visit.
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internal controls. The intra-assay coefficient of variation
was 6%.

Classification of Evidence
Our primary research question was to identify CSF bio-
markers associated with disability progression in patients with
progressive MS. The classification of evidence assigned to this
question is Class II.

Statistical Analysis
Differences in CSF protein abundances were assessed
among patients with high and low disability progression
according to NPR and SPR using an analysis of variance
model. Linear association between CSF protein abundances
and NPR and SPR during the follow-up was evaluated using
the Spearman rank correlation coefficient. Considering that
a proportion of patients were receiving IFNβ at the time of
CSF collection, the potential effect of IFNβ in CSF protein
levels was also evaluated including treatment as covariate in
the analysis. Differences in progression rates between pa-
tients from the discovery and validation cohorts were
assessed using a Mann-Whitney U test. Performance of CSF
chitinase 3–like 2 (CHI3L2) levels to discriminate between
patients with high and low disability progression was
assessed using receiver operating characteristic (ROC) curve
analysis.

Data Availability
All data analyzed during this study will be shared anonymized
by request of a qualified investigator to the corresponding
author.

Results
CSF Proteomic Analysis in theDiscovery Cohort
of Patients With Progressive MS Identifies
Proteins Associated With Long-term
Disability Progression
A schematic flowchart summarizing the main steps of the
study design is represented in Figure 1. To identify proteins
associated with disability progression, we first performed a
quantitative proteomic analysis in CSF samples from a dis-
covery cohort of 28 patients with progressive MS classified
according to numeric and step progression rates. A total of
2,548 proteins were identified in CSF samples by mass
spectrometric analysis (the full list of identified proteins is
provided in eTable, links.lww.com/NXI/A582). Of these
identified proteins, 10 proteins were prioritized for further
validation because of their potential association with disability
progression, as described in the Methods section: SPATS2-
like protein (SPATS2L), CHI3L2, plasma serine protease
inhibitor (SERPINA5), metallothionein-3 (MT3), phospho-
lipase D4 (PLD4), and beta-hexosaminidase (HEXB), which
were more abundant in the CSF of patients with high dis-
ability progression, and neurexophilin-1 (NXPH1), adipocyte
enhancer-binding protein 1 (AEBP1), cathepsin L1 (CTSL),
and lipopolysaccharide-binding protein (LBP), which were

more abundant in the CSF of patients with low disability
progression (Table 3). Only NXPH1 showed significant
changes in CSF protein levels in patients receiving IFNβ,
although differences stayed significant after adjusting by
treatment. The remaining detected proteins showed either a
lack of statistically significant association with disability pro-
gression or were significantly associated with disability pro-
gression only in a minority (<5) of the classification criteria
(eTable 3, links.lww.com/NXI/A583).

CSF CHI3L2 Is Validated as Long-term Prognostic
BiomarkerAssociatedWithDisabilityProgression
in Patients With PPMS
To validate the results obtained in the discovery cohort, levels
of the 10 selected proteins were determined by targeted
proteomics in CSF samples from an independent cohort of
patients with progressive MS. Although the discovery cohort
included patients with transitional progressive MS and PPMS,
no statistically significant differences were observed in the
CSF levels of the 10 selected proteins between both groups of
patients (data not shown), results that supported the use of a
validation cohort consisting exclusively of patients with
PPMS. Follow-up time of patients with PPMS in the valida-
tion cohort was shorter and EDSS scores at onset lower
compared with patients belonging to the discovery cohort
(eTable 1, links.lww.com/NXI/A581 and eTable 2, links.lww.
com/NXI/A582). However, there were no statistically sig-
nificant differences in NPR and SPR between patients from
the discovery and validation cohorts (0.3 [0.7] and 0.2 [0.1]
for NPR at onset and off trial, respectively, in the discovery
cohort vs 0.4 [0.5] in the validation cohort; 0.6 [1.3] and 0.3
[0.2] for SPR at onset and off trial, respectively, in the dis-
covery cohort vs 0.4 [0.6] in the validation cohort; p > 0.05 for
all comparisons).

Only CHI3L2 was validated, and similar to the findings in the
discovery cohort (Table 3), CSF CHI3L2 levels were signif-
icantly higher in patients with PPMS who progressed faster
during the follow-up based on both NPR and SPR compared
with those patients having lower disability progression (p =
0.03 and p = 0.02, respectively) (Figure 2A). CSF CHI3L2
levels significantly correlated with NPR (r: 0.34, p = 0.03),
whereas a trend for significant correlation was observed be-
tween CHI3L2 levels and SPR progression rates (r: 0.30, p =
0.05) (Figure 2a).

Figure 2B shows the potential for CSF CHI3L2 levels to
discriminate between high and low disability progression in
patients with PPMS. The area under the ROC curve (AUC)
was 73% (p = 0.03) and a CSF CHI3L2 value of 17.1 (protein
abundance estimate) resulted in the best cutoff to classify
patients with PPMS with high and low disability progression
according to both NPR and SPR, with a sensitivity of 90% and
specificity of 63%.

Partial correlations adjusting for age did not reveal statistically
significant associations between CSF CHI3L2 and NFL levels
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(r = 0.02, p = 0.91) or between CSF NFL levels and numeric
progression rates (r = 0.08, p = 0.62) or SPR (r = 0.09,
p = 0.60).

In the validation cohort, except for SPATS2L which could not
be detected, the mean CSF levels of the remaining proteins
did not significantly differ between high and low disability
progression using NPR or SPR in patients with PPMS, and
hence, they were not validated as biomarkers associated with
disability progression in MS (Table 4; eFigure 1, links.lww.
com/NXI/A579 and eFigure 2, links.lww.com/NXI/A580).

Discussion
Our understanding of disease progression is limited and still
remains as one of the unmet needs in MS.10 In this context,
there is a lack of prognostic factors associated with disability
progression in patients with progressive forms of MS. Bearing

this in mind, we aimed to identify long-term prognostic bio-
markers in the CSF of patients with progressive MS by con-
ducting a 2-phase study. An initial or discovery cohort
included patients with progressive MS with a follow-up longer
than 10 years who participated in a single-center trial of IFNβ-
1b.12 By quantitative proteomics analysis of the CSF samples
collected during the trial, we identified a number of candidate
CSF proteins that were associated with long-term disability
progression in patients classified according to 2 related pro-
gression rate indexes, which were applied at different time
points during the trial. Although almost half of the patients
were receiving IFNβ at the time of CSF collection, treatment
did not seem to have a major impact on CSF protein levels.

A second or validation cohort included exclusively untreated
patients with PPMS whose CSF samples were collected from
different MS centers. Although in these patients follow-up time
was shorter and EDSS scores were lower, the progression rates,
which relate EDSS changes to time on follow-up, were

Figure 1 Flowchart Summarizing the Different Steps Undertaken in the Study

NPR and SPR were calculated in a discovery cohort of 28 patients with progressive MS who participated in a 2-year placebo-controlled trial of IFNβ-1b.
Progression rates were computed between the time of trial onset and the last visit (NPR/SPR at trial onset), and between the time after trial completion and
the last visit (NPR/SPR off trial). Based on these progression rates, patients with progressive MS were classified into high and low disability progression
phenotypes. Bymeans of a quantitative proteomic approach, a total of 2,548 proteins were identified in CSF samples frompatients belonging to the discovery
cohort, of which 10 proteins were found to be associated with disability progression in most of the selection criteria shown in the figure. Protein levels for
these 10 proteins were measured by PRM in CSF samples from a validation cohort of 41 patients with progressive MS classified into high and low disability
progression phenotypes according to NPR and SPR computed between the time of CSF collection and the time of the last visit.
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Table 3 Selected CSF Proteins in the Discovery Cohort for Validation

Uniprot Symbol
NPR “onset”a

Levels H/L (p)
SPR “onset”a

Levels H/L (p)
NPR “off”b

Levels H/L (p)
SPR “off”b

Levels H/L (p) NPR “onset”a rho (p) SPR “onset”a rho (p) NPR “off”b rho (p) SPR “off”b rho (p) H/Lc Nd

P58417 NXPH1e 25.3/26.8 (0.007) 25.4/26.8 (0.018) 25.7/26.9 (0.037) 25.3/26.8 (0.012) −0.52 (0.042) −0.62 (0.023) −0.76 (0.001) −0.79 (0.008) Down 8

Q9NUQ6 SPATS2L 25.4/23.8 (0.035) 25.6/23.8 (0.041) 25.4/23.6 (0.017) 25.8/23.7 (0.016) 0.54 (0.019) 0.47 (0.045) 0.44 (0.066) 0.49 (0.041) Up 7

Q8IUX7 AEBP1 24.2/25.0 (0.003) 24.2/25.1 (0.002) 24.5/25.0 (0.066) 24.5/25.0 (0.066) −0.56 (0.014) −0.62 (0.005) −0.58 (0.008) −0.61 (0.006) Down 6

Q15782 CHI3L2 26.3/25.4 (0.030) 26.4/25.3 (0.012) 25.8/25.3 (0.202) 26.1/25.3 (0.044) 0.38 (0.111) 0.52 (0.022) 0.49 (0.024) 0.50 (0.021) Up 6

P05154 SERPINA5 26.2/25.7 (0.073) 26.2/25.7 (0.051) 26.2/25.7 (0.018) 26.3/25.7 (0.013) 0.46 (0.023) 0.45 (0.025) 0.68 (0.001) 0.63 (0.001) Up 6

P07711 CTSL 27.0/27.5 (0.090) 26.8/27.6 (0.009) 27.1/27.5 (0.206) 26.9/27.5 (0.047) −0.37 (0.033) −0.38 (0.032) −0.32 (0.073) −0.42 (0.025) Down 5

P25713 MT3 21.5/20.9 (0.010) 21.5/20.9 (0.010) 21.2/20.8 (0.051) 21.2/20.9 (0.267) 0.69 (0.007) 0.79 (0.001) 0.49 (0.101) 0.60 (0.047) Up 5

Q96BZ4 PLD4 25.9/24.2 (0.002) 25.7/24.3 (0.038) 25.7/24.1 (0.017) 25.6/24.3 (0.083) 0.66 (0.028) 0.59 (0.056) 0.75 (0.016) 0.61 (0.061) Up 5

P18428 LBP 24.6/25.4 (0.008) 24.7/25.3 (0.070) 24.7/25.5 (0.011) 24.8/25.3 (0.192) −0.62 (0.012) −0.66 (0.011) −0.59 (0.043) −0.57 (0.064) Down 5

P07686 HEXB 26.7/26.0 (0.078) 26.3/26.2 (0.796) 26.7/26.0 (0.036) 26.5/26.1 (0.302) 0.45 (0.025) 0.40 (0.047) 0.50 (0.012) 0.46 (0.025) Up 5

Abbreviations: AEBP1 = adipocyte enhancer-binding protein 1; CHI3L2 = chitinase 3-like 2; CTSL = cathepsin L1; HEXB = hexosaminidase; IFNβ = interferon beta-1b; LBP = lipopolysaccharide-binding protein; MT3 =
metallothionein-3; NPR = numeric progression rates; NXPH1 = neurexophilin-1; PLD4 = phospholipase D4; SERPINA5 = plasma serine protease inhibitor; SPATS2L = SPATS2-like protein; SPR = step-based progression rates.
rho: Spearman rank correlation coefficient.
a Refers to NPR and SPR calculated from trial onset to the last visit.
b Refers to NPR and SPR calculated from the time after trial completion to the last visit.
c Refers to the direction in protein levels: up/down = increased/decreased levels in patients with high/low disability progression, respectively.
d Refers to the total number of statistically significant associations observed after applying the different classification methods. Levels H/L refers to mean protein levels in patients with high and low disability progression for
each of the different indexes calculated from peptide intensities at log-scale (arbitrary units). Significant p values (p) are shown in bold.
e NXPH1 was the only selected protein showing significant changes in CSF abundance in patients treated with IFNβ, but differences remained significant after adjusting by this covariate.
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comparable among patients with progressive MS belonging to
both study cohorts. Selected candidate CSF biomarkers iden-
tified in the initial cohort were measured in the validation
cohort by means of PRM, a well-known specific and re-
producible mass spectrometric technique for protein quanti-
tation.14 Only CHI3L2 was found to be significantly associated
with disability progression in both cohorts of patients.

CHI3L2, also known as YKL39, is a member of the 18 glycosyl
hydrolase family that can bind chitin with high affinity but lacks
enzymatic activity.15 CHI3L2 was first discovered in condi-
tioned medium from primary cultures of human articular car-
tilage chondrocytes15, and its function has been related to the
immune response and tissue remodeling. In this context,
CHI3L2 was expressed by M2 polarized macrophages and was
found to act as a pro-angiogenic and monocyte recruiting fac-
tor.16 Little is known about the physiologic and pathologic roles

of CHI3L2 in the CNS. CSF CHI3L2 levels have been
reported to be elevated in a number of neuroinflammatory
conditions.17-21 In patients with clinically isolated syndrome
(CIS), high CSF CHI3L2 levels were associated with an in-
creased risk for MS and predicted cognitive impairment eval-
uated by the paced auditory serial addition test.18 In another
study, CSF CHI3L2 levels were found to be significantly in-
creased in patients with RRMS compared with patients with
CIS, patients with progressive MS, and controls.17

In our study, CSF abundance for CHI3L2 was higher in pa-
tients with progressive MS who later progressed faster com-
pared with those patients with lower progression rates. In
addition, CSF CHI3L2 levels showed good potential to dis-
criminate between high and low disability progression in pa-
tients with progressive MS after long-term follow-up, with
excellent sensitivity and acceptable specificity. Although the

Figure 2 Performance of CHI3L2 as a Biomarker of Disability Progression in Patients With Progressive MS

(A) Graphs comparing CSF CHI3L2 lev-
els between high and low disability
progression patients with progressive
MS according to numeric and step-
based progression rates, and correla-
tion plots evaluating linear association
between CSF CHI3L2 levels and pro-
gression rates, both in the validation
cohort. (B) Performance of CSF CHI3L2
levels to discriminate between patients
with high and low disability pro-
gression based on numeric (B.a) and
step-based progression rates (B.b). AU
= protein abundance estimate; AUC =
area under the receiver operating
characteristic curve. Numbers in pa-
rentheses represent 95% confidence
intervals of the AUC; CHI3L2 = chitinase
3-like 2.

8 Neurology: Neuroimmunology & Neuroinflammation | Volume 8, Number 6 | November 2021 Neurology.org/NN

http://neurology.org/nn


underlying molecular mechanisms of the association observed
between CSF CHI3L2 levels and disease progression are un-
known, a previous study revealed CHI3L2 expression in as-
trocytes from white matter plaques and from normal appearing
white matter.17 In this context, several lines of evidence have
pointed to astrocytes as important players in MS pathogenesis
and suggested a contribution of these cells to the neurode-
generative component of the disease.22-27 This astrocytic origin
of CHI3L2 may explain the lack of correlation observed in our
study between CSF CHI3L2 abundance and CSF NFL levels,
as a representative biomarker of neuronal damage.28

CSF proteins that were significantly associated with long-term
disability progression in a lower number of classification
methods are also interesting candidate biomarkers that re-
quire further validation in independent cohorts of patients
with progressive MS. Of note, one of these candidates is
CHI3L1, a protein closely related to CHI3L2 in size and
sequence, although with structural differences,29 which has
been extensively implicated in MS.30 In contrast to CHI3L2,
CHI3L1 was found significantly increased in the CSF of pa-
tients with progressive MS compared with patients with
RRMS,17 and high CSF CHI3L1 levels were identified as an
independent predictor of disability worsening in patients with
MS.31

The reasons for the lack of validation of the remaining proteins
selected from the first phase of the study are unknown and
probably manifold. They may be related to differences in the
clinical characteristics of patients included in both cohorts such
as the clinical form (patients with transitional progressive and
PPMS in the discovery cohort vs patients with purely PPMS in
the validation cohort), treatment with IFNβ in a subgroup of
patients from the discovery cohort vs untreated patients in the
validation cohort, and shorter follow-up and lower disability

scores in the validation cohort. However, as mentioned before,
some of these differential factors were considered in the anal-
ysis, and also the progression rates that were used to classify
patients into high and low disability progression phenotypes
were comparable among patients from the discovery and vali-
dation cohorts. Other factors may relate to differences in the
proteomic techniques used to determine protein abundance in
the CSF of patients with MS. However, based on the results in
the validation cohort, except for CHI3L2, the remaining can-
didate CSF proteins identified in the first phase of the study can
probably be considered as false-positive results.

In conclusion, a proteomic approach in CSF samples from
patients with progressive MS classified into high and low
disability progression phenotypes has led to the identification
and validation of CHI3L2 as a biomarker associated with
long-term disability progression. Further mechanistic studies
are needed to better understand the relationship between
CSF CHI3L2 and disability progression in MS.
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rosis Múltiple (EME)—Red Española de Esclerosi múltiple
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