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Comprehensive field observations characterizing the biological carbon pump (BCP) provide the foundation
needed to constrain mechanistic models of downward particulate organic carbon (POC) flux in the ocean.
Sediment traps were deployed three times during the EXport Processes in the Ocean from RemoTe Sensing
campaign at Ocean Station Papa in August-September 2018. We propose a new method to correct sediment
trap sample contamination by zooplankton “swimmers.” We consider the advantages of polyacrylamide gel
collectors to constrain swimmer influence and estimate the magnitude of possible trap biases. Measured
sediment trap fluxes of thorium-234 are compared to water column measurements to assess trap
performance and estimate the possible magnitude of fluxes by vertically migrating zooplankton that
bypassed traps. We found generally low fluxes of sinking POC (1.38 + 0.77 mmol C m2 d™" at 100 m, n =
9) that included high and variable contributions by rare, large particles. Sinking particle sizes generally
decreased between 100 and 335 m. Measured 2**Th fluxes were smaller than water column 234Th fluxes by
a factor of approximately 3. Much of this difference was consistent with trap undersampling of both small
(<32 um) and rare, large particles (>1 mm) and with zooplankton active migrant fluxes. The fraction of net
primary production exported below the euphotic zone (0.1% light level; Ez-ratio = 0.10 + 0.06; ratio
uncertainties are propagated from measurements with n = 7-9) was consistent with prior, late summer
studies at Station P, as was the fraction of material exported to 100 m below the base of the euphotic
zone (T4go, 0.55 £ 0.35). While both the Ez-ratio and T4qo parameters varied weekly, their product, which
we interpret as overall BCP efficiency, was remarkably stable (0.055 + 0.010), suggesting a tight coupling
between production and recycling at Station P.

Keywords: Biological carbon pump, Ocean Station Papa, Sediment traps, Carbon flux, Particle size
distribution, Swimmers

1. Introduction

The downward transport of particulate organic matter in
the ocean plays a critical role in the long-term sequestra-
tion of carbon dioxide and contaminants as well as serving
as a food source for benthic foodwebs (McKinley et al.,
2017). These biologically mediated mechanisms of organic
matter transfer, collectively known as the “biological car-
bon pump” (BCP), vary in space and time. Their relative
importance depends upon the structure of the ecosystem
as influenced by chemical and physical ocean properties.
Observations that sufficiently resolve the dynamic
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processes that comprise the BCP are challenging to make,
which limits our ability to predict how BCP efficiency
changes as ocean properties shift.

The transfer of carbon to depth via gravitationally sink-
ing particles is generally thought to be the single largest
flux pathway in most marine settings (Boyd et al., 2019).
Carbon can also be exported from the surface ocean by
vertically migrating organisms that feed at the surface and
transfer carbon to depth and by physical mixing or sub-
duction of suspended particulate organic carbon (POC)
and dissolved organic carbon (DOC) from enriched surface
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waters into deeper depths (Levy et al., 2013; Steinberg and
Landry, 2017). The fraction of exported carbon that is
sequestered over long timescales is dependent on the
depth penetration below the winter mixed layer (Palevsky
and Doney, 2018). Slowly sinking particles and nonsinking
POC and labile DOC are thought to be remineralized near
the surface and returned to the atmosphere, while carbon
delivered by more rapidly sinking particles and by vertical
migrators is retained in the ocean interior over millennial
to longer timescales (Boyd et al., 2019).

The traditional tool used to measure sinking fluxes of
particles in the upper mesopelagic zone is the drifting
sediment trap (Gardner, 1977; Buesseler et al., 2007).
Buesseler et al. (2007) reviewed the advantages, disad-
vantages, and designs of upper ocean sediment traps
comprehensively; we summarize a few relevant points
here. Among sediment trap advantages are their
unequivocal separation of sinking from suspended mate-
rial, their return of samples for detailed laboratory anal-
yses, and their relatively well-constrained sampling
periods. Among their disadvantages are potential hydro-
dynamic sorting effects, their short collection timescale,
their inability to measure fluxes of carbon actively trans-
ported by vertical migrators, and their susceptibility to
contamination by zooplankton “swimmers” that enter
traps during collection (Buesseler et al., 2007). These
considerations, as well as the diversity of sampling objec-
tives in BCP research programs, have led to an assort-
ment of trap designs currently in use (Buesseler et al.,
2007; Baker et al., 2020). These include different collec-
tor shapes (cylindrical and conical), trap lids, sample pre-
servatives, and supporting platforms (moored or drifting
arrays and neutral floats).

Here, we describe a series of sediment trap deploy-
ments conducted as part of the EXport Processes in the
Ocean from RemoTe Sensing (EXPORTS) program in the
vicinity of Ocean Station Papa (Station P; 50°N, 145°W) in
August and September 2018 (Siegel et al., n.d.). The goal
of the EXPORTS program is to characterize comprehen-
sively all of the component processes of the BCP, while
simultaneously collecting a full suite of inherent and
apparent optical properties that together can be used
to develop predictive models of BCP fluxes driven by
ocean color remote sensing observations (Siegel et al.,
2016). The trap sampling plan was designed to provide
information on the biological and chemical character of
the sinking particles, their size distributions, and how
their fluxes vary in time. To achieve these goals, we uti-
lized multiple, complementary methods including differ-
ent trap designs (Baker et al., 2020), simultaneous bulk
sample collection and gel collectors (Durkin et al., 2021),
and time-resolved, 3D sampling of thorium-234 activities
(Buesseler et al., 2020a). This combination of methods
also allowed us to examine potential biases in each mea-
surement. Here, we describe the deployments and their
results and contextualize them relative to other observa-
tional components of the EXPORTS study. We also discuss
the trap fluxes in the context of historical observations
from Station P.
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2. Methods

2.1. Deployment design

The EXPORTS study design (described in detail in Siegel et
al., n.d.) consisted of a suite of measurement tools oper-
ating in different spatiotemporal sampling modes. Auton-
omous platforms provided continuity with the time
periods preceding and following ship occupations in
August—September 2018. Spatially distributed hydro-
graphic, chemical, and optical measurements were made
from the R/V Sally Ride, while longer term measurements,
including sediment trap deployments, were made in
a water-following frame of reference from the R/V Roger
Revelle, which tracked a Lagrangian float deployed at
a drift depth of 100 + 10 m (Siegel et al., n.d.). All mea-
surements were conducted in repeated, 8-day cycles,
referred to as “epochs.” During the cruise, the depth of
the euphotic zone (defined as the 0.1% light level with
respect to the surface) was determined from a series of
radiometer profiles (Compact Optical Profiling System,
Biospherical) conducted from the Revelle. The deployment
and analysis details are described by Siegel et al. (n.d.).
Sediment traps were deployed once per epoch for 3-6
days. Deployment locations, times, and depths are sum-
marized in Figure 1 and Table 1.

Two sediment trap designs were utilized in the study. A
drifting, five-depth, surface-tethered trap (STT) array col-
lected sinking particles at 95, 145, 195, 330, and 500 m in
Epoch 1. A repair of the STT array after weather damage
during Epoch 1 increased all STT trap depths by 10 m in
Epochs 2 and 3. Six neutrally buoyant sediment traps
(NBSTS; Estapa et al., 2020) were also deployed alongside
the STT array. Two NBSTs were deployed at 95 m and 195
m, and one each at 145 m and 330 m. Figure 1 shows
trajectories of the NBSTs at different depths in each epoch.
A handful of NBST deployment irregularities occurred in
Epochs 2 and 3 and are described in detail by Estapa et al.
(2020). For example, in Epoch 2, NBST-304 (targeted at
195 m) had its initial depressor weight become entangled
during deployment. The trap, therefore, did not immedi-
ately resurface, although trap lids closed on schedule.
NBST-304 resurfaced later, partway through Epoch 3. In
Epoch 3, NBST-302 and NBST-303 (targeted at 195 and
145 m, respectively) resurfaced on time, but due to a com-
munication problem, repeated their dive cycle a second
time (with trap lids closed) prior to recovery.

Regardless of SST versus NBST platform, four trap tubes
of the “CLAP” design (Lamborg et al., 2008) were deployed
at each trap depth and consisted of a polycarbonate tube
with a collection area of 0.0113 m?, and a lid attached
with an elastic bungee. Lids were deployed open, then
were released from a timed burnwire to snap closed at
the end of the planned deployment period. On each plat-
form, two tubes carried 500 mL of 70 ppt salinity, 0.1%
formaldehyde-poisoned brine buffered with borate to pH
8.5 that was overlain by 1-um filtered surface seawater. A
third tube carried homemade RNAlater (Malmstrom,
2015) overlain by filtered seawater to preserve genetic
material, and a fourth tube carried a polyacrylamide gel
collector overlain by filtered surface seawater (Durkin et
al., 2015; Durkin et al.,, 2021). Each NBST carried
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Figure 1. Deployment locations and timings. (a) Deployment (circles) and recovery locations (triangles) and drift
trajectories (where known) of traps deployed during this study. Color shades for neutrally buoyant sediment traps
(NBSTs) correspond to the trap drift depth. (b) Depth-integrated net primary production (NPP) measured using '*C
during the cruise. (c) Depths and deployment periods for NBST (filled bars) and surface-tethered traps (STT; open bars).
Primary production zone (PPZ) depth (gray line) and photosynthetically available radiation (PAR) depth (zg 14, red line)
shown for reference. Panel a was originally published as figure 8 in Estapa et al. (2020). © American Meteorological
Society (used with permission). DOI: https://doi.org/10.1525/elementa.2020.00122.f1

a transmissometer (C-Rover 2K, WET Labs Inc., Philomath,
OR, USA) used as an optical sediment trap (OST; Estapa et
al. 2017). At each of the upper three STT depths, the array
also included a RESPIRE trap used to measure particle-
attached microbial respiration rates and is discussed in
detail by Santoro et al. (2020). An acoustic current meter
was deployed immediately below the 500-m STT depth to
measure relative water motions.

2.2. Sample analysis

2.2.1. Bulk sample processing and analysis

After recovery, each trap tube was removed from its host
platform and allowed to stand in the lab for at least an
hour to allow particles to finish settling to the bottom of

the tube. Replicate formalin-poisoned brine tubes at each
depth were combined and drained through a 335-um
polyester screen. Tubes and screens were rinsed thor-
oughly with filtered seawater. Then, screens were manu-
ally picked clean of recognizable zooplankton “swimmers”
under 7 x magnification. The remaining material on each
screen, presumed to consist of passively settling material
only, was recombined with the sample fraction that passed
through the 335 pm screen, which was not picked. The
sample was then passed through a rotary wet splitter
inside a flow bench (Lamborg et al., 2008; Owens et al.,
2013) and divided into eight equal fractions (A-H). Frac-
tions A, B, and C were filtered through precombusted, 25-
mm diameter, quartz microfiber filters (QMA, nominal
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pore size 1 pm) and analyzed for total carbon and nitro-
gen, particulate inorganic carbon (PIC), and ***Th activity.
Fractions D, E, and F were filtered through pretared, 25-
mm polycarbonate membrane filters (Nuclepore, nominal
pore size 1 um), rinsed with pH 8.5-buffered Milli-Q water
to remove salts, and analyzed for gravimetric mass and
biogenic silica (bSi). Fractions G and H were filtered onto
either precombusted glass fiber or Supor filters for addi-
tional chemical analyses that will be described elsewhere.
Filters from the A-F fractions were dried on board the
ship and stored dry until analysis.

Dried filters A-C were immediately mounted and
counted on board the ship using low-level Riso beta detec-
tors. At sea, a subset of filters was recounted for quality
control purposes. Post cruise, the “A” filters were then
unmounted and split gravimetrically into quarters, and two
quarters immediately consumed for analysis of *'°Pb/*'°Po
(Roca-Marti et al., 2020). Filters B and C were stored for at
least 6 months (approximately 7 half-lives of ***Th, 24.1
days) and recounted to obtain background beta emissions.
The #**Th activity on sinking particles at the time of collec-
tion was calculated as the difference between the initial
and final background counts (or for “A” filters, the mean
of Filters B-C background counts) and corrected for decay
between the time of collection and the first count (Buesse-
ler et al., 2020a). After background activities were deter-
mined, all remaining QMA filters were unmounted and
split gravimetrically into halves, thirds, or quarters. At least
one subfraction of each A—C filter was analyzed for total C
and N content via elemental analysis and for PIC via acid-
ification and coulometric titration (Honjo et al., 2000).
Analyses on filter subfractions were scaled to whole-filter
equivalents using the masses of the filter subfractions. The
amount of POC per filter was determined by the difference
between total C and PIC.

Filters D—F were stored dry until analysis on shore. Fil-
ters were weighed repeatedly on a microbalance until sta-
ble weights to within +0.005 mg were achieved. The mass
of accumulated particles on each filter was computed by
difference from the filter tare weight. These filters were
subsequently analyzed for bSi following alkaline digestion
(That95°Cin 0.2 N NaOH followed by neutralization with
1 N HCI; similar to Nelson and Brzezinski, 1989) and spec-
trophotometric detection using standard methods.

For each of the analyses described above, uncertainties
were computed on a platform-by-platform basis, as the
standard deviation among triplicate splits. Fluxes were
computed by normalizing to the trap collection period
(from deployment until trap lid closure), the number of
splits averaged, and the combined area of tube collection.
Below, we report the means and uncertainties (usually n =
3) determined in this manner for each trap depth (Table 2;
Estapa, 2019). In certain cases, only two splits were avail-
able, as noted in Table 2 and where applicable in the text.
Individual split data are available in the NASA SeaBASS
repository (Estapa et al., 2020).

2.2.2. Gel sample processing and image analysis
Gel sample processing and image analyses as well as par-
ticle types and modeled carbon fluxes are described in
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detail by Durkin et al. (2015; 2021). Here, we focus on the
sinking particle size distributions (PSDs) to support inter-
pretations of bulk trap fluxes and summarize the relevant
subset of analytical procedures. After the recovery steps
outlined above, overlying seawater was vacuumed out of
the tubes with gel collectors, leaving behind the last 1-2
cm of water in each collector jar. Gel jars were removed
from tubes and then the last layer of seawater was care-
fully removed via pipette. Identical blank gels kept in the
laboratory for the duration of each deployment were trea-
ted in the same way as samples. The samples were imaged
on board ship with a stereomicroscope (Olympus SZX16)
and digital camera (Teledyne Lumenera Infinity 2) at vary-
ing magnifications (7 x—115x) and focal planes and then
frozen. In approximately half of the samples, ship motion
precluded high-resolution (50x—115x) imaging at sea, so
this step was performed on shore after thawing. In prior
studies, the freeze-thaw process did not impact the detec-
tion or measurement of particles (Durkin et al., 2021).
Median background values from process blanks were sub-
tracted from the images. A thresholding and edge detec-
tion algorithm was applied to detect and measure
particles in gel images. Particle duplicates detected in
multiple focal planes were discarded and then equivalent
spherical diameters (D) of particles were computed from
their 2D imaged areas as described by Durkin et al. (2015;
2021). Every particle image was sized, counted, and man-
ually classified into a passively sinking particle category or
into various nonsinking or “noise” particle categories (e.g.,
zooplankton swimmers, fibers, imaging noise). Intact zoo-
plankton “swimmers” were presumed to have actively
entered the trap (Knauer et al., 1979; Lee et al.,, 1988;
Table 2). Blank gels did not contain any particles that
could be classified into the passively sinking particle cate-
gories identified in the sample gels nor were there any
particles classified as “swimmers.” In the subsequent anal-
yses described below, we disregarded the nonswimmer,
“noise” particles identified in both the samples and
blanks, negating the need to subtract the process blanks
from the samples.

Particles classified as passively sinking were binned by
diameter into logarithmically spaced size bins ranging
from 10.7 to 8,192 pum. Similar to the procedure described
by Durkin et al. (2015), size bins smaller than 32 pm were
computed from particle images detected at 115x magni-
fication, particles 32—90 pum at 50, particles 90-362 um
at 20x, and particles larger than 362 pum at 7 x magnifi-
cation. These size ranges target the optimal detection lim-
its of the microscope and camera combination at each
magnification. This approach eliminates the underestima-
tion of fluxes by particles smaller than the optimal detec-
tion limits of each magnification. However, the fluxes of
particles smaller than 32 um detected at 115x appear to
be at the limit of the microscope and camera resolution
and are likely underestimated (Durkin et al., 2015). Area
fluxes (units of pm? or mm? m™2 d™') and number fluxes
(units of particles m™2 d™') were computed, respectively, by
normalizing the total projected area of particles, and the
number of particles counted, to the imaged area and the
deployment length. Differential number fluxes (N(D);
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units of particles m™ d™' um™") were computed by divid-
ing the binned number fluxes by size bin widths. Count-
ing uncertainties were propagated into the different flux
estimates. Number and area “fluxes” of swimmers were
also computed from the number of pixels occupied by
each individual to support the interpretation of bulk ele-
mental fluxes (see Swimmer Correction section).

PSDs were modeled from differential number fluxes by
fitting a simple power-law function (Equation 1; e.g.,
McCave, 1984) to the number fluxes of passively sinking
particles using a nonlinear least-squares minimization
(Matlab function “fminsearch”; Press et al., 2007):

N(D) :A(Dref> X (D/Dref)s (1)

where A(D,f) gives the PSD amplitude at a reference diam-
eter (Dref), and S gives the PSD slope. The parameter S is
sensitive to the particle size range used in fitting the
model. We fit Equation 1 to the entire resolvable size
spectrum (32-5,792 pm) across all samples collected dur-
ing the cruise (Figure S1). Uncertainties in the A(Dyef) and
S parameters were estimated using a Monte Carlo propa-
gation of counting uncertainty.

2.3. Analytical methods

2. 3.1. Particle source funnel modeling

In order to contextualize trap flux measurements within
the upper water column, source regions were estimated
for particles sinking from the mixed layer to trap collec-
tion points (Siegel and Deuser, 1997; Siegel et al., 2008).
Velocity fields during the cruise period were determined
as follows: Both the Ride and Revelle carried 150 kHz
acoustic Doppler current profilers (ADCPs), which resolved
velocity profiles down to approximately 300 m. The Re-
velle additionally carried a 75-kHz instrument, which mea-
sured velocities down to approximately 600 m. Velocity
profiles from all three instruments were interleaved and
decomposed into tidal and inertial components, a low-
frequency mean, a linear trend, and a high-frequency
residual component. The low-frequency components were
similar in magnitude and direction to satellite altimetry-
derived geostrophic velocities (AVISO). The spatially
gridded, AVISO-derived surface velocities were therefore
attenuated with depth in proportion to the attenuation
of the time-averaged, low-frequency portion of the current
magnitudes from the ADCP. This depth-attenuated AVISO
field was then summed with the mean tidal and inertial
velocity profile time series. For comparison purposes,
a spatially invariant velocity time series was also com-
puted from the Revelle ADCP observations.

Statistical source regions for sinking particles were
modeled in order to constrain the spatial sensitivity of
trap samples. Ten thousand sinking particles were ad-
vected backward in time from each point along each sed-
iment trap trajectory (Figure 1). The actual location of the
STT was used for this determination. NBST paths were
modeled as a straight line and at a constant speed
between the deployment and resurfacing locations and
times. Estimates of particle sinking velocities (SVs) during
EXPORTS await future modeling work. Here, source
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regions were calculated using representative SVs of 100
and 500 m d™". Limited shipboard measurements of salp
fecal pellets during EXPORTS showed SVs ranging hun-
dreds of meters per day (D Steinberg, personal communi-
cation), similar to compilations of SV observations of
sinking particles in the literature (e.g., Laurenceau-
Cornec et al.,, 2019). Mean particle trajectories were com-
puted from either the merged AVISO-ADCP velocity grid
or the mean Revelle velocity time series. The high-
frequency residual velocity profile from the decomposi-
tion described above was used to spread the particles up
and outwards from their collection point at each model
timestep, according to Equation 2 (Siegel et al., 2008).

W () = (1 _ A:) sl (1) + \/Z—A}*Gu*r @)

Above, /(t;) is a random velocity imparted to each
particle at each timestep, At is the model timestep, which
is small relative to the assumed decorrelation timescale,
T, set to 10 days following Siegel et al. (2008). The random
velocity of the particle, t/(t,_q), is set at the previous time-
step, ou is the square root of the residual velocity vari-
ance, and r is a random number between 0 and 1.
Differences between the location and extent of the source
regions computed using the AVISO-ADCP and Revelle
ADCP velocity fields were negligible, and so the AVISO-
ADCP-derived source regions were selected for use in sub-
sequent analyses described below.

2.3.2. PSD modeling

The size distribution of sinking particles in the gel traps
was used to model the amount of ***Th flux from particles
that were too small to fully resolve with the microscope
(i.e., smaller than 32 pum) or that were so rare that they
had a low probability of collection during days-long trap
deployments (see Discussion section, Comparison of Mea-
sured and Predicted ***Th Fluxes and Implications for Trap
Efficiency section). The mean flux PSD slope was com-
puted by averaging values at each of the five trap depths
and extrapolated to give a particle number flux spectrum
for sizes ranging from 1 um to 1 cm (equivalent circular
diameter; upper limit chosen to approximate the trap
baffle opening). From the modeled flux PSD, we com-
puted the number flux of particles smaller than 32 pum
at each depth, converted this value to projected area flux
(A= nD2/4 mm*m2d ' um'), and integrated the area
flux with respect to particle size. The 2**Th flux from this
modeled, <32-um particle pool was estimated using the
mean area: >**Th relationship from the trap samples. For
comparison to this model, the small-particle **Th flux
was also estimated on a per-trap basis from the observed
number fluxes of particles smaller than 32 pm.

The modeled number flux size distribution was also
used to compute the mean collection rate (particles d™)
in the summed area of two trap tubes at each trap depth.
Using these mean particle collection rates, a Poisson
counting model was used to model the size-dependent
probability of collecting at least five particles during a 3-
day trap deployment (Figure S2). The number flux of

Estapa et al: Biogenic sinking particle fluxes & trap collection efficiency at Station P

particles with a less than 5% probability of collection (at
the five particles per 3 days threshold) was computed from
the counting model. This hypothetical number flux was
integrated with respect to particle size, converted to an
area flux, and used to estimate ***Th flux following the
same procedure as described above.

2.3.3. Export ratios and transfer efficiency
calculations

The Ez-ratio is defined as the export flux of carbon from
a reference depth, ideally the base of the euphotic zone or
mixed layer, whichever is deeper, divided by the net pri-
mary production (NPP) integrated to that depth. The 100-
m transfer efficiency (T1q0) is the downward flux of carbon
at 100 m below the reference depth, divided by the export
flux at the reference depth. We computed the Ez-ratio and
Tipo metrics (Buesseler and Boyd, 2009; Buesseler et al,
2020b) from our sediment trap data on an epoch-by-epoch
basis as well as over the entire cruise. Depth-integrated NPP
was determined using the well-established '*C-based
approach, following sample processing details reported
by Fox et al. (2020), but with the addition of trace-metal
clean techniques during all sample handling. Shipboard
14C bottle incubations were carried out for 24 h at light
levels corresponding to targeted collection depths rang-
ing from the surface to the 1% photosynthetically avail-
able radiation (PAR) depth, around 70 m. The volumetric
NPP rates were then integrated to different depths. Here,
we report integrated NPP to a depth of 100 m, and use
this as our reference depth for Ez-ratio and Tiqq
calculations. While the shallowest sediment traps were
about 12 m above the 0.1% light level (see below), this
choice of reference depth avoids additional uncertainty
associated with depth-interpolation of trap fluxes. Uncer-
tainties in single-epoch NPP, Ez-ratio, and Tqqo values
were propagated from the standard deviation among the
replicate measurements in each trap depth band. For the
cruise-long average, we report the mean and uncertainty
propagated from standard deviations in each trap depth
band, over all three epochs (n = 7 for NPP, n = 8 or 9 for
trap fluxes).

3. Results

3.1. Trap deployments

A weak, anticyclonic mesoscale circulation dominated the
mean trap motions during each deployment cycle (Figure
1; Siegel et al.,, n.d.). Superimposed on this larger pattern,
the STT array was advected by inertial (period 18 h) and
tidal motions and wind drag. While only the deployment
and resurfacing locations were available for the NBSTS,
they can be assumed to have been similarly affected by
inertial and tidal oscillations. Compared to the NBSTs, the
STT array drifted further to the north in Epoch 1, to the
east in Epoch 2, and to the southeast in Epoch 3 (Figure
1). NBSTs had single-cycle endpoint-to-endpoint drift dis-
tances ranging from 4.8 to 21.1 km (Table 1), consistent
with observed current speeds (Siegel et al., n.d.). The STT
endpoint-to-endpoint distance (ranging from 16.0 to 30.4
km) was always greater than that of co-deployed NBSTs
(except in the single case where an NBST took two cycle
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periods to resurface; Table 1; Estapa et al., 2020). In situ
velocities measured continuously every 10 min at the base
of the STT array (Figure S3) had means and standard de-
viations of 6 + 3 cm s™' (Epoch 1),4 + 2 cm s™' (Epoch
2),and 6 + 3 cm s' (Epoch 3).

During the cruise, the depth of the euphotic zone
determined from radiometer profiles conducted aboard
the Revelle had a mean and standard deviation of 112
+ 7 m (0.1% of surface PAR, n = 11), while the mixed
layer was 31 + 4 m (n= 227; using a 0.1 kg m™3 criterion)
during the sampling period (Siegel et al., n.d.). Prior work
supports the interpretation of sinking particle flux data
with reference to the primary production zone depth,
which is defined as the depth where in vivo chlorophyll
fluorescence drops to 10% of its maximum value (Owens
et al., 2015). This depth, computed from daily chlorophyll
fluorescence (FLNTU, WET labs Inc.) profiles of the
Lagrangian float followed by the Revelle, was 116 + 3
m, consistent with the 0.1% PAR depth and with other
work supporting the use of a 0.1% PAR definition as the
export reference depth (Marra et al., 2014; Buesseler et al.,
2020b). As discussed above, the NBST deployment depths
and the STT depths in Epoch 1 were targeted at 95, 145,
195, 330, and 500 m, while the STT depths in Epochs 2—3
were 10 m deeper. We have therefore grouped together all
traps deployed in the same 10-m interval. For brevity, we
refer below to these trap depth bands as 100, 150, 200,
335, and 505 m.

3.2. Bulk fluxes

3.3.1. Swimmer correction

Sediment trap samples were highly impacted by zooplank-
ton “swimmers,” with tens of milliliters of biomass
removed in some cases. Often more swimmer material was
removed from samples than the passive flux material left
behind, with NBSTs more greatly impacted by swimmers
than STTs (Figure S4). Qualitatively, the bulk of the swim-
mer biomass manually removed from samples was from
Themisto and Vibilia amphipods (D Steinberg, personal
communication). Large numbers of copepods and ptero-
pods were also removed. Passively sinking material adher-
ing to swimmers was carefully separated and returned to
the bulk sample. The relative variability of swimmer fluxes
before and after picking was computed as the relative
difference between two traps, or relative standard devia-
tion among three traps, deployed at the same time and
depth. Swimmer area fluxes always showed more relative
variability than bulk POC fluxes to the same platforms
measured after manual swimmer removal (Figure 2). In
addition to our visual observations under magnification,
this difference suggests that picking was successful at sep-
arating swimmers larger than the screen size of 335 um
from passively sinking particles. However, both the bulk
compositional characteristics of the sinking flux and visual
observations of picked screens, gel samples, and filter
splits (H Close, personal communication; Figure S4) sug-
gested that swimmer removal was incomplete. This was
likely due to material shed from larger swimmers (such as
amphipod eggs that were frequently observed and diffi-
cult to remove manually due to their fragility and small
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Figure 2. Relative variability in measures of swimmer flux.
Relationship between measures of relative variability in
swimmer area flux to gels, and relative variability in
particulate organic carbon (POC) flux to bulk traps
prior to statistical swimmer correction (see text). Black
squares show relative differences (relative difference)
between pairs of traps co-deployed at the same target
depth, which is defined, for trap pairs, as the absolute
difference between the two measurements, divided by
the mean. White circles show relative standard
deviations (RSDs) among sets of three traps co-
deployed at the same target depth. For triplicates, the
RSD is the standard deviation among the three
measurements divided by their mean. Error bars show
propagated, split-to-split uncertainty from single
platforms. The 1:1 line is shown for reference (solid
black). DOI: https://doi.org/10.1525/elementa.2020.
00122.2

sizes), swimmers that were small enough to pass through
the screen, and possibly from unrecognized, fragmented,
or cryptic swimmers (Michaels et al., 1990).
Relationships among the bulk elemental fluxes and
magnitudes of some fluxes suggested nonnegligible con-
tributions by swimmers to certain analytes (total and inor-
ganic carbon, nitrogen, phosphorus, and total mass;
Figure 3). For instance, ratios of carbon to ***Th in STT
and NBST trap samples ranged from 2.1 to 29 pmol dpm"~
!, with a median of 5.4 pmol dpm™". Previous work in the
region has shown that C:***Th values are almost always
less than 6 pmol dpm™' (Charette et al., 1999; Kawakami
et al., 2010; Mackinson et al., 2015). The higher values
observed here are consistent with contamination by zoo-
plankton, which typically have high C:***Th ratios (Coale,
1990; Buesseler et al., 2006; Passow et al., 2006). The
organic carbon (OC) weight fraction of the total mass flux
ranged from 0.17 to 0.68 with a median of 0.34. Several
samples had OC weight fractions above 0.5 (Figure 3b),
consistent with enhanced contributions from components
such as lipids and proteins (Hedges et al., 2002). We found
that samples with high C:***Th and high OC weight frac-
tions also had high area fluxes of zooplankton swimmers
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Figure 3. Bulk flux compositional ratios used for swimmer correction. Property-property plots for bulk flux samples
illustrate the properties used to identify uncontaminated samples for statistical swimmer correction. In all panels,
symbol colors correspond to the cross-sectional area “flux” of swimmers in gel collectors. Panel (a): Particulate organic
carbon (POC) flux versus #**Th flux, no significant correlation. Dashed line shows POC:***Th = 6 umol dpm™". Panel
(b): Mass fraction of organic carbon (see text) versus area flux of nonswimmer particles, R* = .15, p < .05. Dashed line
shows mass fraction OC = 0.5. Panel (c): Area flux of nonswimmer particles versus ***Th flux, R> = .56, p < 107°. Panel
(d): Area flux of nonswimmer particles versus biogenic silica (bSi) flux, R* = .62, p < 107®. Error bars indicate plus or
minus one standard deviation (n = 3) or the range (n = 2) of directly measured splits (see Table 2). DOI: https://

doi.org/10.1525/elementa.2020.00122.f3

to the gel trap on the same platform (Figure 3a and b).
Swimmer-impacted analytes also showed high fluxes and
inter-platform variability in the upper 195 m of the water
column. In contrast, we found that fluxes of 23*Th and bSi
appeared to be less influenced by swimmer contributions
as they were well-correlated to the area fluxes of nonswim-
mer particles to the gel traps (Figure 3c and d).

To correct for the additional POC flux contributed by
swimmer material that passed through the 335-pm mesh,
a statistical correction procedure was applied (Figure 4;
Text S1). An unsupervised classification (Gaussian mixture
cluster analysis; Press et al., 2007) was used to identify the
subset of samples with high covariance among the follow-
ing compositional ratios: bSi:POC, #**Th:POC, area:POC,
and mass:POC. We assumed that these samples, which
spanned the whole range of trap depths, were unlikely
to be contaminated by swimmer material. The mean bSi:-
POC, ***Th:POC, and area:POC ratios from those samples

were used to generate three independent, passive-only
(i.e., swimmer-free) estimates of POC flux for the remain-
der of the samples. The estimated passive POC flux was
insensitive to whether mean or depth-dependent compo-
sitional ratios were used, so we used the mean. Swimmer-
corrected POC fluxes reported below were subsequently
computed by averaging the three independent estimates.
The uncertainty of this corrected POC flux is reported as
the larger of either the standard deviation among the
three estimates or the original observational uncertainty
(mainly split-to-split variability; Table 2). The estimated
contribution of swimmer material smaller than 335 pm
(Table 2; Figure S4) was computed as the difference
between the measured and corrected POC flux. Here and
below, we use the terms “swimmer-corrected,” “swimmer
POC,” and “swimmer POC flux” in reference to quantities
stemming from our statistical correction for swimmer
material that passed the 335-um mesh, and not to refer
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Figure 4. Flowchart illustrating the modeling process for
statistical swimmer correction. Dark gray box indicates
observed quantities. Light gray boxes indicate modeled
quantities, and white boxes indicate model steps. bSi =
biogenic silica; POC = particulate organic carbon. DOI:
https://doi.org/10.1525/elementa.2020.00122.f4

to larger swimmers that were removed manually from the
screen prior to splitting and filtering.

Calculated swimmer POC contributions from material
smaller than 335 pm in the screened and manually picked
samples (Table 2) correlated positively with the area flux
of swimmers of all sizes to the gel traps (R* = .53, p< 107°)
but were not significantly related to area fluxes of swim-
mers smaller than 335 um. Both the calculated swimmer
POC correction and the total area flux of swimmers to
gel traps were much larger in the NBSTs than in the STTs
(Figure S4). However, the area fluxes of swimmers smaller
than 335 um were similar in NBSTs and STTs and comprised
only a small fraction (median 6%) of the total swimmer
area in the gels (Figure S4). These findings suggest that
most of the swimmer material passing through the mesh
originally entered the traps with larger swimmers and
was detached during bulk sample handling. Swimmer
POC from material smaller than 335 pm contributed
between 0 and 91% of the measured, uncorrected POC
flux (mean + standard deviation of 45 + 31%, n = 32).
Above 200 m, significant differences were observed
between trap types in Epochs 1 and 2 (but not Epoch
3), with much higher swimmer POC contributions
observed in NBST samples (paired-sample t test, 95%
confidence; Table 2). No epoch-to-epoch differences
were observed in contributions of <335 um swimmer
POC in the STTs, and for NBSTs only Epochs 1 and
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3 differed significantly from one another (paired-
sample t test, 95% confidence). The mean elemental
ratios of the swimmer-free sample subset are reported
below. Corrected profiles of the other swimmer-
contaminated analytes besides POC (N, P mass, PIC) can
be estimated by scaling passive POC flux estimates by the
appropriate elemental ratios.

3.2.2. Flux profiles, bulk composition, and BCP
efficiency

The corrected sediment trap-derived POC fluxes observed
here were low and somewhat variable, with a cruise-wide
average (+ standard deviation, n = 9) of 1.38 (+ 0.77)
mmol C m2 d™' at the uppermost trap depth (100 m),
attenuating significantly to 0.76 (4+ 0.20) mmol C m 2 d™"
by a depth of 200 m (n = 8; t test, 95% confidence; Figure
5; Table 2). Surface-tethered sediment traps generally had
a higher POC flux than NBSTs deployed at the same time
and depth (39 + 18% overall, Type-II linear regression, n
= 12). POC fluxes also varied from epoch to epoch,
increasing significantly (¢ test, 95% confidence) from
0.94 (+ 0.30, n = 6) mmol C m™ d™' in Epochs 1 and
21t02.27 (+ 0.61, n=3)mmol C md™" in Epoch 3. All
nonswimmer impacted fluxes (bSi, ?**Th, and area flux to
gels) also increased significantly at 100 m from Epochs 1
and 2 to Epoch 3 (Figure 5). Significant epoch-to-epoch
changes were not observed below 100 m, except for bSi at
145 m where fluxes in Epoch 3 increased to 0.43 (+ 0.10,
n = 2) mmol Si m™* d™! from 0.17 (+ 0.03, n = 4) mmol
Sim?2d"in Epochs 1 and 2.

We assumed that the samples determined to be uncon-
taminated by POC from swimmers also had negligible
swimmer contributions to measured N, PIC, and mass
fluxes. We computed median compositional ratios from
this small subset (n = 7; Table 2), which spanned all trap
depths, epochs, and trap types, but which was not sulffi-
cient to examine variability within those categories. The
median (interquartile range) of the POC: N molar ratio
determined for this subset was 7.0 (+ 1.5), the PIC: POC
molar ratio was 0.035 (+ 0.011), and the POC:mass ratio
was 0.25 (4 0.03). The POC:P molar ratio was 264 (+
187), although this ratio was higher than observed in
samples from in situ pumps (M Roca-Marti, personal
communication) and could indicate enhanced solubiliza-
tion of P prior to sample filtration (e.g., Lamborg et al.,
2008). The bSi:POC molar ratio increased from 0.15 (+
0.03, n=2) in Epoch 1t0 0.29 (+ 0.02, n = 4) in Epochs
2 and 3 (Figure 6b). The POC:***Th ratio did not change
significantly among the three epochs and had a mean of
2.2 (+ 0.2) umol dpm™, consistent with >51 pum partic-
ulate samples collected via in situ large-volume pumps
(Figure 6a; Buesseler et al., 2020a).

Epoch averages of NPP integrated to the uppermost
trap depth ranged from 13.0 to 14.1 mmol C m™ d~' with
a cruise mean of 13.8 (+ 1.9, n = 7) mmol C m™* d™’
(Table 3). We use the Ez-ratio (here computed as the flux
at the reference depth, 100 m, normalized to NPP) and the
T100 (flux at 200 m normalized to flux at 100 m) as metrics
to describe the BCP efficiency (Buesseler and Boyd, 2009;
Buesseler et al., 2020b). We found Ez-ratios ranging from
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Figure 5. Fluxes of swimmer-corrected particulate organic carbon, biogenic silica (bSi), ?**Th, and passively sinking area
in gels. Open circles show fluxes to neutrally buoyant sediment traps, and filled squares show fluxes to surface-
tethered traps. Panels a, b, and ¢ show Epochs 1, 2, and 3, respectively. Error bars indicate plus or minus one standard
deviation (n = 3) or the range (n = 2) of directly measured splits (see Table 2). POC = particulate organic carbon; bSi
= biogenic silica. DOI: https://doi.org/10.1525/elementa.2020.00122.f5
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Figure 6. Thorium-234 and biogenic silica (bSi) ratios to particulate organic carbon (POC). Colors indicate epoch and
correspond to Figure 1. Samples from the low-swimmer subset (see text and Table 2) are shown in larger triangles
with heavy outlines. Small swimmer-corrected samples are shown with circles. (Left) 2**Th versus swimmer-corrected
POC. Mean POC:***Th ratio (+ standard deviation) computed by Type-II linear regression is 2.2 (+ 0.2) pmol dpm™';
R* = .86, p< 107", n = 32. (Right) bSi versus swimmer-corrected POC. Mean bSi:POC ratio (mol/mol) computed by
Type-1l linear regression is 0.29 (4 0.02); R* = .90, p < 10~"°, n = 32. Error bars indicate plus or minus one standard
deviation (n = 3) or the range (n = 2) of directly measured splits (see Table 2). DOI: https://doi.org/10.1525/

elementa.2020.00122.f6

0.06 to 0.18 with a cruise-long mean of 0.10 (+ 0.06;
propagated from n = 7 NPP measurements and n = 9
POC flux measurements at 100 m). The T;oq values for POC
ranged from 0.4 to 0.9 with a mean of 0.55 (+ 0.35;n=8
POC flux measurements at 200 m; Figure 7; Table 3). We
also computed Ty values for the fluxes without apparent
swimmer contamination (bSi, ***Th, and gel area; Table 3;
n = 3 except n = 2 in Epoch 2 at 200 m). For bSi, Tyog
ranged from 0.4 to 1.1 with a mean of 0.6 (+ 0.5); for
234Th, T ranged from 0.4 to 1.0 with a mean of 0.5 (+
0.4); and for gel area flux, T1oo ranged from 0.4 to 0.8 with
a mean of 0.6 (+ 0.4). Among all analytes, T, varied the
most in Epoch 1, was largest in Epoch 2, and varied the
least and was lowest in Epoch 3 (Table 3).

3.3. Size distribution of sinking particles

PSD slopes (+ propagated particle counting uncertainty)
of sinking particles ranged from —2.15 (+ 0.07) to —3.31
(£ 0.16). For comparison, an equal volume distribution
across all size classes may arise when mass redistribution
among particles reaches a steady state, which would
result in a theoretical PSD slope of —4 (Sheldon, 1972).
Observed size distribution slopes of marine suspended
particles typically fall between —2 and —4 (e.g., Guidi et
al., 2009). Our sinking particle observations are therefore
consistent with an increase in larger versus smaller par-
ticles, relative to typical distributions of suspended par-
ticles. The slope parameter S also generally decreased
(became steeper) with increasing depth from 100 to
335 m, indicating a shift from larger to smaller particles
over that depth range, albeit with substantial variability,
consistent with the observations of Guidi et al (2009;
Figure 8). Among all samples, the median particle size

(i.e., the equivalent spherical diameter calculated from
the median area) ranged from 75 to 1,461 pm with
a median of 282 um. Particles smaller than 51 pm in
diameter contributed between 0.57% and 42% of the
total area flux, with a median of 11%. No significant
trends in the median particle diameter or contribution
of particles smaller than 51 pm were observed as a func-
tion of depth.

In spite of the relative importance of the largest particles
to overall fluxes, they were not numerically abundant in the
gel traps. Among size bins with median diameters larger
than 437 pm, some samples had fewer than 10 particles
(i.e., relative counting error greater than 32%) collected
during a deployment. In size bins larger than 874 pum, some
samples had zero particles collected. No particles larger
than 5,792 pum were observed. The power-law model (Equa-
tion 1) gave a reasonable fit to the particle size data over
the entire size range, with relative uncertainties in S deter-
mined by Monte Carlo propagation of counting uncertainty
ranging from 2% to 10% (Figure 8). However, the observed
size distributions included local minima and maxima that
deviated from the model (Figure S1).

The estimated fluxes of 2**Th carried by observed par-
ticles smaller than 32 um had a mean (+ standard devi-
ation) of 26 (+ 13, n = 30) dpm m™2 d". The modeled
fluxes of **Th carried by 1-32 pm particles, computed by
extrapolation of number flux size distributions to small
sizes not well-resolved by microscopy, were larger and
ranged from 119 to 376 dpm m™* d~'. Averaging the ob-
servations by depth and taking the difference from the
model led to a conservative estimate of “missed” small
particle **Th flux ranging from 89 to 350 dpm m™> d™,
with the maximum observed at 150 m and the minimum
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Table 3. Particulate organic carbon (POC) fluxes, export ratios, and POC, biogenic silica, and ***Th transfer efficiencies.? DOI: https://doi.org/10.1525/elementa.2020.00122.t3

Transfer Ratio (T10)” ©

Fluxes (mmol C m2 d™")

Area®

234Th

bSi

POC

Export Ratio

NPP¢

POC at 100 m POC at 200 m

Sampling Period (2018)

Sampling Period

0.84 (0.66)
0.74 (0.51)
0.40 (0.09)
0.60 (0.38)

0.63(0.23) 067 (0.16) 0.48 (0.11)
0.94 (0.50)

0.39 (0.21)
0.55 (0.35)

0.08 (0.01)
0.06 (0.03)
0.17 (0.06)
0.10 (0.06)

14.09 (1.76, n = 2)

0.23,n = 3)

1.01 (0.55)
0.40 (0.35)
0.52 (0.35)

1.10 (0.67)
0.41 (0.22)
0.56 (0.47)

14.03 (2.81, n = 3)

0.20, n = 3)

13.01 (2.70, n = 2)

041, n=2)

13.81 (192, n = 7)

- 8)

0.24, n

= = = =

0.69
0.74
0.88
0.76

1.10 (0.16, n = 3)

August 15-20

Epoch 1

0.78 (0.35, n = 3)

August 24-28

Epoch 2

2.27 (0.61, n = 3)
1.38 (0.77, n

August 31 to September 5

Epoch 3

9)

August 15 to September 7 =

Cruise®

ica.

POC = particulate organic carbon; NPP = net primary production; bSi = biogenic si

2All values reported as mean (with standard deviation).

T100 = flux at 200 m/flux at 100 m (see text).

Estapa et al: Biogenic sinking particle fluxes & trap collection efficiency at Station P

“Transfer ratios of bSi, 2**Th, and area flux have standard deviations computed from n = 3 measurements each at 100 m and 200 m, except n = 2 at 200 m in Epoch 3.

4Depth-integrated NPP computed to the upper trap depth (100 m), which was slightly shallower than the 0.1% light level (see text).

¢“Area” refers to the total cross-sectional area flux of passively sinking particles into the gel traps (see text).
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Figure 7. Export ratios from traps versus transfer
efficiency of flux to a depth 100 m below. Metrics
were computed at the upper trap depth (at 100 m),
slightly above the 0.1% photosynthetically available
radiation depth. Radii of the ellipses show the
standard deviations of T100 and the Ez-ratio. Filled
ellipses show values within each sampling epoch with
colors as in Figure 1. Open ellipses show the cruise
mean as measured with sediment traps (black), and as
predicted from *3**Th deficits and water column
particulate organic carbon:***Th ratios (gray; Buesseler
et al., 2020a). Figure design after Buesseler and Boyd
(2009) and Buesseler et al. (2020b). DOI: https://
doi.org/10.1525/elementa.2020.00122.f7

at 500 m. The modeled 2**Th flux carried by rare particles
with less than 5% probability of reaching a collection
threshold of five particles in 3 days ranged from 120 to
456 dpm m2 d™', with the maximum observed at 100 m
and the minimum at 330 m. The summed, modeled fluxes
of 3*Th carried by rarely collected and 1-32 pum particles
ranged from 287 to 567 dpm m2 d™".

Durkin et al. (2021) classified passively sinking parti-
cles imaged in the gel traps that were approximately 10
pum or larger into nine morphological categories. Using
literature values and prior, independent field measure-
ments, modeled, size-dependent carbon contents were
assigned to each particle class. The details of this model
are presented elsewhere (Durkin et al., 2021), but we
summarize a subset of the results here in order to sup-
port comparisons to the measured bulk fluxes. The POC
fluxes modeled from particles identified in the gel traps
agreed with the measured POC fluxes presented here
(Figure 9; see also figure 13 in Durkin et al., 2021), with
a linear regression (+ parameter 95% confidence inter-
vals) of Modeled POC = 1.2 (+ 0.6) x Measured POC +
0.006 (+ 0.7; R* = .38, P < 107%). When large but infre-
quent contributions from salp fecal pellets were
excluded from the modeled POC fluxes, the scatter in
the relationship improved, but the slope did not change
(R* = .73, slope = 1.2 + 0.3).
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Figure 8. Power-law particle size distribution (PSD) slopes
measured from particles in gel traps. Colors correspond
to epoch and match Figure 1. Circles show neutrally
buoyant sediment trap (NBST) samples and squares
show surface-tethered trap (STT) samples. Less
negative power-law slopes for PSD correspond to
larger particles, and more negative slopes correspond
to smaller particles. In general, passively sinking
particle size decreased with depth through 335 m but
then increased slightly at 505 m. Error bars show
particle counting uncertainty propagated into the PSD
model using a Monte Carlo technique (see text). DOIL:
https://doi.org/10.1525/elementa.2020.00122.f8

3.4. Trap source regions

Consistent with similar source region modeling work in
prior studies (e.g., Siegel et al. 2008), trap source areas
increased with trap depth (Figure S5). Areas of source
regions were similar between NBST and STT traps, likely
because the mean flow was small relative to higher fre-
quency motions responsible for spreading and divergence
of the source regions. For modeled particles sinking at 100
m d™', source regions were offset from trap locations by
3-8 km and the diameters of source regions ranged from
9 to 20 km, both increasing with depth. In contrast, source
regions for particles sinking at 500 m d™' had offsets
ranging from 0.9 to 1.7 km and diameters of only
0.7-4.4 km. The STT and NBST source regions diverged
from one another at 100 m in Epochs 2 and 3, but over-
lapped during part of Epoch 1, and at depths below 100 m
in all epochs. The trap source regions for particles sinking
at 100 m d~' were generally well-sampled by conductivity-
temperature-depth (CTD) casts from the ships, although
casts from the Ride in Epoch 2 were not as dense within
the source regions because the ship's sampling effort was

A without salp FP
o Full .
Linear fit
1:1

POC flux modeled from gel (mmol m2 d™")

0 0.5 1 1.5 2 2.5 3
Measured POC flux (mmol m>2 d'1)

Figure 9. Measured and independently modeled
particulate organic carbon (POC) fluxes. Comparison of
independently modeled POC flux based on particle
identities in gels (Durkin et al., 2021) to swimmer-
corrected bulk POC fluxes measured in this study.
Modeled fluxes by all particle types (open black
circles) showed larger scatter relative to measurements
than after contributions by rare salp fecal pellets (FP)
were removed (red dots). A linear regression of modeled
versus measured fluxes (black line) gave y = 1.2 (+ 0.6)
x + 0.006 (+ 0.7), R* = .38, P< 10>. The gray-shaded
area shows the 95% confidence interval of the fit. The
1:1 line (gray dashed) is shown for reference. DOI:
https://doi.org/10.1525/elementa.2020.00122.f9

extended over a larger area (Siegel et al., n.d.). Source
regions for particles sinking at 500 m d~' were not well-
sampled by CTD casts from the Ride because of their much
smaller extents.

4, Discussion

4.1. Method —method intercomparisons

Sediment traps have been a standard tool for measuring
sinking particle flux for decades, yet uncertainties about
their collection efficiencies and biases relative to other
methods still persist. These issues were reviewed compre-
hensively by Buesseler et al. (2007). More recently, Lam-
borg et al. (2008), Owens et al. (2013), and Baker et al.
(2020) reported field intercomparisons of different trap
designs. The sediment trap deployments conducted here
take into account many of the lessons learned in the ear-
lier studies: minimizing hydrodynamic bias by utilizing
NBSTs alongside STTs (Buesseler et al., 2007), employing
cylindrical trap tubes to avoid funnel effects associated
with conical traps (Baker et al. 2020), collecting process
blanks for every analyte to control for the effects of sam-
ple handling (Owens et al., 2013), and ensuring that STTs
were deployed below the mixed layer (Owens et al., 2013).
Sediment traps remain the only way to isolate and con-
centrate sinking particles from the suspended pool for
laboratory analysis. However, because there is no absolute
standard for sinking particle fluxes, the only way to
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evaluate the accuracy of sediment traps is to compare
observations to other methods. The EXPORTS field cam-
paign is one of the most comprehensive efforts to date in
terms of simultaneous, independent particle flux mea-
surements. In addition to the direct measurement of bulk
carbon fluxes reported here, the program included sinking
particulate carbon fluxes estimated from gel trap imagery
(Durkin et al., 2021), from water column #*¥U-***Th (Bues-
seler et al., 2020a) and *'°Pb-2'°Po disequilibria (Roca-Mar-
ti et al., 2020) and from Marine Snow Catcher samples
(Romanelli et al., 2020). We, therefore, have an unprece-
dented opportunity to explore the underlying causes for
mismatches among methods as well as to describe the
functioning of the BCP in this subpolar gyre setting.

4.1.1. Trap—trap reproducibility and platform
differences

This study was consistent with prior observations of an
approximate 10% overcollection of sinking POC flux by
STTs relative to NBSTs (Estapa et al., 2020). The STT array
was subject to wind stress on the surface buoy, which led
to its divergence from the co-deployed NBSTs in all epochs
(Figure 1). However, the measured relative velocities at
the base of the STT array in each epoch mostly remained
below the 10 cm s™' threshold at which hydrodynamic
effects have been shown to become important (Buesseler
et al., 2007). In addition, the size distributions of particles
collected by the two trap types were similar (Figure 8),
qualitatively suggesting that hydrodynamic sorting effects
played a minimal role. POC fluxes from replicate NBSTs
(two platforms co-deployed at the same depth) were deter-
mined five times during the cruise, and no significant
differences were observed (two-sample t test, 95% confi-
dence). Alternatively, in this study, the higher fluxes mea-
sured by the STTs versus NBSTs may have arisen from
spatial displacements between the trap types, particularly
in Epoch 3 (Figure 1; Table 2), or from effects of the
different trap designs (Baker et al., 2020).

4.1.2, Statistical swimmer correction
An independently calibrated, particle-identity-based POC
flux model, which took as input only the numbers, sizes,
and identities of nonswimmer particles in the gel traps,
agreed well with the swimmer-corrected, bulk POC fluxes
presented here (Size Distribution of Sinking Particles sec-
tion, Figure 9; Durkin et al., 2021). The good agreement
between these two independent estimates of sinking par-
ticle POC flux to the traps, and the fact that the gel POC
flux model is insensitive to swimmers, suggests that the
statistical swimmer correction procedure applied to the
bulk flux measurements was robust and that manual
swimmer removal from bulk samples did not inadver-
tently remove passively sinking POC from the sample.
Additional, qualitative support for the robustness of the
correction is shown by its ability to account for widely
varying levels of swimmer contamination in NBSTs versus
STTs (Figure S4).

The contamination of sediment trap samples by active
swimmer intrusion is a decade-old problem (e.g., Knauer
etal,, 1979; Lee et al., 1988). Solutions have run the gamut

Estapa et al: Biogenic sinking particle fluxes & trap collection efficiency at Station P

and include the following: sediment trap design innova-
tions (e.g., “the labyrinth of doom” and “indented rotating
sphere” traps; Coale, 1990; Peterson et al., 2005), simple
size-based separations such as those used in the Hawaii
Ocean Time-series (HOT) program (Karl et al., 1990) and by
this group at sites where that approach has been validated
(Owens et al., 2013; Estapa et al., 2017), hybrid approaches
where swimmers above a certain size are removed manu-
ally (Baker et al., 2020; this study), and the labor-intensive,
fully manual swimmer removal techniques regularly em-
ployed by the Bermuda Atlantic Time-series Study (BATS)
program (Knap et al. 1997). The types and intensity of
swimmer intrusion into sediment traps are highly variable
and difficult to predict in advance of deployments. For
instance, the NBSTs employed in this study attracted more
swimmers than did co-deployed STTs (Figure S4), even
though in prior work the reverse has occurred (Buesseler
et al., 2000). Owens et al. (2013) discussed multiple ex-
amples where the same trap design performs differently
(in terms of swimmer collection) in a variety of settings.
Disentangling hydrodynamic effects from zooplankton
behavioral influences remains a complex challenge.

Here, we have added a novel swimmer correction tech-
nique to the trapper’s toolbox, which, uniquely, is avail-
able for use after traps are retrieved and samples are
analyzed. It is not, of course, a substitute for full exclusion
of swimmers during trap deployment, or their removal
from samples after retrieval, and information about the
variation of sample composition with depth and time is
lost. A direct validation of this approach awaits future
study. However, this method allows retention of informa-
tion about the overall sinking flux magnitude (here re-
ported as POC flux), and critically, it can reveal the
effectiveness of other swimmer exclusion treatments
applied during sample collection and processing.

The statistical swimmer correction technique presented
here relies on the availability of a handful of samples from
the same site and time period, with similar multielement
compositions (POC, mass, 2**Th activity, bSi, and nonswim-
mer particle cross-sectional area in gel collectors on the
same platform), that together indicate that samples have
minimal swimmer contributions. Therefore, we suggest
that future studies wishing to explore this correction
method utilize sample collection procedures that ensure
that a sufficient number of swimmer-free samples are
available. We made the assumption that swimmers in
a sample would increase carbon but not ***Th or non-
swimmer gel area, and we inferred from the patterns in
the data that swimmers also added to the mass flux (and
N, P, and PIC) but not to bSi flux. Individual zooplankton
were counted for **Th and found to have very low activ-
ities (Buesseler et al., 2020a), but that assumption has not
yet been verified directly for bSi. Because the passive flux
composition, swimmer composition, and flux profiles will
vary from site to site, the application of this correction
technique to other studies will also require reevaluation of
these assumptions. However, gel particle fluxes and ***Th
fluxes will be useful to measure in general because high
POC:***Th ratios of swimmer biomass have been reported
widely (Buesseler et al., 2006; Passow et al., 2006;
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Buesseler et al., 2020a) and because swimmers can be
identified easily and excluded from gel trap analyses.

4.1.3. Comparison of measured and predicted ?>*Th
fluxes and implications for trap efficiency

In parallel with the trap sampling conducted here, over 20
spatially distributed profiles of total ***Th were collected
during each epoch (Buesseler et al., 2020a). Under steady-
state conditions, and in the absence of fluxes carried by
vertically migrating zooplankton that bypass sediment
traps, fluxes of **Th computed from the water column
deficit of particle-reactive ***Th relative to its conservative
parent isotope **8U (termed “predicted 2**Th fluxes”)
should agree with measured fluxes of 2**Th into sediment
traps (e.g., Buesseler, 1991). However, in several prior stud-
ies with high-frequency sampling for #**Th in both the
water column and in sediment traps, the difference
between predicted ***Th fluxes and trap measurements
is positive and typically increases as the total predicted
flux increases (Buesseler et al., 2007). In this study, we
similarly found measured ***Th fluxes in traps whose
mean (+ standard deviation) values were 33 + 19%
(n = 32) of the “best estimate” fluxes (mean of steady-
state and non-steady-state models; Buesseler et al., 2020a)
predicted from water column activities (Figure 10). Bues-
seler et al. (2007) hypothesized that this pattern might be
explained by hydrodynamic bias leading to preferential
undercollection by traps of the smallest particles that
contribute the most to the water column 23*Th deficit,
or alternatively by episodic, high-flux events that are
missed by traps but captured by the longer integration
timescale of **Th measurements. The data collected dur-
ing EXPORTS include 3D, time-resolved ***Th activities
(Buesseler et al., 2020a), simultaneous neutrally buoyant
and surface-tethered sediment trap deployments, and
measurements of the sinking PSD over particle diameters
ranging over three orders of magnitude. Therefore, we
have the unique opportunity to evaluate quantitatively
the possible drivers of this globally observed pattern.

We first consider timescale because water column-
derived ***Th fluxes in this study likely integrated over
approximately 20 days preceding sample collection (Bues-
seler et al., 2020a), while trap samples integrated over 3—6
days. Therefore, one possible explanation of predicted ver-
sus measured #**Th flux mismatches could be a high
export event preceding the cruise. However, there is no
evidence for such an event. Thorium-234 activities stayed
relatively constant in Epochs 1 and 2 and increased 6—
10% in the upper 60 m by Epoch 3, which leads to
a decrease in flux predicted from water column ***Th
deficits over the course of the cruise (Buesseler et al.,
2020a). Also, no large changes in production indices were
observed by autonomous vehicles present prior to the ship
arrivals on station in mid-August (Siegel et al., n.d.), nor
did fluxes of longer timescale tracers (e.g., *'°Pb-*'°Po)
indicate higher export prior to the cruise (Roca-Marti et
al., 2020). Horizontal advection of #**Th into surface
waters, which cannot be distinguished from a temporal
change, possibly could have accounted for some of this
increase in ***Th activity by Epoch 3. However, predicted

Art. 9(1) page 17 of 24

HO4 Trap
ss
—— NSS
100 6‘ AN 100 0)
— v \ v o \
£ 200 /@ \ 2000 \
& 300 300 A
§ o o
400 400
500 500 ®
0 1000 2000 0 1000 2000
0 AN N - 0 AN N -~
YNN Y\ N
100 % N 100 f @ N
= \ o \
£ 200 (@D \ 200 @ \
& 300 300 A
P o
400 400
500 500
0 1000 2000 0 1000 2000
0 e 0
N
100 gll J 100
—~ r \
£2000 \ 200
5300 300
§ ®
400 400
500 500
0 1000 2000 0 1000 2000
234Th flux (dpm m2 d ™)

Figure 10. Measured and predicted thorium-234 fluxes.
Comparison of measured ***Th fluxes from traps (black
circles) and predicted cruise-mean 2**Th fluxes from
water column deficits according to steady-state (SS;
light gray lines; solid and dashed show mean +
uncertainty) and non-steady-state (NSS; dark gray lines)
models. Left panels compare to neutrally buoyant
sediment trap fluxes; right panels compare to surface-
tethered trap fluxes. Panel row corresponds to epoch.
Predicted ***Th fluxes are from Buesseler et al. (2020a).
Error bars, which in many cases are smaller than the
markers, indicate plus or minus one standard
deviation (n = 3) or the range (n = 2) of directly
measured splits (see Table 2). DOI: https://doi.org/
10.1525/elementa.2020.00122.f10
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#3%Th fluxes from a steady-state model (Buesseler et al.,
2020a) were unrelated to trap #**Th fluxes (paired ¢ test,
p < 107°) regardless of whether spatial averages were com-
puted over the whole ***Th data set or over subsets of
measurements specifically within the trap source regions
(Figure S5). Overall, these observations suggest that a sam-
pling mismatch over a spatial flux gradient was unlikely to
be the main cause of the discrepancy and that export prior
to our arrival on station would have made only a minor
contribution to the observed mismatch. Below, we discuss
comparisons to flux predictions from both the steady-state
(SS) and non-steady-state (NSS) models reported by Buesse-
ler et al (2020a), where the latter model is in better agree-
ment with measured fluxes to the traps (Figure 10). Each
model carries different assumptions about horizontal
advection of #**Th and the time variations in the ***Th flux,
as described in detail by Buesseler et al. (2020a).

Another possible cause of the discrepancy between
water column-derived and measured sediment trap fluxes
was that ***Th-bearing particles adhering to the bodies of
zooplankton swimmers could have been picked out of the
trap samples, inadvertently decreasing the measured trap
fluxes (Buesseler et al., 2007). However, in spite of sub-
stantial differences in the numbers of swimmers detected
in and removed from the different samples (Figure S4),
234Th fluxes were consistent among different trap plat-
forms deployed alongside one another (Figure 10; Table
2). Furthermore, an independent model predicting carbon
flux from images of particles in the gel traps agreed well
with the corrected bulk carbon fluxes, as presented by
Durkin et al (2021) and discussed above (Figure 9; Size
distribution of sinking particles section and Statistical
Swimmer Correction section).

A number of recent studies have indicated an impor-
tant role for small (tens of microns and smaller), presum-
ably slowly settling particles in the BCP (Richardson and
Jackson 2007; Richardson, 2019). If sediment traps under-
collect such particles, then the difference between mea-
sured and predicted ***Th fluxes would be expected to
grow with an increasing contribution of these small,
#3*Th-enriched particles to the total flux. We interpret the
difference between the modeled and measured fluxes of
#3%Th carried by 1-32 um particles (Figure 11; Size Dis-
tribution of Sinking Particles section) as the flux poten-
tially missed by both the bulk and gel traps due to
hydrodynamic effects (Buesseler et al. 2007) or by the gel
traps, but not the bulk traps because of microscope reso-
lution limits (Durkin et al., 2015). However, this interpre-
tation of the model rests on the assumption that
flattening of the sinking PSD at the small end of the size
spectrum (Figure S1) was due to platform or detection
effects and not to an actual decrease of the number fluxes
of small particles relative to larger ones. While numerous
studies support the idea that PSDs of nonsinking particles
follow a power-law function at sizes below 32 um, our
ability to confirm this function for sinking particles re-
mains limited at present. Even so, polyacrylamide gel traps
and optical microscopy remain the best method for
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Figure 11. Measured, modeled, and predicted
contributions to #**Th flux averaged during the cruise.
Filled colored areas illustrate the cumulative
contributions to the ?**Th flux modeled from
extrapolated sinking particle size distributions (see
text). These include modeled flux of particles of
diameter (D) larger than 32 pum collected by traps
(blue, “Modeled trap-collected”), flux carried by
smaller, potentially undercollected particles (orange),
and flux carried by rare, infrequently collected
particles (yellow). Also shown are the predicted 2**Th
flux from the steady-state (SS) model that assumes
flux is constant in time (solid black line and shaded
dark gray area showing uncertainty; see text discussion
and Buesseler et al., 2020a) and from the non-steady-
state (NSS) model that allows for time-varying flux
(dashed black line and shaded light gray area; see text
discussion and Buesseler et al., 2020a), as well as the
measured flux in the neutrally buoyant sediment traps
(NBSTs; magenta circles) and surface-tethered traps
(STTs; magenta triangles), and the same trap fluxes
with added, modeled contributions by small and
infrequently collected particles (white symbols). DOI:
https://doi.org/10.1525/elementa.2020.00122.f11
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quantifying sinking particles with sizes below approxi-
mately 100 pm (e.g., Giering et al., 2020). In addition to
the reasons given above, another reason to approach this
model result with caution is the lack of any systematic
difference between NBSTs and STTs in ***Th undercollec-
tion (Figure 10), even though NBSTs are expected to col-
lect the smallest particles more readily due to their lower
hydrodynamic biases (Baker et al., 2020). Finally, the
model used a single, mean ***Th:area ratio, which may
be inappropriate for particles ranging over orders of mag-
nitude in diameter (e.g., Buesseler et al., 2006).

At the large end of the sinking particle spectrum (dia-
meters roughly 1,000 um and larger), particles may be less
affected by the flow field around traps, given their
assumed faster sinking speeds, but they also occur less
frequently in low-flux settings such as Station P during
the months of our study. The observed mean, size-
resolved particle collection rates imply that if a power-
law function accurately describes the size distribution of
large sinking particles, then particles larger than about
2,000-3,000 um had <5% probability of being collected
during a 3-day deployment (Figure S2), even though mod-
eled fluxes of those particles accounted for up to 9% of
the total (Figure 11). The simple model of
“undercollected, rare-particle flux” that is presented here
is conservative in its calculation of the probability of col-
lecting five particles in 3 days. Both increasing the deploy-
ment length and decreasing the required number of
particles would decrease the magnitude of the modeled
undercollection. Any departure of the true, sinking PSD
from the power-law model (Equation 1) at the large end of
the spectrum would also add uncertainty to the modeled,
undercounted flux from large particles. Unfortunately, the
size distributions of large, sinking particles are not well
constrained in general. The probability of collecting rare,
large particles will increase, however, as the collection
rates of these particles increase in higher flux settings.
Therefore, undercounting is likely to be most problematic
in low-flux settings with only occasional, outsized contri-
butions of rare, large particles. Observations of salp
patches, and occasional collection of salp fecal pellets that
dominated modeled carbon flux to traps, suggest that
such undercounting may have been the case during our
study (Steinberg et al., 2020; Durkin et al., 2021).

The simple assumptions made in our model of ***Th
fluxes carried by different particle classes allow us to
coarsely evaluate the possible contribution of trap collec-
tion biases to the mismatch between trap and water
column ***Th fluxes. Addition of the mean, modeled
small-particle and rare-particle fluxes to the trap observa-
tions could plausibly close the gap between trap and pre-
dicted 2*'Th fluxes from the non-steady-state model at
depths between 100 and 200 m (Figure 11). However,
this approach did not work with respect to the steady-
state model flux predictions or at depths below 200 m,
where a gap of several hundred dpm m™ d™' remained
(Figure 11).

In parallel with possible trap inefficiencies, fluxes car-
ried by zooplankton vertical migrants could also be re-
flected in the water column *3**Th deficits but not
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collected by the traps. Actively migrating zooplankton
feed near the surface and then release 2**Th at depth
through respiration or excretion of the associated carbon,
bypassing traps but contributing to the water column
deficit (Longhurst et al., 1990; Steinberg et al., 2000;
Steinberg and Landry, 2017). We next assess whether the
magnitude of the observed trap-water column mismatch
is consistent with an independent estimate of the carbon
dioxide and DOC fluxes carried below 100 m by diel ver-
tical migrators, which together averaged 0.4 mmol C m™2
d™! (A Maas, personal communication).

The cruise-average, trap-water column ***Th flux mis-
match at 100 m was 428 dpm m™ d™' (non-steady-state
model) or 854 dpm m™ d™' (steady-state model). The
conversion to carbon flux depends on the POC:***Th ratio
(for brevity, C:Th ratio) of particles consumed by migrating
zooplankton. In the mixed layer, particles smaller than 5
um in diameter had a C:Th ratio of 3.95 umol dpm™,
while larger 5-51 pm particles at 100 m had a C:Th ratio
of 1.62 umol dpm™' (Buesseler et al., 2020a). These
choices represent the high and low end of likely C:Th
ratios. Depending on which flux model and C:Th ratio are
chosen, the corresponding POC flux would range from 0.7
to 3.4 mmol C m™ d". Therefore, only in the scenario
where the non-steady-state model is used to predict
234Th flux, and a relatively low CTh ratio is assumed, is
the active flux by itself (0.4 mmol C m™ d™') of similar
magnitude to the trap-water column ***Th flux mismatch.
This comparison obviously rests upon a number of as-
sumptions about the depth structure of zooplankton
migration, the nature of food particles consumed, and the
degree of actual undercollection and undercounting of
particles by sediment traps. A more detailed exploration
of these assumptions awaits further work, but this initial
estimate suggests that part of the trap-water column ***Th
flux mismatch could plausibly be due to active transport
of carbon by vertical migrants, especially at the upper trap
depths where their contribution should be the largest.
However, this process does not address the larger trap-
water column mismatch observed at deeper depths.

4.2. Characterizing the BCP during the EXPORTS
North Pacific cruise

The overarching EXPORTS program goal is to characterize
the BCP and related satellite observables across a range of
ecosystem states, so that predictive, mechanistic models
generalizable to the global ocean can be developed. To
that end, the comparison of BCP strength and efficiency
as measured here to other estimates will help to contex-
tualize the North Pacific field campaign, which was meant
to serve as one end-member of a broader comparison
(Siegel et al., n.d.). Buesseler and Boyd (2009), and more
recently Buesseler et al. (2020b), proposed the use of two
metrics, the export ratio at the euphotic zone depth (Ez-
ratio) and the 100-m transfer efficiency (T1o0), to describe
and compare the BCP across regions and seasons.

The cruise-mean Ez-ratio observed here (0.10 + 0.06)
was consistent with an earlier measurement of 0.13 at
Station P in August (Charette et al., 1999; Buesseler and
Boyd, 2009). Our measured transfer efficiency (0.55 +
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0.35) is higher than the Charette et al. (1999) estimate of
Ti00 = 0.3, although in that study T;oo was assessed at 40
m, which was likely well within the euphotic zone, result-
ing in a lower Tqgg value (Buesseler et al., 2020a). Here, we
have assessed the Ez-ratio and Tyo9 metrics at a depth
slightly above the 0.1% light level. The difference between
the upper trap depth (95-105 m) and z, (112 + 7m, n=
11) is small, and interpolating the trap fluxes to 112 m
would have introduced additional uncertainty. Parallel,
independent estimates of the Ez-ratio and Ty, parameters
were made using carbon flux predicted from #**Th deficits
and C:***Th ratios in large-volume pump samples (Bues-
seler et al., 2020a). For the “best estimate” of **Th flux in
that study, computed as the mean of the steady-state and
non-steady-state models with an assumed euphotic zone
depth of 120 m, the ***Th-based Ez-ratio was 0.13 (+
0.05; uncertainty from NPP and numerous ***Th flux mea-
surements during cruise; see Buesseler et al., 2020a for
details). The 2**Th-based T, estimate computed between
120 m and 220 m was 0.61 (+ 0.46). At the shallower,
100-m reference depth used in this study, T;oo estimated
from the water column data would have decreased to 0.53
(£ 0.39) because of the rapid flux attenuation observed
around the base of the euphotic zone (Buesseler et al.,
2020a). Overall, Ez-ratios and T1qq values determined from
the two studies were in good agreement (Figure 7).

A detailed discussion of literature reports of BCP
strength and efficiency at Station P is presented in Bues-
seler et al. (2020a). Briefly, prior work with both sediment
traps and #**Th measurements indicates that the August—
September period at Station P is one of generally low and
declining export fluxes compared to earlier in the season
(Timothy et al., 2013). Our observations are consistent
with this finding. The shifts we observed in BCP strength
and efficiency on weekly timescales are striking in com-
parison to the global range of similar measurements (Fig-
ure 7; see also a summary of global data in Buesseler and
Boyd, 2009, updated in Buesseler et al., 2020b). For
instance, our trap observations show that the first two
sampling epochs had high and variable transfer efficien-
cies (0.6—0.9; Table 3) and low, relatively well-constrained
Ez-ratios (0.06—0.08), which makes them more similar to
subtropical, oligotrophic sites like HOT and BATS (Buesse-
ler and Boyd, 2009). In contrast, the third sampling epoch
saw an increase in both the magnitude and variability of
the Ez-ratio (to 0.18 + 0.06), coupled with a decrease in
Tipo to 0.4 (£ 0.2), which is more consistent with earlier
observations at Station P in late summer (Charette et al.,
1999). Shifts in proxies for biological stocks and rates,
from Epochs 1 and 2 to Epoch 3, included increases in
surface POC, phytoplankton pigments, and bSi concentra-
tions (Siegel et al.,, n.d.). Forthcoming, more detailed in-
vestigations of the underlying biological processes and
surface community composition will allow us to better
contextualize these observed, temporal shifts in fluxes to
the traps.

In spite of the larger week-to-week changes in Ez-ratio
and Ty9p measurements, their product, which gives the
overall efficiency with which NPP is transferred to 100
m below the reference depth, was well constrained across
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sampling epochs (0.055 + 0.010, n = 3). Compensation
for an increase in the export efficiency with a decrease in
the transfer efficiency during the course of the cruise is
consistent with tight coupling between production and
recycling in the ecosystem in the northeast, subarctic
Pacific Ocean (Wassman et al., 1998; Buesseler and Boyd,
2009). Also suggestive of this coupling were the types of
particles observed in gel traps and Marine Snow Catchers
deployed during EXPORTS. Phytoplankton aggregates and
cells made only minimal contributions to the sinking flux,
which appeared to be heavily modulated by grazers
(McNair and Menden-Deuer, 2020; Durkin et al., 2021;
U Passow, personal communciation). Future investigations
will examine possible connections of these observations to
biological rates and the ecosystem structure measured
during EXPORTS.

5. Conclusion

We have presented the initial results from the EXPORTS
North Pacific sediment trap sampling program, discussed
the general patterns that were observed, and analyzed the
major sources of uncertainty in our findings. This work
includes the development of a novel method to correct
for swimmer carbon in the sediment traps and the use of
detailed measurements of sinking PSD to estimate ***Th
fluxes via undercollected small particles and under-
counted rare, large particles and to constrain potential
23Th fluxes due to active zooplankton transport. Future
studies will examine more closely the role of active trans-
port in carrying POC fluxes to depth; the spatiotemporal
changes in physical drivers and ecosystem structure that
might be responsible for changes in BCP efficiency on
weekly timescales; and the detailed biological identities,
fluxes, and attenuation with depth of sinking particles
collected in gel traps (Durkin et al., 2021).
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