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Integral Geometry of pairs of planes

Julià Cuf́ı, Eduardo Gallego and Agust́ı Reventós

Abstract. We deal with integrals of invariant measures of pairs of
planes in euclidean space E3 as considered by Hug and Schneider. In
this paper we express some of these integrals in terms of functions of
the visual angle of a convex set. As a consequence of our results we
evaluate the deficit in a Crofton-type inequality due to Blaschke.
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1. Introduction

The main goal of this paper is to study integrals of invariant measures with
respect to euclidean motions in the euclidean space E3, extended to the set
of pairs of planes meeting a compact convex set. To carry out this objective
we express these integrals in terms of functions of the dihedral visual angle
of the convex set from a line and integrate them with respect to an invariant
measure in the space of lines.

The first known formula involving the visual angle of a convex set in
the euclidean plane E2 is Crofton’s formula given in [2]. Other results in this
direction were obtained by Hurwitz ([8]), Masotti ([10]) and others, in which
the use of Fourier series is the main tool. Recently the authors ([3], [4]) have
dealt with a general type of integral formulas, involving the visual angle, from
the point of view of Integral Geometry.

When trying to generalize these results to higher dimensions the role
played by Fourier series in the case of the plane has to be replaced by the use
of spherical harmonics. In this sense Theorem 4.1 plays an important role.
After stating and proving this result in dimension 3 we realized that Hug
and Schneider ([7]) proved a more general result in any dimension. In fact
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the present paper can be considered in some sense as a complement to [7],
the novelty being the introduction of the dihedral visual angle.

In Proposition 3.1 we give a characterization of invariant measures in
the space of pairs of planes. These will be the kind of measures considered
along the paper.

In section 4, using Hug-Schneider’s Theorem [7, p. 349], we give an
expression for the integral of the sine of the dihedral visual angle of pairs
of planes meeting a given compact convex set K in terms of geometrical
properties of K, see formula (4.2); also we characterize the compact convex
sets of constant width in terms of invariant measures given by Legendre
polynomials by means of the following Proposition that completes a result in
[7].

Proposition 4.3. Let K be a compact convex set of constant width W
and let f : [−1, 1] −→ R an even bounded measurable function. Then∫

Ei∩K 6=∅
f(〈u1, u2〉) dE1 dE2 = λ0πW2, (1.1)

where ui are normal unit vectors to the planes Ei and λ0 = 2π
∫ 1

−1 f(t)dt.

Moreover if the above equality holds when f(t) = P2n(t) where P2n is any
Legendre polynomial of degree 2n, n 6= 0 then K is of constant width.

In section 5 we assign to any invariant measure on the space of pairs of
planes an appropriate function of the dihedral visual angle of a given convex
set. The integral of this function with respect to the measure on the space of
lines gives the integral of the above measure extended to those planes meeting
the convex set. This result is given in the following Theorem.

Theorem 5.2. Let K be a compact convex set and let f : [−1, 1] −→ R
be an even continuous function. Let H be the C2 function on [−π, π] satisfying

H ′′(x) = f(cos(x)) sin2(x), −π ≤ x ≤ π, H(0) = H ′(0) = 0.

Then∫
Ei∩K 6=∅

f(〈u1, u2〉) dE1 dE2 = πH(π)F + 2

∫
G∩K=∅

H(ω) dG. (1.2)

where ui are normal unit vectors to the planes Ei, ω = ω(G) is the visual
angle from the line G and F is the area of the boundary of K.

Then we relate this result to Blaschke’s work [1]. If K is a convex set
of mean curvature M and area of its boundary F , it is known the following
Crofton-Herglotz formula∫

G∩K=∅
(ω2 − sin2 ω) dG = 2M2 − π3F

2

where ω = ω(G) is the dihedral visual angle of K from the line G. This
equality reveals the significance of the function of the visual angle ω2−sin2 ω.
One can ask what role does it play the function ω − sinω; this function,
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interpreting ω as the visual angle in the plane is significant thanks to Crofton’s
formula. In dimension 3 the inequality∫

G∩K=∅
(ω − sinω) dG ≥ π

4
(M2 − 2πF )

was stablished in [1]. Here we provide a simple formulation of the deficit in
this inequality by means of the following result.

Theorem 5.3. Let K be a compact convex set with support function p,
area of its boundary F and mean curvature M . Let Lu be the length of the
boundary of the projection of K on span{u}⊥ and let ω = ω(G) be the visual
angle of K from the line G. Then

i)

∫
u∈S2

L2
udu = πM2 + 4π

∞∑
n=1

Γ(n+ 1/2)2

Γ(n+ 1)2
‖π2n(p)‖2,

ii)

∫
G∩K=∅

(ω − sinω)dG =
π

4
(M2 − 2πF ) + π

∞∑
n=1

Γ(n+ 1/2)2

Γ(n+ 1)2
‖π2n(p)‖2,

whith π2n(p) the projection of the support function p of K on the vector space
of spherical harmonics of degree 2n.

Moreover equality holds both in (5.5) and (5.6) if and only if K is of
constant width.

In section 6 we give a formulation of Theorem 5.2 in terms of Fourier
series of the function of the visual angle assigned to an invariant measure.
As a consequence one obtains that the integral of any invariant measure in
the space of pairs of planes extended to those meeting a compact convex set
K is an infinite linear combination of integrals of even powers of the sine
of the visual angle of K. From this we exhibit in Proposition 6.3 a simple
family of polynomial functions that are in some sense a basis for the integrals
considered in Theorem 4.1. In fact every invariant integral can be written
as an infinite linear combination of integrals with respect to the invariant
measures given by those polynomial functions.

2. Preliminaries

Support function

The support function of a compact convex set K in the euclidean space E3

is defined as pK(u) = sup{〈x, u〉 : x ∈ K} for u belonging to the unit sphere
S2. If the origin O of E3 is an interior point of K then the number pK(u) is
the distance from the origin to the support plane of K in the direction given
by u. The width w of K in a direction u ∈ S2 is w(u) = pK(u) + pK(−u).

From now on we will write p(u) = pK(u) and will assume that p(u) is
of class C2; in this case we shall say that the boundary of K, ∂K, is of class
C2.
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Spherical harmonics

Let us recall that a spherical harmonic of order n on the unit sphere S2 is the
restriction to S2 of an harmonic homogeneous polynomial of degree n. It is
known that every continuous function on S2 can be uniformly approximated
by finite sums of spherical harmonics (see for instance [6]).

More precisely, the function p(u) can be written in terms of spherical
harmonics as

p(u) =

∞∑
n=0

πn(p)(u), (2.1)

where πn(p) is the projection of the support function p on the vector space
of spherical harmonics of degree n. An orthogonal basis of this space is given
in terms of the longitude θ and the colatitude ϕ in S2 by

{cos(jθ)(sinϕ)j P (j)
n (cosϕ), sin(jθ)(sinϕ)j P (j)

n (cosϕ) : 0 ≤ j ≤ n}

where P
(j)
n denotes the jth derivative of the nth Legendre polynomial Pn (cf.

[6]).
It can be seen that π0(p) =W/2 = M/4π where W = 1/4π

∫
S2 w(u) du

is the mean width of K, and M is the mean curvature of K. Moreover π1(p) =
〈s(K), ·〉 where s(K) denotes the Steiner point of K (cf. [6, p. 182]). It is clear
that π0(p) is invariant under euclidean motions and that π1(p) is not. It is
known that πn(p) is invariant under translations for every n 6= 1 (cf. [12,
p. 5]).

One can easily check that K has constant width if and only if πn(p) = 0
for n 6= 0 even.

Measures in the space of planes

The space of affine planes A3,2 in E3 is a homogeneous space of the group of
isometries of E3. It can also be considered as a line bundle π : A3,2−→Gr(3, 2)
where Gr(3, 2) is the Grassmannian of planes through the origin in E3 and
π(E) is the plane parallel to E through the origin. The fiber on E0 ∈ Gr(3, 2)
is identified with E⊥0 . Each plane E ∈ A3,2 is then uniquely determined by
the pair (π(E), E ∩π(E)⊥). Every pair (E0, p) ∈ Gr(3, 2)×R3 determines an
element E0 + p ∈ A3,2.

We shall also consider the space of affine lines A3,1 in E3; it is a vec-
tor bundle π : A3,1 −→ Gr(3, 1) where Gr(3, 1) is the Grassmannian of
lines through the origin and every affine line G ⊂ E3 can be identified with
(π(G), G ∩ π(G)⊥).

Both the isometry group of E3 and the isotropy group of a fixed plane
E ∈ A3,2 are unimodular groups; so the Haar measure of the group of isome-
tries is projected into a isometry-invariant measure m on A3,2.

For a measurable set B ⊂ A3,2 we consider

m(B) =

∫
A3,2

χB(E)dE :=

∫
Gr(3,2)

(∫
E⊥

0

χB(E0 + p)dp

)
dν
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where χB is the characteristic function ofB, dp denotes the ordinary Lebesgue
measure on E⊥0 and dν a normalized isometry-invariant measure on Gr(3, 2)
such that ν(Gr(3, 2)) = 2π.

More generally, if f : A3,2 → R and f̄ : Gr(3, 2) × R3 → R are related
by f̄(E0, p) = f(E0 + p) we have∫

A3,2

f(E) dE :=

∫
Gr(3,2)

(∫
E⊥

0

f̄(E0, p)dp

)
dν.

Notice that the only measures on A3,2 invariant under isometries are those
of the form f(E)dE with f a constant function.

In a similar way one has a normalized isometry-invariant measure on
A3,1 that will be denoted by dG. For more details see [9].

3. Invariant measures in the space of ordered pairs of
planes

We consider measures in the space A3,2 × A3,2 of pairs of planes in E3 of

the form mf̃ := f̃(E1, E2)dE1dE2. We want to study which functions f̃ give

an isometry-invariant measure, that is a measure mf̃ satisfying mf̃ (B) =

mf̃ (gB) for every euclidean motion g. For instance, it is known that for a

given compact convex set K one has
∫
E∩K 6=∅ dE = M . So when f̃(E1, E2) = 1

we have ∫
K∩Ei 6=∅

dE1dE2 = M2 = 4π2W2, (3.1)

where M and W are the mean curvature and the mean width of K, respec-
tively.

Proposition 3.1. The measure given by f̃(E1, E2)dE1 dE2 in A3,2 × A3,2

is invariant under isometries of E3 if and only if f̃(E1, E2) = f(〈u1, u2〉)
where π(Ei)

⊥ = span{ui}, i = 1, 2 and f : [−1, 1]→ R is an even measurable
function.

Proof. Suppose that f̃(E1, E2)dE1 dE2 is invariant. Using the representation
of an element E ∈ A3,2 as a pair (π(E), p) where p = E∩π(E)⊥ we can write

f̃(E1, E2) = F (π(E1), p1;π(E2), p2)

for some F : (Gr(3, 2)× E3)2 → R. For any translation τ it is

f̃(E1 + τ, E2 + τ) = F (π(E1), p1 + 〈τ, u1〉u1;π(E2), p2 + 〈τ, u2〉u2)

= F (π(E1), p1;π(E2), p2),

the last equality due to the invariance of f̃(E1, E2)dE1 dE2. Now, as it can be
easily checked, for each pair p′i ∈ π(Ei)

⊥, i = 1, 2 there is a translation τ such
that p′i = pi+〈τ, ui〉ui, and so F is independent of p1 and p2 and we can write

f̃(E1, E2) = H(π(E1), π(E2)) for some function H on Gr(3, 2)×Gr(3, 2).
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Given t ∈ [−1, 1] consider (V,W ) ∈ Gr(3, 2)2 such that V = span{v}⊥,
W = span{w}⊥ and t = 〈v, w〉 with v, w unit vectors. The function f(t) =
H(V,W ) is well defined since for any rotation θ we have that H(θV, θW ) =
H(V,W ) and it is even. So it is proved that there exists a measurable and
even function f : [−1, 1]→ R such that

f̃(E1, E2) = f(〈u1, u2〉).

If f̃ is as above it is clear that f̃(E1, E2)dE1dE2 gives rise to an isometry-
invariant measure. �

4. Integral of functions of pairs of planes meeting a
convex set

Let K be a compact convex set in the euclidean space E3. According to
equality (3.1) it is a natural question to evaluate∫

Ei∩K 6=∅
f̃(E1, E2)dE1dE2,

where f̃(E1, E2)dE1dE2 is an isometry-invariant measure on A3,2 × A3,2.
This can be done in terms of the coefficients of the expansion of the support
function of K in spherical harmonics and the coefficients of the Legendre
series of the measurable even function f : [−1, 1]→ R such that f̃(E1, E2) =
f(〈u1, u2〉) (see Proposition 3.1).

The following result is a special case, with a different notation, of The-
orem 5 in [7], whose proof is based on the Funk-Hecke Theorem ([6, p. 98]).

Theorem 4.1. Let K be a compact convex set with support function p
given in terms of spherical harmonics by (2.1). Let f̃(E1, E2)dE1 dE2 be an
isometry-invariant measure on A3,2×A3,2 and f : [−1, 1]→ R an even mea-

surable function such that f̃(E1, E2) = f(〈u1, u2〉) where π(Ei)
⊥ = span{ui},

i = 1, 2. Then∫
Ei∩K 6=∅

f̃(E1, E2)dE1 dE2 =
λ0
4π
M2 +

∞∑
n=1

λ2n‖π2n(p)‖2, (4.1)

where λ2n = 2π
∫ 1

−1 f(t)P2n(t) dt with P2n the Legendre polynomial of degree
2n.

Example 1. If f(t) =
√

1− t2 then f(〈u1, u2〉) = sin(θ12) where 0 ≤ θ12 ≤ π
is the angle between the planes E1 and E2 (that is, cos θ12 = ±〈u1, u2〉 where
π(Ei)

⊥ = span{ui}, i = 1, 2). Applying Theorem 4.1 with the corresponding
coefficients

λ2n = 2π

∫ 1

−1
f(t)P2n(t) = −

Γ(n+ 1
2 )Γ(n− 1

2 )

n! (n+ 1)!

π

2
, λ0 = π2, λ2n+1 = 0
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(cf. [5], 7.132), one gets∫
Ei∩K 6=∅

sin(θ12)dE1 dE2 =
π

4
M2 − π

2

( ∞∑
n=1

Γ(n+ 1
2 )Γ(n− 1

2 )

n! (n+ 1)!
‖π2n(p)‖2

)
.(4.2)

In the particular case that f is a Legendre polynomial one obtains from
Theorem 4.1 the following

Corollary 4.2. Let K be a compact convex set with support function p given
in terms of spherical harmonics by (2.1). Then if P2n is the Legendre poly-
nomial of even degree 2n, one has∫

Ei∩K 6=∅
P2n(〈u1, u2〉) dE1 dE2 =

4π

4n+ 1
‖π2n(p)‖2.

Proof. In this case λm = 0 for m 6= 2n and λ2n =
4π

4n+ 1
. �

To end this section we analyze equality (4.1) when K is a convex set of
constant width. As said this means that πn(p) = 0 for n 6= 0 even.

Proposition 4.3. Let K be a compact convex set of constant width W and
let f : [−1, 1] −→ R an even bounded measurable function. Then∫

Ei∩K 6=∅
f(〈u1, u2〉) dE1 dE2 = λ0πW2, (4.3)

where ui are normal unit vectors to the planes Ei and λ0 = 2π
∫ 1

−1 f(t)dt.

Moreover if the above equality holds when f(t) = P2n(t) where P2n is any
Legendre polynomial of degree 2n, n 6= 0 then K is of constant width.

Proof. Since K is of constant width by (4.1) one gets∫
Ei∩K 6=∅

f(〈u1, u2〉) dE1 dE2 =
λ0
4π
M2

and remembering that M = 2πW the equality follows. If equality (4.3) holds
for f(t) = P2n(t) with n 6= 0, and since the corresponding λ0 vanishes one
has ∫

Ei∩K 6=∅
P2n(〈u1, u2〉) dE1 dE2 = 0.

Therefore by Corollary 4.2 it follows that ‖π2n(p)‖ = 0 for every non zero n
and K is of constant width. �

5. Integrals of invariant measures in terms of the visual
angle

The aim of this section is to write the integral of a isometry-invariant measure
over the pairs of planes meeting a convex set K, given in Theorem 4.1, as an
integral of an appropriate function of the visual angle.
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Let us precise what we mean by the angle of a plane about a straight
line G and the visual angle of a convex set K from a line G not meeting K.

Definition 5.1.

1. Given a straight line G let (q; e1, e2) be a fixed affine orthonormal frame
in G⊥ with q ∈ G. For each plane E through G let u be the unit normal
vector to E pointing from the origin to it. Then the angle α associated
to E is the one given by u = cos(α)e1 + sin(α)e2.

2. The visual angle of a convex set K from a line G not meeting K is the
angle ω = ω(G), 0 ≤ ω ≤ π, between the half-planes E1, E2 through G
tangents to K.

If αi are the angles associated to Ei, i = 1, 2 then

cos(π − ω) = cos(α2 − α1) = 〈u1, u2〉

where u1, u2 are the normal unit vectors to E1, E2 pointing from the origin,
assuming the origin inside K.

The measure dE1 dE2 in the space A3,2 ×A3,2 of pairs of planes in E3

can be written according to Santaló (cf. [11], section II.12.6) as

dE1 dE2 = sin2(α2 − α1) dα1 dα2 dG. (5.1)

Then we can prove the following

Theorem 5.2. Let K be a compact convex set and let f : [−1, 1] −→ R be
an even continuous function. Let H be the C2 function on [−π, π] satisfying

H ′′(x) = f(cos(x)) sin2(x), −π ≤ x ≤ π, H(0) = H ′(0) = 0.

Then∫
Ei∩K 6=∅

f(〈u1, u2〉) dE1 dE2 = πH(π)F + 2

∫
G∩K=∅

H(ω) dG. (5.2)

where ui are normal unit vectors to the planes Ei, ω = ω(G) is the visual
angle from the line G and F is the area of the boundary of K.

Proof. Let G = q+span{u} with u a unit director vector such that K∩G = ∅.
Let Ei, i = 1, 2 be the supporting planes of K through G. Take now an
affine orthonormal frame {q; e1, e2, u} in E3 such that E1 = q + span{e1, u}.
Every plane E through G can be written as E = q + span{vα, u} where
vα = cosαe1 + sinαe2 with α ∈ [0, π) and the planes E intersecting K
correspond to angles α ∈ [0, ω(G)]. Then using (5.1) one has∫

Ei∩K 6=∅
f(〈u1, u2〉) dE1 dE2 =

=

∫
G∩K=∅

∫ ω

0

∫ ω

0

H ′′(α2 − α1) dα1 dα2 dG+

+

∫
G∩K 6=∅

∫ π

0

∫ π

0

H ′′(α2 − α1) dα1 dα2 dG.
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Evaluating the inner integrals and taking into account that
∫
G∩K 6=∅ dG = π

2F

it follows∫
Ei∩K 6=∅

f(〈u1, u2〉) dE1 dE2 =

=
1

2
π(H(π) +H(−π))F +

∫
G∩K=∅

(H(ω) +H(−ω)) dG.

Since H(0) = H ′(0) = 0 and H ′′(x) = H ′′(−x) it is easy to see that H(x) =
H(−x) and the result follows. �

Example 2. Let f(t) =
√

1− t2 be the function considered in Example 1. In
this case the corresponding function H such that

H ′′(x) = f(cos(x)) sin2(x) = |sin3(x)|

is given by

H(x) =
2

3
(|x|−|sinx|)− 1

9
|sin3 x|.

Now, since ω ∈ [0, π], Theorem 5.2 and equality (4.2) leads to∫
G∩K=∅

(
ω − sinω − 1

3!
sin3 ω

)
dG =

= π

(
3M2

16
− 1

2
πF − 3

8

∞∑
n=1

Γ(n+ 1
2 )Γ(n− 1

2 )

n! (n+ 1)!
‖π2n(p)‖2

)
.

Crofton’s formula in the space

In Blaschke’s work [1, p. 75] the following Crofton-Herglotz formula is given∫
G∩K=∅

(ω2 − sin2 ω) dG = 2M2 − π3F

2
. (5.3)

We can easily recover (5.3) from Theorem 5.2. In fact considering f(t) =
1 one gets H(x) = (x2 − sin2 x)/4 and equality (5.2) gives

M2 =

∫
Ei∩K 6=∅

dE1 dE2 =
1

4
π3F +

1

2

∫
G∩K=∅

(ω2 − sin2 ω) dG.

Blaschke’s formula reveals the significance of the function of the visual angle
ω2 − sin2 ω. One can ask what role the function ω − sinω plays; this func-
tion, interpreting ω as the visual angle in the plane, is significant thanks to
Crofton’s formula

∫
P /∈K(ω − sinω)dP = L2/2 − πF , where K is a compact

convex set in the plane with area F and length of its boundary L (see [11]).
In [1, p. 85] Blaschke shows that∫

G∩K=∅
(ω − sinω)dG =

1

4

∫
u∈S2

L2
udu−

π2

2
F, (5.4)

where Lu is the length of the boundary of the projection of K on span{u}⊥.
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It can be easily seen that
∫
u∈S2 Ludu = 2πM and from this equality,

applying Schwarz’s inequality, one gets∫
u∈S2

L2
udu ≥ πM2. (5.5)

Introducing (5.5) into (5.4) one obtains∫
G∩K=∅

(ω − sinω)dG ≥ π

4
(M2 − 2πF ). (5.6)

As a consequence of Theorem 5.2 we can now evaluate the deficit in
both inequalities (5.5) and (5.6).

Theorem 5.3. Let K be a compact convex set with support function p, area
of its boundary F and mean curvature M . Let Lu be the length of the boundary
of the projection of K on span{u}⊥ and let ω = ω(G) be the visual angle of
K from the line G. Then

i)

∫
u∈S2

L2
udu = πM2 + 4π

∞∑
n=1

Γ(n+ 1/2)2

Γ(n+ 1)2
‖π2n(p)‖2,

ii)

∫
G∩K=∅

(ω − sinω)dG =
π

4
(M2 − 2πF ) + π

∞∑
n=1

Γ(n+ 1/2)2

Γ(n+ 1)2
‖π2n(p)‖2,

whith π2n(p) the projection of the support function p of K on the vector space
of spherical harmonics of degree 2n.

Moreover equality holds both in (5.5) and (5.6) if and only if K is of
constant width.

Proof. We consider f(t) = 1/
√

1− t2. For this function the corresponding H
in Theorem 5.2 is H(x) = |x|−|sinx|. Applying equality (5.2) and Theorem
4.1 with the corresponding λ2n’s given by

λ2n = 2π

∫ 1

−1
f(t)P2n(t)dt = 2π

Γ(n+ 1/2)2

Γ(n+ 1)2

(cf. [5], 7.226), item ii) follows. Equality i) is a consequence of ii) and (5.4).

The statement about equality in (5.5) and (5.6) is a consequence of the
fact that K is of constant width if and only if π2n(p) = 0 for n 6= 0. �

6. A formulation with Fourier series

In this section we give an alternative formulation of Theorem 5.2 in terms
of Fourier coefficients of the function H ′′(x). Since f is even one has that
H ′′(x) = f(cos(x)) sin2(x) is an even π-periodic function. Let

H ′′(x) =
1

2
a0 +

∑
n≥1

a2n cos(2nx) (6.1)
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be the Fourier expansion of H ′′(x). Integrating twice and taking into account
that H(0) = H ′(0) = 0 one obtains

H(x) =
a0
4
x2 +

∑
n≥1

a2n
4n2

(1− cos(2nx)). (6.2)

Using this expression of the function H, Theorem 5.2 can be written as

Proposition 6.1. Let K be a compact convex set and let f : [−1, 1] −→ R be
an even continuous function. Let H be the C2 function on [−π, π] satisfying

H ′′(x) = f(cos(x)) sin2(x), −π ≤ x ≤ π, H(0) = H ′(0) = 0. (6.3)

If H(x) is given by (6.2), then∫
Ei∩K 6=∅

f(〈u1, u2〉) dE1 dE2 =

=
a0
4
π3F +

1

2

∫
G∩K=∅

(
a0ω

2 +
∑
n≥1

a2n
n2

(1− cos(2nω))

)
dG, (6.4)

where ui are normal vectors to the planes Ei, the visual angle from the line
G is ω and F denotes the area of the boundary of K.

The right hand side of (6.4) can be written as a linear combination
of integrals of even powers of sinω. For this purpose we will use Blaschke
formula (5.3) and the known equality

cos 2nx =

n∑
m=0

αn,m sin2m x with αn,m =
(−1)m n 22m(n+m− 1)!

(2m)! (n−m)!
,

(6.5)
which follows easily from the equality cos(2nx) = (−1)nT2n(sin(x)) where
T2n is Chebyshev’s polynomial of degree 2n. We can state

Proposition 6.2. Let K be a compact convex set and let f : [−1, 1] −→ R be
an even continuous function. Let H be the C2 function on [−π, π] satisfying

H ′′(x) = f(cos(x)) sin2(x), −π ≤ x ≤ π, H(0) = H ′(0) = 0.

If H(x) is given by (6.2) then∫
Ei∩K 6=∅

f(〈u1, u2〉) dE1 dE2 =

= a0M
2 − 1

2

∞∑
m=2

( ∞∑
n=m

a2n
n2

αn,m

∫
G∩K=∅

sin2m ω dG

)
, (6.6)

where ui are normal vectors to the planes Ei, the visual angle from the line
G is ω, F denotes the area of the boundary of K, the coefficients αn,m are
given by (6.5) and the coefficients a2n by (6.1).
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Proof. Using (6.5) the right hand side of (6.4) is written as

a0π
3

4
F+

1

2

∫
G∩K=∅

(
a0ω

2−
∞∑
n=1

a2n
n2

αn,1 sin2 ω−
∞∑
n=2

a2n
n2

n∑
m=2

αn,m sin2m ω

)
dG =

=
a0π

3

4
F +

1

2

∫
G∩K=∅

(
a0(ω2 − sin2 ω)−

∞∑
n=2

a2n
n2

n∑
m=2

αn,m sin2m ω

)
dG

where we have used that αn,0 = 1, αn,1 = −2n2 and a0 = −2
∑∞
n=1 a2n which

is a consequence of the fact that H ′′(0) = 0. Using Blaschke formula (5.3)
and reordering the double sum the result follows. �

A basis for the integrals of invariant measures

As a consequence of Proposition 6.2 we can exhibit a simple family of poly-
nomial functions that are in some sense a basis for the integrals in Theorem
4.1. Consider the polymomials

hm(t) = m(2mt2 − 1)(1− t2)m−2, m > 1. (6.7)

Then forH ′′(x) = hm(cos(x)) sin2(x) one easily checks thatH(ω) = 1
2 sin2m ω

and Theorem 5.2 applied to hm(t) gives∫
Ei∩K 6=∅

hm(〈u1, u2〉) dE1 dE2 =

∫
G∩K=∅

sin2m ω dG,

that together with equation (6.6) leads to the following

Proposition 6.3. Under the same hypotheses and notation as in Proposition
6.2 one has∫

Ei∩K 6=∅
f(〈u1, u2〉) dE1 dE2 =

= a0M
2 − 1

2

∞∑
m=2

( ∞∑
n=m

a2n
n2

αn,m

∫
Ei∩K 6=∅

hm(〈u1, u2〉) dE1 dE2

)
,

where the polynomials hm are given in (6.7).

So every invariant integral can be written as an infinite linear combi-
nation of the integrals of the invariant measures given by the polynomials
hm.
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