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Abstract 

Many enzyme reactions present instantaneous disorder. These dynamic fluctuations in 

the enzyme-substrate Michaelis complexes generate a wide spread of energy barriers that 

cannot be experimentally observed, but that determines the measured kinetics of the 

reaction. These individual energy barriers can be calculated using QM/MM methods, but 

then the problem is how to deal with this dispersion of energy barriers to provide kinetic 

information. So far, the most usual procedure implies the so-called exponential average 

of the energy barriers. In this paper we discuss the foundations of this method, and we 

use the free energy perturbation theory to derive an alternative equation to get the Gibbs 

free energy barrier of the enzyme reaction. In addition, we propose a practical way to 

implement it. We have chosen four enzyme reactions as examples. In particular, we have 

studied the hydrolysis of a glycosidic bond catalyzed by the enzyme Thermus 

thermophilus β-glycosidase, and the mutant Y284P Ttb-gly,  and the hydrogen abstraction 

reactions from C13 and C7 of arachidonic acid catalyzed by the enzyme rabbit 15-

lipoxygenase-1. 
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1. Introduction 

Enzymes are very large biological catalysts that speed up the chemical reactions up to 

many orders of magnitude (nearly 20 in some cases).1-3 This huge acceleration makes 

possible that the vital processes for living beings take place in a time scale compatible 

with life.  

Enzymes are very far from being rigid structures. They are highly flexible molecules. 

Although the origin of the catalytic power of enzymes (electrostatic based catalysis or 

dynamical contributions) is still under discussion,4 enzyme dynamics is relevant for the 

rate constants, no matter by what force enzyme catalysis is driven. Once the enzyme-

substrate Michaelis complex is formed, the set of nuclei of the system samples a huge 

number of configurations on a highly dimensional potential energy surface which can 

include one or many reactant valleys.5,6 Different reactant valleys might perform the same 

function but contribute to the total reaction with different reaction rate constants.7-9 Thus, 

catalytic rates of enzymes often display very large dynamic fluctuations over timescales 

much longer than kcat , mostly associated with slow conformational changes that connect 

the different reactant valleys. The existence of these relatively stable long-lived 

conformational reaction valleys in comparison with the time scale of the enzymatic 

reactions explains the dynamic disorder observed in single-molecule studies of some 

enzyme reactions.7,8,10-16 In these cases the interconversion rates among the corresponding 

reactant valleys might be much slower than the catalytic rate constants, and very long 

molecular dynamics simulations would be required to produce transitions among them 

and, especially, to reach statistical equilibrium. Thus, ergodicity (that is, that all the states 

of the ensemble will be populated) does not apply in practice on the full configurational 

ensemble of the potential energy surface corresponding to the enzyme-substrate 

Michaelis complex. The population of each reactant valley is not governed by 

thermodynamic control, but by kinetic control and each reactant valley acts as an 

independent enzyme with a different rate constant (the overall rate of product formation 

is determined by an experimentally detected distribution of rate constants). 

Dynamic disorder is an experimentally observed phenomenon. When only a reactant 

valley exists (or in the case of fast interconversion among the valleys), dynamic disorder 

does not longer appear, and a single rate constant can describe the enzyme reaction. In 

this case, another dynamic, but entirely different concept, instantaneous disorder, might 

still take place.17 Instantaneous disorder can be defined as instantaneous dynamic 

fluctuations in the enzyme-substrate Michaelis complex with timescales much smaller 
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than kcat, leading to different energy barriers that cannot be individually detected by the 

experiment.  

A reactant valley includes an ensemble of nuclear configurations of the enzyme-substrate 

Michaelis complex that can be extensively sampled by means of a long-time molecular 

dynamics simulation. The interconversions among all the low-energy configurations 

within the same reactant valley usually consist in relatively easy local conformational 

changes and they are quite fast at physiological temperatures. These interconversions 

occur with timescales much smaller than kcat. In these conditions those nuclear 

configurations of the reactant valley are in local equilibrium (they are populated 

according to a Boltzmann distribution) with each other, and the whole valley contributes 

to the reaction flux with a single kcat. The landscape within this reaction valley is highly 

ridged, with a huge number of minimum-energy structures. Starting from different initial 

nuclear configurations (snapshots) generated by equilibrium molecular dynamics 

simulations, quantum mechanics/molecular mechanics (QM/MM) methods can build 

multiple minimum-energy paths (MEPs), each of them  connecting a potential energy 

minimum inside the reactant valley with a potential energy minimum in the associated 

product valley, crossing through the corresponding transition state structure. Then, a wide 

range of different energy barriers might be found.6,17-32 Thus, for instance, free energy 

barriers ranging from 14.5 kcal/mol to 51.3 kcal/mol have been calculated 17 for the first 

step of the reaction catalyzed by HIV-1 protease. This dispersion was attributed to 

different mechanisms, different conformations of the active center, and to variations in 

the electrostatic environment of the active site.  

The point now is how to take advantage of the calculation of the distribution of the 

potential energy barriers to obtain information about the experimental rate constant kcat, 

or, at least, the Gibbs free energy barrier ΔGº‡ of the catalytic reaction when only a 

reactant valley exists. In other words, how does instantaneous disorder determine the 

kinetics of the reaction? A discussion about this matter is the goal of this paper. We 

derive, based on free energy perturbation theory, an equation to calculate this free energy 

barrier that presents some important conceptual differences with respect to the common 

approaches, and propose a practical way to implement it. We apply all that to four enzyme 

reactions.  
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2. Theoretical basis 

Let us assume that an enough lengthy molecular dynamics simulation that covers a single 

reaction valley has been carried out for a given enzyme-substrate Michaelis complex. 

Then, a wide set of snapshots (that is, instantaneous nuclear configurations) are randomly 

chosen from the generated molecular dynamics trajectory. The energy optimization of 

these snapshots leads to a set of minimum energy structures that can be used as starting 

structures to build minimum potential energy paths that lead to the corresponding 

products. As mentioned above, a wide dispersion of QM/MM potential energy barriers 

ΔV‡ (or energy barriers ΔE‡ if the thermal and zero-point energy corrections are included) 

are expected to be obtained because of the instantaneous disorder. From here on we 

assume that ΔV‡ and ΔE‡ do not significantly differ. Several different procedures to 

average these barriers have been proposed.33 The so-called exponential average has been 

the most used:24,27-35  

∆𝐸𝐴𝑉
‡ = −𝑅𝑇𝑙𝑛 {

1

𝑁
∑ 𝑒𝑥𝑝 (

−∆𝐸𝑖
‡

𝑅𝑇
)𝑁

𝑖=1 }                                                                            (1) 

where R is the gas constant, T is the temperature, ∆𝐸𝑖
‡
 is the energy barrier for each 

snapshot, and N is the number of snapshots selected.  

Equation 1 is obtained if several assumptions are fulfilled: a) The reaction valley can be 

decomposed into a huge number of strictly non-overlapping reactant sub-valleys. b) The 

ensemble of structures inside each reactant sub-valley α evolves to the corresponding 

product sub-valley with a rate constant 𝑘𝛼   that can be calculated through the conventional 

transition state theory as a function of the Gibbs free energy barrier associated to that sub-

valley α,  Δ𝐺𝛼
°‡

: 

𝑘𝛼 =
𝑘𝐵𝑇

ℎ
𝑒𝑥𝑝 (

−𝛥𝐺𝛼
°‡

𝑅𝑇
)                                                                                                      (2) 

where 𝑘𝐵 is the Boltzmann constant and ℎ is the Planck constant; 

c) Because of all the reactant sub-valleys composing the whole reactant valley are also in 

local equilibrium among them, the overall rate constant 𝑘𝑐𝑎𝑡 can be obtained by arithmetic 

average of a representative number of 𝑘𝛼   weighed according to the population 𝑃𝛼   of their 

corresponding  reactant sub-valleys α (that is, according to their relative free energies): 

𝑘𝑐𝑎𝑡 =
𝑘𝐵𝑇

ℎ
𝑒𝑥𝑝 (

−𝛥𝐺° ‡

𝑅𝑇
) = ∑ 𝑃𝛼𝑘𝛼𝛼                                                                                  (3) 

d) Each snapshot i chosen along the molecular dynamics trajectory can be classified as 

belonging to a particular reactant sub-valley α. After energy optimization of this snapshot, 

the corresponding minimum potential energy path is calculated and the value of the 
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energy barrier ∆𝐸𝑖
‡
 is obtained. e) All the snapshots belonging to the same reactant sub-

valley α have roughly the same value of ∆𝐸𝑖
‡
 , that can be taken as a good estimate of  

Δ𝐺𝛼
°‡

 . f) The population 𝑃𝛼 is given by the number of times a snapshot i with ∆𝐸𝑖
‡
  

belonging to the reactant sub-valley α appears along the molecular dynamics simulation, 

which holds a Boltzmann distribution. Under these conditions, equation 1 is reached by 

combining equations 2 and 3, estimating each Δ𝐺𝛼
°‡

   by the common value of ∆𝐸𝑖
‡
  that 

is supposed to be obtained for whatever snapshot belonging to the reactant sub-valley α , 

and using ∆𝐸𝐴𝑉
‡

 as a reasonable approximation to the Gibbs free energy barrier ΔGº‡ of 

the catalytic reaction when only a reactant valley exists. 

Nevertheless, there is no practical way to classify a given snapshot into a particular 

reactant sub-valley α, as assumed in d). Snapshots that should be associated to the same 

value of Δ𝐺𝛼
°‡

 and, according to assumption e), to the same value of ∆𝐸𝑖
‡
 (so just 

contributing to the weight of this value), are actually associated, as a result of the 

calculation, to different (or even very different) values of ∆𝐸𝑖
‡
. Then, we should be aware 

that an important dispersion of values of ∆𝐸𝑖
‡
 can actually appear for snapshots 

corresponding to the same reactant sub-valley α , in disagreement with assumption e). 

Thus, let us suppose, only for the sake of a very simple example, that snapshots 1 and 2 

are chosen, with calculated energy values  ∆𝐸1
‡ = 15 kcal/mol   and ∆𝐸2

‡ = 22 kcal/mol. 

It is impossible to know if both belong to the same reactant sub-valley α, or if snapshot 1 

is in the reactant sub-valley α and snapshot 2 in the reactant sub-valley 𝛽. In the second 

case, both values should be introduced once in equation 1, but we are not sure if ∆𝐸1
‡
  and 

∆𝐸2
‡
   are a good estimation of their corresponding Δ𝐺𝛼

°‡
  and Δ𝐺𝛽

°‡
, respectively. In the 

first case, either ∆𝐸1
‡
  or ∆𝐸2

‡
  (but just one of them) should be introduced twice in equation 

1 as an estimate of Δ𝐺𝛼
°‡

 (twice due to the population factor 𝑃𝛼 ), but we are not sure about 

which of them is a good estimate of Δ𝐺𝛼
°‡

 , or even if none of them is. In a nutshell, the 

application of equation 1 as a result of the assumptions on which it is based turns out to 

be doubtful. 

Anyway, the main problem when equation 1 is applied lies in the way how the considered 

snapshots are chosen. Because in the sum in equation 1 the smaller the value of  ∆𝐸𝑖
‡
 the 

bigger the contribution, it has been suggested that the best result should be obtained by 

selecting or filtering in some way, e.g. based on catalytic parameters, a few snapshots 

with expected low energy barriers.24 The limit case would consist of just picking up the 
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snapshot with the smallest ∆𝐸𝑖
‡
. Both approaches are commonly used in QM/MM studies 

of enzyme reactions. However, it has been accepted 33 that the high-energy barrier 

snapshots do not significantly contribute to that sum, but to the number N of snapshots 

used. So, if those high-energy barrier snapshots are neglected, ∆𝐸𝐴𝑉
‡

 will be 

underestimated.  

The accuracy of ∆𝐸𝐴𝑉
‡

 as an estimation of the Gibbs free energy barrier ΔGº‡ is usually 33 

assessed taking as a reference a calculation of the potential of mean force (PMF) 36, 37 

from umbrella sampling simulations.38 At this point it would be interesting to think about 

the meaning of the free energy. Free energy is used to account for the contribution of not 

only a unique structure, but of an ensemble of structures. If only a unique structure is 

considered, the logarithmic transformation of the unique Boltzmann term leads to an 

energy. If an ensemble of structures is considered, the sum of the corresponding 

Boltzmann terms gives the partition function, and its logarithmic transformation leads to 

the free energy. However, we cannot in practice obtain the global partition function for 

the whole reactant valley. Then, if only one reactive minimum is chosen, with only one 

associated MEP and only one PMF, only an estimate of the value Δ𝐺𝛼
°‡

 corresponding to 

a reactant sub-valley α will be obtained. That is, in building a PMF just a quite limited 

region of the configuration space around the MEP is actually sampled, very far from the 

whole reactant valley.  Both, the reduced time length (up to tens of picoseconds in 

QM/MM calculations) per each window and the biasing potential to sample the window 

associated to each value of the reaction coordinate, confine the sampling just to the 

neighborhood of the selected MEP. By the way, what MEP? Depending on the chosen 

MEP, a high or a low free energy barrier will be obtained. Even in the case of a low free 

energy barrier, the probability of appearance of the corresponding starting reactant 

structure (and, hence, of its low barrier) remains unknown. The free energy perturbation 

method as usually applied38 as an alternative to umbrella sampling presents a similar 

problem. In a nutshell, in cases where instantaneous disorder is relevant, with the 

appearance of a huge dispersion of nuclear configurations and barriers throughout the 

reactant valley, none of the particular values of Δ𝐺𝛼
°‡

 might be actually representative of 

the free energy barrier ΔGº‡ of the catalytic reaction. So, the comparison of ∆𝐸𝐴𝑉
‡

 obtained 

by means of eq. 1 (where the snapshots i will be obtained from, e.g., a 100 ns long 

molecular dynamics trajectory) with a Δ𝐺𝛼
°‡

 value calculated from umbrella sampling 
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simulations (with per window samplings up to tens of picoseconds) makes not much 

sense. 

We propose here a more reliable way to deduce and apply an equation quite similar to 

equation 1. This deduction does not make any of the assumptions a) to f) detailed above. 

Free energy perturbation (FEP)38 theory can be used to calculate the free energy 

difference between a reference system (0) with a Hamiltonian H0 and a perturbed system 

(1) characterized by a Hamiltonian H1. For a molecular dynamics simulation in an 

isothermal-isobaric ensemble (NPT) the Gibbs free energy difference between the 

perturbed 1 and the reference 0 systems can be classically written as 

Δ𝐺0→1 = 𝐺1 − 𝐺0 = −𝑅𝑇 ln
∫𝑒

− 
𝐻1(�⃗⃗� 𝑁,   �⃗⃗� 𝑁)+𝑃𝑉1

𝑅𝑇
   
𝑑𝑟 𝑁𝑑𝑝 𝑁

∫𝑒
− 

𝐻0(�⃗⃗� 𝑁,   �⃗⃗� 𝑁)+𝑃𝑉0
𝑅𝑇

   
𝑑𝑟 𝑁𝑑𝑝 𝑁

=

 −𝑅𝑇 𝑙𝑛 〈𝑒− 
(𝐻1− 𝐻𝑜)+𝑃(𝑉1−𝑉0)

𝑅𝑇 〉0                                                                                      (4) 

 

where 𝑟 (𝑁) and 𝑝 (𝑁) denotes the set of 3N atomic Cartesian coordinates and conjugate 

momenta, respectively, H is the classical nuclear Hamiltonian, V0 and V1 are the volume 

of the systems 0 and 1, respectively, at each configuration (the additive term PV in the 

exponential of the integral is absent in a canonic (NVT) ensemble), R is the gas constant, 

and 〈 〉0 denotes an ensemble average over the isothermal-isobaric ensemble sampled 

from the equilibrated reference state. Because the molecular dynamics simulations only 

sample one reaction valley, there are not significant differences between V0 and V1 nor 

significant changes of the volume V0 along the simulation. Then the volumes can be 

ignored in equation 4, and the simulation can be even carried out in the canonical 

ensemble (NVT) without appreciable error. Thus, to get the free energy difference 

between state 1 and 0, at each configuration of the equilibrated reference system the 

corresponding Hamiltonian is switched to the one corresponding to the perturbed system, 

and the differences Δ𝐻 =  𝐻1 − 𝐻𝑜 are collected to calculate the ensemble average. 

Using Cartesian coordinates, the kinetic term is separable from the potential term and 

cancels out when the difference is done. 

To study the instantaneous disorder in an enzyme reaction we propose the following 

protocol. We define the reactant ensemble as the reference system 0, and the transition 

state (TS) ensemble as the perturbed system 1. A molecular dynamics simulation of the 

enzyme-substrate Michaelis complex is run to generate a lot of nuclear configurations. 

Many snapshots must be selected at random (that is, populating many different regions 



8 
 

of the reaction valley). For each selected snapshot, a potential energy minimum is located, 

and the corresponding MEP is built using a QM/MM method. Thus, each selected 

snapshot of the reference system 0 is associated to a transition state structure that belongs 

to the perturbed system 1. In this case, for each snapshot i Δ𝐻 = ∆𝑉𝑖
‡ (or even ∆𝐸𝑖

‡
), the 

QM/MM potential energy barrier of the corresponding MEP. Taking into account that the 

set of snapshots along the molecular dynamics simulation appears according to a 

Boltzmann distribution in the reference ensemble, the average in the second member of 

equation 1 is just a discretization of the integral in the last member of equation 4, provided 

that a big enough number of selected snapshots are included in equation 1. On the other 

hand, the minimization in the orthogonal directions to the MEP permits to assume that 

the low-energy configurations in the transition state ensemble are sampled enough by 

means of the simulation in the reactant ensemble, in such a way that the FEP calculation 

converges reasonably. Thus, the exponential average in the second member of equation 

1 directly corresponds to the Gibbs free energy barrier ΔGº‡ of the catalytic reaction when 

only one reactant valley exists. At this point it is worth mentioning that the free energy 

barrier depends (see equation 4) on the quotient between the partition functions of the 

transition state and the reactants. The greater the accessible fluctuations in a given system, 

the bigger the value of the corresponding partition functions. The adequate generation of 

those fluctuations in reactants is warranted by a long enough sampling in the reactant 

ensemble. On the other hand, the fluctuations in the transition state ensemble (usually less 

pronounced than in the reactants) are a consequence of the dispersion of the reactants that 

translates to the dispersion of the corresponding MEPs and the multiplicity of maxima of 

these  MEPs. 

At this point it is crucial to understand that any attempt to select only a few "suitable" 

snapshots with "convenient" configurations that lead to low energy barriers to be included 

in equation 1 is an inadequate procedure, which only fortuitously will provide a good 

estimation of the experimental free energy barrier. Conversely, as many selected 

snapshots as possible, belonging to as many different regions of the reaction valley as 

possible, should be included in the exponential average. Evidently, this fact could imply 

the calculation of a too huge number of QM/MM MEPs to be feasible with a reasonable 

computational cost. To circumvent this problem, a tested criterion (depending on each 

particular enzyme reaction) should be used to identify a priori those snapshots 

corresponding to precatalytic structures, that is, belonging to the limited part of the 

configurational space sampled by molecular dynamics simulations that might be adequate 
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for catalysis (with a not foreseen excessively high energy barrier). As explained above, 

the high-energy barrier snapshots do not significantly contribute to the sum in the second 

member of equation 1 (they just add roughly zeros), but they do increase the value of N 

in the denominator and do have to be accounted. 

Taking into account all that, if N is the high number of randomly selected snapshots along 

the molecular dynamics simulation, and n is the number of precatalytic structures 

identified after the corresponding filter according to the adopted criterion, we can reach 

the following equation 

∆𝐺°‡ = −𝑅𝑇𝑙𝑛
𝑛

𝑁
− 𝑅𝑇𝑙𝑛 {

1

𝑛
∑ 𝑒𝑥𝑝 (

−∆𝐸𝑖
‡

𝑅𝑇
)𝑛

𝑖=1 }                                                              (5) 

This equation reflects the fact that the Gibbs free energy barrier of the enzyme reaction is 

due to two different contributions. The first term of the second member of the equation 

indicates how difficult it is for a precatalytic structure to appear throughout the sampling. 

The second term comes from the exponentially averaged contribution of the precatalytic 

structures (note that this average can be calculated using just a representative set of the 

precatalytic structures, in such a way that n in this second term becomes the number of 

structures included in that representative set). As a consequence, both the non-precatalytic 

and the precatalytic structures contribute to the Gibbs free energy barrier of the enzyme 

reaction, and the weight of each part is unknown a priori. Even more, in general, the 

precatalytic structures will present a considerable dispersion of energy barriers, and the 

existence of a number of high energy barriers will also provoke an increase of the Gibbs 

free energy. Then, it must be emphasized that the free energy barrier according to 

equation 5 is the result of a long sampling over the reactant valley. Conversely, the free 

energy barrier resulting from a PMF calculation just includes a quite short sampling in 

the neighborhood of only one MEP, and therefore it just explores a quite narrow region 

of the reactant valley.   

To illustrate all those concepts, we will focus on four enzyme reactions. Firstly, the 

hydrolysis of a glycosidic bond catalyzed by the enzyme Thermus thermophilus β-

glycosidase (Ttb-gly), a retaining glycosyl hydrolase, 39 and the mutant Y284P Ttb-gly. 

Next, the hydrogen abstraction reactions from C13 and C7 of arachidonic acid (AA) 

catalyzed by the enzyme rabbit 15-lipoxygenase-1 (15-rLOX-1).28 
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3. Hydrolysis of a glycosidic bond catalyzed by the enzyme Thermus thermophilus β-

glycosidase 

We started with an enzyme reaction where both the molecular dynamics simulations of 

the enzyme-substrate Michaelis complex and the potential energy profiles corresponding 

to each selected snapshot were calculated at a QM/MM level, specifically, at the 

QM(SCC-DFTB)/AMBER level. 

Ttb-gly catalyzes the hydrolysis of terminal, non-reducing β-D-glucosyl residues, for 

example from 4-nitrophenyl β-D-fucopyranoside (pNP-Fuc). The first step of the reaction 

(glycosylation) consists of the nucleophilic attack of the residue Glu338 to the anomeric 

carbon C1 of the fucose (Fuc) ring and the cleavage of the glycosidic bond of the pNP-

Fuc substrate.  A covalent glycosyl-enzyme intermediate with Glu338 is formed. A 

protonated residue Glu164 makes this step easier by protonation of the glycosidic oxygen 

of the leaving group pNP. In the second step (deglycosylation) Glu164 now deprotonates 

the incoming water molecule, that attacks as a nucleophile on the carbon C1 of the fucose 

ring in a hydrolysis reaction that breaks the glycosidic bond between fucose and Glu338 

and produces fucose (see Figure 1). In the presence of an appropriate acceptor substrate, 

like N-methyl-O-benzyl-N-(β-D-glucopyranosyl)-hydroxylamine (BnON(Me)-Glc),  

transglycosylation can compete with hydrolysis in the deglycosylation step and lead to 

the formation of the N-methyl-O-benzyl-N-(β-D-fucopyranosyl(1-4)β-D-

glucopyranosyl)-hydroxylamine product. 
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Figure 1. Catalytic mechanism of the glycosylation and deglycosylation (hydrolysis) of 

4-nitrophenyl β-D-fucopyranoside catalyzed by the enzyme Ttb-gly. The fucose ring and 

the pNP leaving group are pictured in green and blue, respectively. A water molecule 

needs to be placed in the right place for the hydrolysis reaction to be possible. 

 

In a previous paper39 we studied the reaction mechanism of those glycosylation and 

deglycosylation steps (both for hydrolysis and transglycosylation).  Now we take 

advantage of those simulations to build the setup for the study of the deglycosylation step 

corresponding to the hydrolysis of pNP-Fuc. We will present here the results 

corresponding to both wild-type Ttb-gly and the mutant Y284P Ttb-gly.  

 

3.1. Methodological details for the enzyme Thermus thermophilus β-glycosidase 

The starting structure to study the hydrolysis reaction catalyzed by wild-type Ttb-gly in 

this paper was the covalent glycosyl-enzyme intermediate obtained in our previous 
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work39 as a result of the glycosylation process. The corresponding intermediate located 

in the case of the mutant Y284P Ttb-gly (result not published) was used for the hydrolysis 

reaction catalyzed by that mutant. The intermediate was modified by deleting all the pNP 

coordinates except those of the just formed hydroxyl group (due to the proton transfer 

from Glu164) that was converted into a water molecule using the PyMol program.40 The 

system was solvated in a cubic box of preequilibrated TIP3P41 water molecules and three 

sodium ions were added to neutralize it. More than 70,200 atoms were included in all. 

The coordinates of the system were relaxed at the MM level by restraining all protein 

atoms and the just built water molecule (sugar acceptor). Then, a short-restrained MD 

simulation (210 ps) at the MM level to allow the rearrangement of water molecules in the 

active site was performed under periodic boundary conditions (PBC) in the NVT 

canonical ensemble at 300 K. The temperature was controlled by Langevin dynamics.42 

All the MM calculations were done using the ff14SB43 Amber force field for the protein, 

and the GLYCAM06j44 atom types and parameters were employed for the sugar moiety. 

Along the MD simulations the covalent bonds containing hydrogen were constrained by 

means of the SHAKE algorithm45, and the long-range electrostatic interactions were 

treated using the particle-mesh Ewald method.46 A 1fs time step was used. in all the MD 

trajectories. All simulations were carried out employing the AMBER16 software (GPU 

(CUDA) version of the PMEMD 47, 48 package. 

As will be explained the section 3.2, the final snapshot of the MD simulation at the MM 

level was chosen to initiate a QM(SCC-DFTB)/AMBER MD simulation, from which 

several snapshots were chosen to generate a lot of potential energy profiles corresponding 

to the hydrolysis reaction (see below). The potential energy profiles were calculated at 

the QM(SCC-DFTB)/AMBER level with the modular program package ChemShell 49, 50 

employing TURBOMOLE51 to obtain the QM energies and gradients at the SCC-DFTB52 

(Self-Consistent Charge Density Functional Tight-Binding) level.  MM energies and 

gradients were evaluated using DL_POLY53, implemented in the ChemShell package, 

using the AMBER force field. The electrostatic embedding scheme54 was employed to let 

the MM point charges to polarize the electronic density of the QM region. No cutoffs were 

introduced for the nonbonding MM and QM/MM interactions.  The cubic box of water 

molecules was reduced to a 30 Å sphere surrounding the full protein for all the QM/MM 

calculations. All residues and water molecules within 15 Å from the anomeric carbon C1 

were allowed to move during the optimization process (active region, around 2100 

atoms), while the remaining atoms were kept fixed. The QM region includes the fucose 
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ring, eight nearby waters, and the sidechains of Glu164, Glu338, and Tyr284 (67 atoms 

in all). Three link atoms were used to define the QM/MM boundary with the charge-shift 

approach.36 The total charge of the QM regions is -1 a.u.  

The QM/MM optimizations were performed using the limited-memory Broyden-

Fletcher-Goldfarb-Shanno (LBFGS)55 algorithm combined with the Hybrid Delocalized 

Internal Coordinate Scheme.56 The reaction paths were scanned by performing 

harmonically restrained optimizations along a suitable reaction coordinate (see below) in 

steps of 0.1 Å.  For each potential energy profile, the highest potential energy structure 

was taken as an approximation to the corresponding transition state structure. 

 

3.2. Results for wild-type Ttb-gly 

As explained in section 3.1., the final snapshot of the MD simulation at the MM level was 

chosen as starting point for a QM(SCC-DFTB)/AMBER DM simulation without any 

restraints. Firstly, the system was heated in the NVT canonical ensemble increasing the 

temperature along 60 steps, 100 fs each, up to 300 K. Then, an equilibration period of 20 

ps was performed. A final production run of 100 ps was done.  

In order to apply equation 5 we selected N = 2000 snapshots uniformly distributed at 

equal intervals along that MD simulation. It is not possible in practice to calculate the 

hydrolysis potential energy paths corresponding to these N snapshots. For this reason, we 

looked for the precatalytic structures. It is evident that only those snapshots that involve 

a water molecule placed in the right place for the hydrolysis reaction to be possible are 

precatalytic, in the sense that only those will imply a reasonable potential energy barrier 

for the hydrolysis. Thus, we searched precatalytic snapshots where (see Figure 1) there is 

a water molecule with one of its hydrogen atoms closer than 2 Å to the proton acceptor 

oxygen atom (OE2GLU164) of Glu164, and with its oxygen atom closer to the anomeric 

carbon atom C1 of the fucose ring than any of its hydrogen atoms. According to this filter, 

only n = 146 precatalytic snapshots were identified. The energy of each one was 

minimized at the QM(SCC-DFTB)/AMBER level to obtain the associated reactant 

minimum. From these structures the corresponding QM(SCC-DFTB)/AMBER 

hydrolysis potential energy paths were calculated using the difference between the 

distance HWAT-OWAT and the distance C1-OWAT (OWAT is the oxygen atom of the water 

molecule that is in the right place to produce the hydrolysis reaction, and HWAT is its 

hydrogen atom that is going to protonate Glu164) to define the reaction coordinate R2. 

As expected, a wide dispersion of potential energy barriers was obtained (they range from 
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20.9 kcal/mol up to 31.8 kcal/mol), as seen in Figure 2. The arithmetic mean is 26.2 

kcal/mol with a standard deviation of 2.4 kcal/mol. Although these values can be 

indicative of the size of the barriers and their dispersion, they cannot be used to estimate 

the free energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Potential energy paths calculated starting from each one of the 146 precatalytic 

snapshots identified for the hydrolysis reaction catalyzed by wild-type Ttb-gly. The 

energies are given in kcal/mol and the reaction coordinate R2 in Å. 

 

Although it is not truly relevant four our purpose in this paper, we can mention that two 

kinds of potential energy paths are obtained. Some of them reach the minima 

corresponding to the products at a value of R2 about – 0.5 Å, and the others already at the 

positive region of R2. This delay is caused by the fact that the proton transfer to OE2GLU164 

is not included in R2. Consequently, some hysteresis appears in the region of products of 

some energy paths, delaying the hydrogen transfer and reaching the product minima at 
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more advanced values of R2 (that is, allowing that Glu338 gets further away from the 

anomeric carbon atom C1 of the fucose ring).  

It is interesting to observe that the filter we have used leads to 146 precatalytic snapshots 

where the distribution of distances C1-OWAT (that is not included as a criterium for the 

filter) is relatively concentrated near 3.2 Å (see Figure 2a), with some structures with 

distances C1-OWAT slightly shorter (by 0.2 Å – 0.3 Å). In addition, we can see in Figure 

3b that there is no correlation at all between these distances C1-OWAT and the potential 

energy barriers. Likewise, there is no correlation either between the distances 

corresponding to the proton to be transferred - oxygen atom (OE2GLU164) of Glu164 (also 

very grouped) and the potential energy barriers, although in this case a very slight 

increasing trend of the barriers as the distance augments can be glimpsed (see Figure 3c). 

In a nutshell, the distribution of distances C1-OWAT and HWAT - OE2GLU164 are quite narrow 

within the set of precatalytic snapshots and cannot explain the considerable dispersion of 

potential energy barriers. Many other geometrical parameters of the Michaelis complex 

play here a role determining those barriers, and we cannot focus just on the more relevant 

geometrical distances from the point of view of the chemical reaction. 
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b) 

 

c) 

 

Figure 3. Histogram of the distances C1-OWAT for the 146 precatalytic snapshots 

identified for the hydrolysis reaction catalyzed by wild-type Ttb-gly (a); potential energy 

barriers as a function of the distances C1-OWAT (b) or the distances proton to be transferred 

(HWAT) - oxygen atom (OE2GLU164) of Glu164 (c) in these precatalytic snapshots. Energies 

are given in kcal/mol and distances in Å. 

 

Going now to equation 5, with n = 146 and N = 2000 the contribution of the non-

precatalytic structures (first term of the second member of the equation) to the Gibbs free 

energy barrier is 1.6 kcal/mol. The contribution of the 146 precatalytic snapshots is the 
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exponential average (second term of the second member of the equation) leading to 22.8 

kcal/mol. In all, the Gibbs free energy barrier amounts to 24.4 kcal/mol. It can be clearly 

seen that the contribution of the non-precatalytic structures is not negligible at all, and 

that it appears even in the case of short molecular dynamics simulations (100 ps). 

 

3.3. Results for the mutant Y284P Ttb-gly.  

Then, we studied the same reaction enzyme but with quite smaller energy barriers. To 

this aim we choose the mutant Y284P Ttb-gly. We proceeded with this mutant in the same 

way as for wild-type Ttb-gly. Again, we selected N = 2000 snapshots uniformly 

distributed at equal intervals along the QM(SCC-DFTB)/AMBER 100 ps molecular 

dynamics simulation without any restraints. Using the same filter, we found this time n = 

202 precatalytic snapshots. The energy of each one was minimized at the QM(SCC-

DFTB)/AMBER level to obtain the associated reactant minimum. From these structures 

the corresponding QM(SCC-DFTB)/AMBER hydrolysis potential energy paths were 

calculated using the difference between the distance HWAT-OWAT and the distance C1-

OWAT to define the reaction coordinate R2. Now, even a wider dispersion of potential 

energy barriers was obtained (they range from 12.4 kcal/mol up to 33.6 kcal/mol), as seen 

in Figure 4. The arithmetic mean is 23.1 kcal/mol with a standard deviation of 4.7 

kcal/mol. Some delay of  the hydrogen transfer also appears in some cases, so causing 

again the existence of two kinds of potential energy paths differing in the product’s 

region.  

According to equation 5, with n = 202 and N = 2000 the contribution of the non-

precatalytic structures (first term of the second member of the equation) to the Gibbs free 

energy barrier is 1.4 kcal/mol. The contribution of the 202 precatalytic snapshots is the 

exponential average (second term of the second member of the equation) leading to 15 

kcal/mol. In all, the Gibbs free energy barrier amounts to 16.4 kcal/mol.  
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Figure 4. Potential energy paths calculated starting from each one of the 202 precatalytic 

snapshots identified for the hydrolysis reaction catalyzed by mutant Y284P Ttb-gly. The 

energies are given in kcal/mol and the reaction coordinate R2 in Å. 

 

 

4. Hydrogen abstraction reactions from arachidonic acid catalyzed by the enzyme 

rabbit 15-lipoxygenase-1. 

Finally, we studied two enzyme reactions where the molecular dynamics simulations of 

the enzyme-substrate Michaelis complex were run at MM level and the potential energy 

profiles corresponding to the selected snapshots were calculated at QM(DFT)/MM level. 

The MM level for the molecular dynamics simulations makes it possible to run 

trajectories a thousand times longer than in the case of Ttb-gly. 

Lipoxygenases (LOXs) are non-heme iron dioxygenases that catalyze the oxidation of 

polyunsaturated fatty acids, producing conjugated hydroperoxide fatty acids. These 

hydroperoxidations turns out to be very highly regio- and stereospecific. The rate 

determining step of the overall hydroperoxidation process is the initial hydrogen atom 
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abstraction from a bisallylic methylene of one of the (Z,Z)-1,4-pentadiene units of the 

substrate fatty acid by the Fe(III)-OH- cofactor, yielding Fe(II)-OH2 and a pentadienyl π 

radical.57-61 In mammals, the main substrate of LOXs is arachidonic acid, whose 

hydroperoxidation initiates the biosynthesis of signaling lipid mediators that are crucial 

for human health and are implicated in inflammatory processes.62 

The crystallographic structure for rabbit reticulocyte-type 15-lipoxygenase-1 (15-rLOX-

1) dimer was the first one resolved for a mammalian LOX (PDB code 2P0M).63   15-

rLOX-1 converts AA into hydroperoxyeicosatetraenoic acids (HPETEs) with the 

following distribution of products: 97 % of 15S-HpETE (after abstracting one hydrogen 

atom at C13 of AA), 3 % of 12S-HpETE (after abstracting one hydrogen atom at C10 of 

AA). No signal of 9S-HpETE (after abstracting one hydrogen atom at C7 of AA) was 

detected.64 

In the present paper we will study the hydrogen transfer reactions from C13 and C7 of AA 

catalyzed by the enzyme rabbit 15-lipoxygenase-1. The case of the hydrogen abstractions 

from C7 was chosen because their energy barriers are very high. To our purpose, no matter 

that hydrogen abstraction from C7 is actually too slow to be competitive.  

 

4.1. Methodological details for the enzyme rabbit 15-lipoxygenase-1. 

The monomer A and the ligand bound at the active site of monomer B in the x-ray 

structure of rabbit 15-LOX-1 dimer 63 were removed. The monomer B was protonated 

with the H++ web-server.65,66 A pH = 6.5 for the titratable residues was employed. The 

protonation state for the iron coordination sphere was corrected by hand to ensure a 

correct description. 

The program GOLD5.8.067 was employed to carry out docking calculations for AA within 

the pocket of the monomer B. The conformational space was explored using the genetic 

algorithm. The binding site was defined as a 20 Å radius sphere centered on the iron atom. 

Binding free energies were estimated by the ChemScore fitness function. 

The best pose was chosen to run an MD simulation. The ff14SB43 Amber force field was 

used for the protein atoms, whereas the specific parameters for AA were taken from a 

previous work.68 The GAFF2 69,70 library was employed as the source for these 

parameters. Employing the MCPB.py procedure71 within the bonded model and the 

Seminario method for the force constants calculations,72 specific MM parameters were 

developed for the iron atom and its first coordination sphere (His361, His366, His541, 

His545, Ile663 and the OH- group).73 This first coordination sphere was optimized 
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employing the B3LYP/6-31G(d) level of theory and their atomic charges were assigned 

using the Merz-Kollman RESP procedure.74 

The tLeap program was used to combine enzyme and substrate files into the protein-

substrate complex, and to solvate it with an orthorhombic box of pre-equilibrated TIP3P41 

waters as well as to neutralize its total charge by addition of sodium cations. The final 

system contains nearly 92150 atoms of which about 10600 belong to the protein. The rest 

of atoms correspond to water molecules and salt ions. All molecular dynamics 

simulations were run using the AMBER 14 GPU (CUDA) version of the PMEMD 

package47,48 as mentioned above. To begin with, the Michaelis complex was submitted to 

22000 energy minimization steps combining the steepest descent and conjugate gradient 

methods to remove bad contacts. In the first 6000 steps, harmonic restraints were applied 

to the protein and substrate atoms with a force constant of 5.0 kcal mol-1 Å-2, so that only 

the solvent and ions were relaxed. In the following 6000 steps, harmonic restraints were 

applied to the protein backbone and the substrate heavy atoms with the same force 

constant as before. Nonetheless, the whole complex was kept free during the last 10000 

steps. After that, MD simulations using periodic boundary conditions were carried out. 

The system was gradually heated from 0 K to 300 K for a period of 200 ps. The following 

step consisted of running a MD simulation of 1 ns within the NTP ensemble (300 K, 1 

bar) to adjust the volume of the orthorhombic box so that a density of around 1 g cm-3 

was achieved. During the heating and the compressing, harmonic restraints were applied 

to the protein backbone and the substrate heavy atoms with a force constant of 5.0 kcal 

mol-1 Å-2, whereas the rest of the system was kept without restraints. The temperature was 

controlled by Langevin dynamics,42 while the pressure was adjusted by the Berendsen 

barostat.75 Next, an equilibration stage of 10 ns at constant temperature (300 K) and 

volume was performed. Finally, a production period with a length of 100 ns was run 

within the NVT ensemble. A time step of 2 fs was used along the whole MD trajectory. 

All bonds and bends containing hydrogen atoms were also constrained by the SHAKE 

algorithm.45 The non-bonding interactions have been calculated with a cutoff of 9 Å. 

The QMM/MM potential energy profiles were calculated at the QM(DFT)/AMBER level 

following the procedure described in section 3.1. To carry out the initial QM/MM 

optimizations for each selected snapshot all water molecules outside a 17 Å radius volume 

centered on AA were removed. The active region includes all residues and water 

molecules inside a 15 Å radius sphere centered on either C13 of AA when the H13-proS 

hydrogen abstraction is considered, or C7 when the H7-proS hydrogen abstraction is studied. 
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This region moves freely (≈ 2100 atoms) while the rest of atoms were kept frozen. 

Roughly 12000 atoms were included into the QM/MM calculations. 

The B3LYP hybrid functional76 was used to describe the QM region. The 6-31G(d) 

People basis set77 was employed for the C, H, O and N atoms, while the LANL2DZ basis 

set78 was used for the Fe atom. The QM region (Figure 5) was defined by all atoms of AA 

which are found between C5 and C15, 11 atoms for each His residue in the iron 

coordination sphere (His361, His366, His541 and His545), 3 atoms of the Ile terminal 

residue (Ile 663) in the iron coordination sphere and the FeIII - OH- cofactor. A multiplicity 

corresponding to a sextet was used.79 The net charge of the QM region is 1 a.u. Seven 

link atoms were used, five between the bonds Cα-QM atoms of the five residues in the 

iron coordination sphere and two bonded to the aliphatic carbon atoms of the lipid 

substrate (placed between C4-C5 and C15-C16).  

 

 

Figure 5: QM/MM partition for the hydrogen abstraction reactions from arachidonic acid 

catalyzed by the enzyme rabbit 15-lipoxygenase-1. QM atoms are depicted in blue. The 

boundary between QM and MM regions is indicated by red wavy lines.  

 

4.2. Results for the hydrogen transfer reactions from AA 

As explained in section 4.1., a production period with a length of 100 ns was run within 

the NVT ensemble using the force field describe there. We selected N = 10000 snapshots 

uniformly distributed at equal intervals along that MD simulation. Then we looked for 

the precatalytic structures. We searched precatalytic snapshots where the initial distance 

between the hydrogen atom that will be abstracted, H13- proS or H7- proS, and the oxygen 

atom of the hydrogen acceptor, that is, the oxygen of the Fe(III)-OH- cofactor, is smaller 

than 3.0 Å or 4.0 Å, respectively, for the reaction to take place with a reasonable potential 
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energy barrier. Furthermore, the distance from the corresponding carbon atom, C13 or C7, 

to that oxygen atom had to be greater than the distance from H13-proS or H7-proS, 

respectively, so ensuring that the corresponding C−H bond is properly oriented for the 

hydrogen abstraction (see Figure 5). Applying this filter, only n = 3383 or n = 33 

precatalytic snapshots were identified for the H13- proS or H7-proS abstractions, respectively. 

25 structures were randomly selected as representative of each set of precatalytic 

snapshots. The energy of each one was minimized at the QM(B3LYP)/AMBER level to 

obtain the associated reactant minimum. From these structures the corresponding 

QM(B3LYP)/AMBER potential energy paths were calculated using as reaction 

coordinate the difference between the distance of the breaking bond (C13−H13-proS or C7−

H7-proS, for the H13-proS or H7-proS abstractions, respectively) and the forming bond (H13-proS 

−O or H7-proS −O, respectively). The corresponding potential energy profiles are displayed 

in Figures 6 and 7. Again, a wide dispersion of potential energy barriers was obtained. 

They range from 12.8 kcal/mol up to 26.5 kcal/mol in Figure 6, and from 39.4 kcal/mol 

up to 66 kcal/mol in Figure 7. The arithmetic mean is 18.9 kcal/mol with a standard 

deviation of 4.2 kcal/mol for the H13-proS hydrogen abstraction, whereas the arithmetic 

mean is 49.6 kcal/mol with a standard deviation of 6.3 kcal/mol for the H7-proS hydrogen 

abstraction. As expected, the potential energy barriers corresponding to the H13-proS 

abstraction are quite smaller than the ones corresponding to the H7-proS abstraction.  

 



23 
 

 

 

Figure 6. Potential energy paths calculated starting from each one of the 25 randomly 

selected precatalytic snapshots for the H13-proS abstraction reaction catalyzed by the 

enzyme rabbit 15-lipoxygenase-1. 
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Figure 7. Potential energy paths calculated starting from each one of the 25 randomly 

selected precatalytic snapshots for the H7-proS abstraction reaction catalyzed by the enzyme 

rabbit 15-lipoxygenase-1. 

 

There is a quite considerable dispersion of values of relevant geometrical parameters 

along the 100 ns molecular dynamics simulation.  This can be seen both following the 

evolution on time of the distances C13−OH- and C7−OH- (see Figure 8) and watching the 

histograms of those distances (see Figure 9). Indeed, the filtering leading to the 

precatalytic snapshots largely reduce this geometrical dispersion, although a wide 

dispersion of potential energy barriers holds and no correlation with the distances C13−

OH- or C7−OH- can be found (Figure 10).  
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Figure 8. Distances C13−OH (in Å, green line) and C7−OH (in Å, blue line) along the 

100 ns MM(AMBER) molecular dynamics simulations for the 15-LOX-1:AA Michaelis 

complex. OH stands for the OH- group  of the Fe(III)−OH− cofactor of 15-LOX-1. 

 

 

Figure 9. Histogram of the distance C13−OH (in Å, green lines) and C7−OH (in Å, blue 

lines) corresponding to the 100 ns MM(AMBER) molecular dynamics simulations for the 

15-LOX-1:AA Michaelis complex. OH stands for the OH- group  of the Fe(III)−OH− 

cofactor of 15-LOX-1. 
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a) 

 

b)  

 

Figure 10. Potential energy barriers as a function of the distances H13-proS −OH (a) or the 

distances H7-proS −OH (b) in the randomly selected precatalytic snapshots in the case of 

the enzyme rabbit 15-lipoxygenase-1. OH stands for the OH- group  of the Fe(III)−OH− 

cofactor of 15-LOX-1. 

 

Using now equation 5, for the H13-proS  abstraction  n = 3383 and N = 10000. So, the 

contribution of the non-precatalytic structures (first term of the second member of the 

equation) to the Gibbs free energy barrier is 0.6 kcal/mol. The contribution of the 

precatalytic snapshots can be estimated from the exponential average (second term of the 

second member of the equation) including the representative 25 randomly selected 

structures, thus leading to 14.6 kcal/mol. In all, the Gibbs free energy barrier is 15.2 

kcal/mol. As for the H7-proS  abstraction,   n = 33 and N = 10000. This gives 3.4 kcal/mol 

for the first term, 41.3 kcal/mol for the second, and 44.7 kcal/mol in all. The contribution 

of the Gibbs free energy corresponding to the first term is the cost that must be paid to 
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reduce the wide set of structures corresponding to the Michaelis complex to the narrow 

set of precatalytic structures, and it cannot be neglected.  An analysis of the convergence 

of these results is presented in the Electronic Supplementary Information. 

A final consideration is worth making. Let us suppose that we carry out umbrella 

sampling simulations starting from the selected precatalytic structure that originates the 

smallest potential energy barrier for each hydrogen atom abstraction. That is, the one 

corresponding to a barrier of 12.8 kcal/mol for the H13-proS abstraction reaction, and the 

one corresponding to 39.4 kcal/mol for the H7-proS abstraction reaction. A reasonable 

window width for QM(DFT)/MM umbrella sampling simulations in enzyme reactions is 

3 ps (50 ps if a semi-empirical method is used to describe the QM zone). The point here 

is up to what extent the structures generated along this short sampling (but forced by the 

long computer time involved in the QM/MM molecular dynamics simulations) are 

representative of the nuclear configurations of the whole reaction valley. In Figure 11 we 

have pictured the evolution of the distances C13−OH and C7−OH along 3 ps 

MM(AMBER) molecular dynamics simulation for the 15-LOX-1:AA Michaelis 

complex, and the corresponding histograms (Figure 12). These two Figures must be 

compared with the quite longer 100 ns MM(AMBER) molecular dynamics simulations 

shown above in Figures 8 and 9. It is clear that the short simulations used in umbrella 

sampling simulations just cover a narrow neighborhood of the starting structure (only a 

sub-valley), in such a way that the contribution to the Gibbs free energy of a huge number 

of nuclear configurations distributed in the whole reaction valley is absolutely lost. This 

way, the choice of only a particular structure to  calculate the Gibbs free energy barrier 

for an enzyme reaction using either umbrella sampling simulations or the free energy 

perturbation method neglects very considerable contributions of the reaction valley of the 

enzyme-substrate Michaelis complex and can lead to a significant error. We think that the 

present paper introduces a meaningful warning in this sense that deserves consideration. 

Two final points are worth mentioning. Firstly, the generation of snapshots along 

molecular dynamics simulations to evaluate the catalytic effect of an enzyme has already 

been done previously. 80, 81 On the other hand, the lengths of the molecular dynamics 

simulations have to be chosen carefully, because the convergence of the free energy 

perturbation calculations can require a considerable time, even for gas phase reactions.82 
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Figure 11. Distances C13−OH (in Å, green line) and C7−OH (in Å, blue line) along the 3 

ps MM(AMBER) molecular dynamics simulations for the 15-LOX-1:AA Michaelis 

complex starting from the selected precatalytic structure that originates the smallest 

potential energy barrier for each hydrogen atom abstraction. OH stands for the OH- group  

of the Fe(III)−OH− cofactor of 15-LOX-1. 

 

 

 

 

Figure 12. Histogram of the distance C13−OH (in Å, green lines) and C7−OH (in Å, blue 

lines) corresponding to the 3 ps MM(AMBER) molecular dynamics simulations for the 

15-LOX-1:AA Michaelis complex starting from the selected precatalytic structure that 

originates the smallest potential energy barrier for each hydrogen atom abstraction. OH 

stands for the OH- group  of the Fe(III)−OH− cofactor of 15-LOX-1. 
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5. Conclusions 

Instantaneous disorder consists of instantaneous dynamic fluctuations in the enzyme-

substrate Michaelis complex with timescales much smaller than kcat. This leads to 

different energy barriers that cannot be experimentally detected. They are the 

consequence of a huge number of nuclear configurations in local equilibrium with each 

other within a reaction valley. Quantum mechanics/molecular mechanics methods can 

build multiple minimum-energy paths connecting a potential energy minimum inside the 

reactant valley with a potential energy minimum in the associated product valley, so 

providing a wide dispersion of potential energy barriers. An exponential average has been 

the most used method to estimate the Gibbs free energy barrier of the enzyme reaction. 

However, the way how this exponential average has been justified and applied in practice 

is questionable. In this paper we propose a protocol based on the free energy perturbation 

theory that more properly justify the suitable use of the exponential average and that 

provides a practical way to determine the Gibbs free energy barrier of the reaction. This 

value includes the contribution of both the non-precatalytic and the precatalytic structures 

as a result of a long sampling over the reaction valley. This procedure does not require 

the arbitrary choice of a particular structure in whose quite narrow neighborhood a 

potential of mean force is calculated. 

We have used the hydrolysis of a glycosidic bond catalyzed by the enzyme Thermus 

thermophilus β-glycosidase, and the mutant Y284P Ttb-gly,  and the hydrogen abstraction 

reactions from C13 and C7 of arachidonic acid catalyzed by the enzyme rabbit 15-

lipoxygenase-1 to exemplify our procedure. 

 

Electronic Supplementary Information 

Test of convergence of the Gibbs free energy barrier and its contributions appearing in 

equation 5; Results using a slightly more restrictive filter to identify the precatalytic 

snapshots. 
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