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Editorial on the Research Topic

CopingWith Climate Change: A Genomic Perspective on Thermal Adaptation

Current human-induced climate warming poses a threat to many organisms (Somero, 2012;
Buckley and Huey, 2016; Walsh et al., 2019). Species respond to climate change in different
ways, from plasticity, evolutionary adaptation, and dispersal, to extinction (Holt, 1990; Parmesan,
2006). In ectotherms, the upper thermal limits have limited plasticity compared to lower thermal
limits (Gunderson and Stillman, 2015). Additionally, physiological tolerance to critically high
temperatures (when performance drops to zero) may be genetically constrained (Araújo et al.,
2013; Hoffmann et al., 2013). Consequently, behavioral thermoregulation can be an important
mechanism in buffering exposure to extreme temperatures (Sunday et al., 2014). Predicting how
species may adapt to new thermal conditions requires robust ways of evaluating their underlying
evolutionary and plastic potentials. Given that intraspecific differentiation to upper critical thermal
limits is commonly observed (e.g., Herrando-Pérez et al., 2019, 2020), selection for tolerance to high
temperatures may be occurring, although it is not clear how. This calls for a deeper understanding
of the underlying genetic basis of thermal adaptation (Porcelli et al., 2015).

In recent decades there has been a boom in studies that use genome-wide sequencing
(Savolainen et al., 2013; Ellegren, 2014). Next-generation sequencing techniques, when applied
to experimental thermal evolution have contributed to understanding these genomic responses
to changing thermal conditions (e.g., Porcelli et al., 2015; Mallard et al., 2018). The combination
of genome-wide screenings with more classical approaches could pave the way for an integrative
understanding of how populations cope with climate change. This Research Topic aims to: (1)
expand knowledge on the genomic basis of thermal adaptation; (2) assess whether and how genetic
and genomic diversity can lead to common or different adaptive routes; and (3) discuss ways to
improve the contribution of different studies to community-level knowledge.

Logan and Cox suggest that there is moderate heritability for upper thermal tolerance and,
hence, the potential for heat tolerance to evolve. However, this may also be constrained by
unfavorable genetic correlations with other thermal performance traits. They also suggest that
the plastic response of the transcriptome depends on the magnitude of thermal shifts. Rodrigues
and Beldade also study genomics and transcriptomics of plasticity, which are usually assumed to
have the potential to enhance thermal adaptation. However, more research is needed because high
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phenotypic plasticity may be maladaptive in warmer and more
variable future climates (Kreyling et al., 2019).

Using a genome-wide association study and transcriptomic
profiling in lines from the Drosophila Genetic Reference
Panel (DGRP, Mackay et al., 2012), Lecheta et al. found
that heat tolerance is less variable than cold tolerance, with
∼50% more identified genes affecting the latter. These results
reinforce that heat tolerance is more constrained than cold
tolerance (Araújo et al., 2013). However, all lines came from
one single population, which could produce biased estimates
of heat tolerance (Herrando-Pérez et al., 2020), and further
research in other populations is needed. The Research Topic
also includes genome-wide approaches and gene expression
analyses. Sørensen et al. studied D. simulans populations after
20 generations of experimental evolution under predictable
or unpredictable thermal fluctuations. The strongest response
involved unpredictable fluctuations, and the genes under
selection were distinct from the genes that are important for the
adaptive plastic response under predictive thermal fluctuations.
Other studies have shown that constant and fluctuating
temperatures induce different plastic and evolutionary responses
(Botero et al., 2015; Dey et al., 2016), andmore studies like this are
important in uncovering the complexities of thermal evolution.

A potential limitation of studies on the evolution of heat
tolerance is that most ignore the possible negative impacts of
sublethal temperatures on oogenesis and spermatogenesis. This
could lead to a higher vulnerability to climate warming in many
organisms than is currently thought (David et al., 2005; Walsh
et al., 2019). Using the DGRP, Zwoinska et al. found that males
are more affected than females when flies were exposed at high
sublethal temperatures. At the same time, they did not find
additive genetic variance for reproductive performance at these
temperatures. Similar results were obtained for the egg-to-adult
viability assessed at different temperatures in D. melanogaster
(Kristensen et al., 2015). However, in Zwoinska et al. the power to
map the genetic variants of relatively small effects may be reduced
due to the low line number. Thus more studies, using several
populations or more DGRP lines are needed.

Few studies have demonstrated that adaptive evolution is
occurring as a consequence of climate change. Latitudinal and
long-term trends in the frequency of inversions in Drosophila
subobscura are remarkably consistent worldwide and highly
correlated with environmental temperature, respond to seasonal
changes and frequency shifts shortly after a heatwave (Balanyà
et al., 2006; Rezende et al., 2010; Rodríguez-Trelles et al.,
2013). Karageorgiou et al. focused on the breakpoints of a
particular inversion that shows cyclic seasonal changes and
speculate that this might be partly due to antagonistic pleiotropic
effects on reproduction and immunity resulting from a position
effect affecting the expression of functional genes located at
the breakpoints.

An important ingredient in a warming world is the ecological
and evolutionary implications of parasite-host dynamics and
prevalence. Mazzucco et al. focussed on the endosymbiont

Wolbachia infecting D. melanogaster lines evolved in cold and
hot environments, and found that these dynamics cannot be
straightforwardly linked to temperature, making it difficult to
predict the impact of climate change.

A goal of genome-wide analyses is to detect and understand
the signatures left by natural selection on the genome. Cortés
et al. summarize some of the tools available to reveal the genetic
consequences of climate change, but there are some shortcomings
to linking fitness relevant genes with environmental factors; e.g.,
those related to data reporting as highlighted by Waldvogel et al.
This is important, as genotype-environment associations can be a
key ingredient in forecasting the response of natural populations
to climatic variation.

Relevant insights into the genetic basis of thermal evolution
can come from studying the adaptations of organisms that live in
extreme natural environments. Using a metagenomics approach,
Alcorta et al. shed light on the genomic features and taxonomy of
thermophilic cyanobacteria living in hot springs. These features
included genome reduction, changes in GC content, coding
density, and size of biosynthetic gene clusters.

The contributions to this Research Topic add to our
understanding of thermal adaptation and its multifactorial
nature, and highlight the challenges that are still ahead of us in
striving for a deeper understanding of adaptation to expected
higher and more variable future temperatures. As shown in this
Research Topic, increased knowledge should be brought about
by complementary approaches comprising different levels of
biological organization and their interaction, using a variety of
methodologies and study organisms.
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